Archivo diario: 24 junio, 2024
Vela
Vela
Serie de Observatorios
Vela era el nombre de un grupo de satélites desarrollados como el elemento Vela Hotel del Proyecto Vela por los Estados Unidos para detectar detonaciones nucleares y monitorear el cumplimiento del Tratado de Prohibición Parcial de Pruebas de 1963 por parte de la Unión Soviética.
País de origen: Estados Unidos
Operador: Fuerza Aérea de EE. UU.
Aplicaciones: Reconocimiento
Especificaciones
Régimen: Órbita muy elíptica
Vida de diseño: 15 años
Estado: Retirado
Lanzado: 12
Operacional: 0
Retirado: 12
Lanzamiento inaugural: Vela 1A
Último lanzamiento: Vela 6B
Programa: Proyecto Vela & Integrated Operational Nuclear Detection System (IONDS).
Campo: Satélite de reconocimiento
Lanzamiento: 1963 hasta 1970
Lanzacohetes: Atlas – Agena – Titan IIIC
Fin de la misión: 1984
Duración: 15 años
Misa en el lanzamiento: de 150 a 261 kg
Vela comenzó como un programa de investigación de bajo presupuesto en 1959. Terminó 26 años después como un sistema espacial militar exitoso y rentable, que también proporcionó datos científicos sobre fuentes naturales de radiación espacial. En la década de 1970, la misión de detección nuclear fue asumida por los satélites del Programa de Apoyo a la Defensa (DSP). A fines de la década de 1980, se amplió con los satélites del Sistema de posicionamiento global (GPS) Navstar. El programa ahora se llama Sistema Operativo Integrado de Detección NuDet (Detonación Nuclear) ( IONDS).
Despliegue
Se construyeron doce satélites, seis del diseño del Vela Hotel y seis del diseño Advanced Vela. La serie Vela Hotel fue para detectar pruebas nucleares en el espacio, mientras que la serie Advanced Vela fue para detectar no solo explosiones nucleares en el espacio sino también en la atmósfera.
Todas las naves espaciales fueron fabricadas por TRW y lanzadas en pares, ya sea en un propulsor Atlas – Agena o Titan III -C. Fueron colocados en órbitas de 118.000 km (73.000 millas),[1] muy por encima de los cinturones de radiación de Van Allen. Su apogeo fue aproximadamente un tercio de la distancia a la Luna. El primer par de Vela Hotel se lanzó el 17 de octubre de 1963,[2] una semana después de que entrara en vigencia el Tratado de Prohibición Parcial de Pruebas, y el último en 1965. Tenían una vida útil de seis meses, pero solo se cerraron después de cinco años. Los pares Advanced Vela se lanzaron en 1967, 1969 y 1970. Tenían una vida útil nominal de diseño de 18 meses, que luego se cambió a siete años. Sin embargo, el último satélite que se apagó fue el Vehículo 9 en 1984, que se había lanzado en 1969 y había durado casi 15 años.
La serie Vela comenzó con el lanzamiento de Vela 1/2 el 17 de octubre de 1963, un vuelo que también marcó el viaje inaugural del vehículo Atlas-Agena SLV-3. El segundo par de satélites se lanzó el 17 de julio de 1964 y el tercero el 20 de julio de 1965. El último lanzamiento falló levemente cuando un motor vernier Atlas se apagó en el despegue, mientras que el otro nonio operaba a niveles de empuje por encima de lo normal. Esto resultó en una inclinación ligeramente más baja de lo normal para los satélites, sin embargo, la misión se llevó a cabo con éxito. El problema se debió a un mal funcionamiento de la válvula de asiento a vernier LOX.
Los satélites Vela posteriores se cambiaron al propulsor Titan IIIC debido a su mayor peso y complejidad. Se lanzaron tres conjuntos más el 28 de abril de 1967, el 23 de mayo de 1969 y el 8 de abril de 1970. El último par de satélites Vela operó hasta 1985, cuando finalmente se cerraron, la Fuerza Aérea afirmó que eran los más antiguos del mundo en funcionamiento. Permanecieron en órbita hasta su descomposición a fines de 1992.
Instrumentos
El satélite Vela-5A / B en su sala blanca. Los dos satélites, A y B, se separaron después del lanzamiento.
Los satélites Vela originales estaban equipados con 12 detectores de rayos X externos y 18 detectores internos de neutrones y rayos gamma. Estaban equipados con paneles solares que generaban 90 vatios.
Los satélites Advanced Vela estaban equipados adicionalmente con dos sensores de fotodiodo de silicio sin imágenes llamados bhangmetros que monitoreaban los niveles de luz en intervalos de menos de milisegundos. Podrían determinar la ubicación de una explosión nuclear dentro de aproximadamente 3,000 millas. Las explosiones nucleares atmosféricas producen una firma única, a menudo llamada “curva de doble joroba”: un destello corto e intenso que dura alrededor de 1 milisegundo, seguido de una segunda emisión de luz mucho más prolongada y menos intensa que toma una fracción de segundo a varios segundos. El efecto se produce porque la superficie de la primera bola de fuego es rápidamente superada por la onda de choque atmosférica en expansión compuesta de gas ionizado. Aunque emite una cantidad considerable de luz en sí mismo, es opaco y evita que la bola de fuego mucho más brillante brille a través. A medida que la onda de choque se expande, se enfría y se vuelve más transparente, lo que permite que la bola de fuego mucho más caliente y brillante vuelva a ser visible.
No solo fenómeno natural se conoce la producción de esta firma, aunque se especuló con que el Velas podría grabar excepcionalmente raros eventos dobles naturales, tales como un meteoro huelga en la nave espacial que produce un destello brillante o desencadenante en un rayo Superbolt en la atmósfera de la Tierra, como pudo haber ocurrido en el incidente de Vela.[3] [4] [5]
También estaban equipados con sensores que podían detectar el pulso electromagnético de una explosión atmosférica.
Se requería energía adicional para estos instrumentos, y estos satélites más grandes consumían 120 vatios generados a partir de paneles solares. Por casualidad, los satélites Vela fueron los primeros dispositivos en detectar explosiones de rayos gamma cósmicos.
Observaciones controvertidas
Alguna controversia todavía rodea al programa Vela ya que el 22 de septiembre de 1979 el satélite Vela 5B (también conocido como Vela 10 y OPS 6911[6]) detectó el característico destello doble de una explosión nuclear atmosférica cerca de las Islas Príncipe Eduardo. Aún explicado de manera insatisfactoria, este evento se conoce como el Incidente de Vela. El presidente Jimmy Carter inicialmente consideró que el evento era evidencia de una prueba nuclear conjunta de Israel y Sudáfrica, aunque el informe ahora desclasificado de un panel científico que posteriormente nombró mientras buscaba la reelección concluyó que probablemente no fue el evento de una explosión nuclear.[cita requerida] Una explicación alternativa implica un evento magnetosférico que afecta a los instrumentos.
Un incidente anterior ocurrió cuando una intensa tormenta solar el 4 de agosto de 1972 activó el sistema en modo evento como si hubiera ocurrido una explosión, pero esto fue rápidamente resuelto por el personal que monitoreaba los datos en tiempo real. [7]
En 2018, un nuevo estudio confirmó que es muy probable que se tratara de una prueba nuclear, realizada por Israel. [8] [9]
Vela 5A y 5B
El detector de rayos X de centelleo (XC) a bordo del Vela 5A y su Vela 5B gemelo constaba de dos cristales de NaI (Tl) de 1 mm de espesor montados en tubos fotomultiplicadores y cubiertos por una ventana de berilio de 0,13 mm de espesor. Los umbrales electrónicos proporcionaron dos canales de energía, 3–12 keV y 6–12 keV.[10] Además del anuncio de rayos X de Nova indicado arriba, el detector XC a bordo del Vela 5A y 5B también descubrió y anunció la primera explosión de rayos X jamás reportada.[11] El anuncio de este descubrimiento precedió al anuncio inicial del descubrimiento de explosiones de rayos gamma en 2 años. Delante de cada cristal había un colimador de listones que proporcionaba un ancho completo a la mitad de la apertura máxima (FWHM) de ~ 6,1 × 6,1 grados. El área efectiva del detector fue de ~ 26 cm 2. Los detectores escanearon un gran círculo cada 60 segundos y cubrieron todo el cielo cada 56 horas.[12] La sensibilidad a las fuentes celestes estaba severamente limitada por el alto fondo intrínseco del detector, equivalente a aproximadamente el 80% de la señal de la Nebulosa del Cangrejo, una de las fuentes más brillantes del cielo en estas longitudes de onda.[12]
El detector de rayos X satelital Vela 5B siguió funcionando durante más de diez años.
Vela 6A y 6B
Al igual que los satélites Vela 5 anteriores, los satélites de detección de pruebas nucleares Vela 6 formaban parte de un programa dirigido conjuntamente por los Proyectos de Investigación Avanzada del Departamento de Defensa de EE. UU. Y la Comisión de Energía Atómica de EE. UU., Administrado por la Fuerza Aérea de EE. UU. Las naves espaciales gemelas, Vela 6A y 6B, se lanzaron el 8 de abril de 1970. Se utilizaron datos de los satélites Vela 6 para buscar correlaciones entre estallidos de rayos gamma y eventos de rayos X. Se encontraron al menos dos buenos candidatos, GB720514 y GB740723. Los detectores de rayos X fallaron en Vela 6B el 27 de enero de 1972 y en Vela 6A el 12 de marzo de 1972.
Papel de Vela en el descubrimiento de estallidos de rayos gamma
El 2 de julio de 1967, a las 14:19 UTC, los satélites Vela 4 y Vela 3 detectaron un destello de radiación gamma diferente a cualquier firma de armas nucleares conocida.[13] Sin saber qué había sucedido pero sin considerar el asunto particularmente urgente, el equipo del Laboratorio Científico de Los Alamos, dirigido por Ray Klebesadel, archivó los datos para su investigación. A medida que se lanzaron satélites Vela adicionales con mejores instrumentos, el equipo de Los Alamos continuó encontrando explosiones inexplicables de rayos gamma en sus datos. Al analizar los diferentes tiempos de llegada de las ráfagas detectadas por diferentes satélites, el equipo pudo determinar estimaciones aproximadas para las posiciones del cielo de dieciséis ráfagas[14] y descartar definitivamente un origen terrestre o solar. Contrariamente a la creencia popular, los datos nunca se clasificaron.[15] Después de un análisis exhaustivo, los hallazgos se publicaron en 1973 como un artículo de Astrophysical Journal titulado “Observaciones de estallidos de rayos gamma de origen cósmico”.[14] Esto alertó a la comunidad astronómica sobre la existencia de explosiones de rayos gamma (GRB), ahora reconocidos como los eventos más violentos del universo.
Lanzamientos
Historial de lanzamiento | |||||||
N º de pedido. | Satélite | Fecha de lanzamiento | Lanzacohetes | Masa | Instrumentos | ID de Cospar | Comentario |
1 | Vela 1A | 17 de octubre de 1963 | Atlas Agena -D | 150 kilogramos | 3 instrumentos | 1963-039A | |
2 | Vela 1B | 1963-039C | |||||
3 | Vela 2A | 17 de julio de 1964 | Atlas Agena -D | 150 kilogramos | 8 instrumentos | 1964-040A | |
4 | Vela 2B | 1964-040B | |||||
5 | Vela 3A | 20 de julio de 1965 | Atlas Agena -D | 150 kilogramos | 8 instrumentos | 1965-058A | |
6 | Vela 3B | 1965-058B | |||||
7 | Vela 4A | 28 de abril de 1967 | Titán -3C | 231 kilogramos | 9 instrumentos | 1967-040A | |
8 | Vela 4B | 1967-040B | |||||
9 | Vela 5A | 23 de mayo de 1969 | Titán -3C | 259 kilogramos | 8 instrumentos | 1969-046D | |
10 | Vela 5B | 1969-046E | |||||
11 | Vela 6A | 8 de abril de 1970 | Titán -3C | 261 kilogramos | 8 instrumentos | 1970-027A | |
12 | Vela 6B | 1970-027B |
Avance del proyecto
El proyecto Vela, luego el programa del Sistema Integrado de Detección Nuclear Operativa (IONDS) lanzado por los Estados Unidos para monitorear la aplicación del Tratado de Prohibición Parcial de Ensayos Nucleares firmado en 1963, tiene tres componentes: Vela Uniform debe monitorear las señales sísmicas emitidas por un prueba nuclear subterránea, Vela Sierra detecta pruebas atmosféricas desde el suelo, mientras que Vela Hotel debe detectar las mismas pruebas desde el espacio. El Proyecto Vela es desarrollado por DARPA y supervisado por la Fuerza Aérea de los Estados Unidos . El nombre Vela se elige en referencia a la constelación de las Velas. Doce satélites, en dos subseries, son construidos por la empresa TRW. Los instrumentos están siendo desarrollados por el Laboratorio Nacional de Los Alamos, que ha adquirido experiencia en el desarrollo de detectores de rayos cósmicos y rayos gamma mediante el desarrollo de cargas útiles para cohetes de sondeo.
Despliegue
Los satélites son lanzados por parejas por lanzadores Atlas / Agena en 1963 (Vela 1), 1964 (Vela 2) y 1967 (Vela 3). Versiones posteriores más pesadas por cohetes Titan IIIC en 1967 (Vela 4), 1969 (Vela 5) y 1970 (Vela 6). Se colocan en una órbita circular alta (altitud 137.000 km) con una inclinación orbital de 36 °. Cada par circula en la misma órbita pero ocupa una posición opuesta (a 180 °) para garantizar en conjunto una vigilancia completa de la superficie del globo.
Los satélites Vela han cumplido por completo sus objetivos y también han aportado información científica que ha tenido un impacto significativo en el campo de la astronomía (viento solar, estallido de rayos gamma). Todos los satélites funcionaron al menos 10 veces más que la duración para la que fueron diseñados (6 meses). Los satélites de la versión mejorada (Vela 5 y 6) funcionaron hasta que fueron puestos voluntariamente fuera de servicio el 27 de septiembre de 1984 casi 15 años después de su lanzamiento.
Características técnicas
El satélite Vela tiene la forma de un poliedro regular de 26 lados cuyo cuerpo está cubierto de células solares que generan 120 vatios. Se estabiliza por rotación a razón de 2 revoluciones por segundo (primeras versiones) y luego 1 revolución por segundo para las versiones Vela 5 y 6. Su masa está entre 150 kg (Vela 1) y 261 kg (Vela 6). El par de satélites incluye un motor de apogeo responsable de colocar el satélite en su órbita final.
Instrumentos
Estructura interna de un satélite Vela.
Primer plano de 2 satélites Vela poco antes de su lanzamiento.
Satélites 1A a 4B
Detector de rayos x
Instrumento presente en satélites de Vela 1A
Detector de rayos gamma
Instrumento presente en satélites de Vela 1A
Detector de neutrones
Instrumento presente en satélites de Vela 1A
El detector de neutrones identifica tanto los neutrones generados por una explosión nuclear como los de origen espacial (subproductos de los rayos cósmicos, otros). Con este instrumento se midieron electrones con una energía entre 1 y 100 MeV.
Experimento de viento solar
Instrumento presente en satélites de Vela 4A
El instrumento está compuesto por 4 contadores Geiger y un analizador electrostático que permite el estudio del viento solar y los electrones de baja energía del espacio interplanetario y la cola de la magnetosfera. Se utilizaron contadores Geiger para medir el flujo y la distribución angular de electrones con energía superior a 45 keV.
Espectrómetro de electrones de protones ⇒ Analizador electrostático y tubos Geiger
Instrumento presente en los satélites Vela 2A a 3B
Medida de la distribución angular y del espectro energético de partículas en la magnetosfera y el viento solar. Un contador Geiger cuenta electrones con energía superior a 45 keV. Un analizador electrostático mide la energía de iones y electrones según una cuadrícula de 16 valores entre 0,3 y 20 keV y evalúa aproximadamente su distribución angular con respecto al Sol.
Detector de radiación de fondo
Instrumento presente en los satélites Vela 2A y 2B
Contador de rayos X de centelleador
Instrumento presente en satélites de Vela 3A
Este instrumento se utiliza para medir el flujo de rayos X emitidos por el sol. También se utiliza para medir el flujo integrado de protones entre 3 y 100 MeV.
Detector de circuito estático
Instrumento presente en satélites de Vela 2A
Este instrumento mide la intensidad, distribución, variaciones de tiempo y espectro de energía de los electrones presentes en la región de transición y en la cola de la magnetosfera. Las partículas medidas son electrones cuya energía está entre 45 y 430 keV y protones entre 180 y 570 keV. En la versión a bordo del Vela 3A, la medición toma electrones cuya energía está entre 30 y 475 keV y protones entre 180 y 570 keV. En la versión a bordo del Vela 4A, la medida transporta los electrones cuya energía está entre 30 y 700 keV.
Tubos Geiger
Instrumento presente en los satélites Vela 2A a 3B
Este detector se utiliza para analizar casos en los que el detector de circuito estático identifica electrones y protones de la misma energía.
Magnetómetro
Instrumento presente en los satélites Vela 2A a 3B
El magnetómetro mide el campo magnético en un solo eje perpendicular al eje de rotación del satélite. La sensibilidad del detector cubre el rango 0-63 gamma.
Detector de rayos X y gamma con centelleadores
Instrumento presente en satélites de Vela 4A
Detector ultravioleta extremo
Instrumento presente en satélites Vela de 3A
Telescopio de partículas energéticas de circuito sólido
Instrumento presente en satélites de Vela 4A
El instrumento incluye 4 detectores de partículas tipo semiconductor, un tubo fotomultiplicador y un centelleador anti-coincidencia con un campo óptico de 30 °. Se utiliza para medir la intensidad y dirección de protones con energía entre 0,5 y 100 MeV y núcleos alfa con energía entre 12 y 400 MeV.
Satélites 5A a 6B
Uno de los instrumentos del satélite Vela 5B.
Detector ultravioleta extremo
Dos detectores miden la radiación ultravioleta extrema emitida por el Sol respectivamente en las longitudes de onda de 30 a 150 A y 120 a 900 A. El instrumento reproduce el espectro aproximado del flujo.
Detector de rayos X solar
Telescopio de partículas solares
El instrumento se utiliza para medir la intensidad y dirección de los protones solares con energía entre 0,3 y 50 MeV y núcleos alfa solares con energía entre 2 y 100 MeV . Permite identificar y medir los flujos de núcleos de deuterio, tritiul y helio-3. El instrumento incluye 3 telescopios orientados a 45 °, 90 ° y 135 ° con respecto al eje de rotación del satélite. Cada telescopio incluye un tubo colimador con un campo óptico de 30 ° y un detector de partículas de tipo circuito sólido.
Detector de electrones
Viento solar
Rayos cósmicos
Detector de neutrones
Astronomía de rayos gamma
Historial de lanzamiento
Lanzamiento de Vela 3A y 3B por un cohete Atlas Agena -D el 20 de julio de 1965.
Resultados científicos
La primera señal de una explosión de rayos gamma registrada el 2 de julio de 1967 por un instrumento a bordo de un satélite Vela 4.
El descubrimiento de estallidos de rayos gamma
Las explosiones de rayos gamma son los fenómenos astronómicos más violentos de nuestro Universo. Se caracterizan por una emisión de rayos gamma que suele durar desde unos pocos milisegundos hasta unos minutos. La radiación gamma solo es observable directamente desde el espacio, por lo que la observación de estallidos de rayos gamma está condicionada por el desarrollo de detectores gamma a bordo de satélites artificiales. Los satélites Vela equipados con ellos para detectar pruebas nucleares son los primeros en descubrir estallidos de rayos gamma accidentalmente enjulio 1967. La primera versión de los satélites, Vela 1, tiene instrumentación de baja sensibilidad. Además, los detectores de cada satélite pueden reaccionar ante partículas cargadas de fuentes ya conocidas (rayos cósmicos emitidos por el Sol, radiación emitida por una supernova, etc.). Pero enjulio 1967, una señal que dura unos segundos con un pico doble atípico es percibida simultáneamente por los detectores de dos satélites Vela 4. Los ingenieros del Laboratorio Nacional de Los Alamos liderados por Ray Klebesadel, quienes analizan los datos proporcionados por los satélites Vela, están buscando una explicación, pero no hay ninguna tormenta solar o supernova en esta fecha. El equipo del laboratorio es consciente de que se trata de un fenómeno asombroso, pero en la medida en que los detectores no proporcionan la ubicación de la fuente o la distancia a la misma, posponen un análisis más profundo para la provisión de detectores más sensibles a bordo de las generaciones posteriores de satélites Vela. Estos fueron lanzados entre 1969 (Vela 5) y 1970 (Vela 6). Al analizar el momento preciso de detección de los estallidos de rayos gamma por los distintos satélites, los ingenieros logran por triangulación localizar el origen de dieciséis de estos fenómenos en el cielo, lo que les permite eliminar las fuentes de radiación conocidas en ese momento. (Supernova, Tierra, Luna, Sol). Los datos, que estaban cubiertos por el secreto militar debido a la naturaleza del programa Vela, fueron desclasificados en 1973 y el descubrimiento de las misteriosas señales se hizo público en un artículo escrito por el equipo de Los Alamos y publicado en el Astrophysical Journal. El nuevo fenómeno se llama “explosión de rayos gamma” o GRB (“Gamma Ray Burst”).
Los datos recogidos por los satélites Vela 5A, B, 6A y 6B permitieron identificar 73 estallidos de rayos gamma entre Julio de 1969 y Abril de 1979. Los satélites Vela 6A y B también se utilizaron para buscar correlaciones entre las explosiones de rayos gamma y las emisiones de rayos X. En dos casos (GB720514 y GB740723), se detectaron datos que parecían indicar un vínculo.
Detección de prueba nuclear
El incidente de Vela
La 22 de septiembre de 1979, un instrumento (el bhangmeter) de uno de los satélites Vela detecta un doble destello de luz (un destello corto seguido de un destello largo) considerado característico de una explosión nuclear. En el pasado, esta firma de luz detectada por un satélite Vela podría haberse asociado cada vez (en 41 casos) con una explosión nuclear real. La señal luminosa del 22 de septiembre ocurre en un área de 5.000 km de diámetro que incluye el extremo sur de África, el Océano Índico y el Atlántico Sur, así como una pequeña parte de la Antártida.
Varios hechos recientes sugieren que Sudáfrica, Israel o los dos países juntos, pueden haber querido realizar una prueba nuclear a pesar de la presión ejercida por las dos superpotencias de la época. Sin embargo, existen algunas inconsistencias entre los datos proporcionados por los dos bhangmetros redundantes instalados a bordo del satélite Vela. Dados los riesgos políticos, el gobierno de los Estados Unidos está lanzando una investigación exhaustiva para determinar si realmente se realizó una prueba y quién la realizó. Participaron numerosos organismos públicos, laboratorios y empresas externas. Se analizan los datos proporcionados por los satélites Defense Support Program (DSP), Satellite Data System (SDS) y Defense Meteorological Satellite Program (DMSP), todos los portadores de detectores capaces de identificar una explosión nuclear, así como las señales de las cadenas de boyas Sistema de vigilancia acústica de sonido (SOSUS) y Sistema de localización de impacto de misiles (MILS) responsables de monitorear los submarinos de misiles soviéticos y localizar el área de precipitación de ojivas nucleares. Las muestras de la atmósfera y la vegetación en varios países de la región son realizadas por agentes estadounidenses para buscar rastros de lluvia radiactiva. Aunque algunos laboratorios concluyen que efectivamente hubo una explosión nuclear (por ejemplo, el Laboratorio de Investigaciones Navales de la Armada de los Estados Unidos), la conclusión es que las señales detectadas probablemente fueron producto de la colisión de un micrometeorito con un satélite.
Debe estar conectado para enviar un comentario.