Este Mundo, a veces insólito

Calendario
noviembre 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
252627282930  

Observatorios espaciales

Un observatorio espacial, también conocido como telescopio espacial, es un satélite artificial o sonda espacial que se utiliza para la observación de planetas, estrellas, galaxias y otros cuerpos celestes de forma similar a un telescopio en tierra. Se han lanzado una cantidad importante de telescopios espaciales a órbita desde que el Cosmos 215, considerado el primer observatorio espacial,1 2 fuese lanzado el 18 de abril de 1968, proporcionando mayor información y conocimiento del cosmos.

Estos telescopios, pueden ser parte del satélite portador, o ser el único instrumento del mismo, y pueden observar, una o varias frecuencias electromagnéticas. Como son: los rayos cósmicos, el viento solar, la radiación ultravioleta, etc. Se excluyen aquellos observatorios que solamente se dedican a obtener fotografías, con cámaras de alta resolución.

space_telescopes_rk2011_1200x700Clasificación muy interesante: http://www.letraherido.com/13040105grandestelescopios.htm#1

Nombre Fecha Agencia Comentarios
OSO (serie) 07/03/1962 – 21/06/1975 NASA Rayos X y Rayos UV del Sol
Vela (serie) 17/10/1963 – 27/09/1984 NASA Rayos gamma cósmicos y Pruebas nucleares
Pioneer 6 – Pioneer A 16/12/1965 NASA Viento solar y Rayos cósmicos
Pioneer 7 – Pioneer B 17/08/1966 NASA Viento solar y Rayos cósmicos
OSO 3 08/03/1967 NASA Rayos X y Rayos UV del Sol
Pioneer 8 – Pioneer C 13/12/1967 – 1996 NASA Viento solar y Rayos cósmicos
Cosmos 215 18/04/1968 – 30/06/1972 URSS Luz visible y ultravioleta
Pioneer 9 – Pioneer D 08/11/1968 – 05/1983 NASA Viento solar y Rayos cósmicos
OAO-2 07/12/1968 – 13/02/1973 NASA Luz ultravioleta
Uhuru (SAS-1) 12/12/1970 – 01/03/1973 NASA Telescopio de Rayos X
Orión-1 19/04/1971 URSS Ultravioleta
SAS 2 15/02/1972 – 08/06/1973 NASA Rayos Gamma
Pioneer 10 12/03/1972 – 2003 NASA Viento solar y Rayos cósmicos
UVC 23/04/1972 NASA Ultravioleta
OAO-3 – Copérnico 21/08/1972 – 02/1981 NASA y SERC Telescopio de Rayos X y ultravioleta
KAO 05/1974 – 1995 NASA Infrarrojo
ANS 30/08/1974 – 02/06/1976 ISRO Rayos X y ultravioleta
Ariel V 15/12/1974 – 14/03/1980 SRC y NASA Rayos X
Aryabhata 19/04/1975 – 24/04/1975 ISRO Rayos X
SAS 3 07/05/1975 – 09/04/1979 NASA Rayos X
COS-B 09/08/1975 – 18/01/1986 ESA Rayos X y Rayos gamma
HEAO-1 12/08/1977 – 09/01/1979 NASA Telescopio de Rayos X
IUE 26/01/1978 – 30/12/1996 NASA, SRC, ESA Ultravioleta
HEAO-2 (Einstein) 13/11/1978 – 26/04/1981 NASA Telescopio de Rayos X
(Corsa-b) Hachuko 21/02/1979 – 16/04/1985 JAXA Rayos X y Rayos gamma
HEAO-3 20/09/1979 – 29/05/1981 NASA Telescopio de Rayos X y rayos gamma
Maximum Mission – SMM 14/02/1980 – 02/12/1989 NASA Erupciones solares
IRAS 25/01/1983 – 21/11/1983 NASA, NIVR, SERC Infrarrojo
Tenma – ASTRO-B 20/02/1983 – 17/12/1988 JAXA Rayos X y Rayos gamma
Astron 23/03/1983 – 1989 Rusia Rayos X y Ultravioleta
EXOSAT 26/04/1983 – 06/04/1986 ESA Telescopio de Rayos X
ASTRO-C – (Ginga) 05/02/1987 – 01/11/1991 ISAS Rayos X
Hipparcos 18/08/1989 – 17/08/1993 ESA Cartografía de la Vía Láctea
COBE 18/11/1989 – 1993 NASA Microondas
Granat 01/12/1989 – 27/11/1998 IKI y CNRS Rayos X y rayos gamma
Hubble 24/04/1990 NASA y ESA Reflector, varios
ROSAT 01/06/1990 – 12/02/1999 DLR Telescopio de Rayos X
Gamma 11/07/1990 – 28/02/1992 RSA Rayos Gamma
Ulysses 06/09/1990 – 30/06/2009 NASA y ESA Sol, Planetas solare y objetos menores
Astro 1 02/12/1990 – 11/12/1990 NASA Rayos X y ultravioleta
Compton – CGRO 05/04/1991 – 04/06/2000 NASA Rayos Gamma
Yohkoh – SOLAR-A 30/08/1991 – 14/12/2001 ISAS Planetas solare y objetos menores
Extreme Ultraviolet Explorer EUVE 07/06/1992 – 30/01/2002 NASA Telescopio del Ultravioleta
SAMPEX 03/07/1992 – 30/06/2004 NASA Partículas energéticas
Asuka (ASKA) – ASTRO-D 20/02/1993 – 14/07/2000 JAXA Rayos X y Rayos gamma
Spartan 201 08/04/1993 NASA Varios
Alexis 25/04/1993 – 29/04/2005 LANL Rayos X
CGS/Wind – Clementine 01/11/1994 NASA Planetas solare y objetos menores
Astro 2 02/03/1995 – 18/03/1995 NASA Ultravioleta
IRTS 18/03/1995 – 15/04/1995 ICEA & NASDA Infrarrojo
IEH-1 07/09/1995 NASA Varios
ISO 17/11/1995 – 16/05/1998 ESA y NASA Infrarrojo
SoHO 02/12/1995 NASA y ESA Observatorio solar
RXTE 30/12/1995 – 05/01/2012 NASA Telescopio rayos X
MSX 24/04/1996 – 26/02/1997 USN Infrarrojo
BeppoSAX 30/04/1996 – 29/04/2003 ASI e NIVR Telescopio de Rayos X
ORFEUS-SPAS 19/11/1996 – 07/12/1996 NASA y DARA Ultravioleta
HALCA MUSAS-B VSOP 12/02/1997 – 30/11/2005 ICEA Radio, onda larga
Minisat-01 – LEGRI 21/04/1997 – 26/02/2002 INTA Rayos X y Rayos gamma
IEH-2 07/08/1997 – 19/08/1997 NASA Varios
Advance Composition Explorer 25/08/1997 NASA Observatorio Rayos cósmicos
Cassini/Huygens 15/10/1997 NASA, ESA, ASI Planetas solare y objetos menores
AMS-01 03/06/1998 Varios Partículas energéticas
IEH-3 29/10/1998 – 07/11/1998 NASA Varios
SWAS – Explorer 74 06/12/1998 – 21/07/2004 NASA Ondas submilimétricas
WIRE 05/03/1999 – 10/05/2011 NASA Infrarrojo
ABRIXAS 28/04/1999 – 01/05/1999 DLR Rayos X
FUSE 24/06/1999 – 06/09/2007 NASA, CNES y CSA Ultravioleta
Chandra – (AXAF) 23/07/1999 NASA Telescopio de Rayos X
XMM-Newton 10/12/1999 ESA Telescopio de Rayos X
HETE-2 Explorer-2 09/10/2000 NASA Rayos Gamma y Rayos X
ATIC 28/12/2000 NASA Observatorio Rayos cósmicos
Odín 20/02/2001 SSC Astrofísica y microondas
WMAP 30/06/2001 – 28/10/2010 NASA Teoría y origen del universo.
INTEGRAL 17/02/2002 ESA, NASA Rayos Gamma – X – visible
BOOMERanG 06/01/2003 – 21/01/2003 Observatorio Rayos cósmicos
CHIPSat 13/01/2003 – 11/04/2008 NASA Ultravioleta
GALEX 28/04/2003 – 28/06/2013 NASA Galaxias en ultravioleta
MOST 30/06/2003 CSA Búsqueda planetas extrasolares
SIRTF – Spitzer 25/08/2003 NASA Infrarrojos. Objetos fríos, visible
STSat1 – Kaistsat 4 27/09/2003 – 10/2005 KARI Ultravioleta
SWIFT 20/11/2004 NASA y otros Fuente de rayos gamma y otros
ASTRO-EII – (Suzaku) 10/07/2005 – 02/09/2015 ISAS y NASA Telescopio de Rayos X
ASTRO-F (Akari) 21/02/2006 – 24/11/2011 JAXA y ESA Infrarrojo
Pamela 11/06/2006 Italia Detección de partículas, materia oscura
Corot 27/12/2006 – 24/06/2013 CNES, ESA, etc. Búsqueda planetas extrasolares
AGILE 23/04/2007 ASI Telescopio rayos gamma
Gravity Probe B 20/04/2008 NASA Teoría relatividad y gravedad
Fermi (GLAST) 11/06/2008 NASA y otros Fuente de rayos gamma
IBEX – Explorer 91 19/10/2008 – 16/08/2016 NASA Partículas energéticas sistema solar
Kepler 06/03/2009 – 01/05/2013 NASA Búsqueda planetas extrasolares
Herschel 14/05/2009 – 29/04/2013 ESA Infrarrojo lejano, Ondas submilimétricas
Planck 14/05/2009 – 10/12/2014 ESA Infrarrojo lejano, Ondas submilimétricas
WISE 14/12/2009 – –/–/2011 NASA Infrarrojo
SDO 11/02/2010 NASA
SOFIA 05/2010 NASA y DLR Infrarrojo (aerotransportado)
AMS-02 16/05/2011 Varios Partículas energéticas
Spektr-R – RadioAstron 18/07/2011 Rusia y otros Radioastronomía
Juno 05/08/2011 NASA Estudio de Júpiter
NuSTAR 13/06/2012 NASA Telescopio espectroscópico nuclear conjunto
NEOSSat 15/02/2013 CSA Asteroides y basura espacial
BRITE-A-1 – UniBRITE-1 25/02/2013 Austria Astronomía óptica
BRITE-A-2 – Tugsat-1 25/02/2013 Canadá Astronomía óptica
IRIS 28/06/2013 NASA Observatorio solar
Hisaki – Sprint-A 14/09/2013 JAXA Ultravioleta
BRITE-PL-1 – LEM 21/11/2013 Polonia Astronomía óptica
Gaia 19/12/2013 ESA Cartografía de la Vía Láctea
BRITE-CA-1 – CAN-X-3 19/06/2014 CSA Astronomía óptica
BRITE-CA-2 – CAN-X-3 19/06/2014 CSA Astronomía óptica
BRITE-PL-2 – Heweliusz 19/08/2014 Polonia Astronomía óptica
ASTROSAT 28/09/2015 India Telescopio de Rayos X, ultravioleta y visible
LISA Pathfinder 03/12/2015 ESA Ondas gravitacionales
DAMPE – Wukong 17/12/2015 China Partículas energéticas
ASTRO-H – Hitomi 17/02/2016 – 24/03/2016 JAXA Telescopio de Rayos X
UFFO 28/04/2016 Varios Rayos Gamma
CHEOPS 18/12/2019 ESA Telescopio. Observatorio. Búsqueda de exoplanetas
James Webb 25/12/2021 NASA-CSA-ESA Infrarrojo y Otros
Euclid 01/07/2023 ESA Materia y energía oscura

Hakucho (Corsa-b)

Hakucho (también conocido como Corsa-b antes del lanzamiento) fue la primera astronomía de rayos X por satélite de Japón, desarrollado por el Instituto de Ciencia Espacial y Aeronáutica (entonces una división de la Universidad de Tokio). Se puso en marcha por el ISAS M-3C-4 cohete el 21 de febrero de 1979, y volvió a entrar en la atmósfera el 16 de abril de 1985 [ cita requerida ].hakucho1

Era un reemplazo para el satélite CORSA que no se pudo poner en marcha debido a un fallo del cohete el 4 de febrero 1976 [ cita requerida ].

Aspectos destacados

  • Descubrimiento de suave transitoria de rayos X Cen X-4 y Aql X-1
  • Descubrimiento de muchas fuentes de ráfaga
  • el seguimiento a largo plazo del púlsar de rayos X (por ejemplo, Vela X-1)
  • Descubrimiento de 2 Hz variabilidad en el rápido Burster nombrado más adelante cuasi periodo de oscilación.

El satélite japonés Corsa-b, dedicado a la astronomía de rayos X, fue lanzado por el cohete de tres etapas M-3C-4 desde el Centro Espacial Kagoshima el 21 de febrero 1979 en una órbita semicircular con un apogeo de 572 km, un perigeo de 545 km, con una inclinación de 29,9 ° y un periodo orbital de 96 minutos. Una vez en órbita, el satélite fue renombrado Hakucho, que es japonés para el cisne o Cygnus. Hakucho fue diseñado con los siguientes objetivos: una encuesta completa del cielo en busca de explosiones de rayos X, el estudio espectral y temporal de las fuentes, el monitoreo de fuentes transitorias, el estudio del cielo en la sub-keV rayos X, y la observación de objetos específicos en coordinación con otros instrumentos / en otras longitudes de onda. Después de una semana de la salida de los instrumentos se enciende el 27 de febrero de 1979. Hakucho operado durante unos dos años simultáneamente con el observatorio Einstein carring una carga complementaria a bordo Einstein. A partir de 1983 también operado simultáneamente con Tenma, el segundo satélite astronómico de rayos X japonés. Se volvió a entrar en el 16 Aprile 1985.hakucho2

El satélite era un pilar octogonal con una cola afilada como se muestra en la figura anterior. El satélite tenía un peso ligero. La masa total fue de 95,9 kg, donde la instrumentación de rayos X era aproximadamente un tercio del total. El satélite fue estabilizado en espín, con un período de rotación nominal de 12 segundos. No había una limitación debido a que el ángulo entre el eje de giro y la dirección solar debe haber sido mantenida entre 125 ° y 150 °.

El sistema detector de rayos X consistía en tres experimentos para un total de contadores Elevent. Siete contadores fueron colocados en la cubierta superior de la nave espacial para observar fuentes en la región del cielo a la que se apunta el eje de giro. Cuatro contadores, con campos de visión perpendicular al eje de rotación, barridos bandas del cielo, como el satélite gira.

  • El experimento muy suave (VSX) consistió en cuatro contadores idénticos con una ventana delgada de polipropileno sensibles a 0,1 – 1.0 keV y un área efectiva ~ 77 cm 2 cada uno. Dos de los contadores (la P) se encuentra en una dirección casi paralela al eje de giro en 2,7 ° offset. Los otros dos (el V) donde encuentra compensado al eje de giro inclinado 45 °.
  • En el segundo experimento, suave de rayos X (SFX), consistió en 6 contadores proporcionales con una ventana Sea sensible a 1,5 – 30,0 keV. Cuatro de los contadores (la P dividido en dos CMC y dos FMC) tienen una dirección de visión paralela al eje de giro y los otros dos (el V) fueron de 45 ° inclinado. Dos de los contadores de P, el CMC, tienen idéntica área efectiva (69 cm2) y el campo de visión de 17,6 °. Los otros dos contadores P, la FMC tienen un campo de visión idéntica de 5,8 ° FWHM y el área efectiva de 40 y 83 cm2. Los contadores de V tienen idéntica área efectiva (32 cm2) y el campo de visión 50.3 ° X 1,7 °.
  • El último experimento de rayos X del disco duro (HDX) era un contador de centelleo de NaI (Tl) sensible al 10 – 100 keV. Consistía en una sola unidad con un área efectiva de 49 cm 2 y un campo de visión de 4,4 ° X 10,0 ° FWHM. Este detector se encuentra paralelo al eje de giro con un pequeño desplazamiento de 3 °.

El instrumento podría funcionar con diferentes modos diferentes que proporcionan la energía y el tiempo de resolución (con 5,86 como mínimo). hakucho3

hakucho4Hakucho ha descubierto una serie de nuevas fuentes de estallido de rayos X, incluyendo Cen X-4 y Aql X-1. Estos estallidos vinculados con contrapartidas ópticas de baja masa que habían sido identificados previamente. El satélite también supervisa las variabilidades en los púlsares conocidos como A0535 + 262 y Vela X-1, que muestra complicada variación del período de pulso. Descubierto un 2 Hz rápida variabilidad de la rápida carga de dispersión, conocida ahora como la Oscilación Cuasi periódica.

SAS-3

Pequeño Satélite astronomía 3

Operador: NASAsas31

ID COSPAR: 1975-037A

SatCat №: 07788

Duración de la misión: 4 años

Fabricante: APL · Universidad Johns Hopkins

Masa de lanzamiento: 196,7 kilogramos (434 lb)

Potencia: 65.0 vatios

Fecha de lanzamiento: 7 mayo de 1975 22:45:01 UTC

Cohete: Explorador F-1 S194C

Sitio de lanzamiento: San Marcos

Fin de la misión: 09 de abril 1979

Sistema de referencia: Geocéntrico

Régimen: LEÓN

Excentricidad: 0.0000313

Perigeo: 509,0 kilómetros (316,3 millas)

Apogeo: 516,0 kilómetros (320,6 millas)

Inclinación: 3.0033 °

Período: 94,90 minutos

RAAN: 13.5403 grados

Argumento del perigeo: 37.2127 grados

La media de anomalía: 322.7960 grados

La media de movimiento: 16.22945651

Época: 08 de abril 1979

Número de revoluciones: 21935

SAS 3 naves espaciales, ya que podría haber aparecido desplegado en órbita. El eje de giro nominal, o eje + z, apunta a la parte superior derecha, con la RMC y una estrella de seguimiento para la determinación de la actitud. El resto de instrumentos y un segundo punto de la estrella de seguimiento de la imagen hacia el espectador. Los cuatro paneles solares cargadas las baterías durante el día de la órbita.

El satélite 3 Pequeño Astronomía (SAS 3, también conocido como SAS-C antes de su lanzamiento) de la NASA era una astronomía de rayos X del telescopio espacial.[1] Funcionaba del 7 de mayo de 1975 a abril de 1979. Se cubrió la de rayos X rango con cuatro experimentos a bordo. El satélite, construido por la Universidad Johns Hopkins Laboratorio de Física Aplicada (APL), fue propuesto y está operado por el MIT Center ‘s para la Investigación Espacial (RSE). Se puso en marcha en un explorador del vehículo del italiano plataforma de lanzamiento de San Marcos cerca de Mombasa, Kenia, en una baja de la Tierra, órbita casi ecuatorial. También se conoce como el Explorador de 53 años, como parte de la NASA del Explorador.[2]

La nave espacial era de 3 ejes estabilizado con un volante de inercia que se utilizó para establecer la estabilidad de la rotación nominal, o eje z. La orientación del eje z podría ser alterada durante un período de horas utilizando bobinas par magnético que interactúan con el campo magnético de la Tierra. Los paneles solares cargadas las baterías durante la parte de la luz del día de cada órbita, por lo que SAS 3 tenía esencialmente no fungibles para limitar su tiempo de vida más allá de la vida de las grabadoras, baterías, y arrastre orbital. La nave espacial suelen funcionar en un modo de rotación, girando a una revolución por la órbita de 95 minutos, por lo que los experimentos LED, tubos y colimador listón, que daban a lo largo del eje y, podían ver y explorar el cielo de manera casi continua. La rotación también podría ser detenido, lo que permite extendido (hasta 30 min) señaló observaciones de fuentes seleccionadas por los instrumentos del eje y. Los datos fueron registrados a bordo por los grabadores de cinta magnética, y se reproducen durante la estación de pases de cada órbita.[3]sas33

SAS 3 fue mandado desde la NASA del Centro Espacial Goddard de Vuelo (GSFC) en Greenbelt MD, pero los datos fueron transmitidos por el módem al MIT para el análisis científico, donde el personal científico y técnico estaban de guardia las 24 horas del día. Los datos de cada órbita se sometieron a buscar rápido análisis científico en el MIT antes de la siguiente pasada estación orbital, por lo que el plan operativo ciencia podría ser alterado por instrucciones por teléfono desde el MIT para GSFC con el fin de estudiar los objetivos en tiempo casi real.

Objetivos

Los principales objetivos científicos de la misión fueron:

  1. Determinar las ubicaciones de origen de rayos X brillantes con una precisión de 15 segundos de arco
  2. Fuentes de estudio seleccionado sobre el rango de energía keV 0,1-55
  3. Buscar permanentemente el cielo de novas de rayos X, bengalas, y otros fenómenos transitorios

Instrumentación

SAS 3 lleva cuatro experimentos:

SAS-3 lleva cuatro experimentos de rayos X: colimador de modulación, colimadores de listón, colimadores y suave tubo concentrador de rayos X. La figura muestra la ubicación de cada experimento como montado en el satélite SAS-3. El eje Z es perpendicular a los paneles solares. A continuación sigue una breve descripción de los experimentos a bordo:

  • 2 giratorias sistemas de modulación del colimador. Estos eran compuesto de un colimador de modulación en frente de un banco de contadores proporcionales que detectan de rayos X en las bandas 2-6 y 6-11 keV. El colimador tiene una banda de transmisión con una FWHM de 4,5 minutos de arco y un campo de visión general de 12 ° x 12 ° centrados en la dirección paralela al eje de giro (satélite eje Z).
  • 3 cruzaron colimadores de listón cada uno con contador proporcional. Fueron diseñados para controlar una gran parte del cielo en una amplia banda de direcciones centradas en el plano perpendicular al eje de rotación del satélite (+ Z). Cada detector consistía en un contador proporcional y colimador con un área en el eje efectivo de 75 SQ-cm. Los colimadores definen 3 largas, campos de visión estrecho que se cortan en el eje + Y y están inclinados con respecto al plano YZ del satélite en los ángulos de -30 °, 0 ° y + 30 °, respectivamente. Durante el modo de escaneado, una fuente de rayos X aparecería sucesivamente en las 3 detectores. Tres líneas de posición podrían entonces ser obtenidos, y su intersección determina la verdadera posición de la fuente. El colimador centro tenía un campo de visión con FWHM 1 ° por 32 ° y un FW de 2 ° por 120 °. Los colimadores izquierdo y derecho tenían más estrecha, pero las respuestas similares, es decir, 0,5 ° por 32 ° (FWHM) y 1,0 ° por 100 ° (FW). Los contadores proporcionales estaban llenas de argón y fueron sensibles en el rango de 5-15 keV. Además el detector centro tenía también un contador de xenón, que se encuentra detrás del detector de argón, que se extienden a la respuesta a 60 keV En el rango de energía 1.5-6 keV, 1 cuenta / s = 1.5×10 -10 erg / cm cuadrados-/ s de un espectro similar a un cangrejo. En cualquier órbita dada, ~ 60% del cielo fue escaneada por el detector de listón centro con una exposición que van desde 300 hasta 1125 SQ-cm seg.
  • colimadores 3 de tubo (que estaban situados encima, debajo y a la izquierda de los colimadores de listones) que define un campo de visión circular 1,7 grados. El colimador tubo situado por encima del colimador listón estaba inclinada en un ángulo de 5 grados por encima del eje Y, y por lo tanto podría ser utilizado como una referencia de fondo para los demás colimadores tubo que ven a lo largo del eje y.
  • 1 sistema detector de baja energía a la derecha de los colimadores de listón. Consistía en un conjunto de incidencia 4 de pastoreo, los concentradores parabólicos reflexión con 2 contadores de corrientes de gas independientes sensibles a los rayos X en el rango de 0,15 a 1,0 keV.

Los resultados de investigación

SAS 3 fue especialmente productivo debido a su flexibilidad y capacidad de respuesta rápida. Entre sus resultados más importantes fueron:

  • Poco después del descubrimiento de la primera carga de dispersión de rayos X por los ANS , un intenso período de descubrimiento fuente de la explosión por SAS 3 conducido rápidamente al descubrimiento y caracterización de una docena de objetos adicionales, incluyendo el famoso rápido Burster,[4] MXB1730- 335.[5] [6] Estas observaciones estableció la identificación de reventar fuentes de rayos X con los sistemas binarios de estrellas de neutrones.
  • La RMC fue el primer instrumento para proporcionar rutinariamente posiciones de rayos X que eran suficientemente precisos para permitir el seguimiento por los observatorios ópticos para establecer contrapartidas ópticas de rayos-X /, incluso en las regiones llenas de gente cerca del plano galáctico. Alrededor de 60 posiciones se obtuvieron con una precisión del orden de 1 minuto de arco o menos. Las identificaciones de código resultantes ayudaron a conectar la astronomía de rayos X para el cuerpo principal de la astrofísica estelar.
  • Descubrimiento del 3,6 s pulsaciones del transitoria estrella de neutrones/La estrella binaria 4U 0115 + 63.,[7] que conduce a la determinación de su órbita y la observación de una línea de absorción del ciclotrón en su fuerte campo magnético. Muchos son binarios estrella estrella / de neutrones fueron descubiertos posteriormente como una clase de emisores de rayos X.
  • El descubrimiento de la emisión de rayos X desde HZ 43 (una enana blanca aislada),[8] Algol, y desde soy ella,[9] el primer sistema binario enana blanca altamente magnético se ve en las radiografías.
  • Establecida la localización frecuente de fuentes de rayos X cerca de los centros de los cúmulos globulares.
  • En primer lugar la identificación de un QSO a través de su emisión de rayos X.
  • El instrumento de rayos X blandos estableció que la intensidad difusa 0,10 a 28 keV generalmente se correlaciona inversamente con el neutro H densidad de la columna, lo que indica la absorción de fuentes difusas externos por el plano galáctico medio interestelar.[10]

Principales investigadores sobre SAS 3 eran profesores del MIT , George W. Clark, Hale V. Bradt, y Walter HG Lewin. Otros contribuyentes importantes fueron los Profesores Claude Canizares y Saul A. Rappaport, y los Dres Jeffrey A. Hoffman, George Ricker, Jeff McClintock, Rodger E. Doxsey, Garrett Jernigan, John Doty, y muchos otros, incluyendo numerosos estudiantes graduados.

Aryabhata

Satélite Aryabhata.

Tipo de misión: Astrofísicaaryabhata1

Operador: ISRO

ID COSPAR: 1975-033A

SatCat №: 7752

Masa de lanzamiento: 360 kg (794 lb) [1]

Potencia: 46 vatios

Fecha de lanzamiento: 19 de abril de 1975, 07:30 UTC [2]

Cohete: Kosmos-3M

Sitio de lanzamiento: Kapustin Yar 107/2

Fin de la misión último contacto: 24 de de abril de 1975

Reentrada: 12 de febrero 1992

Sistema de referencia: Geocentricq

Perigeo: 568 kilómetros (353 millas)

Apogeo: 611 kilómetros (380 millas)

Inclinación: 50,6 grados

Período: 96.46 minutos

Época: 19 de de mayo de 1975 [3]

Aryabhata fue el primer satélite artificial fabricado por la India. El nombre proviene del matemático y astrónomo hindú Aryabhata (476 d.C. – 550 d.C.). Fue lanzado por la antigua Unión Soviética a bordo de un cohete Cosmos-3M (Kosmos 11K65M) desde el Cosmódromo de Kapustin Yar el 19 de abril de 1975. El satélite fue fabricado por la Agencia India de Investigación Espacial (ISRO).aryabhata2

Las operaciones científicas del satélite consistían en experimentos sobre astronomía de rayos-X, el estudio de las capas altas de la atmósfera terrestre y sobre física solar. El satélite tenía forma de polígono de 26 caras, cubiertas por paneles solares excepto la cara inferior y la cara superior; la masa total del cuerpo era 360 kg. Tras cuatro días en órbita, un fallo de energía inutilizó al satélite para proseguir con los experimentos, y a los cinco días de estar en órbita se dejó de recibir señal alguna del satélite.

La reentrada en la atmósfera se produjo el 11 de febrero de 1992.

Aryabhata, primero no tripulado la Tierra por satélite construido por India. Fue nombrado para un astrónomo indio prominente y matemático del siglo 5 ce. El satélite fue ensamblado en Peenya, cerca de Bangalore, pero se puso en marcha desde el interior de la Unión Soviética por un cohete de fabricación rusa el 19 de abril de 1975. Aryabhata pesaba 794 libras (360 kilogramos) y se instrumentó para explorar las condiciones de la ionosfera de la Tierra, medir neutrones y rayos gamma procedentes del Sol, y llevar a cabo investigaciones en astronomía de rayos X. Los instrumentos científicos tuvieron que ser apagado durante el quinto día en órbita debido a un fallo en el sistema de energía eléctrica del satélite. … (100 de 114 palabras)aryabhata4

Lanzamiento

Fue lanzado por la India el 19 de abril 1975 [1] de Kapustin Yar utilizando un Kosmos-3M vehículo de lanzamiento. Fue construido por la Organización de Investigación Espacial de la India (ISRO) para ganar experiencia en la construcción y operación de un satélite en el espacio.[5] El lanzamiento vino de un acuerdo entre la India y la Unión Soviética dirigida por UR Rao y firmado en 1972. Permitía la URSS para utilizar puertos de la India para el seguimiento de los buques y el lanzamiento de los buques a cambio de lanzamiento de satélites de la India.[6]aryabhata3

El 19 de abril de 1975, 96.46 minutos en la órbita del satélite tuvo un apogeo de 611 kilómetros (380 millas) y un perigeo de 568 kilómetros (353 millas), con una inclinación de 50,6 grados. [3] Fue construido para llevar a cabo experimentos en los X la astronomía de rayos gamma, astronomía, y la física solar. La nave espacial era un poliedro de 26 caras 1,4 metros (4,6 pies) de diámetro. Todas las caras (a excepción de la parte superior e inferior) estaban cubiertas con células solares. Un fallo de alimentación detuvo experimentos después de cuatro días y 60 órbitas con todas las señales de la sonda se perdieron después de cinco días de operación. De acuerdo con informes de los medios soviéticos, el satélite siguió funcionando y transmitir información desde hace algún tiempo. El satélite devuelta a la atmósfera de la Tierra el 11 de febrero de 1992. Fue uno de los mejores satélites jamás realizadas por la India.

Legado

Año 1984 sello de URSS con Bhaskara -I, II y Bhaskara-satélites Aryabhata

  • Aryabhata fue nombrado por el astrónomo y matemático del siglo quinto de la India por el mismo nombre.[7]
  • La imagen del satélite apareció en el reverso de la India 2 rupias billetes de banco entre 1976 y 1997 (Escoja catálogo) y el número de nota una rupia:. P-79a-m) [8]

Ariel 5

Tipo de misión: Astronomía

Operador: SERC / NASA

ID COSPAR: 1974-077Aariel51

SatCat №: 7471

Fabricante: Goddard Space Flight Center

Masa de lanzamiento: 130,5 kg (288 lb)

Fecha de lanzamiento: 15 de octubre de 1974, 07:47:00 UTC

Cohete: Scout B-1

Sitio de lanzamiento: San Marcos

Fin de la misión: 14 de de marzo de 1980

Parámetros orbitales

Excentricidad: 0.00325

Perigeo: 512 km (318 millas)

Apogeo: 557 km (346 millas)

Inclinación: 2.9 grados

Período: 95.3 minutos

Instrumentos:

Modulación de rotación del colimador (RMC)
De 2 a 10 KeV Instrumento Sky Survey (SSI)
De alta resolución de la fuente de Spectra
Bragg Crystal Espectrómetro (BCS)
De alta energía cósmica X-Ray Spectra
All-Sky monitor

Vista de la plataforma Santa Rita, desde el barco. Es el día del lanzamiento.

Ariel 5 [1] era una unión británica y estadounidense[2], observatorio espacial dedicado a la observación ariel52del cielo en la banda de rayos X. Se puso en marcha el 15 de octubre 1974 de la plataforma de San Marcos en el Océano Índico y funcionó hasta 1980. Fue el penúltimo satélite que se lanzará como parte del programa de Ariel. Fue diseñado para ajustarse a un presupuesto de recursos de 2 kg, 1 bit por segundo, y 1 W.[3]

El monitor de todo el cielo (ASM) fue dos cámaras oscuras unidimensionales escaneando la mayor parte del cielo cada revolución de la nave espacial.[3] La resolución angular fue de 10 x 10°, con un área efectiva de 3 cm 2 (0,465 pulgadas cuadradas), y un paso de banda de 3-6 keV.

El SSI tenía una resolución angular de 0,75 x 10,6°, con un área efectiva de 290 cm2 (45 pulgadas cuadradas), y un paso de banda de 2 a 20 keV.[3]

La misión fue una colaboración británico-EE.UU. El Consejo de Investigación de Ciencias gestionado el proyecto para el Reino Unido y GSFC / NASA para el EE.UU. Ariel V se dedica a la vigilancia del cielo de rayos X con una carga completa. La misión terminó en la primavera de 1980.

Carga útil:

  • Experimentos alineados con el eje de giro.
    • Modulación de rotación del colimador (RMC) (0,3-30 keV).
    • Espectrómetro de alta resolución contador proporcional.
    • Polarímetro / espectrómetro.
    • Telescopio de centelleo.
  • All-Sky Monitor (ASM), una pequeña (~ 1 cm 2) cámara estenopeica (3-6 keV).
  • Instrumento Sky Survey (SSI) compuesto de dos contadores proporcionales con 290 cm2 de área efectiva cada uno (1,5-20 keV).

Ciencia destacados:

  • El seguimiento a largo plazo de numerosas fuentes de rayos-X.
  • Descubrimiento de varios púlsares de rayos X a largo plazo (minutos).
  • Descubrimiento de varios transitorios de rayos X brillantes probablemente contienen un Agujero Negro (por ejemplo A0620-00 = Nova Lu 1975).
  • Estableciendo que las galaxias Seyfert I (AGN) son una clase de emisores de rayos X.
  • Descubrimiento de emisión de línea de hierro en fuentes extragalácticas.

Ariel V llevó a muchos experimentos. Un conjunto de cuatro fueron co-alineado con el eje de spin-monitorización de un pequeño campo del cielo en rayos X. Otros dos experimentos, All-Sky Monitor (ASM) y el Instrumento Sky-encuesta (SSI), eran en cambio, como sugieren sus nombres, dedicada a la vigilancia de la región más amplia del cielo en rayos X.

La imagen muestra un técnico que trabaja en el Ariel V.

Instrumentaciónariel53

El satélite Ariel V supervisa el cielo de rayos X con 6 instrumentos diferentes. Cuatro de los instrumentos fueron alineados con el eje de giro: una rotación de modulación del colimador (RMC), que opera en el rango de 0,3 a 20 keV de energía y capaz de determinar posiciones de la fuente de ~ 2 minutos de arco; un espectrómetro contador proporcional de alta resolución, con 128 canales analizador de altura de pulso sobre el rango de 2-30 keV; un polarímetro / espectrómetro, que opera en el rango de 2-8 keV y capaz de detectar la polarización del 3%ariel54; y un telescopio de centelleo (ST), dedicado a los estudios temporales y espectrales de las fuentes de energías en hasta 40 keV.

Si bien estos 4 experimentos se dedicaron a un estudio detallado de una pequeña región del cielo dentro de ~ 10 grados del polo por satélite, los otros 2 experimentos cubren amplias regiones del cielo. Estos experimentos fueron 2 el Monitor All-Sky (ASM) y el Instrumento de observación del cielo (SSI). El ASM proporciona cobertura en el rango de 3-6 keV con un par de ~ 1 cm 2 cada cámara estenopeica. Se ve todo el cielo con la excepción de una banda de ~ 8 grados de amplio centrado en el polo sur de la nave espacial. Fue pensado como un sistema de detección temprana de los fenómenos transitorios, y como un monitor continuo de relativamente brillantes (> 0,2 cangrejo) fuentes galácticas. El SSI se componía de dos pares de contadores proporcionales (sistema de LE y del sistema HE) teniendo cada uno un área efectiva de 290 cm 2. Debido a una fuga tras el lanzamiento lento, un detector LE se apagó al principio de la misión, lo que reduce el área efectiva de dicho sistema a 145 cm2. Los detectores se encuentran en la región ecuatorial de la nave espacial y se escanean una banda ancha de 20 X 360 grados del cielo cada giro satélite. Los dos sistemas tenían un keV 1.2 a 5.8 (LE) y el rango de energía 2,4 a 19,8 keV (HE). Cada par de detectores tenía un campo de visión colimado a 0.75 X 10,6 grados (FWHM). Los objetivos científicos primaria SSI eran para realizar un estudio de alta sensibilidad del cielo y obtener ubicaciones, intensidades y los espectros de las fuentes interesantes.

SAS-2

Pequeño Satélite astronomía 2

Impresión artística de SAS-2sas21

Tipo de misión: Ciencia de la Tierra

Operador: NASA

ID COSPAR: 1972-091A

SatCat №: 6282

Duración de la misión: 1 año

Masa de lanzamiento: 166,0 kilogramos (366,0 lb)

Fecha de lanzamiento: 15 de febrero de 1972, 22:13:46 UTC

Cohete: Scout D-1

Sitio de lanzamiento: San Marcos

Fin de la misión último contacto: 8 de junio de, 1973

Fecha de su final: 20 de noviembre de, 1976

Sistema de referencia: Geocéntrico

Régimen: bajo Tierra

Excentricidad: 0.01366

Perigeo: 443 kilómetros (275 millas)

Apogeo: 632 kilómetros (393 millas)

Inclinación: 1,9 grados

Período: 95,40 minutos

El pequeño satélite astronómico 2, también conocida también como SAS-2, SAS B o en el Explorador de 48 años, fue una de la NASA telescopio de rayos gamma . Se puso en marcha el 15 de noviembre 1972 en la órbita baja de la Tierra con un perigeo de 443 km y una apoapsis de 632 km. Se completó sus observaciones el 8 de junio de 1973. [1] [2]sas22

SAS 2 era el segundo de la serie de la pequeña nave espacial diseñada para ampliar los estudios astronómicos en los rayos X, rayos gamma, ultravioleta, visible e infrarrojo regiones. El objetivo principal de la SAS-B fue medir la distribución espacial y la energía de galáctico primaria y la radiación gamma extragaláctica que energías entre 20 y 300 MeV. La instrumentación consistía principalmente de un detector de centelleo de guardia, una superior y una cámara inferior de chispa, y un telescopio partícula cargada.

SAS-2 fue lanzado desde la plataforma de San Marco de la costa de Kenia, África, en una órbita casi ecuatorial. La nave espacial en órbita estaba en la forma de un cilindro de aproximadamente 59 cm de diámetro y 135 cm de longitud. Cuatro paneles solares se utilizaron para recargar la batería de níquel-cadmio 6 amperios-hora y proporcionar energía al experimento de la nave espacial y el telescopio. La nave espacial se ha estabilizado en espín, y un sistema de control de torque commandable magnéticamente se usa para apuntar el eje de giro de la nave espacial a cualquier posición en el espacio dentro de aproximadamente 1 grado. El eje de experimentos pone el largo de este eje que permite al telescopio para mirar en cualquier región seleccionada del cielo con su más o menos la aceptación de apertura de 30 grados. La velocidad de giro nominal fue 1/12 rpm. Los datos se tomaron a 1000 bit/s, y podrían grabarse en un grabador de cinta de a bordo y se transmiten simultáneamente en tiempo real. Los datos registrados se transmiten una vez por órbita. Esto requiere aproximadamente 5 minutos.

El experimento telescopio se enciende inicialmente el 20 nov 1972, y en un 27 Nov 1972, la nave espacial entró en pleno funcionamiento. La fuente de alimentación de baja tensión para el experimento fracasó el jun 8 1973. No se obtuvieron datos científicos útiles después de esa fecha. Con la excepción de un sensor de estrella ligeramente degradado, la sección de control de la nave espacial a cabo de una manera excelente.

SAS-2 detectado por primera vez Geminga, un púlsar cree que es el remanente de una supernova que explotó hace 300.000 años.[3]sas23

La cámara de chispas de rayos gamma-2 SAS

Misión Visión generalsas24

SAS-2 (también referido como SAS-B y el Explorador 48) fue lanzado el 19 de noviembre de 1972. Para minimizar el flujo de fondo de los rayos cósmicos, SAS-2 se colocó en una órbita ecuatorial de la Tierra bajo que tiene una inclinación orbital de 2 grados. Su apogeo y el perigeo eran 610 kilómetros y 440 km, respectivamente, con un período orbital de unos 95 minutos. Durante los ~ 6 meses de la misión, 27 observaciones en punta (normalmente una semana de duración) se hicieron, lo que resulta en aproximadamente el 55 por ciento del cielo siendo observado, incluyendo la mayor parte del plano galáctico.

 En 1973 8 de junio de un fallo del suministro eléctrico de baja tensión terminó la recogida de datos.

Instrumentaciónsas25

El satélite SAS-2 lleva a un solo instrumento: un telescopio de rayos gamma que utiliza un cable de encendido de la cámara de 32 niveles. El telescopio cubre el rango de energía de 20 MeV – 1 GeV. El instrumento fue obra de Fichtel et. al. En la NASA-GSFC. Durante el corto tiempo de vida de la misión, hubo cierta disminución notable en la sensibilidad debido al deterioro de los gases de la cámara de chispas.

Un extenso programa de calibración se llevó a cabo en el telescopio de rayos gamma antes del lanzamiento de SAS-2. La Oficina Nacional de Estándares (NBS) del acelerador sincrotrón en Gaithersburg, Maryland se utilizó para estudiar el rendimiento del telescopio en el 20 – 114 MeV gama. El rendimiento entre 200 – 1000 MeV se estudió en el acelerador Deutsches Elektronen-Sincrotrón (DESY) en Hamburgo, Alemania Occidental.

Ciencia

En general se reconoce que SAS-2 proporciona la primera información detallada sobre el cielo de rayos gamma y demostró la promesa más importante de la astronomía de rayos gamma.
SAS-2 reveló que la radiación gamma plano galáctico fue fuertemente correlacionada con características estructurales galácticos, especialmente cuando los conocidos fuertes fuentes discretas de radiación gamma se restaron de la radiación total observada. Los SAS-2 resultados establecen claramente un componente de alta energía (> 35 MeV) a la radiación difusa celeste. la emisión de rayos gamma de alta energía también se observó a partir de fuentes discretas tales como el cangrejo y púlsares Vela.

  • La primera mirada detallada en el cielo de rayos gamma.
  • Establecido el componente de alta energía de la radiación difusa celeste.
  • Correlacionado el fondo de rayos gamma con características estructurales galácticos.

EUVE

Extreme Ultraviolet Explorer (EUVE)

El satélite EUVEeuve1

Información general

Organización: NASA

Fecha de lanzamiento: 7 de junio de 1992

Reingreso: 30 de enero de 2002

Aplicación: Observatorio espacial

Masa: 3275 Kg

Dimensiones: 4,5 m de largo, 3 m de diámetro

Equipo: Tres telescopios ultravioleta de incidencia rasante

Espectrómetro

Elementos orbitales

Tipo de órbita: Circular

Inclinación: 28,5 Grados

Periastro: 528 Km

Extreme Ultraviolet Explorer (EUVE) fue un observatorio espacial estadounidense dedicado a la observación en la porción ultravioleta del espectro, de 70 a 760 angstrom. Fue lanzado el 7 de junio de 1992 desde Cabo Cañaveral a bordo de un cohete Delta, y reentró en la atmósfera el 30 de enero de 2002. Estaba controlado desde la Universidad de California en Berkeley.

Los objetivos de EUVE eran:

  • producir un estudio de alta sensibilidad de todo el cielo en el rango entre 70 y 760 angstrom.
  • realizar un estudio profundo de alta sensibilidad de una porción del cielo situado sobre la eclíptica.
  • realizar un seguimiento espectroscópico de fuentes brillantes en el ultravioleta extremo.
  • estudiar la evolución estelar y la población estelar local.
  • estudiar el transporte de energía en las atmósferas estelares.
  • estudiar la ionización y opacidad del medio interestelar.

El estudio global del cielo fue completado en enero de 1993.

EUVE, lanzado a una órbita de 528 km de altura y 28,5 grados de inclinación orbital, fue diseñado para poder ser asistido y reparado por el transbordador espacial.

El EUVE llevaba tres telescopios ultravioleta de incidencia rasante de 188 kg cada uno y un espectrómetro de 323 kg. Los telescopios realizaron mapas del cielo con una precisión de 0,1 grados de arco. El espectrómetro observaba en la dirección antisolar a lo largo de la eclíptica, realizando un estudio en dos bandas entre 80 y 500 angstroms.

  • Wade, Mark (2008). «EUVE» (en inglés). Consultado el 21 de septiembre de 2008.

Enlaces externos

Desde antes de la invención del telescopio hasta la segunda mitad del siglo XX, prácticamente todo nuestro conocimiento de los astros se basó en el estudio de la luz visible. Fue en la década de los sesentas que la radioastronomía se estableció como una disciplina fundamental para el estudio de los astros. La observación del cosmos en ondas de radio dio lugar a descubrimientos que no podrían haberse hecho observando solamente la luz visible, resaltando la necesidad de observar todo tipo de radiación. En los setentas, ochentas y noventas el desarrollo de satélites astronómicos permitió abrir las ventanas del infrarrojo lejano, rayos X y rayos gamma, al mismo tiempo que los observatorios en la Tierra implementaron detectores que permiten estudiar el infrarrojo cercano, el milimétrico y el ultravioleta cercano. Hoy en día se emplea casi todo tipo de radiación electromagnética para el estudio del Universo. Persisten dificultades técnicas para abrir definitivamente algunas de estas ventanas, como por ejemplo algunos rangos de los rayos gamma. Una vez sobrepasadas estas dificultades, es posible que tengamos un panorama completo del Universo, excepto por la ventana del ultravioleta extremo, que posiblemente nunca podremos abrir.euve3

Podemos diferenciar los distintos tipos de luz especificando su longitud de onda. Así, la luz roja tiene una longitud de onda de unos 700 nanómetros (un nanómetro es un millonésimo de milímetro), la luz amarilla unos 580 nanómetros y la luz azul unos 450 nanómetros. El ultravioleta abarca desde el límite de detección del ojo humano (por debajo del violeta en 390 nanómetros) hasta los rayos X (de longitudes de onda de tan solo unos 10 nanómetros), dividiéndose para propósitos de observación astronómica en tres intervalos: el ultravioleta cercano (entre 320 y 200 nanómetros), ultravioleta lejano (de 200 a 100 nanómetros) y el ultravioleta extremo (entre 100 y 10 nanómetros). La luz ultravioleta entre 390 y 320 nanómetros puede estudiarse desde la Tierra con telescopios convencionales y detectores optoelectrónicos (chips CCD) optimizados para este tipo de luz. Radiación con longitud de onda menor a 320 nanómetros es absorbida por la atmósfera, principalmente por la cada vez mas delgada y frágil capa de ozono, y el estudio de los astros en estas bandas requiere de telescopios espaciales. A pesar de contar con un espejo de solo 48 centímetros del diámetro, el satélite IUE (International Ultraviolet Explorer) fue uno de los telescopios espaciales mas exitosos, operando desde 1978 hasta 1996. En la actualidad, el ultravioleta lejano es accesible con el telescopio espacial Hubble.

En el ultravioleta extremo, la astronomía enfrenta un problema prácticamente insuperable, por encima de dificultades tecnológicas. El hidrógeno, el elemento mas abundante en el cosmos, absorbe con gran eficiencia la luz con longitud de onda menor a 91.2 nanómetros, convirtiendo al medio interestelar en una densa cortina. Otros elementos químicos contribuyen a absorber longitudes de onda mas cortas, hasta llegar a unos 8 o 6 nanómetros (rayos X), donde el medio interestelar vuelve a ser transparente. Esto desanimó por varias décadas casi todo esfuerzo por observar el cielo en el ultravioleta extremo. Una de las excepciones fueron las sondas Voyager 1 y 2, cuyos espectrómetros ultravioletas, diseñados para el estudio de los planetas mayores del sistema solar, apuntaron varias veces a objetos brillantes de nuestra galaxia, como estrellas jóvenes, enanas blancas y cúmulos globulares. Esta y otras misiones modestas han mostrado que el medio interestelar es muy inhomogéneo, y que existen algunos “huecos” por donde es posible “asomarse”. Así, se ha identificado una región, el “hoyo de Lockman”, con muy bajo contenido de gas en la línea de visión, donde es posible observar luz ultravioleta incluso afuera de la Vía Láctea. Estos hallazgos dieron nuevas esperanzas de poder estudiar el Universo en el ultravioleta extremo con satélites como el EUVE (Extreme UltraViolet Explorer). Lanzado en junio de 1992, el EUVE realizó un mapa completo del cielo, buscando huequitos por donde asomarse, y mostrando la factibilidad de observar algunos objetos de la Vía Láctea. A pesar de estos esfuerzos, sólo unos cuantos objetos extragalácticos han sido detectados y sólo hemos podido dar unos pocos vistazos a la difícil ventana del ultravioleta extremo, que guarda celosamente muchos secretos.euve2

Extreme Ultraviolet Explorer fue un observatorio espacial estadounidense dedicado a la observación en la porción ultravioleta del espectro, de 70 a 760 angstrom. Fue lanzado el 7 de junio de 1992 desde Cabo Cañaveral a bordo de un cohete Delta, y reentró en la atmósfera el 30 de enero de 2002. Estaba controlado desde la Universidad de California en Berkeley. Los objetivos de EUVE eran: producir un estudio de alta sensibilidad de todo el cielo en el rango entre 70 y 760 angstrom. Realizar un estudio profundo de alta sensibilidad de una porción del cielo situado sobre la eclíptica. Realizar un seguimiento espectroscópico de fuentes brillantes en el ultravioleta extremo. estudiar la evolución estelar y la población estelar local. Estudiar el transporte de energía en las atmósferas estelares. Estudiar la ionización y opacidad del medio interestelar. El estudio global del cielo fue completado en enero de 1993. EUVE, lanzado a una órbita de 528 km de altura y 28,5 grados de inclinación orbital, fue diseñado para poder ser asistido y reparado por el transbordador espacial.

Asuka

Satélite avanzado de Cosmología y Astrofísica

ASCA / Asuka / ASTRO-D

Especie: observatorio espacial de rayos-X .asuka

Organización: JAXA

Fecha de lanzamiento: 20 de febrero de, de 1993 [1] [2] [3]

Cohete portador: M-3S-2 [2] [4]

Lugar de lanzamiento: centro espacial de Kagoshima [2]

Duración de la misión: 9 años

Objetivo de la misión: La observación del cielo en rayos X [2]

Decaimiento: 02 de marzo 2001 [1]

Designación internacional: 1993-011A

Peso: 420 kg [2] [4]

Poder: 602 W [2]

Satélite Avanzado para Cosmología y Astrofísica, también conocido por su acrónimo ASCA, como ASTRO-D y el nombre de Asuka (que significa “pájaro de vuelo”)[2][4][5], fue un observatorio espacial japonés envió 20 de febrero de 1993 por un cohete M-3S-2 desde el Centro Espacial Uchinoura.[6]

ASCA fue la cuarta misión japonesa en el campo de la astronomía de rayos X y el segundo en el que los Estados Unidos ha trabajado con algunas de las cargas de la ciencia.[6] La órbita inicial del satélite tenía una inclinación de 31.1 grados, un apogeo fue de 622 km y una perigeo de 524,6 kilometros.[3] . El 14 de julio de 2000, después de una tormenta magnética que provocó una expansión repentina de las capas superiores de la atmósfera, el satélite perdió el control de su actitud debido a la mayor fricción con las capas superiores de la atmósfera. En consecuencia, los paneles solares se detuvieron señalando el sol, produciendo una descarga de las baterías. ASCA volvió a entrar en la atmósfera el 2 de marzo de 2001 a las 5:21 UT. [1] [2] [4] [6] [7]asca2

La NASA recibió el 15% del tiempo de observación por sus contribuciones a la misión.[2]

El objetivo era hacer observaciones de ASCA espectroscópico de energía de rayos X en la banda de entre 1 y 12 keV, especialmente la línea K de hierro. Dedicado también para obtener imágenes de la estructura de las fuentes extendidas tales como cúmulos de galaxias y los restos de supernovas. 2]

Instrumentación

ASCA tenía cuatro telescopios con un área efectiva total idéntica de 1,300 cm 2-1 keV y 600 cm 2 a entre 6 y 7 keV. La NASA ha colaborado proporcionando cuatro espejos multicapa cónica incidencia gratificación y dos detectores de conjunto de datos proporcionada por el MIT. Japón aportó la IGSPC (centelleo de gas de imágenes contadores proporcionales), contadores proporcionales Twinkle, el barco, el vehículo de lanzamiento y las estaciones de tierra.

Tenía una órbita de entre 500 y 600 km de altura con un período de 95 minutos, pesaba 420 kg y tenía un diámetro de unos 120 cm. Contaba con los siguientes instrumentos a bordo:

  • Cuatro telescopios idénticos montados en un banco óptico extensible para lograr una distancia focal de 3,5 metros. Este instrumento proporcionado por la NASA. Los telescopios son una versión reducida de BBXRT telescopio que se utilizó durante la misión Astro-1 del transbordador espacial. Cada óptica es Wolter tipo 1: el radio ocurre bajo incidencia rasante se refleja primero por un espejo parabólico y un espejo hiperbólico en la extensión de la primera. Cada XRT óptica 4 consiste en 120 capas que reflejan anidados uno en el otro. El campo de visión es de 24 minutos de arco a 1 keV y 16 minutos de arco en 7 keV.
  • Dos cámaras CCD ubicadas en el plano focal del telescopio y por la NASA. Cada CCD utiliza 4 chips desarrollados por los MIT 420×422 píxeles y determina la energía de radiación con una precisión de 2% para un rayo con una energía de 5,9 keV. El campo de visión de cada CCD es 22×22 minutos de arco.
  • Dos contadores de centelleo proporcionales situados en el plano focal de los telescopios para determinar la energía de la radiación con una precisión de 8% para un radio de 5,9 keV y que tiene un campo óptico de 50 minutos de arco de diámetro.

La instalación nos ASCA huéspedes Observador (GOF), ubicado en el Centro de Vuelo Espacial Goddard de la NASA en Greenbelt, Maryland, fue parte de la entonces Oficina del general Investigador Programas (OGIP) (que ahora se llama la Oficina HEASARC) en la División de Ciencias Astrofísica (TEA) .

La principal responsabilidad de los EE.UU. ASCA GOF era permitir a los astrónomos de Estados Unidos para hacer el mejor uso de la misión ASCA, en estrecha colaboración con el equipo Japonés ASCA.

Resalte la ciencia:

  • Líneas generales de Fe AGN, sondeando la fuerte gravedad cerca del motor central
  • Más baja que la abundancia Fe solar en el coronas de estrellas activas
  • Espectroscopia de binarias interactuantes
  • No térmicos rayos-X de SN 1006, un sitio de aceleración de los rayos cósmicos
  • Abundancias de elementos pesados en los cúmulos de galaxias, en consonancia con el tipo de origen II supernova

ASCA es la cuarta misión espacial astronomía X desarrollado por las ISAS agencia espacial japonesa. Fue precedido por tres misiones que permitieron a los científicos e ingenieros japoneses adquieren cada vez mayor experiencia en esta área. El primer satélite lanzado en 1979 Hakucho características similares a las del satélite estadounidense Uhuru. Tenma lanzado en 1983 es el primer X satélite para el uso de centelleo proporcional de gas. Lanzado en 1987 Ginga es la primera misión japonesa de este tipo para ir internacional con inversiones en el Reino Unido y los Estados Unidos. Dos de los tres instrumentos de ASCA son proporcionados por la NASA, que a su vez recibe una parte del tiempo de observación, el 15% parte de los proyectos de los Estados Unidos y el 25% en el marco de proyectos conjuntos con el ICEA.

Características

ASCA es una observación espacial de la radiación de rayos X puede tanto tomar fotografías y realizar espectroscopia utilizando rendimiento óptico. Con un peso de 417 kg, mide 4,7 metros en el eje del telescopio y tiene una envergadura de 3,5 metros de paneles solares. Estos proporcionan una potencia eléctrica de 602 vatios. El eje 3 se estabilizó satélite y sus instrumentos se señaló con una precisión de 30 segundos de arco. Controlar la orientación se realiza mediante 4 ruedas de reacción que son dados de alta de su momento angular con tres acopladores magnéticos usando el campo magnético de la Tierra. La posición del satélite y el movimiento se determinan utilizando dos sensores de estrellas y una inercial, incluidos 4 giroscopios. Los cambios de giro están deliberadamente limitan a prevenir la incidencia de la luz solar en los paneles solares se desvíe en más de 30 ° respecto a la vertical. De hecho, el observatorio funcionando a muy baja velocidad en torno al eje que apunta hacia el Sol que tiene un momento de inercia en caso de fallo, que mantiene automáticamente los paneles solares iluminados. Los datos recogidos pueden ser transmitidos en tiempo real o almacenados en una grabadora con una capacidad de 134 megabits y se transmiten después a las estaciones terrestres. La velocidad de transmisión puede ser de entre 1 y 32,8 kilobits por segundo.

Guardar

Yohkoh

Organización: ISAS

Fecha de lanzamiento: 30 de agosto de 1991

Aplicación: Observatorio espacial (solar)yohkoh1

Equipo

Soft X-ray Telescope (SXT)
Hard X-ray Telescope (HXT)
Bragg Crystal Spectrometer (BCS)

Wide Band Spectrometer (WBS)

Yohkoh (ようこう rayo de sol en japonés), también conocido como SOLAR-A, fue una misión solar del Institute of Space and Astronautical Science (ISAS) de Japón en colaboración con los Estados Unidos y el Reino Unido. Fue lanzada a una órbita terrestre casi circular el 30 de agosto de 1991 por un cohete M-3S-5 desde el Centro Espacial de Kagoshima.

Llevaba cuatro instrumentos a bordo:

  • Soft X-ray Telescope (SXT)
  • Hard X-ray Telescope (HXT)
  • Bragg Crystal Spectrometer (BCS)
  • Wide Band Spectrometer (WBS)

Durante la década de 1990, fue el único telescopio de rayos X que monitorizaba la actividad solar, y que observó el ciclo entero de las manchas solares.

La misión terminó tras entrar en modo seguro durante un eclipse anular el 14 de diciembre de 2001, ya que la sonda perdió su orientación hacia el Sol. En ese momento la sonda no podía comunicar con los controladores de Tierra, luego no pudo ser reorientada. Los paneles solares dejaron de recibir radiación directa del Sol y las baterías se agotaron.

El 12 de septiembre de 2005 a las 6:16 JST, la sonda ardió en la atmósfera sobre el sur de Asia durante su reentrada.

Instrumentos cientificos

El equipo de la misión de YOHKOH incluye los cuatro dispositivos siguientes:

  1. Duro telescopio de rayos X (HXT) para imágenes de alta resolución de las erupciones solares en rayos X duros
  2. Soft telescopio de rayos X (SXT) para imágenes de alta resolución de las erupciones solares y la corona solar en rayos X blandos
  3. De banda ancha de rayos X, espectrómetro de rayos gamma (PEP) para la observación precisa del espectro de la radiación térmica y no térmica asociada con las erupciones solares
  4. Espectrómetro de cristal Bragg (BCS) para la observación precisa del plasma a alta temperatura que se genera en las erupciones solares

YOHKOH lleva estos cuatro instrumentos científicos, todos los cuales han funcionado bien y continuará a volver excelentes datos. Los dos centros de atención primaria son los telescopios de rayos X blandos y duros, y los dos instrumentos más pequeños para espectroscopia de más de una banda amplia de energía, incluyendo la espectroscopia de alta resolución de las líneas de emisión de rayos X blandos. El tyohkoh2elescopio de rayos X blandos consta de un espejo pastoreo-incidencia con óptica Wolter-nariai, además de un CCD con 2,46 “píxeles. Se forma imágenes en energía fotónica 0,5-2 keV de plasmas con temperaturas en el rango de 2-20 millón K. el telescopio de rayos X duros forma imágenes en cuatro bandas de energía, 14-93 keV, con resolución de tiempo tan fina como 0,5 segundos y la resolución espacial tan pequeño como 5 segundos de arco. Este instrumento responde tanto al chorro de electrones no térmicos y de radiación térmica a partir de fuentes “súper-calientes” que se forman durante las erupciones. Los otros dos instrumentos son un conjunto de espectrómetros de cristal Bragg, con bandas espectrales que abarcan FeXXVI, FeXXV, CaXIX, y las líneas de resonancia SXV y una matriz espectrómetro de banda ancha de contadores de centelleo y contadores proporcionales. Este último se extiende rango espectral de YOHKOH en la región de rayos gamma.

Los siguientes avances en la tecnología contribuyen a darse cuenta de los cuatro instrumentos científicos anteriores.

Sistemas de bus del satélite

El satellitis tecnología de control de orientación de alta precisión se desarrolló para asegurar observaciones de imágenes de alta resolución de Yohkoh. Por otra parte, YOHKOH fue el primer satélite en Japón para incorporar cierto control del telescopio ordenador. Esta tecnología se ha utilizado en todos los satélites que siguieron YOHKOH, y el papel desempeñado por YOHKOH es grande debido a este avance.

Diseños novedosos de instrumentos científicos

Duro telescopio de rayos X de YOHKOH es un dispositivo de imagen de tipo síntesis de Fourier que emplea un colimador multi-elemento “Sudsre” (modulación), basado en una idea original. Se llevó a cabo mediante el uso de una rejilla precisa fabricado por fotograbado y un contador de centelleo de rayos X altamente estable. No hay otros medios de formación de imágenes de rayos X a energías cercanas al 100 keV, y esta tecnología para la extensión de la observación en la imagen para este rango de energía ha sido de gran prestigio.

Por otra parte, el telescopio de rayos X blandos utiliza un CCD de rayos X para el detector de plano focal de a bordo, lo que demuestra la viabilidad de dicho disposyohkoh3itivo.

Tecnología de la nave espacial

YOHKOH pesa 390 kg, con dimensiones físicas de 2 m (longitud) x 1 x 1 m. Su sistema de energía genera 560 W de potencia de pico, y almacena los datos en un registrador de datos de la burbuja 80 Mb, la transmisión de telemetría tanto a Kagoshima Centro Espacial de la NASA y de DSN para proporcionar una cobertura casi continua de la observación. YOHKOH tiene el control de altitud de 3 ejes con la estabilidad de segundos de arco, lo que permite tiempos de exposición largos con un telescopio de rayos X blandos.

Sol en rayos-x por Yohkoh. Fuente: Wikipedia

Tanto los telescopios de rayos X duros y blandos tienen que hace época rendimiento en términos de resolución espacial y temporal, bandas de energía cubiertos, etc., en comparación con los equipos de imagen anterior del mismo tipo. Ambos espectrómetros, que fueron instalados como equipo complementario, fueron diseñados y fabricados para hacer observaciones complementarias de un único objeto de observación, es decir, bengalas solor, y los datos de observación resultante ha hecho posible el análisis y estudio de las erupciones solares multifacética y cuantitativa. Este programa ha producido de este modo grandes resultados científicos.

Telescopio de rayos X blandos de la YOHKOH fue fabricado en cooperación entre Japón y los EE.UU.; el espectrómetro de Bragg se fabricó mediante la cooperación de Japón, los EE.UU. y el Reino Unido. El principio fundamental de esta cooperación internacional fue el diseño y fabricación conjunta distribuida. Con respecto a la operación de satélites, las responsabilidades se dividen entre Japón, los EE.UU. y el Reino Unido, para aprovechar las fortalezas de cada participante. análisis de los datos de observación también está llevando a cabo mediante la cooperación internacional. Después de un cierto período de tiempo después de la adquisición (en la actualidad un año), los datos se dan a conocer en su totalidad por lo que los científicos fuera del equipo también pueden hacer uso de los datos de YOHKOH. El alcance de dicha utilización se extiende claramente más allá del marco de Japón, los EE.UU. y el Reino Unido.

Para investigar actividades solares, observaciones simultáneas en diferentes longitudes de onda de observación son de crucial importancia. YOHKOH sigue produciendo observaciones de rayos X marca época, como se describió anteriormente, y ha jugado un papel importante en la construcción de una red de observación mundial, haciendo hincapié en la cooperación en las observaciones nacionales e internacionales basadas en el espacio y basado en tierra.

Guardar

Compton

El Observatorio de Rayos Gamma Compton (en inglés: Compton Gamma Ray Observatory, CGRO) fue el segundo de los Grandes Observatorios de la NASA, después del Telescopio Espacial Hubble, siendo lanzado el 5 de abril de 1991 a bordo de la lanzadera espacial Atlantis misión STS-37. El nombre de este observatorio es un homenaje al físico estadounidense Arthur Holly Compton, ganador del premio Nobel por su trabajo en el campo de la física de los rayos gamma.comton1

Fue la mayor carga destinada a la astrofísica que había volado en ese tiempo. Tras superar con creces el tiempo de vida que se le suponía (cuatro años) falló uno de sus giroscopios, por lo que la NASA se vio obligada a estrellarlo controladamente sobre el Océano Pacífico. El CGRO ardió en la atmósfera el 4 de junio de 2000.

El Observatorio estaba al cargo del Laboratorio de Jato-propulsión (JPL) de la NASA, situado en el estado de California, bautizado inicialmente como Gamma Ray Observatory (GRO). Compton medía 9,1 metros por 4,6 metros, pesaba cerca de 17 toneladas y fue la carga más pesada lanzada al espacio por la NASA.

 Concepción artística de Comptom en funcionamiento.

La misión del CGRO era la de estudiar las radiaciones más energéticas del espectro electromagnético entre 20 keV y 30 GeV, para lo cual disponía de los siguientes instrumentos, ordenados de menor a mayor energía cubierta en el espectro:

  • Burst And Transient Source Experiment (BATSE)
  • Oriented Scintillation Spectrometer Experiment (OSSE)
  • Imaging Compton Telescope (COMPTEL)
  • Energetic Gamma Ray Experiment Telescope (EGRET)

De todos estos cuatro instrumentos, el mayor y el más sensible de todos era el telescopio de rayos gamma EGRET. Su gran tamaño era debido a necesidad de captar un correcto número de partículas de rayos gamma, que inciden sobre el detector. Como el número de fótons de rayos gamma es muy más pequeña que el número de fótons óptico, de ahí la necesidad que el detector fuera grande para registrar un número razonable de rayos gamma, en un determinado periodo de tiempo.

Compton detectó más de 2.600 explosiones de rayos gamma, indicando que este es un fenómeno que ocurre por todo el Universo. Compton descubrió centenares de fuentes desconocidas de rayos gamma, incluyendo 30 objetos celestes exóticos. Detectó emanaciones de rayos gamma de agujeros negros, de estrellas que explotan y de nuestro propio Sol.

Uno de los grandes éxitos del CGRO fue el descubrimiento de fuentes de rayos gamma en la tierra, relacionadas con nubes de tormenta.

Organización          NASA

Estado                     Retirado

Fecha de lanzamiento          5 de abril de 1991

Reingreso                4 de junio de 2000

Vida útil                  9 años

Aplicación               Observatorio espacial

Masa                        17.000 Kg

Elementos orbitales

Tipo de órbita         Circular

Periastro                 450 km

El viernes 24 de marzo oficiales de la NASA anunciaron la decisión de dar por terminada la misión del Observatorio Espacial Compton de rayos gamma (o CGRO por Compton Gamma-ray Observatory) y empezar preparativos para destruir la nave en una entrada controlada en la atmósfera terrestre. Esto ocurrirá no antes del primero de junio del presente, poco mas de nueve años después del lanzamiento del CGRO realizado en abril de 1991. El CGRO es, junto con el telescopio espacial Hubble y el observatorio de rayos X Chandra (originalmente llamado AXAF), uno de los grandes observatorios espaciales que la NASA planeó durante los años setentas y ochentas. El cuarto -y último- de estos observatorios es el satélite infrarrojo STIRF (Space Telescope InfraRed Facility), aún en construcción.

El observatorio espacial CGRO lleva a bordo cuatro telescopios de rayos gamma diseñados con propósitos específicos. El telescopio BATSE, diseñado para monitorear todo el cielo en forma continua, detectó más de 2500 estallidos de rayos gamma (“gamma-ray bursts”), de los cuales se habían detectado 300 anteriormente. Los datos de BATSE mocomton2straron que estos estallidos no se dan en nuestra galaxia -como se creía anteriormente- sino que se trata de objetos situados a enormes distancias, siendo los eventos mas violentos del Universo, explosiones que en un segundo liberan tanta energía como la que emite una estrella como el Sol a lo largo de miles de millones de años. El segundo de los instrumentos a bordo del CGRO, OSSE mostró que en el centro de nuestra galaxia se crea continuamente antimateria. Los datos del telescopio COMPTEL dieron lugar a mapas que muestran donde se producen en nuestra galaxia isótopos radioactivos de elementos como el aluminio o titanio. Por su carácter radioactivo, estas especies desaparecen en tiempos relativamente cortos, por lo que los mapas de COMPTEL nos dicen donde se han creado nuevos elementos en nuestra galaxia, ya sea en explosiones de supernova o en estrellas de alta masa. Finalmente, el telescopio EGRET observó todo el cielo en busca de fuentes de rayos gamma de alta energía, dejando como legado un catálogo con mas de doscienta setenta fuentes. EGRET descubrió que las galaxias activas son fuentes celestes de rayos, mostrando frecuentemente violentas ráfagas de emisión. Además confirmó que los pulsares, pequeñas estrellas en rápida rotación y con poderosos campos magnéticos, son fuentes de rayos gamma, mostrando que en algunas ocasiones esta se da sin emisión en radio (como en el caso del alguna vez enigmático objeto “Geminga”). Pero la mayor parte de las fuentes descubiertas por EGRET no han podido ser identificas, siendo su naturaleza un misterio que algunos astrónomos intentan descifrar en la actualidad.

comton3Imagen obtenida por el instrumento EGRET

La decisión de dar por terminada la misión de CGRO se debió en buena medida a la falla de uno de sus tres giróscopos. Cuando fue puesto en órbita por el transbordador espacial, con sus 17 toneladas, el CGRO era el satélite astrofísico mas pesado. Este es uno de los factores que decidieron la suerte del CGRO. A pesar de que tres de los cuatro telescopios funcionan adecuadamente, los sistemas de propulsión del observatorio Compton no tienen suficiente combustible como para colocarlo en un órbita mas alta que la actual, a 500 kilómetros de altura. En esta órbita la débil, pero persistente, fricción que ejerce la atmósfera terminará por hacerlo entrar a la atmósfera. A diferencia de la mayor parte de los satélites, el Compton es demasiado pesado para quemarse por completo en la atmósfera y fragmentos del satélite alcanzaran el suelo. Los responsables de la NASA decidieron hacer que la entrada a la atmósfera se hiciera en forma controlada. Se dirigirá la nave hacia el pacífico Sur a unos cuatro mil kilómetros al Sureste de Hawaii. Mientras que la mayor parte del satélite se quemará, la mayor parte de los pedazos que lleguen al mar, cayendo dispersados en una zona de área un poco mayor a la del estado de Puebla, serán mas pequeños que un chicharo, excepto los de metales resistentes al calor -como el titanio- que podrían tener tamaños peligrosamente grandes. Por este motivo se decidió efectuar la maniobra de manera controlada y dirigida a una zona despoblada del Oceano Pacífico.

Así, en unos cuantos segundos las 17 toneladas del observatorio Compton se consumiran casi por completo, dando por terminada la década en que se abrió una de las últimas ventanas al Universo. No será antes del año 2005 cuando sea puesto en órbita GLAST, el próximo observatorio de rayos gamma.

Astro-1

La explosión del Challenger impuso una pausa obligatoria de cerca de tres años en los vuelos tripulados norteamericanos. Se había acumulado mucho trabajo pendiente y en la lista de espera.astro11

En diciembre de 1990 despegó el Columbia en la misión STS 35-ASTRO 1. Por fin llegó el momento para una misión totalmente dedicada a las investigaciones astrofísicas. En principio el laboratorio ASTRO 1 estaba programado para volar en marzo de 1986, de hecho era la misión que iba inmediatamente a continuación del fatídico vuelo del Challenger. Ya dentro del nuevo calendario, la segunda fecha prevista fue mayo de 1990, pero las fugas de combustible ya comentadas lo evitaron de nuevo. En definitiva, una vez que el Columbia estuvo en órbita, la demora acumulada fue de cinco años.

Los instrumentos que formaron parte de este observatorio orbital se dedicaron, lógicamente, a las observaciones en bandas del espectro electromagnético inaccesibles desde tierra (tres telescopios para el ultravioleta en una montura común y otro para rayos x), como se detalla a continuación:

  • Hopkins Ultraviolet Telescope (HUT): Telescopio dotado de un espectrógrafo ultravioleta para examinar objetos difusos como cuasars, núcleos de galaxias activas y galaxias estandar. En su momento fue el primer instrumento orbital para el estudio de la radiación ultravioleta extrema, por debajo de 1200 angstroms de longitud de onda. Realizó 101 observaciones de 75 objetos.
  • Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE): Diseñado para medir intensidades y polarización de la radiación ultravioleta. Su banda de operaciones fue de entre 1400 a 3200 angstroms. Realizó 88 observaciones de 70 objetos.
  • Ultraviolet Imaging Telescope (UIT): Una combinación de telescopio, intensificador de imagen y cámara. Al contrario de los otros dos telescopios que enviaban sus datos a la Tierra, el UIT los almacenaba en el equipo de a bordo. Realizó 89 observaciones de 64 objetos.
  • Broad Band X-Ray Telescope (BBXRT): Este telescopio era independiente con respecto a los otros tres, ya que tenía su propia plataforma y sistema de guiado, siendo además controlado y apuntado no por los astronautas, sino directamente desde el Goddard Space Flight Center. Realizó 116 observaciones de 76 objetos.

Acerca de ASTRO 1, siempre se ha comentado que en cierta manera los astronautas salvaron la misión, ya que al poco tiempo en órbita, los sistemas de apuntado aastro12utomático del IPS fallaron (ver el significado de IPS en Astronomía Digital 3, 1ª parte de este artículo, misión Spacelab 2). Los seguidores estelares de esta montura tampoco funcionaron correctamente, así que fue la tripulación la que tuvo que realizar todos los apuntados de manera manual… con buen pulso y mucha paciencia. Y la cosa tuvo mérito, ya que a pesar de todo, se consiguió aproximadamente un 70% de las observaciones programadas. Durante los 9 días de vuelo, los siete tripulantes se repartieron el trabajo en dos turnos, de forma que ASTRO 1 estuvo en marcha las 24 horas del día.

STS 35. Los telescopios del conjunto ASTRO 1 fotografiados sobre un fondo fácilmente reconocible: la constelación de Orión.astro13

Antes del desastre del Challenger, esta misión fue programado para ser lanzado en marzo de 1986 STS-61-E. Jon McBride fue originalmente asignado para comandar esta misión, lo que habría sido su segundo viaje espacial. Se optó por retirarse de la NASA en mayo de 1989 y fue sustituido como comandante de la misión por Vance Brand. Además, Richard N. Richards (como piloto) y David Leestma (como especialista de misión), fueron sustituidos por Guy Gardner y Mike Salón respectivamente. 59 años de edad, Brand era el más antiguo astronauta para volar en el espacio hasta Historia Musgrave, 61 en la misión STS-80 en 1996, y el senador estadounidense John Glenn, de 77 años, cuando voló en la misión STS-95 en 1998.

La carga útil ASTRO-E desplegado en bodega de carga del Columbia

Tipo de misión: Astronomía

Operador: NASA

ID COSPAR: 1990-106A

SatCat №: 20980

Duración de la misión: 8 días, 23 horas, 5 minutos, 8 segundos

Distancia recorrida: 6,000,658 3,728,636 kilómetros (millas)

Órbitas completadas: 144

Astronave: El transbordador espacial Columbia

Masa de lanzamiento: 121,344 kg (267.518 lb)

Masa de aterrizaje: 102,462 kg (225.890 lb)

Masa de carga útil: 12.095 kilogramos (26.665 lb)

Tripulación miembros:

Vance D. Brand
Chico S. Gardner
Jeffrey A. Hoffman
John M. Salón
Robert A. Parker
Samuel T. Durrance-
Ronald A. Parise

Inicio de la misión

Fecha de lanzamiento: 2 de diciembre de 1990 06:49:00 UTC

Sitio de lanzamiento: Kennedy LC-39B

Fin de la misión

Fecha de aterrizaje: 11 de diciembre de 1990 05:54:08 UTC

Punto de aterrizaje: Edwards pista 22

Parámetros orbitales

Sistema de referencia: Geocéntrico

Régimen: bajo Tierra

Perigeo: 352 kilómetros (219 millas)

Apogeo: 362 kilómetros (225 millas)

Inclinación: 28.45 grados

Período: 91,7 min

 De izquierda a derecha – Primera fila: Gardner, marca, Salón; Fila de atrás: Parker, Parise, Hoffman, Durrance-

STS-35 fue el décimo vuelo del transbordador espacial Columbia, el vuelo de la lanzadera 38, y una misión dedicada a la observación astronómica con ASTRO-1, un observatorio Spacelab que consta de cuatro telescopios. La misión lanzado desde el Centro Espacial Kennedy en Florida el 2 de diciembre de 1990.

Columbia, finalmente, se dirige en alto el 2 de diciembre.astro14

El ASTRO-1 con mucho retraso-originalmente se había manifestado a volar en lo que habría sido la próxima misión del transbordador después de STS-51L malogrado Challenger como STS-61E en marzo de 1986. La misión fue renombrada como STS-35 durante el largo disponible -abajo después del accidente con la adición del Telescopio de rayos X de banda ancha ( BBXRT -01), y el original ASTRO-1 de carga útil se sacó de almacenamiento y recertificado para el vuelo.[2] Columbia extenderá a 39A en a finales de abril de 1990 por un fecha de lanzamiento programada del 16 de mayo. Tras la revisión de la preparación de vuelo (FRR), anuncio de una fecha de lanzamiento concreta se retrasó para cambiar una válvula proporcional de bucle de freón refrigerante defectuosa en el sistema de refrigeración de la nave. En la posterior Delta FRR, la fecha fue fijada para el 30 de mayo. Lanzamiento el 30 de mayo se restregó durante llenar el tanque debido a una fuga de hidrógeno menor en el mástil servicio de cola en la plataforma móvil del lanzador y una importante fuga en el tanque externo de montaje / orbitador de desconexión rápida. El hidrógeno también se detectó en el compartimento de popa de la nave y cree que está asociada con una fuga qastro15ue requieran montar umbilical de 17 pulgadas.

Preparaciones y lanzamiento

Columbia el 39A con Discovery en 39B en la distancia.

Fuga en el cordón umbilical de 17 pulgadas fue confirmada por una prueba de mini-tanque el 6 de junio. La fuga no puede ser reparado en la plataforma, y el vehículo se vuelve a ser la construcción de Ensamblaje de Vehículos (VAB) 12 de junio de demated, y se transfiere al Fondo para el proceso de la órbita (OPF). El montaje del lado del orbitador umbilical de 17 pulgadas fue reemplazado con uno prestado del todavía-a-llegar Endeavour . A continuación, el tanque externo fue equipado con el nuevo hardware umbilical. La carga útil ASTRO-1 fue reserviced regularmente y se mantuvo en la bodega de carga de Columbia ‘s durante las reparaciones del orbitador y reprocesamiento.

Dos días antes del lanzamiento, el cuadro de aviónica en la parte BBXRT de la carga útil ASTRO-1 funciona mal y tuvo que ser cambiado y vuelto a probar. Lanzamiento fue reprogramada para el 6 de septiembre. Durante tanque, se detectaron más altas concentraciones de hidrógeno en el compartimiento de popa de la nave, obligando a un nuevo aplazamiento. Directores de la NASA llegó a la conclusión de que Colombia había experimentado fugas de hidrógeno separados desde el principio: uno de la asamblea umbilical (que ha sido sustituido) y uno o más que había resurgido en el compartimiento de popa. La sospecha se centró en el paquete de tres bombas de recirculación de hidrógeno en el compartimiento de popa. Estos fueron reemplazados y ensayarse. Una junta de la tapa de teflón dañado en el principal motor número tres de hidrógeno fue reemplazado. Lanzamiento fue reprogramado para el 18 de septiembre. La fuga de combustible en el compartimiento de popa volvió a actuar en llenar el tanque, y el lanzamiento se frotó de nuevo. La misión STS-35 fue puesto en espera hasta que el problema resuelto por un equipo especial de tigre asignado por el director del transbordador espacial.

Despegue el 2 de diciembre se retrasó por 21 minutos para permitir que el tiempo de la Fuerza Aérea para observar las nubes de bajo nivel que puedan impedir el seguimiento del ascenso del traslado. El despegue finalmente se produjo el 2 de diciembre de 1990, 01:49:01 AM EST, el lanzamiento de la noche noveno en la historia de enlace y el segundo para Columbia. Un ascenso a la órbita nominal siguió. Este fue uno de los lanzamientos más retardados del programa del transbordador espacial.

Resumen de la misiónastro16

MS Robert Parker señala manualmente instrumentos de ASTRO-1 utilizando una palanca en la cubierta de vuelo a popa.

La carga útil principal de la misión STS-35 fue ASTRO-1, el quinto vuelo del Spacelab sistema y el segundo con el iglú y configuración del tren de palets. Los objetivos primarios fueron la vuelta al reloj observaciones de la esfera celeste en el ultravioleta y de rayos X con longitudes de onda espectrales del observatorio ASTRO-1, que consta de cuatro telescopios: Hopkins telescopio ultravioleta (HUT); Experimento Wisconsin ultravioleta Photo-polarímetro (WUPPE); Ultraviolet Imaging Telescope (UIT), montado en el sistema de instrumentos señalador (IPS). El sistema de apuntamiento Instrumento consistía en un sistema de cardán de tres ejes montado sobre una estructura de soporte de cardán conectado a un pallet Spacelab en un extremo y el extremo de popa de la carga útil en el otro, una carga útil del sistema de sujeción para el apoyo del experimento montado durante el lanzamiento y aterrizaje, y un sistema de control basado en la referencia inercial de un paquete giroscopio de tres ejes y operado por un microordenador cardán montado. [3] la banda ancha X-Ray Telescope (BBXRT) y su sistema de orientación de dos ejes (TAPS ) redondeó el complemento instrumento en la bodega de carga de popa.

La tripulación se dividió en turnos después de alcanzar la órbita, con Gardner, Parker, y Parise que comprende el equipo rojo; el equipo azul consistía en Hoffman, Durrance-, y el salón. Comandante Vance Brand fue asignado a cualquiera de los equipos y ayudó a coordinar las actividades de la misión. Los telescopios fueron alimentados y criados desde su posición de estiba por el equipo Red 11 horas de vuelo. Las observaciones comenzaron bajo el azul del equipo 16 horas en la misión después de que los instrumentos fueron sacados.[4] En una observación ultravioleta típica ASTRO-1, el miembro de la tripulación de vuelo en servicio maniobrar el transbordador para señalar la bodega de carga en la dirección general de la objeto astronómico que debe observarse. El especialista de la misión al mando del sistema de apuntamiento para apuntar los telescopios hacia el objetivo. También se clavaron en los de guiar estrellas para ayudar al sistema de apuntamiento se mantienen estables a pesar disparos orbitador propulsores. El especialista de carga configurado cada instrumento para la próxima observación, identificado el astro111objetivo celeste en la televisión guía, y siempre que las correcciones de puntería necesarias para colocar el objeto con precisión en el campo de visión del telescopio. Entonces, comenzó a las secuencias de observación del instrumento y supervisa los datos que se registran. Debido a las muchas observaciones crearon una gran carga de trabajo, los especialistas de la carga útil de la misión y trabajaron juntos para llevar a cabo estas operaciones complicadas y evaluar la calidad de las observaciones. Cada observación se llevó entre 10 minutos a un poco más de una hora.[5]

Otra vista del observatorio.

Problemas con la precisión de puntería de la IPS y los fallos de sobrecalentamiento secuenciales de ambas unidades de visualización de datos (utilizado para señalar los telescopios y experimentos de operación) durante la misión impactadas procedimientos de la tripulación, el objetivo y los equipos de tierra forzosos en el Marshall Space Flight Center (MSFC) para dirigir el telescopios con ajuste de precisión por la tripulación de vuelo. BBXRT fue dirigido desde el principio por los operadores en tierra en el Goddard Space Flight Center y no se vio afectada. El telescopio de rayos X requiere poca atención de la tripulación. Un miembro de la tripulación se convertiría en el BBXRT y los grifos en el comienzo de las operaciones y luego apagarlos cuando las operaciones concluyeron. Después de que el telescopio se activó, los investigadores de Goddard podían “hablar” con el telescopio a través del ordenador. Antes de que comenzaran las operaciones científicas, los comandos almacenados fueron cargados en el sistema informático BBXRT. Entonces, cuando los astronautas del transbordador posicionados en la dirección general de la fuente, el TAPS señaló automáticamente el BBXRT en el objeto. Dado que el traslado podría estar orientado en una sola dirección a la vez, las observaciones de rayos X tuvieron que ser cuidadosamente coordinada con observaciones ultravioletas. A pesar de los problemas de puntería, todo el conjunto de telescopios obtuvo 231 observaciones de 130 objetos celestes en un lapso combinado de 143 horas. Equipos científicos del Centro Marshall y Goddard estima que el 70% de los objetivos de la misión se ha completado.[6] ASTRO-1 fue la primera misión de un transbordador controlada en parte de las instalaciones de operaciones de la misión Spacelab de control del Centro Marshall en Huntsville, Alabama.

Durante el vuastro17elo, la tripulación experimentó problemas de vertido de aguas residuales debido a una línea de agua de desagüe atascado, pero se las arregló para compensar el uso de contenedores de repuesto. Los problemas también afectaron una hélice de RCC y un texto y gráficos teleprinter a bordo utilizado para recibir actualizaciones del plan de vuelo.

Cargas adicionales y experimentos

Sam Durrance y Jeffrey Hoffman durante la primera lección de clase transmitido desde el espacio. También la primera corbata gastada en el espacio.

La realización de las transmisiones de radio de onda corta entre los operadores de radio aficionados en tierra y un radioaficionado a base de transporte fue la base para el experimento de traslado de Radioaficionado (SAREX) -II. SAREX comunica con las estaciones de aficionado en la línea de visión del orbitador en uno de los cuatro modos de transmisión: de voz, televisión de barrido lento (SSTV), o datos (enlace ascendente solamente) de televisión de exploración rápida (FSTV). El modo de voz fue operado en el modo asistido, mientras SSTVastro18, datos o FSTV podrían ser operados en los modos atendida o desatendida. Durante la misión, SAREX fue operado por el especialista de carga Ron Parise, un operador con licencia (WA4SIR), durante los períodos en que no estaba programado para otras actividades de carga útil orbitador.[7] Un experimento basado en tierra para calibrar los sensores electro-ópticos en Air fuerza Maui sitio óptico (AMOS) en Hawai también se llevó a cabo durante la misión. El Programa Aula Espacio: Asignación: El proyecto de Estrellas se llevó a cabo para despertar el interés de los estudiantes en ciencias, matemáticas y tecnología. Especialista de la misión Hoffman llevó a cabo la primera lección de clase se enseña desde el espacio el 7 de diciembre en apoyo de este objetivo, que cubre el material en el espectro electromagnético y el observatorio ASTRO-1. Una lección de soporte se enseña desde el centro de control de ASTRO-1 en Huntsville.

Columbia aterriza.

La misión fue interrumpida por un día debido al mal tiempo inminente en el sitio de aterrizaje principal, la Base Aérea Edwards , California. Los sistema de maniobra orbital (OMS) los motores se dispararon a las 8:48 pm PST sobre el Océano Índico para que salga de órbita de la nave espacial, que aterrizó en la pista 22 en la base aérea Edwards , CA en 21:5astro194 10 de diciembre de 1990 después de una duración de la misión de 8 días, 23 horas y 5 minutos. Esta fue la cuarta noche de aterrizaje del programa de transbordadores. Distancia lanzamientastro110o: 10,447 pies (3.184 kilómetros (1.978 millas)). Tiempo de lanzamiento:. 58 segundos Columbia volvió a KSC el 20 de diciembre en la lanzadera de portaaviones. Aterrizaje Peso: 102,208 kilogramos (225.330 libras).

ASTRO-1 se somete a post-proceso Challenger.

ASTRO-1 a bordo del Columbia en el Fondo para el proceso de la órbita.

astro113astro112

 

 

Columbia dirige de nuevo a la KSC.

La carga útil en su posición de estiba.