Este Mundo, a veces insólito

Calendario
marzo 2025
L M X J V S D
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Astronáutica

OSO 7

OSO 7

OSO 7 u Orbiting Solar Observatory 7 (NSSDC ID: 1971-083A), antes del lanzamiento conocido como OSO H, es el séptimo de la serie de satélites del Observatorio Solar en Órbita Estadounidense lanzados por la NASA entre 1962 y 1975.[2] OSO 7 fue lanzado desde Cabo Kennedy (ahora Cabo Cañaveral) el 29 de septiembre de 1971 por un cohete Delta N en una órbita terrestre baja de 33,1 ° de inclinación (inicialmente 321 por 572 km), y volvió a entrar en la atmósfera terrestre el 9 de julio de 1974. Fue construido por Ball Brothers Research Corporation (BBRC), ahora conocida como Ball Aerospace, en Boulder Colorado.

OSO 7

El satélite OSO 7, al igual que las otras misiones del Observatorio Solar en Órbita, era principalmente un observatorio solar diseñado para apuntar una batería de telescopios de rayos X y UV hacia el Sol desde una plataforma apuntadora de “vela” estabilizada montada en una “rueda” cilíndrica giratoria.

Operador: NASA

ID COSPAR 1971-083A

SATCAT no. 05491

Duración de la misión 3 años

Propiedades de la nave espacial

Fabricante Corporación de Investigación Ball Brothers (BBRC)

Masa de lanzamiento 635 kilogramos (1400 libras)

Comienzo de la misión

Fecha de lanzamiento 29 de septiembre de 1971, 09:50:00  UTC

Cohete Delta-N

Sitio de lanzamiento Cabo Kennedy LC-17A

Fin de misión

Fecha de descomposición 9 de julio de 1974

Parámetros orbitales

Sistema de referencia: Geocéntrico

Excentricidad: 18376

Altitud del perigeo: 1,0 kilómetros (199,5 millas)

Altitud de apogeo: 2,0 kilómetros (355,4 millas)

Inclinación: ,10 grados

Período: .20 minutos

Movimiento medio: .45

Época: 9 de septiembre de 1971, 05:50:00 UTC [1]

Si bien el diseño básico de todos los satélites OSO era similar, el OSO 7 era más grande [la masa total de la nave espacial era de 635 kg (1397 lb)] que el OSO 1 al OSO 6, con una matriz solar cuadrada más grande en el lado no giratorio. “Vela”, y una sección giratoria más profunda, la “Rueda”.[3]

Instrumentos de vela

La porción de “Vela” de la nave espacial, que se estabilizó para mirar hacia el Sol en todos los satélites de la serie OSO, llevaba dos instrumentos en OSO 7, que observaban continuamente el Sol durante el día en órbita. Éstas eran:

  • El espectroheliógrafo GSFC X-Ray y EUV (que cubre el rango de longitud de onda de 2 a 400 Å),[4] bajo la dirección del PI Dr. Werner M. Neupert de NASA GSFC, que capturó imágenes del Sol en el ultravioleta extremo y rayos X suaves. bandas, para determinar la temperatura y la distribución de la materia en la corona sobre las regiones activas y durante las erupciones solares.
  • El experimento de corona ultravioleta extrema y coronógrafo de luz blanca NRL, dirigido por el Dr. Richard Tousey del Laboratorio de Investigación Naval de los EE . Regiones activas de la superficie solar.

Instrumentos de rueda

El componente giratorio de la “Rueda” de la nave espacial, que proporcionó estabilidad giroscópica general al satélite, llevaba cuatro instrumentos, que miraban radialmente hacia afuera y escaneaban el Sol cada 2 segundos. Dos de estos eran instrumentos de observación solar y los otros dos eran instrumentos de rayos X cósmicos:

  • Instrumento de monitoreo de rayos X solares duros UCSD, PI Prof. Laurence E. Peterson.[6] [7] cubría el rango de energía de 2 a 300 keV utilizando contadores proporcionales y detectores de centelleo de NaI, además de tres pequeños detectores de partículas cargadas para monitorear el entorno de radiación local.
  • Monitor solar de rayos gamma UNH. El PI Prof. Edward Chupp,[8] observó rayos gamma de llamaradas solares de 0,3–10 MeV con un espectrómetro de centelleo NaI(Tl) en un escudo anticoincidencia activo CsI(Na).[9]
  • Experimento de Rayos X Cósmicos del MIT, PI Prof. George W. Clarke, observó fuentes de rayos X cósmicos en el rango de 1.5 a 9 Å.[10] Este instrumento utilizó contadores proporcionales para observar fuentes de rayos X cósmicos en el rango de 1 a 60 keV, en cinco bandas de energía amplias espaciadas logarítmicamente, con una resolución angular de aproximadamente 1°.[11]
  • Experimento de rayos X cósmicos de UCSD, PI Prof. Laurence E. Peterson.[12] Este instrumento, que tenía un campo de visión (FWHM) de unos 6°, miraba perpendicularmente al eje de giro de la Rueda, trazando un gran círculo en el cielo cada 2 segundos. A medida que el eje giratorio de la Rueda se movía para mantener los instrumentos de Vela apuntando al Sol, escaneaba todo el cielo cada 6 meses. Presentaba un detector de centelleo NaI(Tl) de 1 cm de espesor que cubría el rango de energía de ~7 keV a ~500 keV en 126 canales PHA, con un área efectiva de 100 cm 2en las energías más bajas. El detector estaba encerrado en un grueso escudo de centelleo anticoincidencia de CsI(Na) con 10 orificios perforados, que definían el campo de visión óptico del detector. Los eventos se registraron y telemidieron individualmente, con tiempo y altura de pulso etiquetados para cada uno, a una velocidad máxima de 3,2 por segundo.[13]

Resultados científicos

Entre los resultados científicos notables de OSO 7 se encuentran: [14]

  • Estudios de rayos X duros de todo el cielo, realizados por los instrumentos cósmicos del MIT y la UCSD.
  • La primera observación de la línea de emisión de rayos gamma solares (γ), debido a la aniquilación de electrones/positrones a 511 keV, de las erupciones solares a principios de agosto de 1972, por el espectrómetro UNH.[15] Legendario durante mucho tiempo en la NASA debido al peligro para los vuelos espaciales tripulados, habría incurrido en una dosis de radiación potencialmente fatal si los astronautas hubieran estado en el espacio en ese momento y fuera de la magnetosfera protectora de la Tierra (como es el caso durante gran parte de una misión Apolo lunar).[dieciséis]
  • La primera detección clara de una eyección de masa coronal (CME), por el instrumento NRL.
  • Observaciones de los espectros de rayos X duros del AGN NGC 4151 [17] y Cen A [18]
  • Posición y variabilidad espectral del estallido cósmico de rayos gamma del 14 de mayo de 1972[19]

Casi pérdida en el lanzamiento

El OSO 7 estuvo a punto de perderse en el lanzamiento, debido a una pérdida de presión hidráulica en el sistema de control de guía de la segunda etapa ~7 segundos antes del corte del motor de la segunda etapa. El plan nominal era que la nave espacial se separara de la segunda etapa con el eje de giro normal a la dirección del Sol, de modo que la vela pudiera orientarse hacia el Sol, lo que permitía que las baterías se cargaran por completo en órbita. Tal como estaban las cosas, la órbita era ligeramente excéntrica en lugar de circular, y se desconocía la orientación de la nave espacial inmediatamente después del lanzamiento, por lo que la vela no pudo adquirir bloqueo solar. La nave espacial fue lanzada con sus baterías completamente cargadas, dando aproximadamente 12 horas para que los controladores, dirigidos por John Thole de la NASA, se recuperaran antes de que la nave espacial perdiera potencia y capacidad de mando. Pasaron varias horas mientras los ingenieros intentaban interpretar la intensidad de la señal de la nave espacial en términos de su patrón de antena de transmisión. Finalmente, una o dos horas antes del final, Thole decidió abandonar la precaución y “comenzar a girar”, y por suerte y habilidad, se recuperó el control.[20]

Debido a que el apogeo orbital resultante fue de ~572 km en lugar de los ~350 km planificados para la órbita circular nominal, varias veces al día OSO 7 pasó bastante profundo en los cinturones de radiación de Van Allen, por lo que el bombardeo de protones de alta energía lo hizo algo radiactivo. La actividad luego decayó lentamente durante otros momentos del día. La radiactividad interna del instrumento, complejamente variable, complicó el análisis de los datos de los sensibles instrumentos de rayos X y rayos gamma a bordo.

P78-1

El repuesto de vuelo para OSO H fue adquirido más tarde por la Fuerza Aérea de EE. UU., modificado y re-instrumentado, y luego lanzado en 1979 como P78-1 (también conocido como Solwind), el satélite que fue derribado por la USAF en un exitoso ataque anti-prueba de misiles satelitales en 1985. El OSO 7 y el P78-1 no eran idénticos en apariencia, pero más similares entre sí que a las naves espaciales anteriores OSO 1 a OSO 6, o al OSO 8 final.[21]

Chang’e 6

Chang’e 6

Primeras muestras de la cara oculta de la Luna

La misión Chang’e 6 fue lanzada el 3 de mayo de 2024 a las 09:27 UTC mediante el Larga Marcha CZ-5 Y8. Tras una corrección de trayectoria, el 8 de mayo a las 02:12 UTC se colocó en una órbita inicial retrógrada de 200 x 8600 kilómetros y un periodo de 12 horas mediante el motor del segmento orbital. Desde esta órbita inicial, ese mismo día a las 08:14 UTC la sonda desplegó el pequeño cubesat paquistaní ICUBE-Q. En los días posteriores se situó en una órbita con un periodo de 4 horas y, finalmente, en una órbita circular de 200 kilómetros. El 30 de mayo el segmento de descenso se separó del segmento orbital y redujo su periastro hasta los 15 kilómetros. El 1 de junio a las 22:09 UTC el motor de la etapa de descenso se encendió cuando estaba en el periastro y comenzó el encendido final. El alunizaje tuvo lugar el 1 de junio de 2024 a las 22:23 UTC en el anillo exterior del cráter Apolo, en la cuenca de impacto Polo Sur-Aitken (SPA). Según el equipo de la sonda LRO de la NASA, las coordenadas de aterrizaje fueron 41,6385º sur, 206,0148º este, con una altitud de 5256 metros por debajo del radio medio lunar.

Partes de Chang’e 6 (CASC).

Emblema de la misión (CNSA).

Tras recoger muestras de la cara oculta mediante un taladro y un brazo robot y desplegar una pequeña cámara móvil que fotografió a la sonda en la superficie lunar, el 3 de junio de 2024 a las 23:38 UTC la etapa de ascenso del segmento de superficie de la misión despegó desde la cara oculta, dejando la etapa de descenso en la superficie. Durante los dos días de actividad, el sensor sueco de viento solar NILS (Negative Ions on Lunar Surface), suministrado por la ESA, funcionó durante un total de tres horas y confirmó por primera vez la existencia de iones negativos en la superficie lunar (además, NILS ha sido el primer instrumento oficial de la ESA en la superficie de la Luna). La etapa de ascenso quedó situada en una órbita inicial de 15 x 180 kilómetros seis minutos más tarde y luego elevo su periastro hasta los 50 x 180 kilómetros. Una vez en la posición adecuada con respecto al segmento orbital, efectuó otra ignición para colocarse en una órbita de 180 x 210 kilómetros. Cuando estuvo cerca del módulo orbital realizó el último encendido principal para circularizar la órbita.

Lanzamiento de la Chang’e 6 (CNSA).

Panorama de la zona de alunizaje en la cara oculta (CNSA).

 

La sonda Chang’e 6 en la cuenca del Polo Sur-Aitken de la cara oculta de la Luna con el brazo robot desplegado de 3,7 metros. Imagen tomada por un pequeño rover-cámara desplegable (CNSA).

 

 

El pequeño rover-cámara que tomó la imagen anterior (CNSA).

La Chang’e 6 vista en la superficie lunar por la sonda LRO de la NASA (NASA).

 

 

 

 

 

 

 

Zona de aterrizaje de la Chang’e 6 (NASA).

El 6 de junio a las 06:48 UTC la etapa de ascenso se acopló con el segmento orbital utilizando un sistema de pinzas y barras ideado para mitigar la gran diferencia de masa entre los dos vehículos y que, además, permite tolerar errores relativamente importantes en cuanto a posición y velocidad comparado con otros métodos de acoplamiento. El acoplamiento tuvo lugar cerca del límite oriental entre la cara visible y la oculta. Tres pinzas situadas en el módulo orbital se cerraron sobre tres barras de la etapa superior. Durante 1 segundo las pinzas se cerraron parcialmente y en los 10 segundos restantes el sistema fue corrigiendo la secuencia de cerrado para que quedasen alineadas las naves. En los últimos 10 segundos del acoplamiento se bloqueó la posición relativa. Luego, el contenedor de muestras se trasladó de la etapa de ascenso hasta la cápsula de retorno en el módulo orbital mediante un mecanismo de transferencia con cremallera mecánica. Después la etapa de ascenso se separó y sería desorbitada, impactando contra la superficie lunar, alrededor del 8 de junio.

Recreación del acoplamiento entre la etapa de ascenso y el orbitador (CASC).

La etapa de ascenso cerca del acoplamiento (CNSA).

Transferencia del cilindro de muestras de la etapa de ascenso a la cápsula del módulo orbital (CNSA).

Por su parte, el segmento orbital expulsó el sistema de acoplamiento —antes del acoplamiento había eyectado el cono de conexión con el segmento de aterrizaje— y esperó en órbita lunar a que la Tierra y la Luna se alineasen para poder regresar a la Tierra. El 20 de junio a las 15:38 UTC el orbitador completó con éxito el encendido para regresar a la Tierra y quedó situado en una órbita amplia con una inclinación de 41,9º con respecto a nuestro planeta. El estudio de las muestras de la cara oculta de la Luna es una prioridad de la comunidad científica internacional debido a la diferencia entre este hemisferio y el visible (la corteza de la cara oculta presenta una menor superficie cubierta por basaltos de los maria debido a su mayor espesor). Además, la cuenca Polo Sur-Aitken (SPA) es la más antigua y grande de la Luna. Su estudio permitirá datar mejor la historia de nuestro satélite y entender su evolución. La NASA ha propuesto varias misiones de tipo New Frontiers para traer muestras de la cara oculta de la Luna, como es el caso de la propuesta MoonRise, pero ninguna salió adelante. Sea como sea, hoy, 55 años después de que el Apolo 11 trajese las primeras muestras lunares, ya tenemos en la Tierra rocas y regolito de la cara oculta de la Lun.

 

 

 

 

 

Localización de la cápsula en el módulo orbital con el sistema de acoplamiento y el cono adaptador y los distintos pernos explosivos (CASC).

 

 

 

 

 

Las 3 cápsulas lunares chinas.

La cápsula en el módulo orbital (CNSA).

 

 

 

 

 

 

 

 

 

 

Partes de Chang’e 6 (CASC).

El 30 de mayo a una hora indeterminada el segmento de descenso se separó, como estaba previsto, del segmento orbital. Posteriormente, el segmento de descenso redujo su periastro hasta los 15 kilómetros. El 1 de junio a las 22:09 UTC el motor de la etapa de descenso se encendió cuando estaba en el periastro y comenzó el encendido final (una de las pocas efemérides que ha hecho públicas la CNSA). El motor hipergólico YF-36A funciona durante 310 segundos en total y es capaz de modular su empuje entre los 1,5 y los 7,5 kilonewton, con un impulso específico de 313 segundos. Se puede encender hasta 30 veces y es similar al de las etapas de descenso de las sondas Chang’e 3, 4 y 5 y al del módulo de aterrizaje de la Tianwen 1. Este es el mismo motor que usará el módulo lunar tripulado Lanyué en el futuro (empleará cuatro unidades). Sus dimensiones son de 1,46 metros de largo y tiene 0,83 metros de diámetro, con una masa de 39 kg. Durante el descenso, la sonda usa también 16 motores de control de posición de 150 newton de empuje. Todos estos motores están alimentados por cuatro tanques de propergoles hipergólicos de 500 litros cada uno situados en la etapa de descenso.

Vista lateral del segmento de descenso de la Chang’e 5, similar a la Chang’e 6 (CASC).

 

 

 

 

 

 

 

 

Motor de la etapa de descenso de 1,5-7,5 kN (CASC).

Sistema de propulsión de la etapa de descenso (CASC).

La sonda siguió un perfil de descenso parecido al de la Chang’e 5, aunque no se han comunicado diferencias sustanciales. Al alcanzar los 2,5 kilómetros de altitud, la sonda, guiada por radar y lídar, ya había eliminado casi toda su velocidad horizontal y giró para colocarse en vertical. A partir de ese momento, a 2 kilómetros de altitud, la nave comenzó a buscar posibles obstáculos de gran tamaño para evitarlos usando datos del lidar y de varios sensores (lídar, altímetro de microondas y cámaras de navegación). A cien metros de altitud y a diez segundos del aterrizaje, la sonda había eliminado su velocidad horizontal completamente y quedó suspendida durante unos 2 segundos mientras el sistema de navegación óptica elegía la zona óptima de aterrizaje. A 30 metros de altitud el motor principal redujo su empuje para evitar que las rocas y el regolito desplazados pudieran dañar el vehículo. Par evitar que el regolito expulsado por el motor pudiera confundir a los sensores de navegación, la sonda iba equipada con sensores de rayos gamma que detectan la proximidad del terreno derivados de los empleados en las naves tripuladas Shenzhou. El motor se apagó a pocos metros de altura y la sonda cayó en caída libre hasta contactar con el suelo lunar.

El tren de aterrizaje de la etapa de descenso va equipado con amortiguadores y una estructura deformable para absorber la energía del impacto. Durante dos días, la Chang’e 6 recogerá muestras de la cara oculta usando un taladro capaz de llegar a 2,5 metros de profundidad y un brazo robot. El taladro acumula las muestras dentro de una manguera de tela y las deposita enrolladas directamente en el cilindro principal situado en la etapa de ascenso. El brazo robot sirve para recoger regolito y rocas seleccionadas por el control de tierra que luego serán depositados en un contenedor localizado en la etapa de descenso. Al terminar las operaciones de superficie, el brazo robot introduce este contenedor en el recipiente principal de la etapa de ascenso usando cámaras para guiarse en la maniobra. Los científicos e ingenieros de la misión trabajan contrarreloj para construir una réplica del lugar del alunizaje una vez recibidas las primeras imágenes y planear así los mejores procedimientos para recoger las muestras de superficie.

 

La Chang’e 6 recogerá muestras mediante el taladro y el brazo robot (CASC).

 

El contenedor para las muestras lleva dos cilindros: un cilindro grande en el que se acumulan las muestras del taladro enrolladas y un cilindro más pequeño con las muestras recogidas en la superficie por el brazo robot (CASC).

 

 

 

 

 

 

 

 

 

 

Detalle del taladro: las muestras se acumulan enrolladas en un tubo de tela y luego se depositan en el cilindro (CASC).

 

 

 

 

Detalle del contenedor (CASC).

Debido a las limitaciones de las sesiones de las comunicaciones con el Queqiao 2 y su posición en el apoastro, la Chang’e 6 solo tendrá 14 horas para recoger las muestras en vez de las 22 horas de la Chang’e 5. Por este motivo, la Chang’e 6 incorpora un nuevo software para adaptar las instrucciones del control de tierra a las condiciones reales de la zona de aterrizaje. Pot otro lado, la misión de superficie de la Chang’e 6 está limitada por las baterías de la sonda (no lleva RTG como las Chang’e 3 y 4), las condiciones de iluminación para la navegación óptica y la elección de muestras. Está previsto que la etapa de ascenso de la Chang’e 6 despegue de la superficie lunar en la noche del 4 de junio para acoplarse luego con el segmento orbital y transferir el contenedor con muestras a la cápsula.

 Satélite retransmisor Queqiao 2 (CCTV).

 

Detalle de la cámara rover (CNSA).

 

 

 

 

 

 

Recreación de la separación de la etapa de ascenso (CNSA).

La etapa de descenso se quedará en la superficie lunar (CASC).

La etapa de ascenso con los motores principales y los sensores estelares y solares (CASC).

China hace historia al traer a la Tierra las primeras rocas de la cara oculta de la Luna

Las rocas recuperadas pueden ayudar a los científicos a observar la evolución de la Luna y del propio sistema solar

25 junio 2024 – 08:32

China ha traído de la Luna un regalo inédito: dos kilogramos de rocas que ayudarán a resolver los misterios de la casi inexplorada cara oculta del satélite. La sonda Chang’e-6 regresó este martes transportando las primeras muestras de la superficie del hemisferio invisible desde la Tierra. Termina así con éxito un viaje completo de 53 días que representa un nuevo hito en la carrera espacial de la superpotencia asiática.

La cápsula de retorno con las muestras se separó de su módulo orbital y aterrizó en paracaídas a las 14.07 (hora local) en la estepa de Mongolia Interior, al norte de China. Las rocas recuperadas, que se enviarán ahora a un laboratorio de Pekín, pueden ayudar a los científicos a observar la evolución de la Luna y del propio sistema solar, además de proporcionar datos importantes para avanzar en las próximas misiones lunares. Tras un primer examen en Pekín, las autoridades chinas han asegurado que investigadores de otros países también podrán solicitar el acceso al estudio de las rocas lunares.

La misión comenzó el pasado 3 de mayo con el lanzamiento de la nave robótica a bordo de un cohete Long March 5. El 2 de junio, el módulo de aterrizaje se separó del orbitador y apuntó hacia la Cuenca Aitken del polo sur de la Luna, donde el Chang’e 6 descendió hasta un enorme un cráter (bautizado como Apolo) formado hace unos 4.000 millones de años y que se cree que podría contener agua helada.

Tras las operaciones de recogida de los dos kilogramos de muestras, la nave desplegó un pequeño rover de cinco kilos que se alejó para buscar una posición adecuada desde la que tomar una imagen en la que se ve el módulo de aterrizaje con los brazos robóticos usados para la perforación del terreno y la bandera china. Semanas después, el 21 de junio, el orbitador inició su regreso a la Tierra.

Esta ha sido la segunda misión de retorno después de que el Chang’e 5 volviera en 2020 con 1,73 kilos de material que recogió en la cara más cercana del satélite. Entonces, Pekín ya distribuyó pequeñas cantidades de estas muestras a varias instituciones internacionales. Esta semana, científicos chinos han desvelado que han identificado grafeno natural mientras estudiaban las proporciones de carbono en las muestras que trajo la sonda Chang’e 5.

Otras nueve misiones lunares han recuperado fragmentos de la Luna y los han devuelto a la Tierra, pero nunca antes se habían recolectado muestras de la cara oculta. “Existen diferencias significativas entre estas dos caras en términos de espesor de la corteza lunar, actividad volcánica y composición. Se espera que las muestras del Chang’e 6, al ser las primeras obtenidas de la cara oculta, respondan una de las preguntas científicas más fundamentales en la investigación científica lunar: ¿Qué actividad geológica es responsable de las diferencias entre las dos caras?”, señala Zongyu Yue, geólogo de la Academia de Ciencias de China en un artículo en la revista The Innovation.

Los científicos chinos dicen en esta publicación que las muestras de superficie devueltas probablemente consistirán en roca volcánica de 2,5 millones de años combinada con pequeñas cantidades de material generado por impactos de meteoritos cercanos.

“La mayor esperanza es que las muestras contengan algunos derretimientos de impacto (fragmentos generados cuando cuerpos más pequeños chocan contra la Luna) del cráter Apolo que pueden proporcionar limitaciones cruciales en el flujo de impacto temprano de la Luna”, continúa Yue. “Una vez que se obtenga esta información, no sólo ayudará a aclarar el papel de los primeros impactos de meteoritos en la evolución de la Luna, sino que también será de gran importancia en el análisis de la historia de los primeros impactos del sistema solar interior”.

Por primera vez tenemos muestras de la cara oculta de la Luna en la Tierra.

Punto de separación (amarillo) de la cápsula (CCTV).

Previamente, la cápsula se había separado del segmento orbital de la Chang’e 6 a las 05:22 UTC a unos 5000 kilómetros de distancia de la Tierra sobre el Atlántico sur. El orbitador realizó una maniobra propulsiva para evitar quemarse en la atmósfera terrestre y, a continuación, a las 05:41 UTC, la cápsula reentró a 11,2 km/s —la «segunda velocidad cósmica»— sobre la costa de la península Arábiga. La cápsula redujo su velocidad, descendió hasta los 60 kilómetros y volvió a salir de la atmósfera antes de volver a entrar a unos 7 km/s sobre la meseta tibetana. El aparato pudo controlar en todo momento la posición de su centro de gravedad para poder ajustar su trayectoria durante la doble reentrada y mantener así la deceleración por debajo de un umbral de seguridad. El paracaídas se desplegó a 10 kilómetros de altitud (primero salió el paracaídas extractor y luego el principal). La cápsula aterrizó inicialmente de lado y los equipos de rescate procedieron a colocarla en posición vertical antes de asegurarla y recogerla.

Trayectoria de reentrada doble de la Chang’e 6 (CNSA).

Trayectoria de reentrada: en rojo, separación de la cápsula. Los puntos señalan la primera reentrada, el mínimo de altitud de la primera reentrada, punto más alto entre reentradas y segunda reentrada (CCTV).

 

 

 

 

Doble reentrada de la Chang’e 6 (CASC).

 

 

La cápsula antes del lanzamiento (CASC).

Inclinación del paracaídas y estructura del escudo térmico inferior (CASC).

La cápsula de la Chang’e 6, al igual que las de las misiones Chang’e 5 T1 y Chang’e 5, tiene una forma similar a las cápsulas tripuladas Shenzhou, aunque su tamaño es, obviamente, mucho menor. A diferencia de las Shenzhou, la cápsula no cuelga del paracaídas paralela al suelo, sino a través de un solo punto, por lo que contacta con el suelo en una posición inclinada. No obstante, la cápsula de la Chang’e 6 no va equipada con cohetes de combustible sólido como su versión tripulada. En los próximos días sabremos la cantidad precisa de muestras que ha traído la Chang’e 6, aunque se espera que sean más de 2 kg (la Chang’e 5 trajo 1,7 kg al no poder perforar el taladro hasta la profundidad máxima prevista).

La cápsula en posición horizontal (Xinhua).

 

 

 

 

 

 

 

 

 

 

Distintos tipos de material del escudo térmico (CASC).

Vista de la cápsula (Xinhua).

Misión Chang’e 6: los 1935,3 gramos de material de la cara oculta y el robot «sapo dorado»

Por Daniel Marín, el 7 julio, 2024.

La resaca del regreso de la cápsula de la misión Chang’e 6 continúa. China ha logrado llevar a cabo la misión lunar automática más compleja de la historia sin un solo problema digno de mención. Tras el aterrizaje de la cápsula el 25 de junio, la cápsula fue trasladada a Pekín, donde al día siguiente se extrajo el contenedor con las primeras muestras de la cara oculta de la Luna. No obstante, no sería hasta el 28 de junio cuando se anunció la masa de las muestras recogidas: 1935,3 gramos. La cantidad es un éxito cuantitativo con respecto a los 1731 gramos de la Chang’e 5, pero las declaraciones de los encargados de la misión, con Hu Hao a la cabeza, revelaron que el taladro fue incapaz de llegar a los 2,5 metros previstos y apenas superó el metro de profundidad, aparentemente por encontrarse con una capa de roca demasiado dura.

La cápsula de la Chang’e 6 con las muestras de la cara oculta (Weibo).

El taladro de la Chang’e 5 no llegó al metro de profundidad por problemas similares y, a raíz de este resultado, los técnicos se aseguraron de que el taladro de la Chang’e 6 podría alcanzar su profundidad máxima. El hecho de que no haya sido así probablemente tenga que ver con suposiciones incorrectas sobre el comportamiento del regolito lunar y la dificultad de simular su mecánica en la Tierra (condiciones de gravedad, cohesión y presión diferentes). Por otro lado, el contenedor con las muestras de regolito y rocas superficiales recogidas por el brazo robot sí logró llenarse, a diferencia del de la Chang’e 5. El brazo robot llevó a cabo 8 recogidas de material frente a las 12 de la Chang’e 5, pero más profundas. En todo caso, hay cierta polémica sobre la capacidad máxima de recogida de muestras del sistema. Antes del lanzamiento de la Chang’e 5 se comentó que la combinación del brazo robot y el taladro podían recoger hasta 3 kg, aunque esta cantidad nunca se confirmó oficialmente. Para esta misión el objetivo eran 2 kg, una vez rebajadas las expectativas teniendo en cuenta las dificultades de excavar en la superficie lunar (dificultades que en su momento ya sufrieron los propios astronautas del Apolo, por cierto).

Problemas de excavaciones lunares aparte, 1,9 kg es una cantidad muy grande para una misión automática y China ya tiene en su poder 3,6 kg de muestras lunares. Ciertamente, muy lejos de los 382 kg de rocas lunares que trajeron las seis misiones Apolo que alunizaron, pero mucho más que los 300 gramos que trajeron las sondas soviéticas Luna 16, 20 y 24. Por comparación con otras misiones de retorno de muestras, no olvidemos que la misión de la NASA OSIRIS-REx trajo 121,6 gramos del asteroide Bennu y la sonda japonesa Hayabusa 2 recogió 5,4 gramos del asteroide Ryugu. En estas semanas también hemos sabido que el pequeño robot cámara que desplegó la Chang’e 6 para hacerse un selfie en la superficie lunar tenía nombre: Jinchan (金蟾), «sapo dorado» en mandarín, un animal de tres patas de la mitología china asociado con la fortuna y la Luna. Jinchan, de 5 kg, incorporaba cámaras en los dos lados y se podía comunicar mediante WiFi con la Chang’e 6, de forma parecida a la cámara desechable que dejó atrás el rover marciano Zhurong. Otra curiosidad de la misión que se ha dado a conocer es que la Chang’e 6 fue programada para realizar todas sus operaciones de forma automática por si se perdía el contacto con el satélite retransmisor Queqiao 2

. Afortunadamente, no fue necesario poner en práctica este plan y las operaciones de recogida de muestras, que apenas duraron dos días, fueron dirigidas desde tierra con ayuda de un equipo reconstruyó en tierra un modelo de la superficie alrededor de la sonda para planear previamente las operaciones del brazo robot antes de enviar las instrucciones a la sonda. Jinchan también fue programado para operar de forma independiente en caso de que fallase la conexión con la Tierra.

El robot Jinchan (Xinhua).

La etapa de descenso de la Chang’e 6 —como la de la Chang’e 5— no fue diseñada para sobrevivir al daño causado por el motor de la etapa de ascenso al despegar el 3 de junio, por lo que todas las actividades de la misión debían terminar antes, incluyendo las operaciones de los instrumentos europeos que llevaba la nave (previamente se había dicho en algunos medios chinos que seguirían funcionando tras la marcha de la etapa de ascenso hasta la noche lunar). Como ya sabemos, el instrumento sueco NILS (Negative Ions on Lunar Surface) logró detectar por primera vez iones negativos en la superficie lunar tras acumular más de tres horas de funcionamiento (de paso, NILS ha sido el primer instrumento de la ESA en operar desde la superficie de nuestro satélite), mientras que el instrumento francés DORN (Detection of Outgassing RadoN) cumplió con éxito su objetivo de detectar radón y otros isótopos radiactivos. DORN se activó el 6 de mayo camino a la Luna y, luego, una segunda vez el 17 de mayo ya en órbita lunar, donde funcionó un total de 32 horas para calibrar el instrumento. El 23 de mayo se activó una tercera vez y funcionó 111 horas. Tras el alunizaje el 1 de junio, completó sus operaciones en la superficie lunar y fue desactivado antes del despegue de la etapa superior.

Lugar de impacto de la etapa de ascenso (estrella roja superior izquierda), no lejos de la zona de aterrizaje de la Chang’e 4. A la derecha, la zona de alunizaje de la Chang’e 6 (CCTV).

Extracción del cilindro con las muestras (CNSA).

El cilindro con las muestras Chang’e 6 (CNSA).

Con respecto a la etapa de ascenso, se estrelló intencionadamente contra la superficie alrededor del 8 de junio, unos dos días después de acoplarse con el orbitador y transferir el cilindro con las muestras a la cápsula (la hora exacta no se ha publicado). El lugar de impacto es la cara oculta, curiosamente, no muy lejos de la zona de alunizaje de la Chang’e 4 (vale la pena recordar que la Chang’e 6 tenía una órbita retrógrada, a diferencia de las Chang’e anteriores). Tras la Chang’e 6, China volverá a la Luna en 2026 y 2028 con las Chang’e 7 y 8, respectivamente. A diferencia de las dos últimas misiones, las Chang’e 7 y 8 incorporarán dos orbitadores analizarán la Luna mediante numerosos instrumentos de todo tipo (desde que la sonda Chang’e 2 abandonó la órbita lunar en junio de 2011 China no dispone de un orbitador con instrumentos científicos alrededor de nuestro satélite). Además, las dos sondas incorporan sondas de aterrizaje que se posarán en el polo sur y llevarán rovers y «saltadores» capaces de explorar los cráteres en sombra permanente de forma directa. Pero antes de que despegue la Chang’e 7 en 2026, China lanzará el año que viene la misión de retorno de muestras de un asteroide Tianwen 2. En cuanto a las muestras de la Chang’e 6, ahora comienza su proceso de análisis, que durará años. China ya ha anunciado su intención de repartir algunas muestras con otras naciones con las que mantienen relaciones en el ámbito espacial. El administrador de la NASA Bill Nelson ha declarado su interés por la oferta, aunque ahora está por ver si el Congreso estadounidense permite esta colaboración.

Contenedor donde se guarda el cilindro con las muestras (CNSA).

OSO 3

OSO 3

OSO 3 ( Observatorio Solar en Órbita 3 ), u Tercer Observatorio Solar en Órbita [2] [3] (conocido como OSO E2 antes del lanzamiento) fue lanzado el 8 de marzo de 1967, en una órbita casi circular de altitud media de 550 km, inclinada a 33 ° al plano ecuatorial. Su grabadora de cinta a bordo falló el 28 de junio de 1968, lo que permitió solo la adquisición de datos escasos en tiempo real durante los pases de la estación a partir de entonces; los últimos datos se recibieron el 10 de noviembre de 1969. OSO 3 volvió a entrar en la atmósfera terrestre y se quemó el 4 de abril de 1982.

OSO 3

El tercer Observatorio Solar en Órbita, OSO 3, mostrando su “Vela” (superior), que lleva experimentos solares apuntando al Sol, y su “Rueda” giratoria (inferior), que lleva dos instrumentos de exploración del cielo: el UCSD de rayos X duros experimento, y el telescopio de rayos gamma del MIT

Tipo de misión: Física solar

Operador: NASA

ID COSPAR: 1967-020A

SATCAT no.: 02703

Duración de la misión: 2 años, 8 meses

Propiedades de la nave espacial

Fabricante: BBRC

Masa de lanzamiento: 281 kilogramos (619 libras)

Comienzo de la misión

Fecha de lanzamiento: 8 de marzo de 1967, 16:19:00 UTC

Cohete: Delta C

Sitio de lanzamiento: Cabo Cañaveral LC-17A

Fin de misión

Último contacto: 10 de noviembre de 1969

Fecha de descomposición: 4 de abril de 1982

Parámetros orbitales

Sistema de referencia: Geocéntrico

Régimen: tierra baja

Excentricidad: 0.002164

Altitud del perigeo: 534 kilometers (332 mi)

Altitud de apogeo: 564 kilometers (350 mi)

Inclinación: 32,87 grados

Período: 95.53 minutos

Movimiento medio: 15.07

Época: 8 de mayo de 1967, 11:19:00 UTC [1]

Como todos los satélites de la serie American Orbiting Solar Observatory (OSO), tenía dos segmentos principales: uno, la “Vela”, estaba estabilizado para mirar hacia el Sol y llevaba paneles solares y experimentos de física solar que apuntaban al Sol. La otra sección, la “Rueda”, giraba para proporcionar una estabilidad giroscópica general y también llevaba instrumentos de exploración del cielo que barrían el cielo a medida que giraba la rueda, aproximadamente cada 2 segundos.

Instrumentación

Experimentos a bordo de OSO 3
Nombre Objetivo Investigador principal
Rayos gamma de alta energía (> 50 MeV) anti-solar Kraushaar, WL , Instituto de Tecnología de Massachusetts
Detector de espectro de rayos cósmicos y analizador de rayos gamma Sol , todo el cielo Kaplon, Morton F, Universidad de Rochester
Experimento de radiómetro direccional Tierra Neel, Carr B Jr, Centro de Investigación Ames de la NASA
Tierra Albedo (0,32 a 0,78 µm) Tierra Neel, Carr B Jr, Centro de Investigación Ames de la NASA
Espectrómetro EUV solar de 0,1 a 40,0 nm Sol Neupert, Werner M, Centro de Vuelo Espacial Goddard de la NASA
Cámara de iones de rayos X solares de 0,8 a 1,2 nm Sol Teske, Richard G, Universidad de Michigan
Telescopio de rayos gamma solar y celeste (7,7 a 200 keV) Sol, todo el cielo Laurence E. Peterson Universidad de California, San Diego
Emisividad de radiación térmica entorno espacial cercano a la Tierra Neel, Carr B Jr, Centro de Investigación Ames de la NASA
Espectrómetro ultravioleta extremo Sol Hinteregger, Hans E, Laboratorio Phillips

El Sail llevó a cabo un experimento de rayos X duros de UCSD, con un solo cristal de centelleo delgado NaI (Tl) más un fototubo encerrado en un escudo anticoincidencia CsI (Tl) en forma de obús. La resolución energética fue del 45% a 30 keV. El instrumento operaba de 7,7 a 210 keV con 6 canales. El Investigador Principal (PI) fue el Prof. Laurence E. Peterson de UCSD. de rayos gamma cósmicos (>50 MeV También en la rueda había un instrumento de estudio del cielo ) aportado por el MIT, con el IP Prof. William L. Kraushaar.

Resultados científicos

OSO-3 obtuvo extensas observaciones de rayos X duros de erupciones solares, el fondo cósmico difuso de rayos X y múltiples observaciones de Scorpius X-1, la primera observación de una fuente de rayos X extrasolar por un satélite de observación.[4] [5] [6] [7]

El instrumento de rayos gamma del MIT obtuvo la primera identificación de rayos gamma cósmicos de alta energía que emanan de fuentes galácticas y extragalácticas.[8]

Pragyan (rover)

Pragyan (rover)

Pragyan montado en la rampa del módulo de aterrizaje Chandrayaan-2

Tipo de misión: vehículo lunar

Operador: ISRO

Duración de la misión

By Indian Space Research Organisation (GODL-India), GODL-India, https://commons.wikimedia.org/w/index.php?curid=135856753

Propiedades de la nave espacial

Fabricante: ISRO

Masa de aterrizaje

  • Chandrayaan-2: 27 kg (60 libras)
  • Chandrayaan-3: 26 kg (57 libras)

Dimensiones: 0,9 m × 0,75 m × 0,85 m (3,0 pies × 2,5 pies × 2,8 pies)

Fuerza: 50 W de paneles solares

Inicio de la misión

Fecha de lanzamiento

  • Chandrayaan-2: 22 de julio de 2019 14:43:12 IST (09:13:12 UTC )
  • Chandrayaan-3: 14 de julio de 2023 14:35 IST (09:05 UTC) [1]

Cohete: LVM3 M1, LVM3 M4

Sitio de lanzamiento: SDSC Segunda plataforma de lanzamiento .Centro Espacial Satish Dhawan en Sriharikota de Andhra Pradesh el 14 de julio.

Contratista: ISRO

Implementado desde: Vikram

Fecha de implementación

Chandrayaan-2: previsto: 7 de septiembre de 2019 [2]

Resultado: Nunca desplegado desde un módulo de aterrizaje destruido. [3]

Chandrayaan-3: 23 de agosto de 2023 [4]

Vehículo lunar

Fecha de aterrizaje: 6 de septiembre de 2019, 20:00; 21:00 UTC [5]

Lugar de aterrizaje

Intento: 70.90267°S 22.78110°E [6] (Destinado)

Aterrizaje forzoso al menos a 500 m del lugar previsto. (Actual)

Distancia recorrida: 500 m (1600 pies) (previsto)

Programa Chandrayaan

Pragyan (del sánscrito : Prajñānam, romanizado : prajñānam, literalmente   ‘sabiduría’,[7] [8] (hindi  :pragyan (ayuda · información ))[7] [9] indio) es un rover lunar que forma parte de Chandrayaan-3 , una misión lunar desarrollada por la Organización de Investigación Espacial de la India (ISRO).[10] Una versión anterior del rover se lanzó como parte de Chandrayaan-2 el 22 de julio de 2019 y fue destruida junto con su módulo de aterrizaje, Vikram , cuando se estrelló en la Luna el 6 de septiembre.[3] [11] Chandrayaan-3, junto con nuevas versiones del módulo de aterrizaje Vikram y del rover Pragyan lanzados el 14 de julio de 2023,[1]  Aterrizó con éxito cerca del polo sur lunar el 23 de agosto.[12]

Descripción general

Vista esquemática del rover

Pragyan tiene una masa de aproximadamente 27 kg (60 lb) y unas dimensiones de 0,9 m × 0,75 m × 0,85 m (3,0 pies × 2,5 pies × 2,8 pies), con una potencia de salida de 50 vatios . [13] Está diseñado para funcionar con energía solar [14] [15] El rover se mueve sobre seis ruedas y está destinado a recorrer 500 metros (1.600 pies) sobre la superficie lunar a una velocidad de 1 cm (0,39 pulgadas) por segundo, realizando análisis en el sitio y enviando los datos a su módulo de aterrizaje para retransmitirlos a la tierra.[16] [17] [18] [19] [20] Para la navegación, el rover estaba equipado con:

El tiempo de funcionamiento previsto del rover es de un día lunar o unos 14 días terrestres, ya que su electrónica no fue diseñada para soportar la gélida noche lunar. Su sistema de energía tenía implementado un ciclo de sueño/despertar alimentado por energía solar, lo que podría haber resultado en un tiempo de servicio más prolongado de lo planeado.[24] [25]

Lugar de aterrizaje planificado

Se seleccionaron dos lugares de aterrizaje en la región lunar del polo sur , cada uno con una elipse de aterrizaje de 32 km × 11 km (19,9 mi × 6,8 mi).[6] El lugar de aterrizaje principal (PLS54) está en /70.90267 , aproximadamente a 350 km (220 millas) al norte del borde del Polo Sur-Cuenca Aitken .[26] [6] El lugar de aterrizaje alternativo (ALS01) está en /67,87406 . El sitio principal está en una llanura elevada entre los cráteres Manzinus C y Simpelius N.[27] [26] en la cara cercana de la Luna . [6] Los criterios utilizados para seleccionar las zonas de aterrizaje fueron una ubicación en la región del polo sur y en el lado cercano, una pendiente de menos de 15 grados, con rocas de menos de 50 cm (20 pulgadas) de diámetro, un cráter y una distribución de rocas, estar iluminadas por el sol durante al menos 14 días, y con crestas cercanas que no ensombrezcan el sitio por períodos prolongados.[6]

El módulo integrado de Chandrayaan-3, justo antes de ser cargado en la cápsula

Tanto el sitio planificado como el sitio alternativo se encuentran dentro del cuadrilátero polar LQ30. La superficie probablemente consiste en derretimiento por impacto, posiblemente cubierto por eyecciones de la enorme cuenca del Polo Sur-Aitken y mezclado por impactos cercanos posteriores.[28] La naturaleza del derretimiento es mayoritariamente máfica .[28] es decir, es rico en minerales de silicato , magnesio y hierro . La región también podría ofrecer rocas científicamente valiosas del manto lunar si el impactador de la cuenca excavara toda la corteza.[29]

Aterrizaje forzoso de 2019

Más información: Chandrayaan-2

El módulo de aterrizaje Vikram, que transportaba a Pragyan, se separó del orbitador Chandrayaan-2 el 7 de septiembre de 2019 y estaba previsto que aterrizara en la Luna alrededor de la 1:50 am IST . El descenso inicial se consideró dentro de los parámetros de la misión, superando los procedimientos de frenado críticos según lo previsto. El descenso y el aterrizaje suave debían ser realizados por las computadoras de a bordo de Vikram, pero el control de la misión no pudo hacer correcciones y, por lo tanto, impactó la superficie lunar.[30]

Última actualización de Chandrayaan-3: ISRO dice que la caminata lunar comienza mientras el Rover Pragyan avanza

Misión Chandrayaan-3 según lo previsto, el rover comienza su caminata lunar y realizará experimentos durante 14 días.

India dio un paseo por la luna”, dijo la Organización de Investigación Espacial de la India, dirigida por el estado, y agregó que el rover Chandrayan-3 llevaría a cabo experimentos durante 14 días.

La Organización de Investigación Espacial de la India (ISRO) dijo el jueves (24/08) que Pragyan Rover comenzó su caminata lunar sobre la superficie lunar. En X (anteriormente Twitter), ISRO dijo: “Misión Chandrayaan-3. Rover Chandrayaan-3 a MOX, ISTRAC, ¡comienza la caminata lunar!”

El vehículo lunar ‘Pragyan’ se deslizó por una rampa desde el módulo de aterrizaje de la nave espacial de la India pocas horas después de su histórico aterrizaje cerca del polo sur de la Luna, dijeron el jueves funcionarios espaciales indios, mientras el país celebraba su nuevo logro científico.

“India dio un paseo por la luna”, dijo la Organización de Investigación Espacial de la India, dirigida por el estado, y agregó que el rover Chandrayan-3 llevará a cabo experimentos durante 14 días, incluido un análisis de la composición mineral de la superficie lunar.

En X (antiguo Twitter), ISRO dijo: “Misión Chandrayaan-3: todas las actividades están según lo previsto. Todos los sistemas son normales. Las cargas útiles del módulo de aterrizaje ILSA, RAMBHA y ChaSTE están encendidas hoy. Las operaciones de movilidad del rover han comenzado. Carga útil SHAPE activada El módulo de propulsión se encendió el domingo.”

Chandrayaan-3 Rover a MOX, ISTRAC, ¡comienza la caminata lunar!

Hoy temprano, ISRO también publicó las imágenes de la cámara Lander Imager que capturó la imagen de la luna justo antes del aterrizaje en la superficie lunar.

“Así es como la cámara Lander Imager capturó la imagen de la luna justo antes del aterrizaje”, publicó ISRO en X.

Después de un viaje de 40 días al espacio, el módulo de aterrizaje Chandrayaan-3, ‘Vikram’, aterrizó en el inexplorado Polo Sur lunar el miércoles por la noche, convirtiendo a la India en el primer país en hacerlo.

India también se convirtió en la cuarta nación después de Estados Unidos, Rusia y China en realizar con éxito una misión de alunizaje.

La nave espacial Chandrayaan-3 colocó el módulo de aterrizaje Vikram en la superficie lunar, inclinándolo a una posición horizontal antes del aterrizaje.

La nave espacial fue lanzada desde el Centro Espacial Satish Dhawan en Sriharikota de Andhra Pradesh el 14 de julio.

El Dr. S. Unnikrishnan Nair, director del Centro Espacial Vikram Sarabhai (VSSC) , confirmó que el evento histórico se desarrolló alrededor de las 12:30 am del jueves.

El rover, ahora en movimiento, está explorando activamente la superficie de la Luna y está dejando su huella indeleble a medida que avanza.

Las distintivas ruedas del rover Pragyan llevan un grabado emblemático con el logotipo de la Organización India de Investigación Espacial (ISRO) y el emblema nacional de la India.

Mientras el rover navega por la extensión lunar, estos grabados están destinados a convertirse en un testimonio de la destreza tecnológica y la ambiciosa misión lunar de la India.

La emoción es palpable cuando los paneles solares del rover y del módulo de aterrizaje se han desplegado de manera efectiva, allanando el camino para la siguiente fase de la misión. Está previsto que el rover se dedique a la recolección de muestras lunares, la ejecución de complejos experimentos y la transmisión de datos invaluables a su base de origen, el módulo de aterrizaje.

Por qué el Pragyan Rover fabricado por ISRO puede funcionar solo durante 14 días

Por el rover pragyan de shashank isro , rover pragyan

Pragyan   era el rover de Chandrayaan-2, una misión lunar desarrollada por la Organización de Investigación Espacial de la India (ISRO), lanzada en julio de 2019. Pragyan fue destruido junto con su módulo de aterrizaje, Vikram, cuando se estrelló en la Luna en septiembre de 2019 y Nunca tuve la oportunidad de desplegarme.

El tiempo de funcionamiento previsto del rover Pragyan era de un día lunar o alrededor de 14 terrestres días, ya que su electrónica no está diseñada para soportar la gélida noche lunar. Intentemos saber ¿por qué?

Antes de profundizar en el tema real, debes comprender algunos datos básicos sobre la Luna.

La circunferencia de la Tierra es de 40.075 km y la velocidad de rotación es de 1674 km/h. Por lo tanto, se necesitan 23,939 horas (40075 dividido por 1674) para completar una vuelta completa sobre su eje.

Ahora, si consideramos lo mismo para la Luna, su circunferencia es de 10.921 km y su velocidad de rotación es de 0,004627 km/s, por lo que tarda 2.360.276,637 segundos (10921 dividido por 0,004627), es decir, 656 horas o 27,32 días.

Significa que la Luna tarda 27,3 días en completar un día terrestre.

Teniendo en cuenta los hechos anteriores, debemos entender que un día en la Tierra equivale a 27 días en la Luna. Según los informes de ISRO, el rover recibe su energía operativa de energía solar que sólo se puede obtener durante el día. Durante la noche hace mucho frío y alcanza hasta 180 grados. Nuestros científicos han calculado la vida útil del rover según el horario diurno, que es de 14 días en la Luna.

Chandrayaan-3 (2023)

Chandrayaan-3 fue lanzado a bordo de un cohete LVM3 -M4 el 14 de julio de 2023, a las 09:05 UTC desde el Centro Espacial Satish Dhawan Second Launch Pad en Sriharikota, Andhra Pradesh, India. El 23 de agosto de 2023, cuando el módulo de lander se acercaba al punto bajo de su órbita, sus cuatro motores se dispararon como una maniobra de frenado a 30 kilómetros (19 mi) sobre la superficie de la Luna. Después de 11,5 minutos, el módulo de lander estaba a 7,2 km (4,5 millas) por encima de la superficie; mantuvo esta altitud durante unos 10 segundos, luego se estabilizó utilizando ocho propulsores más pequeños y rotó de una posición horizontal a una posición vertical mientras continuaba su descenso.

Una de las imágenes capturadas por la sonda Chandrayaan-3.Imagen: ISRO

Luego utilizó dos de sus cuatro motores para ralentizar su descenso a aproximadamente 150 metros (490 pies); se cernía allí durante unos 30 segundos y se situó en un punto de aterrizaje óptimo antes de continuar hacia abajo y tocar abajo a las 12:32 UTC.[37][38]

Después de llegar al polo sur de la Luna, Chandrayaan-3 desplegó el rover para explorar la superficie de caja, aprovechó cámaras integradas para enviar videos de su entorno, y comenzó a trabajar en los objetivos de investigación previstos para una exploración de dos semanas de la Luna.[39]

Pragyan se despliega en la Luna

El primer video del rover, publicado el 25 de agosto de 2023, lo mostró saliendo del módulo de aterrizaje Vikram en una rampa y conduciendo a la Luna. ISRO publicó el video en un hilo en Twitter que también incluía imágenes del módulo de aterrizaje acercándose a su sitio de aterrizaje y pateando polvo mientras tocaba tierra en la superficie. ISRO escribió después que los dos instrumentos científicos del rover habían sido encendidos y que se había movido ocho metros.[40]

El rover Pragyan captura a la sonda Vikram en una instantánea. / ISRO

El 26 de agosto, la ISRO publicó un nuevo video, filmado desde el módulo de langa, de la unidad del rover, alejándose casi fuera de la vista del módulo de lander.[41] El 27 de agosto, publicó dos imágenes después de que el rover se encontrara con un gran cráter posicionado tres metros por delante de su ubicación. Sin embargo, el rover se dirigió de forma segura por un nuevo camino después.[42][43]

Más tarde, el 30 de agosto, a las 7:35 am, el rover tomó una foto del módulo degillo Vikram, mostrando sus dos cargas útiles, Chaste e ILSA, había desplegado.[44] Otra imagen fue captada a las 11:04 del mismo día, desde una distancia de 15  m.[45]

El 2 de septiembre, el rover terminó todas las tareas y entró en modo de sueño en preparación para despertar el 22 de septiembre, sin embargo, no se esperaba que continuara trabajando.[46] Su batería estaba completamente cargada cuando entró en hibernación.[47] Sin embargo, después de más de dos semanas, tanto el rover como las reactivaciones de su módulo de lander se retrasaron al 23 por razones no especificadas.[48] Al 28 de septiembre de 2023, el rover todavía no había despertado[49] y desde la ISRO no ha proporcionado actualizaciones. Se presume que el rover Pragyan está muerto.

Rover Pragyan de la India encontró azufre en la región subpolar sur de la Luna

Publicado el 31 agosto, 2023 por Victor Roman

La misión Chandrayaan-3 de India, que aterrizó en la Luna hace apenas una semana, ya ha realizado observaciones científicas significativas en el polo sur lunar. El rover a bordo ha confirmado la presencia de azufre en la región, según anunció la Organización de Investigación Espacial de la India (ISRO).

El rover Pragyan, parte de esta misión, llevó consigo el instrumento LIBS (Espectroscopía de Descomposición Inducida por Láser), que utilizó para analizar el regolito lunar. Este logro es especialmente destacable, pues marca la primera vez que un rover explora esta área en particular.

Mediante el instrumento LIBS, se realizaron las primeras mediciones in situ sobre la composición elemental de la superficie lunar cerca del polo sur. Con ello se ha podido confirmar de manera inequívoca la presencia de azufre, un hito que no se había logrado con los instrumentos de los orbitadores anteriores.

Análisis preliminares sugieren la presencia de elementos adicionales como aluminio, hierro, calcio, cromo y titanio. ISRO también comunicó el hallazgo de trazas de manganeso, silicio y oxígeno. Actualmente, se está investigando a fondo la posible presencia de hidrógeno.

Importancia

Sabemos que las poderosas agencias espaciales de China, Rusia y Estados Unidos ya han realizado alunizajes exitosos. Sin embargo, los intentos previos de llegar al polo sur lunar no habían tenido éxito. Rusia recientemente, y la propia India hace algunos años, sufrieron accidentes durante el aterrizaje en la superficie lunar.

Se cree que el polo sur lunar es la zona más rica en agua de la Luna. Por ese motivo, el rover Pragyan se dedicará las próximas dos semanas a buscar signos de agua congelada con su láser. Además, estudiará la atmósfera y determinará la composición exacta del polo sur.

El hallazgo de agua congelada en la superficie lunar tendría un valor incalculable. Se podría utilizar para producir oxígeno respirable en bases lunares y proporcionaría los componentes esenciales para el combustible de cohetes que faciliten misiones a Marte.

 El instrumento LIBS a bordo del rover confirma sin ambigüedades la presencia de azufre (S) en la superficie lunar cerca del polo sur, mediante las primeras mediciones in situ. / ISRO

“Sabiduría e inteligencia”

El rover Pragyan, cuyo nombre proviene de la palabra hindú que significa la forma más alta y pura de sabiduría e inteligencia, pesa solo 25.8 kg y tiene el tamaño aproximado de un pastor alemán pequeño. Está equipado no solo con la herramienta LIBS basada en láser, sino también con un haz de partículas alfa.

La técnica LIBS detecta elementos al disparar láseres intensos en la superficie lunar, generando plasma caliente. Luego de estudiar la luz de este plasma, los investigadores pueden identificar las longitudes de onda de diversas partículas en esa sección específica de la Luna.

El rover Pragyan ha hecho lo que se esperaba que hiciera: jefe de ISRO

Sobre el estado de Pragyan, actualmente en modo de suspensión en la luna, el jefe de ISRO dijo que se despertará si sus circuitos electrónicos no han sido dañados debido al clima extremo en la luna, ya que la temperatura cayó casi 200 grados centígrados bajo cero.

28 de septiembre de 2023

Crédito de la foto: ANI

El presidente de la Organización de Investigación Espacial de la India (ISRO), S. Somanath, afirmó el jueves que el rover Pragyan de su misión lunar Chandrayaan-3 ha hecho lo que se esperaba que hiciera y que no sería un problema incluso si no logra “despertar”. ‘desde el modo de suspensión actual .

La agencia espacial nacional se está preparando para el lanzamiento del XPoSat o satélite polarímetro de rayos X, que podría tener lugar en noviembre o diciembre, dijo en una conferencia de prensa aquí después de visitar el famoso templo de Somnath en el distrito Gir Somnath de Gujarat.

Sobre el estado de Pragyan, actualmente en modo de suspensión en la luna , el jefe de ISRO dijo que se despertará si sus circuitos electrónicos no han sido dañados debido al clima extremo en la luna, ya que la temperatura descendió casi 200 grados centígrados bajo cero.

“Está bien si no se despierta porque el rover ha hecho lo que se esperaba que hiciera”, añadió.

ISRO había dicho la semana pasada que al amanecer en la luna, hizo esfuerzos para establecer comunicación con el módulo de aterrizaje Vikram de la misión lunar Chandrayaan-3 y el rover Pragyan para determinar su “condición de despertar” después de haber sido puestos en modo de suspensión a principios de este mes. pero no se recibían señales.

Tanto el módulo de aterrizaje como el rover se pusieron en modo de suspensión los días 4 y 2 de septiembre, antes de la llegada de la noche lunar.

Esta imagen de ISRO traza la trayectoria del rover mientras se movía 100 metros desde el módulo de aterrizaje, en la Luna..

“Misión Chandrayaan-3: el rover completó sus tareas. Ahora está estacionado de manera segura y en modo de suspensión. Las cargas útiles APXS y LIBS están desactivadas. Los datos de estas cargas útiles se transmiten a la Tierra a través del módulo de aterrizaje”, publicó la agencia espacial en X.

La batería está completamente cargada y el panel solar está orientado para recibir la luz en el próximo amanecer previsto para el 22 de septiembre, añadió.

“Actualmente, la batería está completamente cargada. El panel solar está orientado para recibir la luz en el próximo amanecer previsto para el 22 de septiembre de 2023. El receptor se mantiene encendido. ¡Esperando un despertar exitoso para otra serie de tareas! De lo contrario, permanecerá allí para siempre como embajador lunar de la India”, publicó la ISRO.

La NASA encuentra el lugar donde el rover indio Pragyan hiberna

Gracias a una sonda que orbita la Luna, ahora se sabe cómo luce el sitio de alunizaje de la misión Chandrayaan-3.

El punto más iluminado de la composición es el sitio de alunizaje del módulo Vikram, de India./NASA

El vehículo Lunar Reconnaissance Orbiter (LRO) de la NASA detectó el punto ‘Shiv Shakti’, el sitio donde alunizó el módulo Vikram y el rover Pragyan el pasado 23 de agosto. La foto tomada desde un plano cenital permite dimensionar los primeros pasos del vehículo de la India, así como todos los obstáculos por los que atravesará en sus futuras misiones.

La NASA aprovechó el camino del LRO para fotografiar el área del reciente alunizaje. El punto cero de la misión india se percibe como una pequeña circunferencia luminosa que contrasta con la paleta de grises en la composición. De acuerdo con la agencia espacial, la tonalidad surge a partir de la interacción de la columna del cohete del Vikram con el regolito lunar de grano fino.

El punto ‘Shiv Shakti’ se posiciona a 600 kilómetros del polo sur de la Luna. Es lo más cerca que ha estado un vehículo humano de la región. La misión Chandrayaan-3 tenía como objetivo llevar instrumentos de investigación a esa zona hasta ahora inexplorada. Desde su despliegue, el rover Pragyan caminó una centena de metros y usó su instrumento láser para verificar la composición del suelo lunar. Encontró que el sur del satélite contiene azufre, además de los elementos usuales como aluminio, calcio, hierro, cromo, titanio, manganeso, silicio y oxígeno.

En la foto también se alcanza a distinguir el cráter con el que se encontró el Pragyan. La estructura lunar de cuatro metros de diámetro obligó al vehículo a virar para no poner en riesgo su misión. El explorador busca depósitos de hidrógeno en el extremo del satélite con la esperanza de identificar agua congelada.

Axiom Mission 1

Axiom Mission 1

La primera misión espacial totalmente privada de la historia a la ISS.

SpaceX Axiom Space-1

Insignia de la misión SpaceX Axiom Space-1

Tipo de misión: Turismo espacial a la ISS

Operador

Duración de la misión: Diez días (planeada)

Propiedades de la nave

Tipo de nave: Crew Dragon

Fabricante: SpaceX

Tripulación

Tamaño: 4

Miembros: Miguel López-Alegría; Larry Connor; Mark Pahty; Eitan Stibbe

Comienzo de la misión

Lanzamiento: 8 de abril de 2022

Vehículo: Falcon 9 Block 5

Lugar: Kennedy, LC-39A

Contratista: SpaceX

Fin de la misión

Aterrizaje: 25 de abril de 2022

Lugar: Océano Atlántico

Parámetros orbitales

Sistema de referencia: Órbita geocéntrica

Régimen: Órbita terrestre baja

Inclinación: 51.66°

Acople con ISS

Puerto de acople: Harmony PMA/IDA frontal o cénit

Tiempo acoplado: Ocho días (planeado)

La Crew Dragon aproximándose al puerto frontal del Harmony durante la Demo-2nota 1

 Axiom Mission 1 (AX-11​ o Ax12​) es la cuarta misión tripulada realizada de la Crew Dragon de SpaceX a la Estación Espacial Internacional (ISS), operada por SpaceX en nombre de Axiom Space. El vuelo fue lanzado el 8 de abril de 20223​ y transportó cuatro personas a la ISS por una estancia de aproximadamente ocho días:45 ​El español, nacionalizado estadounidense y comandante de la misión, Miguel López-Alegría6​ como ex-astronauta entrenado profesionalmente por la NASA y empleado actualmente por Axiom Space, como piloto; Larry Connor de Estados Unidos, y los especialistas de misión, Mark Pathy de Canadá y Eytan Stibbe el segundo ciudadano israelí en llegar al espacio.789

Antecedentes

Axiom Space fue fundada en 2016 con el objetivo de crear la primera estación espacial comercial del mundo. A principios de 2020, la NASA anunció que Axiom había recibido acceso al puerto frontal del módulo Harmony de la ISS, al que Axiom planea acoplar su Segmento Orbital; un complejo de mínimo tres módulos presurizados y una gran ventana de observación – similar a la Cupola – que facilitaría las operaciones de la compañía en la órbita terrestre baja.10​ Antes del lanzamiento del primer módulo en 2024, Axiom planea organizar y volar misiones tripuladas a la ISS, consistiendo de turistas espaciales o astronautas de agencias públicas u organizaciones privadas.11​ En marzo de 2020, Axiom anunció que fletaría un vuelo a la ISS en la Crew Dragon de SpaceX a finales de 2021.12​ Esta misión será la primera misión operada completamente de forma comercial a la ISS, y una de las primeras dedicadas enteramente al turismo espacial, junto con la Soyuz MS-20 de Roscosmos, realizada en diciembre de 2021.13​ Tras este vuelo, Axiom planea ofrecer misiones tripuladas a la ISS hasta dos veces al año, “[alineandose] con las oportunidades según sean liberadas por la NASA”.14

Tripulación

Originalmente estaba previsto que Miguel E. López-Alegría,6Tom Cruise y Doug Liman estuvieran en el vuelo, quienes realizarían un proyecto cinematográfico.15​ El 16 de noviembre de 2020, el gobierno israelí anunció que Eytan Stibbe formaría parte de la tripulación como el segundo israelí de la historia en ir al espacio.16712​ Cada asiento disponible para turistas espaciales se anunció con un coste de 55 millones de dólares.17​ Tras el lanzamiento de la Demo-2, el primer vuelo de prueba de la Dragon 2, el CEO de Axiom Michael Suffredini declaró que planeaban anunciar los nombres de la tripulación “en un mes” pero se retrasaron más de lo esperado en hacer el anuncio.

Finalmente, el 26 de enero de 2021 Axiom anunció, que la tripulación final de la misión estaría conformada por el ex-astronauta de la NASA, y español nacionalizado estadounidense, Miguel E. López-Alegría como comandante, Stibbe, el emprendedor estadounidense Larry Connor como piloto y el inversor canadiense Mark Pathy.9818​ También se anunció que la ex-astronauta de la NASA, Peggy Whitson y John Shoffner formarían parte de la tripulación de reserva.19

Tripulación principal
Puesto Viajero espacial
Comandante de la nave /  Miguel López-Alegría, Axiom Space
Quinto vuelo
Piloto  Larry Connor
Primer vuelo
Especialista de Misión 1  Mark Pathy
Primer vuelo
Especialista de Misión 2  Eytan Stibbe
Primer vuelo

Misión

La misión fue lanzada el 8 de abril de 2022 por medio de un cohete Falcon 9 Block 5 desde el Complejo de Lanzamiento 39A del Centro Espacial John F. Kennedy, una plataforma de lanzamiento de la NASA alquilada a SpaceX para lanzamientos del Falcon 9 y el Falcon Heavy.2019​ Según el comandante de la misión y actual empleado de Axiom Space, Michael López-Alegría, viajaran en su quinta misión, en la cápsula Crew Dragon Resilience utilizada con anterioridad en la misión SpaceX Crew-1,21​ y en la misión Inspiration4, realizando así esta cápsula su tercer vuelo y siendo la primera cápsula Dragon 2, en ser reutilizada por segunda vez. La planificación del vuelo fue de dos días en llegar a la estación y acoplarse con el módulo Harmony, momento en el que comenzó su estadía de ocho días en la Estación Espacial Internacional (ISS).22​ Transcurridos esos días en la ISS, la nave se desacoplará y realizará el viaje de regreso a la Tierra, finalizando mediante un amerizaje en el Océano Atlántico.

El lanzamiento de la misión Axiom 1 ha sido un éxito. Por qué es importante el primer viaje privado a la ISS y qué podemos esperar ahora

9 Abril 2022

Pathy, Connor, López Alegría y Stibbe dentro de la Endeavour (Axiom Space).

“¡Qué lanzamiento histórico!” El grito de alegría es de Bill Nelson, administrador de la NASA, y, efectivamente, lo que se lo ha arrancado es un hito, un acontecimiento pionero que se ha registrado hace solo unas horas en el Centro Espacial Kennedy, en Florida. A las 11.17 am EDT despegaba de su plataforma de lanzamiento un cohete Falcon 9 de SpaceX que acoge la primera misión privada que se dirige a la Estación Espacial Internacional (ISS). En su casi cuarto de siglo de historia es la primera vez que la plataforma recibirá los integrantes de un vuelo totalmente comercial.

Los detalles de la misión. La misión Axiom 1 se prolongará en total diez días. Durante la mayor parte de ese tiempo —ocho jornadas— sus cuatro miembros estarán a bordo de la ISS centrados en demostraciones y experimentos.

La empresa detrás de la misión es Axiom Space, que presume de haber capitaneado “la primera misión de astronautas totalmente privada del mundo a la ISS”. La compañía tiene su sede en Texas, en EEUU, y se dedica a organizar misiones espaciales para “astronautas privados” como Axiom 1. Su labor sin embargo no se limita a orquestar operaciones. Los planes de Axiom Space pasan por que haya un módulo comercial que se pueda agregar al nodo Harmony de la ISS en 2024.

No los llames turistas espaciales. A diferencia de otras compañías clave en la industria de los vuelos espaciales privados, una industria emergente, al alza y que promete mover sumas cuantiosas, como Blue Origin, Virgin Galactic o la propia SpaceX, Axiom Space parece centrada en el potencial de las misiones comerciales. En la ISS y, en el futuro, en una estación privada. Por lo pronto, la compañía parece querer mantener distancias con el concepto de “turismo espacial”.

El propio López-Alegría rechaza ese término e incide en la preparación e incluso el trabajo que desarrollarán los tripulantes de Axiom-1 en la ISS. Sus misiones espaciales para lo que denomina “astronautas privados” requieren 17 semanas de entrenamiento e itinerarios personalizados. Dentro de la estación los integrantes de la misión realizarán, asegura la empresa, más de 25 experimentos. Más allá de las denominaciones, lo cierto es que Axiom Space busca captar el interés de grupos académicos: “Abre más oportunidades para científicos e investigadores de todo el mundo”.

El cohete SpaceX Falcon 9 que transporta la nave espacial Dragon con la misión Ax-1.

A bordo de la ISS, López-Alegría, Connor, Pathy y Stibbe se encontrarán con tres astronautas de la NASA, uno de la Agencia Espacial Europea y tres del organismo ruso. En una entrevista con El País, el propio López-Alegría reconocía en marzo que “será muy incómodo ver el humo en Ucrania”.

Lo que está por venir. Axiom-1 puede ser la primera misión totalmente comercial a la ISS, pero la compañía de Texas no plantea que sea la única. A finales de 2021 la NASA y Axiom anunciaron que entre el otoño de 2022 y la primavera de 2023 se lanzará una segunda operación privada a la ISS, la Ax-2, que durará un máximo de 14 jornadas. La compañía prevé además agregar un nodo comercial habitable a la ISS en 2024 y plantea incluso que en 2030 haya una estación privada, lista para tomar el relevo de la actual, que data ya de finales de los 90 y ha sido impulsada por agencias.

“Tenemos el primer módulo en 2024. Seis meses después, un segundo módulo. Y otros seis meses después, un tercero. Entonces haremos una pausa a la espera de que la NASA y los otros socios de la ISS decidan hundirla. En ese momento mandaremos el cuarto módulo, que es el que proporciona la mayoría de la electricidad”, explicaba el directivo de la compañía a El País en marzo.

Imágenes | Axiom Space y NASA

La tripulación antes del lanzamiento: Connor, Pathy, López Alegría y Stibbe (Axiom Space).

El comandante de la misión es Michael López Alegría (63 años). Este es su quinto vuelo espacial después de haber participado en las misiones del transbordador STS-73, STS-92 y STS-113, así como en la misión Soyuz TMA-9. Tras retirarse de la NASA en 2012, López Alegría es actualmente astronauta de la empresa Axiom Space. Tiene la doble nacionalidad estadounidense y española, razón por la que la bandera de España aparece en el emblema de la misión Eso sí, en las misiones de la NASA figura oficialmente como astronauta estadounidense al representar al gobierno de EE UU, de ahí que formalmente sea Pedro Duque el primer astronauta español. López Alegría acumula 257 días en el espacio y ha llevado a cabo nada más y nada menos que diez paseos espaciales —con escafandras rusas y estadounidenses—, un número que lo convierte en el astronauta de EE UU con más experiencia en actividades extravehiculares, solo por detrás del ruso Anatoli Solovyov.

 

Etapas Proyecto AXIOM estación espacial privada.

La cápsula Endeavour durante el traslado a la rampa (NASA

 

 

 

 

 

 

La Crew Dragon Endeavour en la rampa 39A (Axiom Space).

 

 

 

 

 

 

El cohete en la rampa (SpaceX)

 

 

 

 

 

El lanzador listo para el despegue (Axiom Space). Despegue (NASA).

 

 

 

 

Emblema de la misión (Axiom Space).

 

 

 

 

Regreso de la misión espacial privada Axiom-1

Posted on:Wednesday 27 April 2022 — 00:57

La cápsula Crew Dragon Endeavour (C-206) finalizó con éxito su tercera misión tripulada el pasado 25 de abril de 2022 cuando amerizó a las 17:06 UTC en el océano Atlántico, frente a las costas de Jacksonville (Florida). A bordo viajaba el astronauta de la empresa Axiom Space Michael López-Alegría (comandante) y los «astronautas de pago» Larry Connor (piloto), Mark Pathy y Eytan Stibbe (Israel). Finalizaba así la misión Axiom-1 (Ax-1) la primera «doblemente privada» —al tratarse de una misión espacial encargada por una empresa privada a otra empresa privada— y la primera misión espacial comercial que se desarrolla en la Estación Espacial Internacional (ISS) sin intervención directa de ningún organismo gubernamental. Aunque inicialmente estaba previsto que los cuatro hombres pasasen diez días en el espacio, el mal tiempo en la zona de Florida obligó a posponer el amerizaje repetidamente, de tal modo que la duración final de la misión ha sido de 17 días y 1 hora.

La Endeavour antes de acoplarse (NASA). La Endeavour y la Luna (NASA).

Después de ser lanzada el 8 de abril a las 15:17 UTC, la Endeavour se acopló con el puerto IDA-3PMA-3, en la posición zenit del módulo Harmony del segmento estadounidense de la ISS, a las 12:29 UTC del 9 de abril. La nave tuvo que esperar casi una hora a veinte metros de distancia por culpa de un problema de software que afectó a las imágenes de una de las cámaras usadas en el acoplamiento. Durante quince días, la tripulación de la Axiom-1 convivió con los siete astronautas de la Expedición 67 de la ISS, formada por Thomas Marshburn (NASA), Raja Chari (NASA), Kayla barron (NASA), Matthias Maurer (ESA), Oleg Artemyev (Roscosmos), Denís Matveiev (Roscosmos) y Serguéi Kórsakov (Roscosmos). Además de disfrutar de la estación y de su viaje, los tres astronautas de pago llevaron a cabo varias videoconferencias para divulgar su experiencia espacial y realizaron un total de 25 experimentos científicos y actividades de todo tipo. Algunos de estos experimentos se desarrollaron en colaboración con hospitales de Minnesota, Cleveland y Montreal.

La Crew Dragon Endeavour acoplada al módulo PMA-3 (NASA).

 

 

 

 

 

 

Configuración de la ISS durante la visita de la Ax-1 (NASA).

 

 

 

Stibbe jugando con el agua (Axiom).

 

 

 

Otra vista de la Ax-1 Endeavour acoplada (NASA).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apertura de los paracaídas principales en infrarrojo (SpaceX). Amerizaje (SpaceX).

 

 

 

 

 

 

 

 

 

 

 

El panel de control de la Endeavour ya en el barco (SpaceX).

 

 

 

 

 

 

 

 

 

 

 

 

El comandante tras la misión (SpaceX).

 

CHEOPS

CHEOPS (satélite)

Satélite de Caracterización de Exoplanetas (CHEOPS)

Estado: En curso

Tipo de misión: Exoplanetología, astrofísica

Operador: Oficina Espacial Suiza ESA

ID COSPAR: 2019-092B

Nº. SATCAT: 44874

ID NSSDCA: 2019-092B

 Página web [cheops.unibe.ch: sci.esa.int/cheops]

Proyecto: https://cheops.unibe.ch/

Descripción: https://ui.adsabs.harvard.edu/abs/2020arXiv200911633B/abstract

Duración planificada: 3,5 años

Duración de la misión: 3 años, 1 mes y 21 días

Propiedades de la nave

Modelo: Plataforma SEOSAT1

Fabricante: Airbus Defence and Space (España)

Masa de lanzamiento: 273 kg 7​; Carga útil: 58 kg 8

Dimensiones: 1,5 x 1,5 x 1,5 m

Potencia eléctrica: 64 vatios 9

Comienzo de la misión

Lanzamiento: 18 de diciembre de 2019 08:54:20 UTC 2

Vehículo: Soyuz VS23 34​. Arianespace56

Lugar: Guiana Space Centre; (Ensemble de Lancement Soyouz)

Contratista: Arianespace

 Parámetros orbitales

Sistema de referencia: Órbita geocéntrica

Régimen: Heliosíncrona 06:00 / 18:00

Altitud del periastro: 712 km 10

Altitud del apastro: 715 km

Inclinación: 92,8°

RAAN: 06:00

Tipo: Ritchey-Chrétien; CCD con iluminación posterior frame-transfer

Diámetro: 32 cm 6

Longitud focal: F/8

Longitudes de onda: 330-1100 nm

Transpondedores

Capacidad: downlink 1,2 Gbit/día 12; Cosmic Vision

El observatorio espacial CHaracterising ExOPlanets Satellite (CHEOPS, por sus siglas en inglés/Satélite para la Caracterización de Exoplanetas en español) de la Agencia Espacial Europea (ESA), es la primera misión exoplanetaria europea.

Su objetivo es determinar el tamaño de los exoplanetas conocidos, lo que permitiría estimar su masa, densidad, composición y formación.

Este es el primer observatorio centrado en el análisis de tránsitos exoplanetarios utilizando fotometría de alta precisión, aplicadas a las estrellas más brillantes del cielo nocturno con planetas confirmados orbitando en torno a ellas, además, de la medición con un nivel de detalle sin precedentes de la densidad media de supertierras y minineptunos.

Sus observaciones permitirán establecer una relación entre la masa y radio de un planeta, y conocer cuál es el límite que separa a los cuerpos telúricos de los gigantes gaseosos.

El telescopio forma parte con la primera misión de clase pequeña del programa científico Cosmic Vision de la ESA.13

El proyecto fue seleccionado entre veintiséis candidatos el viernes 19 de octubre de 2012 y contará con un presupuesto de 50 millones de euros.14​ Su lanzamiento estaba previsto para finales de 2017, pero por diversas circunstancias fue aplazado para ser enviado al espacio a finales de 2019 a bordo de un cohete Soyuz. Después de varios retrasos anunciados por Arianespace (comercializadora del lanzamiento), el lanzamiento fue previsto para el 17 de diciembre15516​ a las 9:54 horas (CET) desde el Puerto espacial europeo de Kourou, Guayana Francesa.

Tras ser pospuesto una vez más por problemas detectados en el cohete Soyuz durante una de las comprobaciones del software, a una hora y veinticinco minutos de su lanzamiento, y estando previsto su lanzamiento para veinticuatro horas después,171819​ el satélite despegó con éxito a las 08:54 horas (UTC) del día 18 de diciembre de 2019.202122

Descripción

Como el Telescopio Espacial Kepler, CHEOPS observará tránsitos exoplanetarios, recopilando información cuando un cuerpo planetario pase frente a su estrella desde su perspectiva. Sin embargo, mientras que el Kepler contempla 150 000 estrellas en busca de nuevos planetas, el CHEOPS se centrará en cada una de forma individual y en exoplanetas ya conocidos.14​ Podrá apuntar a prácticamente cualquier parte del cielo y utilizará fotometría de muy alta precisión para determinar el radio exacto de cuerpos planetarios de masa conocida, de entre 1 y 20 M.23​ De este modo, podrá identificar su estructura interna, aportar información relevante sobre su formación y perfilar los objetivos principales de la próxima generación de telescopios terrestres y orbitales.24

CHEOPS será la primera de una serie de pequeñas misiones del Programa de Ciencia de la Agencia Espacial Europea, compuesta por satélites muy especializados y de rápido desarrollo que completarán las labores realizadas por proyectos de mayor tamaño.16​ El 19 de octubre de 2012 fue seleccionada entre un total de veintiséis propuestas y fue incorporada al Programa de Ciencia dieciocho meses después, en febrero de 2014. La misión está siendo desarrollada en colaboración con la Universidad de Berna, la Oficina Espacial Suiza (SSO) y una división de la Secretaría de Estado Suiza de Educación, Investigación e Innovación (SERI). En total, once estados miembros de la ESA participan en el proyecto y cuentan con representación en el Programa de Ciencia de CHEOPS. El satélite será construido en España por Airbus Defence & Space.16

Características

Diagrama de un telescopio Ritchey-Chrétien.

El satélite tiene una estructura de base hexagonal y unas dimensiones aproximadas de 1,5 metros de largo, ancho y alto, basándose en la plataforma SeoSat.12​ Cuenta con un telescopio Ritchey-Chrétien de tamaño medio,23​ de 30 cm de apertura y 1,2 m de longitud, desarrollado por la Universidad de Berna.2526​ montado en un banco óptico rígido.27​ El sensor CCD del CHEOPS operará en una longitud de onda visible, entre 400 y 1100 nm,28​ con una sensibilidad capaz de detectar un exoplaneta de un tamaño similar a la Tierra alrededor de una estrella de 0,9 M en una órbita de sesenta días.23

Los paneles solares, ubicados sobre un escudo solar que protegerá la carcasa del radiador y el detector contra los rayos del Sol, proporcionarán un suministro continuo de 64 W con el que mantener sus operaciones y permitir la descarga de 1,2 Gb de datos diarios.23​ Además, dispondrá de una batería para almacenar el excedente de energía y mantener el telescopio en funcionamiento incluso durante las fases de eclipse.29

CHEOPS efectuará sus observaciones a poca distancia de la superficie, entre 650 y 800 km de altitud, y permanecerá en una órbita heliosincrónica de 98º de inclinación.2325​ La vida útil del proyecto es de tres años y medio,25​ y contará con un presupuesto de 50 millones de euros.16

Sistema de control de actitud y órbita (AOCS)

El sistema de control está estabilizado en 3 ejes, pero bloqueado en el nadir, asegurando que uno de los ejes de la nave espacial siempre apunte hacia la Tierra. Durante cada órbita, la nave girará lentamente alrededor de la línea de visión del telescopio para mantener el radiador del plano focal orientado hacia el espacio frío, permitiendo el enfriamiento pasivo del detector. La duración típica de observación será de 48 horas. Durante una observación típica de 48 horas, CHEOPS tendrá una estabilidad de puntería mejor que ocho segundos de arco con una confianza del 95%.1230

Sistema de instrumentos CHEOPS (CIS)

El detector, la electrónica de soporte, el telescopio, la óptica de fondo, la computadora del instrumento y el hardware de regulación térmica se conocen agrupadamente como el Sistema de Instrumento CHEOPS (CHEOPS Instrument System (CIS)). La precisión fotométrica requerida se logrará utilizando un detector CCD retroiluminado de transferencia de fotogramas simple de Teledyne e2v con 1024 × 1024 píxeles y un paso de píxeles de 13 µm. El CCD está montado en el plano focal del telescopio y se enfría pasivamente a 233 K (−40 °C; −40 °F), con una estabilidad térmica de 10 mK.

Placas

Se han fijado dos placas de titanio con miles de dibujos miniaturizados de niños en CHEOPS. Cada placa mide casi 18cm × 24cm (7,1 pulgadas × 9,4 pulgadas). Las placas, preparadas por un equipo de la Universidad de Ciencias Aplicadas de Berna, fueron presentadas en una ceremonia dedicada en RUAG el 27 de agosto de 2018.31

Objetivos

El principal objetivo de la misión CHEOPS es estudiar la estructura de exoplanetas menores que Saturno, con entre 1 y 20 M, pertenecientes a las estrellas más brillantes del cielo nocturno que cuentan con planetas confirmados a su alrededor. Una vez identificadas con exactitud la masa y el radio de una muestra significativa, será posible establecer restricciones estructurales para los exoplanetas, así como nuevas teorías sobre la formación y evolución de los cuerpos planetarios en ese rango de masas.32​ El satélite centrará sus observaciones en exoplanetas confirmados por el método de velocidad radial, que los detecta por las oscilaciones que causan en sus estrellas como consecuencia de sus órbitas. Por tanto, el método infiere la masa de un planeta pero no sus dimensiones, que es el objetivo de la misión CHEOPS. Determinando su radio con precisión, se podrá estimar su composición y conocer si es terrestre o gaseoso mediante el cálculo de su densidad.32​ Así, se establecerá con exactitud la relación entre masa y radio de los cuerpos planetarios con masas entre 1 y 20 M.33

En el disco de acrecimiento de un planeta en fase de formación, el núcleo de este último debe alcanzar una masa crítica antes de disponer de una gravedad suficiente como para alcanzar una acreción descontrolada de gas que lo convierta en un gigante gaseoso. El potencial de un planeta para retener una gruesa atmósfera de hidrógeno u otros compuestos volátiles varía en función de numerosos factores, como su composición, la metalicidad de su estrella, la distancia respecto a esta o semieje mayor y, por supuesto, la propia masa del planeta.33

Las investigaciones del equipo de Courtney Dressing —Centro de Astrofísica Harvard-Smithsonian (CfA)— partiendo de los datos del HARPS-N, indican que existe un límite natural de unos 1,6 R, por debajo del cual la mayoría de los planetas son cuerpos telúricos.3435​ Además, sugieren que los planetas con masas inferiores a 6 M tienen altas probabilidades de presentar una composición similar a la de la Tierra.36​ Las observaciones del CHEOPS, mucho más precisas, permitirán identificar con más detalle la relación masa-radio de los cuerpos planetarios y el grado en que otros factores, como la distancia entre el planeta y su estrella, pueden afectar a la densidad del objeto.33

Sus observaciones serán de gran utilidad para futuros telescopios como el JWST y el ATLAST, que podrán efectuar análisis espectroscópicos de las atmósferas de los planetas en busca de indicios de vida extraterrestre.3738

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 1: Izq: Modelo informático de CHEOPS totalmente integrado (©ESA/ATF medialab). Derecha: CHEOPS en la sala limpia de Airbus Defence and Space en Madrid, en febrero de 2019 (© ESA – S. Corvaja).

Figura 2: Diagrama masa-radio de los planetas conocidos de menos de 10 masas terrestres y con una masa y un radio determinados con una precisión mejor que el 20%. Las barras de error indican la incertidumbre en las medidas. Las líneas de colores señalan las relaciones entre la masa y el radio para distintas composiciones posibles, desde una bola de hierro puro a un planeta totalmente compuesto por agua.

El satélite Cheops observa sus primeros exoplanetas

Avion Revue | 16 abril 2020

Cheops, la nueva misión exoplanetaria de la ESA, ha completado con éxito los casi tres meses de puesta en servicio en órbita, superando las expectativas en cuanto a rendimiento. El satélite, que comenzará las operaciones científicas rutinarias a finales de abril, ya ha efectuado observaciones prometedoras de estrellas que albergan exoplanetas, lo que augura un sinfín de apasionantes descubrimientos en el futuro.

Lanzado en diciembre de 2019, el Satélite para la Caracterización de Exoplanetas (Cheops) abrió su ojo al universo a finales de enero y poco después tomó las primeras imágenes, deliberadamente borrosas, de las estrellas. Este desenfoque intencionado es fundamental para la estrategia de observación de la misión, que mejora la precisión de las mediciones al dispersar la luz procedente de estrellas distantes a través de los numerosos píxeles de su detector.

La precisión es clave para la actual investigación exoplanetaria. Se sabe que hay más de cuatro mil planetas orbitando estrellas distintas del Sol. Un siguiente paso importantísimo es empezar a caracterizarlos para conocer su estructura, formación y evolución.

Caracterizar estos planetas midiendo de forma precisa sus tamaños (especialmente en el caso de los planetas más pequeños) es justamente el objetivo de Cheops. No obstante, antes de que se considerase listo para llevar a cabo esta tarea, el satélite, de 1,5 m de longitud, tenía que superar un gran número de pruebas.

Rendimiento excepcional

Con las primeras series de pruebas de vuelo, efectuadas entre enero y febrero, los expertos de la misión comenzaron a analizar la respuesta del satélite y, más concretamente, de su telescopio y su detector en el entorno espacial. Durante marzo, Cheops se centró en estrellas bien estudiadas.

Este acercamiento ha permitido a los equipos de la ESA, el consorcio de la misión y Airbus España, que es el contratista principal, verificar que el satélite es lo bastante preciso y estable como para cumplir sus ambiciosos objetivos.

El periodo de puesta en servicio ha demostrado que Cheops alcanza la precisión fotométrica necesaria y, aún más importante, que según las necesidades el satélite se puede gobernar desde el segmento de tierra para llevar a cabo las observaciones científicas.

La hora de los exoplanetas

Durante las últimas dos semanas de la fase de puesta en servicio en órbita, Cheops observó dos estrellas anfitrionas de exoplanetas mientras estos transitaban por delante de ellas y tapaban una fracción de su luz. La observación de tránsitos de exoplanetas conocidos es precisamente para lo que se diseñó la misión: para medir con una precisión y una exactitud sin precedentes el tamaño de los planetas y para determinar sus densidades combinando estos datos con la medida independiente de sus masas.

Uno de los objetivos fue HD 93396, una estrella subgigante amarilla situada a 320 años luz, algo más fría y tres veces mayor que nuestro Sol. Las observaciones se centraron en KELT-11b, un planeta gaseoso alrededor de un 30 % mayor que Júpiter, en una órbita mucho más cercana a la estrella de lo que Mercurio se halla del Sol.

La curva de luz de esta estrella muestra una fuerte caída causada por el tránsito de ocho horas de KELT-11b. A partir de esos datos, los científicos han determinado con gran precisión el diámetro del planeta: 181.600 km, con una incertidumbre de menos de 4.300 km.

El 25 de marzo tuvo lugar una revisión formal del rendimiento del satélite y las operaciones del segmento de tierra, que Cheops superó con nota. A continuación, la ESA cedió la responsabilidad de operar la misión al consorcio liderado por Willy Benz.

Por suerte, las actividades de puesta en servicio no se han visto afectadas demasiado por la emergencia causada por la pandemia de coronavirus, que ha hecho que se apliquen medidas de distanciamiento social y restricciones a los desplazamientos en toda Europa para evitar la propagación de la enfermedad.

En estos momentos, Cheops está pasando a la fase de operaciones científicas rutinarias, que se espera que comiencen a finales de abril. Los científicos han empezado a observar algunos de los “objetivos científicos tempranos”: una selección de estrellas y sistemas planetarios escogidos por constituir ejemplos paradigmáticos de lo que la misión puede lograr. Incluyen una “supertierra caliente” conocida como 55 Cancri e, cubierta de un océano de lava, y un “neptuno templado”, GJ 436b, que está perdiendo su atmósfera debido al resplandor de su estrella anfitriona. Otra estrella en la lista de próximas observaciones de Cheops es una enana blanca, primer objetivo del Programa de Observadores Invitados de la ESA, que ofrece a científicos más allá del consorcio de la misión la oportunidad de aprovechar la misión y capitalizar sus capacidades de observación.

Tipos de exoplanetas según su composición (ESA).

Al estar situado en el espacio, CHEOPS podrá realizar medidas fotométricas de alta precisión, lo que permitirá obtener curvas de luz de los tránsitos exoplanetarios con poco ruido. Esto servirá a su vez para determinar el tamaño del planeta con un error menor y, por ende, su densidad, un paso fundamental para caracterizar los distintos tipos de exoplanetas que existen. Dada su enorme sensibilidad, CHEOPS se centrará en los exoplanetas más pequeños, aquellos con tamaños comprendidos entre el de Neptuno y la Tierra, con especial énfasis en las supertierras. Estas medidas servirán para cribar los mejores candidatos que deben ser observados en el futuro con telescopios espaciales más complejos y caros, como por ejemplo el James Webb de la NASA o la nueva generación de supertelescopios terrestres.

Zona de observación de CHEOPS en la bóveda celeste (ESA).

Órbita de CHEOPS (ESA).

Detalles del telescopio (ESA).

Parte trasera de CHEOPS (ESA).

Países que participan en CHEOPS (ESA).

Fases del lanzamiento de CHEOPS (ESA).

Con CHEOPS comienza una nueva era en las misiones espaciales en la que, además de seguir descubriendo nuevos exoplanetas, comenzamos a caracterizarlos para comprender mejor sus características. Después de CHEOPS, la ESA está desarrollando la misión ARIEL con el fin de estudiar las atmósferas exoplanetarias en detalle durante la próxima década. Ahora solo queda esperar que durante los tres años y medio que durará su misión primaria —que se podrá prolongar si no hay problemas— CHEOPS recabe toda la información que pueda sobre los exoplanetas y nos ayude a clasificar mejor el fascinante zoológico exoplanetario y a resolver algunos misterios, como, por ejemplo, la línea divisoria entre minineptunos y supertierras.

Traslado a la rampa (Arianespace).

CHEOPS antes del lanzamiento (ESA).

Despegue (Arianespace).

Centro de Lanzamiento Comercial de Hainán

Centro de Lanzamiento Comercial de Hainán

El Centro de Lanzamiento Comercial de Hainán (海南商业航天发射场) está situado junto al Centro Espacial de Wenchang, en la isla de Hainán, y cuenta con tres rampas, la LCC-1, destinada a cohetes de combustible líquido de integración vertical, la LCC-2, para lanzadores que se transporten horizontalmente, y la LCC-3, para cohetes de combustible sólido. Además del CZ-12 de SAST, la rampa LCC-2 será usada por otros cohetes comerciales chinos, como el Tianlong 3 de Space Pioneer, el Hyperbola 3 de iSpace o el Pallas 1 de Galactic Energy. La rampa ha sido diseñada para soportar lanzadores con diámetros de 3,35, 3,8 y 4,2 metros —y en el futuro, hasta 5 metros— y con queroseno o metano como combustible. Por contra, por el momento parece que el único usuario de la rampa LCC-1 será CALT y su CZ-8A.

Dada su cercanía al Centro de Wenchang, el Centro de Lanzamiento Comercial de Hainán podría ser considerado una simple extensión más de este complejo, pero la importancia de este nuevo centro de lanzamiento no es solo que permite a China duplicar de golpe el número de rampas disponibles en Hainán, sino que se trata del primer centro de lanzamiento civil del país. Hasta la fecha, los centros de Jiuquan, Xichang, Taiyuan y Wenchang están bajo estricto control militar —como las bases de Cabo Cañaveral o Vandenberg en EE.UU.— e incluso los lanzamientos comerciales marítimos que han llevado a cabo varias empresas estatales y privadas chinas en los últimos años han estado supervisados formalmente desde del centro de Taiyuan, a pesar de que este se halla a cientos de kilómetros de distancia. Como contraste, el nuevo centro de Hainán está bajo control de la empresa HICAL (Hainan International Commercial Aerospace Launch o 海南国际商业航天发射有限公司).

El Tianlong 3 debía haber sido el primer lanzador en inaugurar el Centro Comercial de Hainán, pero el incidente que tuvo lugar en la prueba estática de la primera etapa de este cohete, que terminó siendo dinámica, obligó a retrasar su primera misión a 2025. Asimismo, el CZ-12 tenía que haber despegado antes desde Hainán, pero los enormes destrozos ocasionados por el supertifón Yagi en la isla durante  el pasado septiembre obligaron a posponer este primer lanzamiento. Pese a todo, la rampa y el centro de control fueron reparados en tiempo récord. La construcción del Centro de Lanzamiento Comercial de Hainán comenzó el 6 de julio de 2022 y al año siguiente se completaron las obras de la rampa LCC-1. La rampa LCC-2, que en principio solo iba a tener una plataforma de lanzamiento sin torre de servicio, finalmente fue construida con una torre de este tipo. Su construcción se inició en marzo de 2023 y terminó en junio de ese año. Este centro espacial es una de las iniciativas con las que las autoridades de la provincia de Hainán quieren potenciar la economía de la isla.

Más allá del CZ-12, SAST quiere construir una versión reutilizable y otra variante pesada del mismo, denominadas por ahora informalmente como CZ-12R y CZ-12 Heavy, esta última con tres bloques en la primera etapa. No contentos con estos planes, SAST también está desarrollando una versión del CZ-12 de metano, sin nombre por el momento (¿CZ-12A?), dotada de siete motores de metano Longyun de la empresa privada JZYJ. Recordemos que SAST ha volado con éxito este año un prototipo VTVL de metano con tres de estos motores. Pero, por si todo este lío de lanzadores fuese poco, hace poco se ha confirmado que SAST quiere además construir una versión pesada monobloque del CZ-12 de queroseno, pero con un diámetro de 4,2 metros, que usaría nueve motores YF-102. No conocemos las prestaciones de esta variante, que se llamará CZ-12B, pero superará las 20 toneladas con facilidad. Mucho se habla de la competencia entre lanzadores chinos con los de otros países, pero, como vemos, la competencia entre organismos estatales y empresas privadas chinas no es menos intensa.

HAIKOU, 30 jun (Xinhua) — El primer sitio de lanzamiento espacial comercial de China, ubicado en la provincia insular de Hainan, ya se encuentra en capacidad de efectuar el despegue de cohetes, informó hoy domingo la oficina del sitio de construcción.

Después de exhaustivas evaluaciones, las instalaciones han cumplido todos los requisitos para iniciar estas operaciones, añadió la oficina.

El sitio de lanzamiento espacial comercial de Hainan, cuya construcción comenzó en julio de 2022, es ahora el primero del país dedicado a misiones de este tipo.

Los principales proyectos de infraestructura se han completado con éxito, incluidos los relacionados con los sistemas de abastecimiento de combustible y gas, las subestaciones y las plataformas de lanzamiento.

El domingo se realizó un ejercicio simulado de lanzamiento de cohetes.

Yang Tianliang, presidente de Hainan International Commercial Aerospace Launch Co., Ltd., anunció que el despegue del primer cohete está previsto para la segunda mitad de este año, lo que marcará el comienzo de las operaciones comerciales.

Centro de Lanzamiento Comercial de Hainán (HICAL).

De cara al futuro, el plan es ampliar el sitio con plataformas adicionales. El objetivo es proporcionar servicios de lanzamiento de cohetes y satélites nacionales e internacionales, acelerando así el desarrollo de la tecnología espacial comercial de China, afirmó Yang.

Plataforma de lanzamiento comercial de Hainan planea 20 misiones para 2025

Por Chen Bowen

“El Centro Internacional de Lanzamiento Aeroespacial Comercial de Hainan, situado en la ciudad de Wenchang, tiene como objetivo realizar 20 misiones de lanzamiento para 2025, allanando el camino de su apretada agenda que tiene lanzamientos planificados cada mes”, aseguró Liu Hongjian, gerente general de Hainan International Commercial Aerospace Launch Co, durante una conferencia de prensa ofrecida este sábado por la noche después de una exitosa misión inaugural.

El último cohete portador de China, el Gran Marcha 12, despegó a las 10:25 pm de este sábado desde la segunda plataforma del Centro Internacional de Lanzamiento Aeroespacial Comercial de Hainan. Este histórico lanzamiento concreta el primer puerto espacial de China dedicado a apoyar la actividad comercial.

Asimismo, Liu indicó que el lanzamiento inaugural de la primera plataforma de lanzamiento se realizará a finales de año.

La construcción del centro comenzó en julio de 2022 y concluyó en 878 días. Su concepción establece una innovación significativa por parte de los programas financiados por el gobierno, ya que está diseñado para atender misiones financiadas por entidades comerciales.

Situado cerca del Ecuador con una latitud más baja, el nuevo centro en Hainan cuenta con un rango de lanzamiento más amplio, lo que mejora la eficiencia de los cohetes lanzados desde sus plataformas.

El centro cuenta con dos plataformas de lanzamiento. La primera está dedicada a los cohetes Gran Marcha 8, de carga media. Y la segunda plataforma sirve como la principal plataforma líquida universal de tamaño mediano de China. La segunda plataforma está diseñada para satisfacer las necesidades de lanzamiento de más de 19 modelos de cohetes, dentro del rango de 3,35 a 5 metros de diámetro, incluidos los de empresas aeroespaciales privadas. Liu señaló que esta configuración posiciona mejor a la instalación para abordar los variados requisitos de las misiones espaciales comerciales.

Situación de las rampas LC-101 y 201 de Wenchang, desde donde despegan los CZ-5/7/8 y las nuevas rampas comerciales LCC-1 y LCC-2 (Google Earth).

“El transportador erector puede facilitar los lanzamientos en tan solo 3 días y restaurar la disponibilidad operativa dentro de los 7 días posteriores al lanzamiento, mostrando una capacidad de respuesta rápida en el centrol”, resaltó Liu.

“Las dos plataformas de lanzamiento del centro están diseñadas para acomodar 16 lanzamientos al año”, agregó.

Vista aérea tomada con un dron el 30 de junio de 2024 del sitio de lanzamiento espacial comercial, en la provincia de Hainan, en el sur de China. El primer sitio de lanzamiento espacial comercial de China está listo para operar desde el domingo en la provincia de Hainan, en el sur de China, tras completar un ejercicio simulado de lanzamiento de cohetes utilizando sus dos plataformas de lanzamiento. De acuerdo con Hainan International Commercial Aerospace Launch Co., Ltd. (HICAL), que construyó y opera el sitio de lanzamiento, los ejercicios realizados utilizando las plataformas de lanzamiento incluyeron rociado de agua y enfriamiento del sistema de diluvio, así como una prueba de erección del brazo elevador del cohete. Después de las evaluaciones, HICAL confirmó que el sitio está operativo para misiones de lanzamiento. (Xinhua/Pu Xiaoxu)

“Estamos comprometidos en la creación de un sistema de lanzamiento espacial comercial que no solo sea accesible, sino también fácil de usar y asequible”, manifestó Liu Chong, alcalde de Wenchang y director de la Administración de la Ciudad Aeroespacial Internacional de Wenchang.

La ciudad de Wenchang está preparada para adoptar el concepto holístico “de la fábrica al lanzamiento, del lanzamiento al regreso y reutilización, y del lanzamiento a la operación de datos como servicio”. En este sentido, Wenchang planea alcanzar una capacidad de fabricación anual de 1.000 satélites, cultivando un ecosistema industrial más competitivo dentro de la región.

La industria aeroespacial comercial, reconocida como motor fundamental para el crecimiento económico de China, mantiene su inmenso potencial. Wenchang sigue profundizando en las políticas preferenciales con respecto a la accesibilidad de los datos para atraer los recursos de datos satelitales a la actividad comercial. Esta iniciativa busca solidificar los componentes de datos satelitales en Wenchang, estableciendo una zona franca de datos satelitales dentro del Puerto de Libre Comercio de Hainan.

“La iniciativa tiene como objetivo posicionar a Wenchang a la vanguardia del intercambio de datos satelitales, y mejorar aún más su papel en la industria aeroespacial mundial”, aseguró Liu Chong.

Las instalaciones de varias empresas estatales y comerciales del Centro Espacial Comercial de Hainán (HICAL).

China lanzó con éxito el pasado sábado un nuevo cohete portador al espacio desde el sitio de lanzamiento de naves espaciales comerciales de Hainan, en la provincia insular sureña de Hainan. El cohete portador Larga Marcha-12 despegó desde la plataforma de lanzamiento número 2 del sitio y envió dos satélites experimentales a sus órbitas planificadas.

La misión de lanzamiento alcanzó un éxito total, según las autoridades provinciales de Hainan. La misión fue el vuelo inaugural del cohete portador Larga Marcha-12 y la primera misión de lanzamiento realizada desde el sitio de lanzamiento de naves espaciales comerciales de Hainan.

Según la Corporación de Ciencia y Tecnología Aeroespacial de China, la construcción del sitio de lanzamiento, que es el primero que se construye para misiones comerciales en China, comenzó en julio de 2022. Con una inversión de unos 553 millones de dólares, el sitio de lanzamiento fue construido y está siendo operado por Hainan International Commercial Aerospace Launch (HICAL).

Incluye un área de lanzamiento, un edificio TT&C (telemetría, seguimiento y comando), edificios de ensamblaje de cohetes, instalaciones de pruebas de naves espaciales, instalaciones de almacenamiento de combustible y otras estructuras. El lugar de lanzamiento está situado a una latitud de 20 grados norte, beneficiándose de las ventajas de esta baja latitud, que puede aumentar las capacidades de carga útil del cohete y reducir los costes de combustible para cohetes.

Personal de servicio en el primer sitio de lanzamiento de espacio comercial de China, el sitio de lanzamiento de espacio comercial Hainan, Wenchang City, provincia de Hainan, al sur de China. /CMG

El sitio está ubicado frente a la costa de la ciudad de Wenchang, lo que lo hace más conveniente y seguro que los sitios de lanzamiento del interior, ya que los cohetes de gran tamaño se pueden transportar al sitio por barco, lo que es muy importante para los servicios de lanzamiento comercial. El gobierno provincial de Hainan también está planeando un nuevo puerto construido específicamente para ese fin.

La ubicación costera también es una ventaja para la recuperación de cohetes reutilizables por parte de HICAL después del lanzamiento. La empresa está trabajando con desarrolladores de cohetes comerciales en experimentos relacionados con aterrizajes verticales y la recuperación de cohetes del mar.

Actualmente, el sitio cuenta con dos plataformas de lanzamiento para cohetes de combustible líquido. La plataforma número 1 está diseñada para el Larga Marcha-8, el cohete portador de carga media de nueva generación de China. La plataforma número 2 es capaz de lanzar varios tipos de cohetes de diversos diámetros de compañías de cohetes comerciales. Cada plataforma tiene una capacidad anual de 16 lanzamientos.

El sistema de suministro de gas y propulsor del sitio es capaz de reabastecer y suministrar oxígeno líquido, hidrógeno líquido, queroseno y metano. El sitio de lanzamiento también acelerará el desarrollo de la industria espacial comercial y el talento en Hainan, con cadenas industriales que abarcan la investigación y el desarrollo de naves espaciales, los servicios de lanzamiento y las aplicaciones satelitales. Esta integración favorece el desarrollo futuro de alta calidad de la provincia insular.

Las empresas espaciales nacionales como i-Space, Galactic Energy, LandSpace, Space Pioneer y CAS Space se han establecido en Hainan o planean hacerlo. Por ejemplo, la Academia China de Tecnología de Vehículos de Lanzamiento de la Corporación de Ciencia y Tecnología Aeroespacial de China ha construido una planta de ensamblaje de cohetes Larga Marcha-8 en Hainan, con una producción anual de 50 cohetes.

Deep Blue Aerospace construirá instalaciones de ensamblaje y prueba de cohetes y satélites, así como plantas de recuperación de la primera etapa e infraestructura de apoyo alrededor del sitio de lanzamiento. Esto permitirá que los cohetes se lancen inmediatamente después de que se completen en la planta, lo que aumentará significativamente la eficiencia del lanzamiento y reducirá los costes.

En los últimos años también se ha ido creando en Hainan un grupo de talentos del sector aeroespacial, entre ellos Chen Shuai, supervisor de despacho en el sitio de lanzamiento. Chen nació en 1995 en el condado de Chengmai, en Hainan. Desde niño, se interesó especialmente por la astronomía y la industria aeroespacial. Cuando estudiaba en la Universidad de Ciencia y Tecnología de China, eligió el departamento de ciencia térmica y energía, una disciplina relacionada con la industria aeroespacial.

La creciente industria espacial comercial lo atrajo a regresar a su provincia natal en 2021 para unirse al equipo de desarrollo del sitio de lanzamiento. Muchos de sus compañeros de universidad ahora trabajan en empresas espaciales comerciales, incluidas firmas en Hainan.

Entre los dos satélites lanzados el pasado sábado, uno es un satélite experimental para el servicio de Internet por satélite desarrollado por GalaxySpace, una empresa unicornio con sede en Pekín. Esta empresa ha desarrollado el primer tipo de satélite plano de China que utiliza alas solares flexibles y ha logrado la producción en masa de satélites de comunicación de banda ancha en órbita baja.

Tras la misión de lanzamiento del sábado, el sitio planea lanzar un cohete portador Larga Marcha-8 desde su plataforma de lanzamiento número 1 antes de finales de año. La industria espacial comercial se incluyó por primera vez este año en el informe sobre la labor del gobierno de China, y se la incluyó entre las «industrias emergentes y orientadas al futuro» que el gobierno planea fomentar.

En un foro sobre la industria espacial comercial celebrado a principios de este mes en Zhuhai, provincia de Guangdong, en el sur de China, Li Guoping, ingeniero jefe de la Administración Nacional del Espacio de China, reveló que el país está trazando un plan de desarrollo para la infraestructura espacial civil de 2026 a 2035.

 

 

El Centro de Lanzamiento Comercial de Hainan durante su construcción. En primer plano la rampa LCC-2 (a la derecha se ve el edificio de integración horizontal del Tianlong 3). Atrás se ve la rampa LCC-1 (Xinhua).

 

Etapas iniciales de la construcción de la rampa LCC-2 (CASC).

 

 

 

 

 

 

 

 

Vista del foso de la rampa LCC-2 durante su construcción (HICAL).

 

 

 

 

 

 

 

 

 

 

 

La rampa LCC-2 y el TEL durante la construcción (HICAL).

 

 

Despegue de la primera misión desde el nuevo centro de lanzamientos junto al mar de China

DART La primera prueba de defensa planetaria de la historia

Artículo extraído de varios archivos de la revista de Astronáutica Eureka

Nave

Partes de DART (NASA).

DART fue lanzada el 24 de noviembre de 2021 mediante un Falcon 9 que despegó desde la base de Vandenberg (California). La sonda, construida y gestionada por el APL (Applied Physics Laboratory) de la Universidad Johns Hopkins, tenía inicialmente una masa de 610 kg, pero ha gastado cerca de 60 kg de propelente en su camino al sistema Dídimo. En concreto, la nave ha consumido 10 kg de xenón como propelente de su motor iónico NEXT-C y unos 50 kg de hidrazina que alimentan doce propulsores monopropelentes MR-103G de Aerojet Rockedtyne para el control de posición que son capaces de generar 1 newton de empuje cada uno (estos son los motores empleados en la fase final del choque). El NEXT-C (NASA Evolutionary Xenon Thruster–Commercial) ha sido desarrollado por el centro Glenn de la NASA y esta es la primera misión que se usa este motor de propulsión solar eléctrica avanzado, con un empuje variable de entre 25 y 235 milinewton. Sin embargo, el equipo de DART solo usó el NEXT-C durante unas dos horas debido a varios problemas que surgieron con el voltaje del sistema. En caso de que DART hubiese fallado su objetivo, el motor NEXT-C podría haber sido empleado para regresar al asteroide Dídimo dentro de dos años. DART tenía un cuerpo central cúbico con unas dimensiones de 1,2 x 1,3 x 1,3 metros y una envergadura de 18 metros gracias a sus paneles solares flexibles de tipo ROSA (Roll-Out Solar Arrays), con una superficie de 22 metros cuadrados y capaces de generar hasta 7,4 kilovatios de potencia. Cada panel ROSA tiene una longitud de 8,5 metros. DART es la primera sonda planetaria que emplea este tipo de paneles solares flexibles.

Elementos de DART (NASA).

La cámara DRACO (Reconnaissance and Asteroid Camera for Optical navigation) de DART está basada en la cámara LORRI de la sonda New Horizons. La cámara usa un telescopio de 20,8 centímetros de apertura y tiene un ángulo de visión de 0,29º. La cubierta protectora de DRACO fue eyectada el pasado 7 de diciembre de 2021 y su primera imagen fue un campo estelar de las constelaciones de Perseo, Tauro y Aries. En total, DRACO ha obtenido unas 150 000 imágenes para poder ser calibrada adecuadamente. Por ejemplo, el 10 de diciembre tomó una imagen del cúmulo M38 y el 27 de mayo una de la estrella Vega. El 27 de julio la cámara DRACO pudo captar el sistema Dídimo por primera vez cuando estaba a 32 millones de kilómetros del objetivo. DRACO volvió a fotografiar el asteroide binario los días 12, 13 y 22 de agosto. El 1 de julio y el 2 de agosto la cámara se empleó para probar el sistema de navegación autónoma SMART Nav con imágenes de Júpiter. Los encargados de la misión se aprovecharon de la aparición de Europa después de permanecer oculta por el disco de Júpiter para simular la detección de Dimorfo por DRACO al ser visible a medida que DART se acerque al sistema Dídimo. DRACO lleva el detector de tipo sCMOS CIS2521 de BAE, con 5 terapíxels en una matriz de 2560×2160. El ordenador de DART, denominado SBC (Single Board Computer) se encarga de procesar y enviar las imágenes. El ordenador emplea un procesador UT700 LEON3 e incluye 32 MB de memoria SRAM y 16 GB de almacenamiento flash. En las últimas tres semanas antes del choque, DART ha realizado tres maniobras para corregir su trayectoria utilizando imágenes de la cámara DRACO tomadas cada cinco horas. La última maniobra tuvo lugar apenas un día antes del choque, el 25 de septiembre.

Características de la cámara DRACO (NASA).

Cámara DRACO (NASA).

Una de las primeras imágenes de DRACO del 10 de diciembre de 2021: un campo estelar con el cúmulo M38 (NASA).

Imagen de Júpiter y sus lunas tomada por DRACO en agosto para probar el sistema SMART Nav (NASA).

Primera imagen de Dídimo captada por DRACO (un mosaico de 243 imágenes), del 27 de julio (NASA).

El otro gran protagonista del evento ha sido la pequeña sonda italiana LICIACube, encargada de grabar el choque. LICIACube (Light Italian Cubesat for Imaging of Asteroids) —recuerda que ‘Licia’ se pronuncia licha en italiano—es un cubesat 6U de 14 kg construido por la empresa Argotec para la Agencia Espacial Italiana (ASI). Sus dimensiones, una vez desplegados los paneles solares, son de 91,2  x 36,6 x 23,9 centímetros. LICIACube es la primera sonda de espacio profundo italiana. Lleva dos instrumentos, las cámaras LEIA y LUKE (se ve que a alguien de la misión le gusta Star Wars…). LEIA (LICIACube Explorer Imaging for Asteroid), es una cámara en blanco y negro con una resolución máxima de 1,38 metros por píxel a 55 kilómetros de distancia, una distancia focal de 220 milímetros y un campo de 2,06º. Por su parte, LUKE (LICIACube Unit Key Explorer), es una cámara a color con una distancia focal de 70,55 milímetros y un campo de visión de 5º, capaz de obtener imágenes de Dimorfo con una resolución máxima de 4,31 metros por píxel. Por tanto, LEIA tomará imágenes en alta resolución en blanco y negro y LUKE imágenes de mayor campo a color.

LICIACube (ASI).

Con suerte, LICIA Cube habrá obtenido un mínimo de tres imágenes del material eyectado por el impacto de DART y otras tres del hemisferio opuesto al choque. Se espera que la cámara LEIA haya captado el momento del impacto de DART contra Dimorfo y, luego, que tanto LEIA como LUKE hayan visto la evolución del material expulsado y, quizá, el nuevo cráter. Tras sobrevolar Dídimo, LICIACube habrá quedado en órbita solar, desde donde enviará las imágenes los próximos días. LICIACube tiene unas dimensiones de 36,6 x 23,9 x 11,6 centímetros plegado y 91,2 x 36,6 x 23,9 centímetros una vez desplegado. Ha sido diseñado tomando como base el cubesat Argomoon que viajará en la misión Artemisa I. LICIACube se separó de DART el pasado 11 de septiembre mediante un mecanismo de muelles. Dentro del proceso de calibración de las cámaras, el 21 de septiembre la cámara LEIA captó una imagen de la Tierra y el día 22 la cámara LUKE fotografió las Pléyades.

 

LICIACube (ASI).

La órbita del asteroide binario Dídimo alrededor del Sol es marcadamente elíptica, con un perihelio cercano a la órbita de la Tierra, a 150 millones de kilómetros (1 Unidad Astronómica), y un afelio a 340,5 millones de kilómetros (2,27 UA). La inclinación del plano orbital es de solo 3,4º de inclinación. Estas características permiten que Dídimo pueda ser alcanzado fácilmente —en términos de Delta-V— por una sonda lanzada desde la Tierra mientras está cerca de su perihelio.

Las Pléyades vistas por la cámara LUKE de LICIACube (ASI).

Originalmente, DART debía ser parte de la misión AIDA (Asteroid Impact and Deflection Assessment mission), realizada conjuntamente con la agencia espacial europea (ESA). La ESA se iba a encargar de suministrar la sonda AIM (Asteroid Impact Mission) para observar el impacto de DART contra Dimorfo y estudiar en detalle el cráter resultante. Lamentablemente, AIM fue cancelada por la ESA y DART se quedó sin sonda que contemplase el choque en primera fila. Posteriormente, la ESA logró sacar adelante la misión Hera, que debe despegar en 2024. Evidentemente, Hera no podrá grabar el choque de DART, pero podrá analizar en detalle el cráter y los efectos de la colisión cuando llegue a Dídimo en 2026 (la sonda, de 1050 kg, llevará además los cubesats Juventas y Milani). Ahora queda esperar a las imágenes de LICIACube y, por supuesto, de los observatorios terrestres, el Hubble y el James Webb para estudiar los efectos del choque y la naturaleza de Dimorfo y Dídimo. Sea como sea, DART ya es historia tras haber cumplido con éxito su misión.

Trayectoria de DART y órbita de Dídimo (NASA).

Misión: colisionar con un asteroide (posiblemente peligroso), y alterar su trayectoria de choque.

DART se ha volatilizado en la colisión (NASA).

Acercamiento y colisión

La primera prueba de defensa planetaria de la historia: DART choca contra el asteroide Dimorfo

Tuesday 27 September 2022 — 01:49

El asteroide Dimorfo momentos antes del choque de DART (NASA).

La NASA ha vuelto a hacer historia. El 26 de septiembre de 2022 a las 23:14 UTC la sonda DART ha chocado contra el asteroide Dimorfo, volatilizándose en el proceso y completando así la primera prueba de defensa planetaria de la Humanidad. Nuestra especie ha decidido al fin que no quiere terminar como los dinosaurios y otras tantos seres vivos extinguidos por culpa del choque caprichoso de cuerpos menores del sistema solar contra la Tierra. La sonda DART (Double Asteroid Redirection Test), de 550 kg de masa en el momento del choque, ha impactado a 21 960 km/h (6,1 km/s) contra el asteroide Dimorfo, de 163 metros de diámetro. Dimorfo (Dimorphos en inglés) es en realidad un satélite del asteroide Dídimo (Didymos), de 780 metros, de ahí que ambos objetos también reciban la denominación Dídimo A y Dídimo B, respectivamente. Esto no es una casualidad, pues la idea es que el choque de DART contra Dimorfo cambie su órbita alrededor de Dídimo, permitiendo medir con precisión la energía depositada en el proceso. Es decir, la órbita del asteroide binario 65803 Dídimo alrededor del Sol no ha cambiado tras la colisión, pero sí la de Dimorfo alrededor de su hermano mayor. El sistema Dídimo (‘gemelo’ en griego) no es actualmente una amenaza para la Tierra, motivo por el cual esta misión se considera una prueba de concepto del método de interceptor cinético para un futuro sistema de defensa planetaria, un sistema que ahora mismo no existe. Por otro lado, conviene recordar que DART no es la primera misión que chocará a alta velocidad contra un cuerpo menor del sistema solar, ya que este honor le corresponde a la subsonda de la misión Deep Impact de la NASA, que se estrelló el 4 de julio de 2005 contra el cometa Tempel 1.

Dídimo (a la izquierda) y Dimorfo en la última imagen que se pudo ver de ambos objetos en el mismo campo (NASA).

Los momentos finales de la aproximación y el choque fueron captados por la cámara DRACO, que es el único instrumento de la sonda. De hecho, las imágenes de DRACO han servido para que la propia sonda pueda fijar el objetivo y maniobrar en consecuencia, ya que el error en la órbita de Dídimo y la posición de Dimorfo hacen imposible planificar la colisión con antelación desde la Tierra. DART ha usado el sistema SMART Nav (Small-body Maneuvering Autonomous Real-Time Navigation) para guiar la nave hasta el asteroide mediante las imágenes de esta cámara. Las imágenes se han enviado a la Tierra en tiempo real al ritmo de una por segundo hasta el momento del impacto usando la antena de alta ganancia del vehículo, de diseño RLSA (Radial Line Slot Array). La cámara DRACO solo fue capaz de resolver Dimorfos como un objeto independiente unas cuatro horas antes del impacto. Una hora antes ya fue capaz de resolverlo con una extensión de 1,4 píxeles. Según las previsiones, la imagen final se obtuvo a pocos metros de distancia de Dimorfo. Aunque toda la secuencia fue automática, los controladores de la misión tenían capacidad de intervenir en caso necesario hasta unos minutos antes del choque, una limitación impuesta por el retraso en las comunicaciones debido a la distancia de Dídimo con respecto a la Tierra (en estos momentos, de unos 11,4 millones de kilómetros). El equipo de DART cree que la sonda impacto a tan solo 70 metros del punto previsto.

 Antepenúltima imagen de la superficie de Dímorfo (NASA).

Última imagen de DART antes de suicidarse (NASA).

Dimorfo ha resultado ser, aparentemente, un objeto de tipo ‘pila de escombros’ como los asteroides Ryugu y Bennu, visitados recientemente por las misiones Hayabusa 2 y OSIRIS-REx. A pesar de que, por motivos obvios, DART no pudo grabar su propio impacto, se espera que el pequeño satélite italiano LICIACube, que se separó de DART el pasado 11 de septiembre, sí pudiera hacerlo. Con suerte, las cámaras LEIA y LUKE de LICIACube grabaron el choque de DART contra Dimorfo y expulsión de material provocado por este (el momento del impacto solo fue grabado por la cámara LEIA). LICIACube sobrevoló Dimorfo 165 segundos después del impacto a una distancia mínima de unos 55 kilómetros para intentar fotografiar el cráter generado DART. No obstante, las imágenes de LICIACube, con una resolución máxima de entre 5 y 2 metros por píxel, tardarán varios días en llegar a la Tierra usando la Red de Espacio Profundo (DSN) de la NASA (se espera, eso sí, que la primera llegue a lo largo de hoy). Varios observatorios terrestres, los telescopios espaciales Hubble y James Webb, así como la sonda Lucy, también observaron el choque a millones de kilómetros (visto desde la Tierra, Dídimo tiene una magnitud de 14-15).

DART y Dimorfo a escala (NASA).

La NASA estima que serán necesarios unos dos meses para determinar con precisión el cambio de periodo orbital de Dimorfo debido al impacto usando observaciones de telescopios terrestres y espaciales. Dimorfo orbita Dídimo a una distancia de 1,2 kilómetros, con un periodo de 11 horas y 55 minutos, por lo que su velocidad orbital es de tan solo 17 cm/s. El periodo de rotación de Dimorfo alrededor de su eje se supone que será similar al de traslación por las fuerzas de marea —el de Dídimo es de 2,26 horas—, pero bien podría ser diferente. De ser así, los efectos del impacto de DART también serán muy distintos. La masa de Dimorfo se estima en unas 5 millones de toneladas y el impacto de DART apenas modificará su velocidad en 1 mm/s, aproximadamente. Este cambio de velocidad es minúsculo, pero cambiará el periodo orbital de Dimorfo en un 1% más o menos. Si Dimorfo orbitase directamente el Sol, los efectos del impacto apenas habrían cambiado su periodo alrededor de nuestra estrella en un 0,000006%.

Secuencia planeada de imágenes antes del choque (NASA).

Resumen de las fases de la misión (NASA).

El choque de DART debe haber cambiado el periodo orbital de Dimorfo en un 1% más o menos (NASA).

Confirmado: DART ha desviado al asteroide Dimorphos

El tiempo que Dimorphos tarda en recorrer su órbita se ha acortado 32 minutos tras el impacto

11-10-2022 | 20:42 H

La NASA ha confirmado que DART ha logrado desviar al asteroide Dimorphos con su colisión. Aunque, es posible que esta noticia te parezca desactualizada. ¿No se había confirmado ya, acaso? En cierto modo sí, teníamos indicios, pero por otro lado no, de hecho, ni siquiera se ha confirmado del todo, pero ahora tenemos un nuevo dato que parece apuntar en la dirección correcta. Hasta ahora teníamos imágenes de la colisión y del resultado del impacto, con el material eyectado en torno a Dimorphos e incluso una cola de partículas, como si fuera un cometa, pero lo que acaba de confirmarse es algo diferente. Tras medir el tiempo que tarda Dimorphos en orbitar a su asteroide Didymos, parece que su periodo se ha acortado en 32 minutos. Hasta hace poco sabíamos que su periodo de 12 horas se había recortado un poco, pero no estaba claro cuánto. Ahora, Bill Nelson, director de la NASA lo ha confirmado en rueda de prensa.

Con DART, lo que realmente queríamos era comprobar si podíamos desviar determinados asteroides para así protegernos en un futuro de los potenciales peligros astronómicos que nos acechen. Esa era la idea, así de simple y así de compleja. Aparentemente sacada de una película de ciencia ficción, pero tan seria y rigurosa como la NASA suele ser. Todavía se están estudiando los resultados de la misión, pero, mientras tanto, va llegando información sorpresa. Detalles predecibles pero que la prensa no había advertido hasta ahora y que, lógicamente, inquietan al público.

Antes de seguir, conviene recordar algunos detalles básicos sobre la misión DART. Porque desviar un asteroide impactando una sonda es como intentar mover un coche disparándole bolas de billar, hacía falta una buena estrategia. El objetivo elegido fue el asteroide Dimorphos, que da vueltas en torno a uno mayor llamado Didymos. Si el impacto conseguía ralentizar mínimamente a Dimorphos, este aproximaría su órbita a Didymos y cambiaría su trayectoria, como si fuera una reacción en cadena. La otra clave era la velocidad de la sonda, que colisionó a 22.530 kilómetros por hora mientras que Dimorphos viajaba a 0,72 kilómetros por hora. De ese modo se compensaba algo su diferencia de peso, entre los 610 kilos de la sonda y los 5.000 millones de kilos de Dimorphos. A falta de una confirmación más precisa, parece que el impacto logró su objetivo y redujo en unos minutos las 12 horas que tarda Dimorphos en rodear a Didymnos.

Los 32 minutos de DART: por primera vez la humanidad cambia la órbita de un asteroide.

Los 32 minutos de DART: por primera vez la humanidad cambia la órbita de un asteroide

12 October 2022 — 01:07

32 minutos. Esa es la diferencia en el periodo del asteroide Dimorfo provocada por el choque de la sonda DART a 6,1 km/s. Por primera vez, la humanidad ha logrado cambiar de forma apreciable la órbita de un asteroide. Bien es cierto que Dimorfo no suponía ninguna amenaza para la Tierra y que giraba alrededor del asteroide Dídimo, pero lo importante es que la órbita ha sido modificada significativamente, de tal modo que hemos sido capaces de medir los cambios desde observatorios terrestres. Dimorfo orbitaba alrededor de Dídimo con un periodo de 11 horas y 55 minutos. Tras la colisión de DART el pasado 26 de septiembre a las 23:14 UTC, ahora lo hace con un periodo de 11 horas y 23 minutos, con un error de 2 minutos. Es decir, un cambio en el periodo dl 4%. Los modelos, muy poco precisos al desconocerse la composición y estructura interna de Dimorfo, predecían un cambio de entre 73 segundos y unas pocas decenas de minutos, por lo que el choque de DART se sitúa en la parte más alta de los posibles resultados.

La nube de fragmentos generada por el choque de DART contra Dimorfo vista por el satélite italiano LICIACube. Dídimo aparece pegado a Dimorfo abajo a la derecha (ASI/NASA/APL).

Cuatro telescopios terrestres (Observatorio de Las Campanas y el telescopio danés en el observatorio de La Silla, ambos en Chile, así como la red del observatorio de Las Cumbres en Chile y Sudáfrica) se han usado para determinar el nuevo periodo de Dimorfo, empleando los eclipses mutuos entre los dos cuerpos del asteroide doble como hitos. También se ha usado los radaiotelescopios de Goldstone (California) y Green Bank (Virginia Occidental) para determinar la posición de Dimorfo mediante radar, confirmando la variación en el periodo. El día del impacto, el descubrimiento de que Dimorfo era un asteroide de tipo pila de escombros hizo pensar que los efectos del choque no serían muy marcados (los impactos en este tipo de asteroides son menos efectivos que en asteroides sólidos). Aunque todavía no se ha analizado a fondo la dinámica del choque, que depende de muchos factores (densidad, cohesión del material, etc.), es posible que los llamativos e impresionantes chorros de material eyectado hayan servido para «propulsar» al asteroide en la dirección contraria al sentido de avance orbital.

Las observaciones de telescopios terrestres han permitido medir el cambio en el periodo de Dimorfo, especialmente gracias al uso de los eclipses (NASA/Johns Hopkins APL/Astronomical Institute of the Academy of Sciences of the Czech Republic/Lowell Observatory/JPL/Las Cumbres Observatory/Las Campanas Observatory/European Southern Observatory Danish (1.54-m) telescope/University of Edinburgh/The Open University/Universidad Católica de la Santísima Concepción/Seoul National Observatory/Universidad de Antofagasta/Universität Hamburg/Northern Arizona University).

Dídimo y Dimorfo vistos mediante radar desde la Tierra. El círculo verde muestra la posición actual de Dimorfo y el azul la posición en la que debería estar de no haber chocado DART contra él ( NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory).

La formación de estos chorros, captados por el pequeño satélite italiano LICIACube (Light Italian CubeSat for Imaging of Asteroids), es un proceso que no se entiende muy bien, pues cabría esperar que un impacto como el de DART generase una nube homogénea de fragmentos. No obstante, el proyectil lanzado por Hayabusa 2 contra Ryugu produjo unos chorros parecidos, aunque a mucha menor escala. Parece ser que estos chorros se forman no solo en los asteroides, sino también en cualquier mundo sin atmósfera, como por ejemplo la Luna o Mercurio, y podrían estar detrás de los característicos rayos que emanan de los cráteres más jóvenes.

Dídimo (izquierda) y Dimorfo con la nube de escombros del choque vistos por la cámara LUKE de LICIACube segundos antes de pasar a la mínima distancia del conjunto (LICIACube está ahora en órbita solar) (ASI/NASA).

La nube de escombros vista por LICIACube después de pasar por el punto más cercano al sistema (ASI/NASA).

Sea como sea, las imágenes de LICIACube serán determinantes para entender el impacto de DART hasta que la sonda europea Hera llegue a Dídimo para analizar en alta resolución el cráter creado por el choque. Esta nube de material ha servido para convertir al asteroide Dídimo en un pequeño cometa, con una cola de polvo que se extiende más de diez mil kilómetros por efecto de la presión de radiación de la luz solar. La dinámica de esta cola, que presenta una estructura doble, también es toda una sorpresa para los investigadores. La cola, además de por telescopios terrestres, ha sido observada por observatorios espaciales como el Hubble y el James Webb. Gracias a que la magnitud en el cambio del periodo ha sido muy alta, la NASA ha podido confirmar el éxito del choque de DART pocas semanas después del suceso, aunque antes del 26 había anunciado que podría tardar meses en determinar la nueva órbita.

Vista de la nube de fragmentos por el Hubble y el James Webb el 8 de octubre (NASA/ESA/STScI).

Por otro lado, conviene recordar que no es la primera vez que la humanidad cambia la órbita de un objeto astronómico, pues ese es un mérito que podríamos conceder a la misión Deep Impact o, ya que estamos, a cualquier sonda que haya realizado una maniobra de asistencia gravitatoria. Pero sí es la primera vez que se cambia la órbita de un objeto de forma apreciable y, además, podemos medir ese cambio con precisión. Pero, ¿serviría una misión como DART para desviar la órbita de un asteroide peligroso que amenazase la Tierra? Hay que tener en cuenta que Dimorfo es un pequeño asteroide de 163 metros de diámetro y que DART apenas tenía 550 kg en el momento del choque. El principal objetivo de DART no era tanto el cambio de órbita en sí —que depende de muchos parámetros desconocidos— como verificar el funcionamiento del sistema de guiado autónomo de una sonda mediante el uso de imágenes en tiempo real. Un cambio del 4% en el periodo de un pequeño asteroide que orbita alrededor de otro no significa que una sonda similar pueda cambiar la órbita de un asteroide peligroso alrededor del Sol en la misma magnitud, pero sin duda deja la puerta abierta al desarrollo de un sistema de defensa planetaria con interceptores cinéticos (veremos qué tal le va a la misión china de 2026). No olvidemos que los asteroides más peligrosos no son los más grandes, que están prácticamente todos catalogados, sino los que tienen un tamaño de entre 200 y 500 metros, pues existen todavía muchos de este rango de tamaños sin descubrir.

Telescopio espacial James Webb

Telescopio espacial James Webb

Telescopio espacial James Webb

 

Estado: En órbita

Operador: CSA, NASA,1ESA

Coste: 10 000 000 000 dólares estadounidenses2

ID COSPAR: 2021-130A

  1. SATCAT: 50463

ID NSSDCA: 2021-130A

Página web:

[CSA/ASC Canadá

NASA Estados Unidos

ESA b Europa

CNES Francia enlace]

 

Duración planificada: 5-10 años

Duración de la misión: 168 días y 7 horas

Propiedades de la nave

Fabricante: Northrop Grumman Ball Aerospace

Masa de lanzamiento: 6200 kg

Comienzo de la misión

Lanzamiento: 25 de diciembre de 2021 (12:20 UTC)

Vehículo: Ariane 5

Lugar: Puerto espacial de Kourou, Guayana Francesa

Contratista: Arianespace

Parámetros orbitales

Sistema de referencia: 1,5 millones de km de la Tierra (Tierra-Sol punto L2 órbita de halo)

Insignia de la misión Telescopio espacial James Webb

El telescopio espacial James Webb (en inglés, James Webb Space Telescope (JWST)) es un observatorio espacial desarrollado a través de la colaboración de veinte países,3​ construido y operado conjuntamente por la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, para sustituir los telescopios Hubble y Spitzer.45​ El JWST ofrecerá una resolución y sensibilidad sin precedentes, y permitirá una amplia gama de investigaciones en los campos de la astronomía y la cosmología.6​ Uno de sus principales objetivos es observar algunos de los eventos y objetos más distantes del universo, como la formación de las primeras galaxias. Este tipo de objetivos están fuera del alcance de los instrumentos terrestres y espaciales actuales. Entre sus objetivos están incluidos estudiar la formación de estrellas y planetas y obtener imágenes directas de exoplanetas y novas.

Entre sus principales características técnicas hay que destacar el espejo primario de JWST, compuesto por 18 segmentos hexagonales que, combinados, crean un espejo con un diámetro de 6,5 metros (21 pies 4 pulgadas), un gran aumento con diferencia sobre el espejo utilizado por el Hubble, de 2,4 metros (7,9 pies), el parasol y cuatro instrumentos científicos. El telescopio se sitúa en el espacio cerca del punto lagrangiano Tierra-Sol L2,7​ está protegido por un gran parasol, hecho de cinco hojas de Kapton revestido de aluminio y silicio, que mantendrá al espejo y sus cuatro instrumentos científicos principales a temperaturas cercanas al cero absoluto. A diferencia del Hubble, que observa en los espectros ultravioleta cercano, visible e infrarrojo cercano, el JWST observará en la luz visible de longitud de onda larga (naranja a rojo) a través del rango del infrarrojo medio (0,6 a 27 μm). Esto permitirá que el JWST realice una amplia gama de investigaciones a través de muchos subcampos de la astronomía,8​ que observe y estudie las primeras estrellas, de la época de reionización, formación de las primeras galaxias, tome fotografías de nubes moleculares, grupos de formación estelar, objetos con alto desplazamiento hacia el rojo demasiado viejos y demasiado distantes para que pudieran ser observados por el Hubble y otros telescopios anteriores.9

En desarrollo desde 1996,10​ lo denominaron inicialmente como Next Generation Space Telescope o NGST, en 2002 fue denominado James E. Webb, en honor al funcionario del gobierno estadounidense que fue administrador de la NASA entre 1961 y 1968 y jugó un papel integral en el programa Apolo.1112​ El proyecto ha tenido numerosas demoras y gastos excesivos, siendo sometido a importante rediseño durante 2005. En 2011, parte del Congreso de los Estados Unidos optó por su cancelación, después de haber empleado en su desarrollo aproximadamente 3000 millones de dólares13​ estando en producción o en fase de pruebas más del 75% de su hardware.14​ En noviembre de 2011, el Congreso revocó los planes para cancelar el proyecto y en su lugar puso un tope de financiación adicional para completar el proyecto en 8000 millones de dólares.15​ En diciembre de 2016, la NASA anunció que la construcción del JWST había finalizado y comenzaría su fase de pruebas.1617​ En marzo de 2018, la NASA retrasó el lanzamiento de JWST un año más porque el parasol del telescopio se rasgó durante un despliegue de práctica y los cables del parasol no se apretaron lo suficiente.18​ Estaba previsto que el JWST fuera a ser lanzado en mayo de 20201920212223​ desde la Guayana Francesa.24

El 27 de junio de 2018, tras detectarse varios problemas, tanto técnicos como humanos, durante las pruebas, la NASA decide posponer el lanzamiento del telescopio al 30 de marzo de 2021, después de que la junta de revisión que evalúa el proyecto emitiera un informe contrario a las expectativas respecto al cronograma previsto por el contratista y el proceso de la misión en general incluyendo los errores.2526272829303132

El 10 de junio de 2020, Thomas Zurbuchen, Administrador Asociado de la Dirección de Misiones Científicas de la NASA, anunció que el lanzamiento del telescopio James Webb se retrasaría, y no podría salir el 10 de marzo de 2021, como estaba estipulado. Este retraso fue inevitable debido a la pandemia de COVID-19, la cual hizo que el trabajo en la nave se viera disminuido.33

Tras superar la prueba final de vacío térmico, el JWST demuestra que funcionará en el espacio. 3435

  • El telescopio James Webb fue lanzado con éxito, el 25 de diciembre de 2021, a bordo de un cohete

Descripción

El JWST es un proyecto conjunto de la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, donde colaboran aproximadamente 17 países más.

Las contribuciones de Europa se formalizaron en 2007 con un Memorando de Entendimiento ESA-NASA, que incluye el lanzador Ariane-5 ECA, el instrumento NIRSpec, el montaje del banco óptico MIRI, y soporte de personal para las operaciones.39

El telescopio se espera que tenga una masa de aproximadamente la mitad del telescopio espacial Hubble, aunque su espejo primario (un reflector de berilio recubierto de oro de 6,5 metros de diámetro) tendrá un área de recolección aproximadamente cinco veces mayor (25 m² o 270 pies cuadrados vs. 4,5 m² o 48 pies cuadrados). El JWST está orientado hacia la astronomía cercana al infrarrojo, pero también puede ver la luz visible naranja y roja, así como también la región del infrarrojo medio, dependiendo del instrumento. El diseño enfatiza el infrarrojo cercano al medio por tres motivos principales: los objetos con alto desplazamiento hacia el rojo tienen sus emisiones visibles desplazadas al infrarrojo, los objetos fríos como los discos de escombros y los planetas emiten más fuertemente en el infrarrojo, y esta banda es difícil de estudiar desde el suelo o por los telescopios espaciales actuales como el Hubble. Los telescopios terrestres tienen que observar atravesando la atmósfera, que es opaca en muchas bandas infrarrojas. Incluso donde la atmósfera es transparente, muchos de los compuestos químicos que son objetivo, como el agua, el dióxido de carbono y el metano, también existen en la atmósfera terrestre, lo que complica enormemente el análisis. Los telescopios espaciales actuales como el Hubble no pueden estudiar estas bandas ya que sus espejos no son lo suficientemente fríos (el espejo del Hubble se mantiene a unos 15 °C) y, por lo tanto, el telescopio irradia con fuerza en las bandas IR.

El JWST operará cerca del punto de Lagrange Tierra-Sol L2, aproximadamente a 1500 000 km (930 000 millas) más allá de la órbita de la Tierra. A modo de comparación, el Hubble orbita a 340 millas (550 km) sobre la superficie de la Tierra, y la Luna está aproximadamente a 400 000 km (250 000 millas) de la Tierra. Esta distancia hace que la reparación o actualización posterior al lanzamiento del hardware del JWST sea prácticamente imposible. Los objetos cercanos a este punto pueden orbitar el Sol en sincronía con la Tierra, lo que permite que el telescopio permanezca a una distancia aproximadamente constante40​ y tiene obligado utilizar una barrera solar para bloquear el calor y la luz del Sol y la Tierra. Esto mantendrá la temperatura de la nave espacial por debajo de 50 K (-220 °C; -370 °F), necesaria para las observaciones de infrarrojos.4142

Vista de tres cuartos de la parte superior

Parte inferior (lado orientado al sol)

Barrera solar

Probando el despliegue del parasol en el hangar de pruebas en la instalación Northrop Grumman en California, año 2014

Para realizar observaciones en el espectro infrarrojo, el JWST debe mantenerse a una temperatura muy baja, aproximadamente por debajo de 50 K (-220 °C; -370 °F), de lo contrario, la radiación infrarroja del propio telescopio podría bloquear o sobrecargar sus instrumentos. Para evitarlo utiliza un gran parasol que bloquea la luz y el calor del Sol, la Tierra y la Luna, además, su posición cercana al punto de Lagrange Tierra-Sol L2 mantiene los tres cuerpos en el mismo lado de la nave espacial en todo momento.43​ Su órbita halo alrededor del punto L2 evita la sombra de la Tierra y la Luna, manteniendo una posición constante y aceptable para la barrera solar y los paneles solares.40​ El parasol está hecho de película de poliimida y tiene membranas recubiertas con aluminio en un lado y silicio en el otro.

El parasol está diseñado para doblarse doce veces, por lo que cabe dentro de la cubierta del cohete Ariane 5 de 4,57 m (5 yardas) × 16,19 m (17,7 yardas). Una vez ubicado el telescopio en el punto L2, el parasol se desplegará a 21,197 m (23,18 yardas) × 14,162 m (15,55 yardas). El parasol fue ensamblado a mano en Man Tech (NeXolve) en Huntsville, Alabama, antes de ser entregado a Northrop Grumman en Redondo Beach, California, Estados Unidos, para su prueba.44

Óptica

Ensamblado del espejo principal en el Centro de vuelo espacial Goddard, mayo de 2016

Modelo NIRCam

El espejo primario de JWST es un reflector de berilio de 6,5 metros de diámetro, recubierto de oro, con un área de recolección de 25 m². Estas dimensiones son demasiado grandes para los vehículos de lanzamiento actuales, por lo que al espejo lo componen 18 segmentos hexagonales, que se desplegarán después una vez que se haya abierto el telescopio. La detección del frente de onda plano de la imagen a través de la recuperación de fase se usará para colocar los segmentos del espejo en la ubicación correcta usando micromotores muy precisos. Con posterioridad a esta configuración inicial, solo necesitarán breves encendidos cada pocos días para mantener un enfoque óptimo,45​ siendo distinto a los telescopios terrestres como el Observatorio W. M. Keck, que continuamente ajustan los segmentos de su espejo utilizando ópticas activas para superar los efectos de la carga gravitacional y del viento, y es posible debido a la falta de perturbaciones ambientales por estar ubicado en el espacio.

El diseño óptico de JWST es un telescopio de tres espejos anastigmático,46​ que hace uso de espejos curvos secundarios y terciarios para obtener imágenes libres de aberraciones ópticas en un amplio campo. Además, hay un espejo de dirección rápido, que puede ajustar su posición muchas veces por segundo para proporcionar estabilización de imagen.

Ball Aerospace & Technologies es el principal subcontratista para el proyecto JWST, dirigido por el contratista principal Northrop Grumman Aerospace Systems, siendo dirigidos todos por el Centro Goddard de Vuelos Espaciales de la NASA, en Greenbelt, Maryland.4748​ Dieciocho segmentos de espejos primarios, espejos de dirección secundarios, terciarios y sensibles, más repuestos de vuelo han sido fabricados y pulidos por Ball Aerospace en segmentos de berilio fabricados por varias empresas, entre ellas Axsys, Brush Wellman y Tinsley Laboratories.

Modelo NIRSpec

El último segmento del espejo primario fue instalado el 3 de febrero de 2016,49​ y el espejo secundario fue instalado el 3 de marzo de 2016.50

Instrumentos científicos

El Integrated Science Instrument Module (ISIM) es un módulo que proporciona energía eléctrica, recursos informáticos, refrigeración y estabilidad estructural para el telescopio. Está fabricado con un compuesto de grafito-epoxi y va unido a la parte inferior de la estructura del telescopio. En el ISIM se integran cuatro instrumentos51​ científicos que se describen a continuación y una cámara guía.52

Modelo MIRI a escala 1:3

  • Near InfraRed Camera (NIRCam), cámara infrarroja con cobertura espectral que irá desde el borde de lo visible (0,6 micrómetros) hasta el infrarrojo cercano (5 micrómetros).5354​ También servirá como sensor de frente de onda del observatorio, necesario para actividades de detección y control de frente de onda. Construida por un equipo dirigido por la Universidad de Arizona, siendo Investigadora Principal Marcia Rieke. El socio principal es Lockheed Martin Advanced Technology Center, ubicado en Palo Alto, California.55
  • Mid-InfraRed Instrument (MIRI), instrumento que medirá el rango de longitud de onda del infrarrojo medio de 5 a 27 micrómetros.5758​ Compuesto por cámara de infrarrojo medio y un espectrómetro de imágenes.47​ Fue desarrollado en colaboración entre la NASA y un consorcio de países europeos, está dirigido por George H. Rieke (Universidad de Arizona) y Gillian Wright (UK Astronomy Technology Centre, Edimburgo, miembro del Science and Technology Facilities Council (STFC)).55​ MIRI presenta mecanismos de rueda similares a NIRSpec, que también han sido desarrollados y construidos por Carl Zeiss Optronics GmbH (subcontratada a su vez por Max Planck Institute for Astronomy. El instrumento una vez construido se entregó al Centro de vuelo espacial Goddard a mediados de 2012 para su eventual integración en el ISIM. La temperatura del MIRI no debe superar los 6 Kelvin (K): un enfriador mecánico de gas de helio ubicado en el lado cálido del escudo ambiental conseguirá reducirlo a tan baja temperatura.59
  • Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS/NIRISS), estabilizador fabricado por la Agencia Espacial Canadiense bajo la supervisión del científico John Hutchings (Herzberg Institute of Astrophysics, National Research Council (Canadá)), estabilizará la línea de visión del observatorio durante las observaciones científicas. Las mediciones del FGS se usan tanto para controlar la orientación general de la nave espacial como para conducir el espejo de dirección para estabilizar la imagen. La Agencia Espacial Canadiense también proporcionará un instrumento que observará el infrarrojo cercano y espectrógrafo Slitless (NIRISS) para imágenes astronómicas y espectroscopía en el rango de longitud de onda de 0,8 a 5 micrómetros, cuya dirección la supervisa el investigador principal René Doyon de la Universidad de Montreal.55​ Debido a que el NIRISS está físicamente montado junto con el FGS, a menudo se les reconoce como una sola unidad, pero sus análisis son completamente distintos, uno es un instrumento científico y el otro forma parte de la infraestructura de soporte del observatorio.

NIRCam y MIRI tienen coronógrafos bloqueadores de luz estelar para poder observar objetivos débiles como planetas extrasolares y discos circunestelares cercanos a estrellas brillantes.58

Los detectores infrarrojos de los módulos NIRCam, NIRSpec, FGS y NIRISS son suministrados por Teledyne Imaging Sensors (anteriormente Rockwell Scientific Company). Los sistemas instalados en el JWST, así como de los instrumentos ISIM y del ICDH utilizan el protocolo SpaceWire para transmitir datos entre los instrumentos científicos y el equipo donde se analizan.60

Bus

Diagrama del Spacecraft Bus. El panel solar es de color verde y las alas de color púrpura claro son tonos de radiadores.

El bus o plataforma es el principal componente del telescopio espacial James Webb y alberga gran cantidad de piezas de computación, comunicación, propulsión y estructurales, uniendo las diferentes partes del telescopio.61​ Junto con la barrera solar, forma el elemento de “nave espacial” del telescopio espacial.62​ Los otros dos elementos principales del JWST son el Integrated Science Instrument Module (ISIM) y el Optical Telescope Element (OTE).63​ En el espacio conocido como “Región 3” de ISIM también está dentro del bus; este espacio incluye también el ISIM Command and Data Handling (ICDH) y el refrigerador criogénico MIRI.63

El bus está conectado al Optical Telescope Element por medio del Deployable Tower Assembly, que a su vez está conectado con la barrera solar.61

Con un peso de 350 kg (aproximadamente 772 lb),6​ tiene que estar preparado para soportar el JWST, que tiene un peso aproximado de 6,5 toneladas. Fabricado principalmente de material compuesto de grafito.6​ Su montaje se realizó en California en 2015, luego se tuvo que integrar con el resto del telescopio espacial previamente a su lanzamiento.64​ El bus puede proporcionar el apuntamiento de un segundo de arco y aísla la vibración hasta dos (2) miliarcosegundos.65

Está ubicado con orientación al Sol, en el lado “cálido” del telescopio, operará a una temperatura de aproximadamente 300 K.62​ Todo instrumento posicionado con orientación al Sol debe poder soportar condiciones térmicas de la órbita del halo del telescopio, que a un lado le da constantemente la luz solar y al otro la sombra por la barrera de la nave espacial.62

Otro aspecto importante del bus es su equipo central de computación, almacenamiento de memoria y comunicaciones.61​ El procesador y el software dirigen los datos hacia y desde los instrumentos, al núcleo de memoria de estado sólido y al sistema de radio que puede enviar datos a la Tierra así como recibir órdenes.61​ La computadora también controla el posicionamiento de la nave espacial, tomando los datos del sensor de los giroscopios y el rastreador de estrellas, y enviando las órdenes necesarias a los instrumentos de posicionamiento o propulsores.61

Comparativas

Comparación con el espejo primario del Hubble

Espejos del James Webb

La arquitectura Calisto para SAFIR sería una sucesora de Spitzer, que requeriría un enfriamiento pasivo aún más frío que JWST (5 kelvin).66

Vistas atmosféricas en el infrarrojo: gran parte de este tipo de luz está bloqueada cuando se observa desde la superficie de la Tierra. Sería como mirar un arcoíris pero solo ver un color.

El deseo de tener un gran telescopio espacial infrarrojo se remonta a varias décadas; en los Estados Unidos, se estudió la posibilidad de crear un telescopio en la lanzadera Shuttle Infrared Telescope Facility mientras desarrollaba el Space Shuttle reconociéndose el potencial existente de la astronomía infrarroja en ese instante.67​ En comparación con los telescopios de tierra, se sabía que los observatorios espaciales estaban libres de la absorción atmosférica de luz infrarroja; sería como un “cielo nuevo” para los astrónomos.67

La atmósfera tenue por encima de los 400 km de altura no tiene absorción medible, por lo que los detectores que operan en todas las longitudes de onda de 5 µm a 1000 µm alcanzan una alta sensibilidad radiométrica.

– S. G. McCarthy y G. W. Autio, 1978ref name=”proceedings.spiedigitallibrary.org”/>

Sin embargo, los telescopios infrarrojos tienen un inconveniente: necesitan conservarse extremadamente fríos y cuanto más larga es la longitud de onda de los infrarrojos, más fríos deben estar.68​ De lo contrario, el calor de fondo del dispositivo bloquea a los instrumentos, dejándolo completamente ciego.68​ Este inconveniente puede superarse mediante un cuidadoso diseño de la nave espacial, particularmente colocando el telescopio en un depósito con una sustancia extremadamente fría, como el helio líquido.68​ Esto significa que la mayoría de los telescopios infrarrojos tienen una vida útil limitada por su refrigerante, tan breve como cuestión de meses, tal vez pocos años como máximo.68​ Hasta ahora ha sido posible mantener la temperatura lo suficientemente baja mediante el diseño de la nave espacial para permitir observaciones de infrarrojo cercano sin un suministro de refrigerante, como por ejemplo las misiones extendidas de Spitzer y NEOWISE. Otro ejemplo es el instrumento NICMOS del Hubble, que comenzó utilizando un bloque de hielo de nitrógeno que se agotó tras un par de años, pero que luego se convirtió en un refrigerador criogénico que funcionaba continuamente. El JWST está diseñado para enfriarse sin depósito, simplemente usando una combinación de barrera contra el sol y radiadores con el instrumento de infrarrojo medio utilizando un refrigerador criogénico adicional.69

Las demoras y los aumentos de presupuestos del telescopio se pueden comparar con el telescopio espacial Hubble.70​ Cuando se empezó a hacer realidad el proyecto Hubble en 1972, tenía un presupuesto inicial estimado de 300 millones de dólares (o aproximadamente 1000 millones de dólares de 2006),70​ pero cuando fue enviado a órbita en 1990, el presupuesto ascendía aproximadamente a cuatro veces el inicial.70​ Además, los nuevos instrumentos instalados y las misiones de servicio asignadas han elevado el presupuesto a por lo menos 9000 millones de dólares en 2006.70

En 2006 se publicó un artículo en la revista Nature donde se reflejaban los resultados de un estudio realizado en 1984 por el consejo de Ciencias del Espacio, donde se estimaba que un observatorio infrarrojo de próxima generación costaría 4000 millones de dólares (cerca de 7000 millones de dólares de 2006).70

A diferencia de otros observatorios propuestos, la mayoría de los cuales ya han sido cancelados o suspendidos, incluidos el Terrestrial Planet Finder (2011), Space Interferometry Mission (2010), International X-ray Observatory (2011), MAXIM (Microarcsecond X-ray Imaging) Misión), SAFIR (Observatorio de Infrarrojo Lejano de Apertura Simple), SUVO (Observatorio Ultravioleta-Visible del Espacio) y el SPECS (Sonda Submilimétrica de la Evolución de la Estructura Cósmica), el JWST es la última gran misión astrofísica de la NASA de su generación construido,

Historia

Participación

NASA, ESA y CSA colaboran en el telescopio desde 1996. ESA participa en la construcción y en el lanzamiento desde el año 2003, tras la aprobación de su colaboración, en 2007 firmó un acuerdo con la NASA. A cambio de una participación plena, representación y acceso al observatorio para sus astrónomos, ESA proporciona el instrumento NIRSpec, el Optical Bench Assembly del instrumento MIRI, un cohete Ariane 5 ECA y mano de obra para apoyar durante las operaciones.88130​ El CSA proporcionará el Fine Guidance Sensor and the Near-Infrared Imager Slitless Spectrograph más mano de obra para apoyar las operaciones.131

Misión

La misión científica de JWST tiene principalmente cuatro objetivos: encontrar luz de las primeras estrellas y galaxias que se formaron en el universo después del Big Bang; estudiar la formación y evolución de las galaxias; comprender la formación de estrellas y sistemas solares; y estudiar los sistemas planetarios y los orígenes de la vida.135​ Estos objetivos se pueden lograr de manera más efectiva mediante la observación en longitudes de onda infrarroja cercana que en la luz en la parte visible del espectro. Por esta razón, los instrumentos de JWST no medirán la luz visible o ultravioleta como el telescopio Hubble, porque tiene una capacidad mucho mayor para realizar astronomía infrarroja. El JWST será sensible en un rango de longitudes de onda de 0,6 (luz naranja) a 28 micrómetros (radiación infrarroja profunda a aproximadamente 100 K (−170 °C; −280 °F)).

El telescopio también se utilizará para recopilar información sobre la luz de atenuación de la estrella KIC 8462852, descubierta en el año 2015, que tiene algunas propiedades anormales de la curva de luz.136

Lanzamiento y duración de la misión

El telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36​ En principio estaba previsto que el telescopio estuviera listo para ser lanzado en 2018.137​ Tras distintos aplazamientos de fecha de lanzamiento por diversos contratiempos,138​ en junio de 2018, se estableció como nueva fecha de lanzamiento el 30 de marzo de 202131​ con un cohete Ariane 5. En junio de 2021 la fecha de lanzamiento vuelve a retrasarse a noviembre. 139​ Finalmente el telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36

El observatorio está provisto de un “anillo-interfaz de vehículo de lanzamiento” que podría ser utilizado para que un futuro lanzamiento de aprovisionamiento del observatorio por medio de astronautas o robots, pudiera solucionar problemas de despliegue general. Sin embargo, el telescopio en sí no es útil, y los astronautas no podrían realizar tareas como intercambiar instrumentos, como con el telescopio Hubble.47​ El tiempo nominal de la misión es de cinco años, con un límite en principio de diez años.140​ JWST necesita usar propelente para mantener su órbita de halo alrededor del punto de Lagrange L2, lo que proporciona un límite superior a su vida útil esperada, y está siendo diseñado para transportar suficiente propelente para diez años.141​ La misión científica programada de cinco años comienza después de una fase de prueba y puesta en marcha de 6 meses.141​ La órbita L2 es solo metaestable, por lo que requiere un mantenimiento de estación orbital o el objeto se alejará de esta configuración orbital.142

JWST configurado para el lanzamiento

JWST no estará ubicado exactamente en el punto L2, pero hará un círculo alrededor de él en una órbita de halo.

Dos vistas alternativas desde el Telescopio espacial Hubble de la Nebulosa de la Quilla, comparando astronomía ultravioleta y visible (arriba) e infrarroja (abajo). Muchas más estrellas son visibles en este último.

Las observaciones infrarrojas pueden ver objetos ocultos en luz visible, como muestra HUDF-JD2.

Órbita

El JWST estará ubicado cerca del segundo punto de Lagrange (L2) del sistema Tierra-Sol, que se encuentra a 1 500 000 kilómetros (930 000 mi) de la Tierra, justo enfrente del Sol. Normalmente, un objeto que rodea el Sol más allá de la Tierra tardaría más de un año en completar su órbita, pero cerca del punto L2 la atracción gravitacional combinada de la Tierra y el Sol permite a la nave orbitar alrededor del Sol a la misma velocidad que la Tierra. El telescopio girará alrededor del punto L2 en una órbita de halo, que estará inclinada con respecto a la eclíptica, tendrá un radio de aproximadamente de 800 000 kilómetros (500 000 millas) y tardará aproximadamente medio año en completarse.40​ Dado que el punto L2 es solo un punto de equilibrio sin atracción gravitatoria, una órbita de halo no es una órbita en el sentido habitual: el módulo espacial está realmente en órbita alrededor del Sol, y la órbita de halo puede considerarse deriva controlada para permanecer en las proximidades del punto L2.143​ Esto requiere cierto mantenimiento de corrección de la estación: entre 2-4 m/s por año144​ de un total de 150 m/s estimado para toda la misión, incluyendo correcciones de trayectoria para llegar a la órbita alrededor del punto L2.145​ El sistema de propulsión del observatorio lo forman dos conjuntos de propulsores.146

Astronomía infrarroja

JWST es el sucesor del telescopio espacial Hubble (HST), y dado que su característica principal reside en la observación infrarroja, también es el sucesor del telescopio espacial Spitzer (SST). JWST superará con creces a ambos telescopios, pudiendo observar muchas más estrellas y galaxias, recientes y más antiguas.147​ Observar en el infrarrojo es una técnica clave para lograrlo debido al desplazamiento al rojo cosmológico y porque penetra mejor en el oscurecimiento producido por las nubes de polvo interestelar y gas. También permite poder observar objetos más fríos y débiles. Debido a que el vapor de agua y el dióxido de carbono en la atmósfera de la Tierra absorben fuertemente la mayoría de los infrarrojos, la astronomía infrarroja terrestre se limita a rangos de longitud de onda cercanos donde la atmósfera absorbe con menor fuerza. Además, la atmósfera misma irradia en la luz infrarroja, bloqueando a menudo el objeto que se observa. Esto hace que un telescopio espacial sea preferible para la observación infrarroja.148

Soporte en tierra y operaciones

El Space Telescope Science Institute (STScI), ubicado en Baltimore, Maryland, en el campus de Homewood de la Universidad Johns Hopkins, fue seleccionado como el Science and Operations Center (S&OC) para el JWST con un presupuesto inicial de 162 200 000 de dólares destinado a apoyar operaciones durante el primer año de funcionamiento tras el lanzamiento.152​ Con esta funcionalidad, el STScI será responsable de la operación científica del telescopio y la entrega de productos de datos a la comunidad astronómica. Los datos se transmitirán desde JWST hasta la Tierra a través de la Red del Espacio Profundo de la NASA, se procesarán y calibrarán en el STScI, para ser distribuido posteriormente en línea a los astrónomos de todo el mundo. De forma similar a cómo opera el Hubble, cualquier persona, en cualquier parte del mundo, podrá presentar proyectos para realizar observaciones. Cada año, varios comités de astrónomos examinarán por pares las propuestas presentadas para seleccionar los proyectos a observar en el próximo año. Los autores de las propuestas elegidas generalmente tendrán un año de acceso privado a las nuevas observaciones, después de lo cual los datos estarán disponibles públicamente para su descarga por parte del archivo en línea de STScI.

La mayor parte del procesamiento de datos del telescopio se realiza mediante ordenadores convencionales de una sola placa.153​ La conversión de los datos científicos analógicos a formato digital se lleva a cabo mediante el SIDECAR ASIC (System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit). La NASA declaró que el SIDECAR ASIC incluirá todas las funciones de una caja de herramientas de 9 kg (20 lb) en un paquete de 3 cm y consumirá solo 11 milivatios de potencia.154​ Como esta conversión debe realizarse cerca de los detectores, en el lado más frío del telescopio, usar baja potencia de este circuito integrado será crucial para mantener la baja temperatura necesaria para el buen funcionamiento del JWST.154

Despliegue después del lanzamiento

Casi un mes después del lanzamiento, se iniciará una corrección de trayectoria para colocar el JWST en una órbita de halo en el punto lagrangiano L2.155

Linea temporal después del despliegue del JWST47

Programa científico y observaciones

El tiempo de observación de JWST se asignará por medio de un programa conocido como Director’s Discretionary Early Release Science (DD-ERS), el programa Guaranteed Time Observations (GTO) y el programa General Observers (GO).156​ El programa GTO proporciona el tiempo de observación garantizado para los científicos que desarrollaron componentes de hardware y software para el observatorio. El programa GO proporciona a todos los astrónomos la oportunidad de solicitar tiempo de observación. Los programas GO se seleccionarán a través de una revisión por parte de un Comité de Asignación de Tiempo (TAC), similar al proceso de revisión de propuestas utilizado para el telescopio espacial Hubble. Se espera que el tiempo de observación de JWST sea muy alto, lo que significaría que el número de propuestas de GO enviadas será mucho mayor que el número que se puede aprobar en cualquier ciclo de observación.

Longitudes de onda que serán observadas por el JWST y el área de los telescopios espaciales (NASA).

 

 

 

El JWST en la Guayana Francesa (ESA).

 

 

 

 

 

 

 

 

 

Rueda de filtros del instrumento MIRI (NASA/ESA).

 

Comienza la era del James Webb

12 July 2022

El telescopio espacial James Webb ya está funcionando a pleno rendimiento a 1,5 millones de kilómetros de la Tierra (en el punto de Lagrange L2 del sistema Tierra-Sol). Hoy 12 de julio de 2022 el equipo del JWST ha publicado las primeras imágenes científicas —esto es, no usadas para calibración— obtenidas por los instrumentos del observatorio. El evento había sido planificado cuidadosamente entre las agencias espaciales involucradas —NASA, ESA y CSA— para presentar al mundo el enorme potencial del James Webb, pero a última hora la Casa Blanca decidió adelantarse e hizo pública un día antes una de las cinco imágenes que iban a ser distribuidas. Al fin y al cabo, la NASA, y por extensión, Estados Unidos, contribuye con la mayoría del presupuesto del JWST —Europa participa con un 15% y Canadá con menos del 5%—, así que había que dejar claro quién lidera este ambicioso proyecto. Por otro lado, cierto es que no es nada común ver a todo un presidente de los EE. UU. presentar una imagen astronómica. La imagen del cúmulo galáctico SMACS 0723 y su lente gravitatoria asociada ya es historia y será recordada como la ‘primera imagen del James Webb’.

La nebulosa de Carina vista por el instrumento NIRCam del James Webb (NASA/ESA/CSA/STScI).

No obstante, hoy se han hecho públicas las otras cuatro imágenes previstas —técnicamente, tres imágenes y un espectro— con el objetivo de poder entender mejor las asombrosas capacidades del James Webb. El pasado 8 de julio la NASA y la ESA ya habían anunciado cuáles iban a ser los objetos protagonistas de estas primeras cinco imágenes científicas: la nebulosa de Carina (NGC 3324), el cúmulo de galaxias con lente gravitacional SMACS J0723, un espectro del planeta WASP-96 b, la nebulosa del Anillo del Sur (NGC 3132) y el cúmulo de galaxias conocido como el ‘Quinteto de Stephan’. Como comentábamos, la imagen del cúmulo lejano SMACS J0723 ya había sido publicada el día anterior, pero no por ello el resto de imágenes son menos impresionantes. Pero antes de comentarlas, quizá es conveniente destacar un par de puntos.

¿En qué se diferencian estas imágenes de las obtenidas por el Hubble?

Ante la publicación de estas imágenes son muchos los que se preguntan la diferencia con las que adquiridas por el veterano telescopio espacial Hubble. Se suele explicar que la principal diferencia es que el James Webb opera en el infrarrojo, mientras que el Hubble lo hace en el visible. Pero esto es matizable. El Hubble observa principalmente en el ultravioleta y en el visible, cierto, pero también tiene —y ha tenido— instrumentos capaces de ver el infrarrojo cercano. De hecho, actualmente el Hubble puede ver longitudes de onda de hasta 1,7 micras (infrarrojo cercano). La diferencia es que el JWST prácticamente solo ve en el infrarrojo, de 0,6 a 28 micras, mientras que el Hubble puede contemplar todo el espectro visible y el ultravioleta, además del infrarrojo cercano.

De todas formas, puede haber más diferencias, por ejemplo, entre las imágenes obtenidas por los instrumentos MIRI y NIRCam del James Webb que entre las captadas por la cámara WFC3 del Hubble y la NIRCam del JWST, por lo que dependerá de qué instrumentos exactos estemos hablando. La otra diferencia es el tamaño del espejo primario. El James Webb tiene un espejo de 6 metros de diámetro, mientras que el del Hubble es de 2,4 metros. Esto implica, por un lado, que la máxima resolución que puede alcanzar el JWST es mayor que la del Hubble, y, por otro lado, que es mucho más sensible. Es decir, con el mismo tiempo de observación el James Webb puede captar objetos mucho más débiles que el Hubble.

Región del espectro que cubre cada instrumento del James Webb (NASA).

¿Qué tienen de especial estas primeras imágenes?

Las cinco imágenes publicadas han sido elegidas para demostrar el potencial del observatorio. Por tanto, se han usado todos los instrumentos científicos del JWST. Además, se han seleccionado una serie de objetos astronómicos que concuerdan con los objetivos principales del James Webb: estudio de las primeras galaxias del universo y de la materia y energía oscuras, los núcleos activos de galaxias, investigar la formación y evolución estelar, así como las atmósferas exoplanetarias a través de espectros de transmisión. Solo han quedado fuera de esta primera selección objetos de nuestro sistema solar, aunque bien es cierto que no se trata de objetivos prioritarios para el JWST (pero sin duda veremos alguna imagen del sistema solar más pronto que tarde).

Resumen de las prestaciones de los instrumentos del JWST (NASA).

Puerto espacial regional del Atlántico medio

Puerto espacial regional del Atlántico medio

Vista aérea de las dos plataformas de lanzamiento de MARS.

Datos generales

País: Estados Unidos

Ciudad / Región: Virginia

Información del contacto: 37 ° 50 ′ 36 ″ N, 75 ° 28 ′ 41 ″ W

Gerente: Espacio de Virginia

 Estado: Operacional

Fecha de creación: 2005

Número medio de lanzamientos por año: 0 a 4 / año

Instalaciones

Sin disparos activos: 0A (Antares) 0B (Minotauro)

Vuelos tripulados: No

Orbe. Geoestacionario: No

Orbe. Polar: No

Direcciones de tiro: entre 38 y 60 °

Geolocalización en el mapa: Virginia

Puerto espacial regional del Atlántico medio

Geolocalización en el mapa: Estados Unidos

El puerto espacial regional del Atlántico medio generalmente designado por sus siglas MARS es una base de lanzamiento espacial dedicada a los lanzadores comerciales. Se encuentra en la isla de Wallops Island ubicada en la costa este de los Estados Unidos en el estado de Virginia. MARS es junto a la plataforma de lanzamiento de Wallops Island de la agencia espacial estadounidense, NASA. La base tiene dos plataformas de lanzamiento desde las que se disparan los lanzadores Minotaur Light y Antares Medium. El primer vuelo tuvo lugar en 2006.

Histórico

Antares 130 en posición de disparo.

El Estado de Virginia creó en 1995 la empresa Virginia Commercial Space Flight Authority generalmente conocida con el nombre de Virginia Space cuyo objetivo es promover la investigación y la industria espacial en el territorio del Estado. En 1997, Virginia Space firmó un contrato con la NASA para el uso del extremo sur de la base de lanzamiento de Wallops Island para establecer una base de lanzamiento dedicada a vuelos comerciales y denominada Mid-Atlantic Regional Spaceport. La base está autorizada para disparos con acimut entre 38 y 60 °. La primera plataforma de lanzamiento 0A se construyó para lanzar el cohete comercial Conestoga, pero el desarrollo del lanzador se detuvo incluso antes de su primer vuelo.

La plataforma de lanzamiento 0B entró en funcionamiento en 1999 y se utilizó durante el primer vuelo para disparar un cohete Minotaur I de la Orbital Sciences Corporation, que puso en órbita pequeños satélites militares. Posteriormente, la plataforma de lanzamiento se utiliza regularmente para lanzar cohetes de esta familia de lanzadores. En 2013, el disparo se modificó para permitir el lanzamiento del Minotauro V . En 2009, Orbital Sciences Corporation , que ganó el contrato de suministro de la Estación Espacial Internacional con SpaceX (programa COTS ), decidió lanzar los cargueros Cygnus responsables de llevar carga a la estación espacial desde MARS. Entre 2009 y 2011 se modificó la plataforma de lanzamiento 0A para permitir el montaje del lanzador medio Antares y su lanzamiento. El primer disparo tiene lugar en21 de abril de 2013. La28 de octubre de 2014 la primera etapa del lanzador Antares falló unos segundos después del despegue y la explosión dañó la plataforma de lanzamiento, que sin embargo fue reparada unos meses después.

Instalaciones

Plataforma 0A

La plataforma de lanzamiento 0A se utiliza para disparar el lanzador Antares. Incluye una rampa de acceso al puesto de tiro colocada sobre pilares de hormigón. Un sistema de diluvio permite atenuar las vibraciones acústicas. El lanzador con su carga útil es transportado horizontalmente por un vehículo neumático desde el edificio de ensamblaje Orbital cercano y luego colocado verticalmente en el sitio. Las instalaciones permiten el almacenamiento y llenado de tanques de oxígeno líquido.

Plataforma 0B

La plataforma de lanzamiento 0B está dedicada al lanzamiento de la familia Minotaur de cohetes propulsores sólidos ligeros . Una torre de servicio permite el montaje in situ del lanzador.

Cerca de la plataforma de lanzamiento 0A, en el edificio de montaje Orbital, el lanzador Antares se coloca en el vehículo montador.

Una rampa permite transportar el lanzador Antares a la plataforma de lanzamiento 0A ATK

Plataforma 0B con un lanzador Minotaur V

Puerto Espacial Regional Del Atlántico Medio

El puerto espacial Regional del Atlántico Medio (MARS) es una instalación comercial de lanzamiento espacial ubicada en el extremo sur de las instalaciones de vuelo Wallops de la NASA en la isla Wallops, justo al este de la Península Delmarva y al sur de Chincoteague, Virginia, Estados Unidos.

En 2007, la NASA eligió a la Compañía de Orbital Sciences Corporation de Virginia (de 2018 Northrop Grumman Innovation Systems) para participar en el programa, los Servicios Comerciales de transporte Orbital (COTS) y luego a un contrato de servicios comerciales de reabastecimiento (CRS) con el fin de construir y probar un nuevo lanzador, Antares, para reabastecer la Estación Espacial Internacional (ISS). El contrato del SIR incluía ocho misiones para transportar aproximadamente 20 000 kg de carga a la Estación Espacial Internacional y para la eliminación de desechos. Estos lanzamientos tuvieron lugar en la nueva plataforma de lanzamiento 0A de Marte. Para MARS ” ramp 0B, VCSFA hizo cambios y mejoras para lanzar la misión lunar Atmosphere and Dust environment Explorer (LADEE) de la NASA a la luna a mediados de 2013 en un nuevo lanzador, el Minotaur V. También a mediados de 2013, la Fuerza Aérea de los Estados Unidos lanzó ORS – 3 desde la rampa 0B de Marte. Marte es uno de los pocos sitios que ha sido autorizado por la oficina de transporte espacial comercial de la FAA para su lanzamiento en órbita. Además, Virginia es el hogar del Centro de Investigación Langley de la NASA (LARC) y la Oficina Nacional de reconocimiento (Nro), y como tal es el receptor de gran parte del presupuesto federal para el espacio.

El puerto espacial Regional del Atlántico medio tiene tres rampas de lanzamiento activas: rampa 0A, rampa 0B y el Rocket Lab Launch Complex – 2. La plataforma de lanzamiento 0A (LP – 0A) fue construida para el lanzamiento del lanzador Conestoga, cuyo único vuelo fue en 1995. La plataforma de lanzamiento fue demolida en septiembre de 2008, y luego reconstruida para ser utilizada por el lanzador Antares de Northrop Grumman Innovation Systems. Las modificaciones de rampa para Antares incluyeron la construcción de una estructura de integración horizontal para la integración del lanzador/carga útil, y un transportador/erector con ruedas que debía llevar el lanzador a la plataforma de lanzamiento y colocarlo verticalmente aproximadamente 24 horas antes del lanzamiento. La planta sufrió daños significativos durante la falla del lanzamiento de Antares el 28 de octubre de 2014. Las estimaciones preliminares para la reconstrucción de la rampa indicaban que se esperaba que el costo rondara los 20 millones de dólares. En mayo de 2015, esta estimación se revisó a 13 millones de dólares y se esperaba que las reparaciones se completaran en septiembre u octubre de 2015 con el próximo lanzamiento programado para marzo de 2016. El 30 de septiembre de 2015, se anunció la finalización de las reparaciones en la rampa 0A. Launch Pad 0B (LP – 0B) entró en funcionamiento en 1999, y más tarde mejoró con la construcción de una torre de servicio móvil, completada en 2004. Es activo y utilizado para lanzadores de Minotauro. En octubre de 2018, Rocket Lab anunció que había elegido Marte como su segundo sitio de lanzamiento, llamado Rocket Lab Launch Complex – 2. La compañía comenzó la construcción en febrero de 2019, junto con la Virginia Commercial Space Flight Authority (Virginia Space). La rampa se encuentra en el puerto espacial Regional del Atlántico Medio (Marte) de la instalación de vuelo Wallops de la NASA. El 12 de diciembre de 2019, Rocket Lab anunció la finalización de la construcción del complejo de Lanzamiento – 2 y el inicio de los lanzamientos a partir de 10 meses más tarde, en una nueva plataforma de lanzamiento cerca de la rampa 0A. El primer lanzamiento está previsto para el tercer trimestre de 2020. En una conferencia de prensa el mismo día en las instalaciones de vuelo de Wallops, el programa de pruebas espaciales de la USAF fue anunciado como el primer cliente para el lanzador electrón. La misión lanzará un único microsatélite de investigación y desarrollo. El nuevo complejo de lanzamiento también tiene una estructura de integración.