Astronautica
Esta es con mucho, la más antigua y mayor afición, y a la que más tiempo le he dedicado, pero a la hora de incluir temas, sería tan extensa como inacabable, por lo que sólo se incluyen temas puntuales, escuetos y a ser posible aclaratorios y didácticos.
Minisat 01
Organización: Instituto Nacional de Técnica Aeroespacial de España
Estado: Reentrado en la atmósfera
Fecha de lanzamiento: 21 de abril de 1997
Vehículo de lanzamiento: Pegasus
Sitio de lanzamiento: Gran Canaria
Reingreso: 26 de febrero de 2002
Aplicación: Observatorio espacial / Experimental
Masa: 209 kg
El programa de satélites artificiales MINISAT fue desarrollado por la agencia española INTA en la década de 1990 y se preveía que estuviera compuesto de varios satélites, de los que hasta la fecha solo ha sido lanzado uno, el Minisat 01.
Minisat 01
Fue lanzado el 21 de abril de 1997 desde la base aérea de Gando, en Gran Canaria, con un cohete Pegasus XL. Con un peso de 200 kg, el satélite estaba equipado con 3 instrumentos científicos1:
- Un espectrógrafo de ultravioleta
- Una cámara de rayos gamma (LEGRI – Low Energy Gamma Ray Imager)
- Un experimento de investigación sobre los fluidos en ausencia de gravedad
Su vida operativa estaba prevista en dos años, pero finalmente se extendió hasta dos años más. El día 14 de febrero de 2002, a las 3:12 horas, tuvo lugar el último contacto del Minisat 01 con la estación de seguimiento.
MINISAT
El día 21 de abril de 1997 era lanzado al espacio el MINISAT 01, primer satélite de diseño y fabricación totalmente españoles, y, también, primer vehículo puesto en órbita desde España. Durante su misión, MINISAT completó miles de rotaciones a la Tierra, y se mantuvo en contacto permanente y simultáneo con el Centro de Control de la Misión, situado en el INTA, en Torrejón de Ardoz, y la Estación de Seguimiento de Maspalomas, en Gran Canaria.
Al hito científico y tecnológico que representó el lanzamiento —por primera vez esta operación de integración, lanzamiento y posterior seguimiento se realizaba desde territorio español— le sucedió la cotidianidad, el envío periódico de datos relativos a los experimentos que el satélite llevaba a bordo, y que eran minuciosamente analizados por el Centro de Operaciones Científicas, situado en las instalaciones del INTA en Villafranca del Castillo, Madrid.
La incertidumbre que conlleva todo nuevo reto científico, fue reemplazada por la satisfacción por el éxito completo de la misión, superior si cabe a las expectativas más optimistas. El perfecto funcionamiento del satélite y la utilidad de los datos aportados por los diferentes experimentos han justificado el interés creciente por el Programa MINISAT en otros países.
Cronología del Programa MINISAT
Junio de 1990
Empezó a gestarse el que sería el proyecto más ambicioso del sector aeroespacial en España. Durante los meses siguientes, muchas fueron las reuniones, conversaciones, intercambio y aporte de ideas, y numerosas las personas e instituciones, organismos y empresas que en ellas tomaron parte.
El proceso no fue fácil ni rápido, y, dentro de él, no podemos olvidar un proyecto que aspiró a «ser», pero que nunca llegó a ver la luz: el Proyecto Santa María. El Programa MINISAT fue abriéndose camino en discusiones acerca de la plataforma, la carga útil, los costes y los beneficios de lo que hubiese constituido el Santa María.
Se tuvo conciencia desde el comienzo de que el interés del programa no residía sólo en lanzar el primer MINISAT, sino, también, en mantener vivo un programa de más larga duración, que se estructuraría en tres futuras generaciones de minisatélites para tres tipos distintos de misiones: de uso científico, de observación de la Tierra o del espacio y de comunicaciones, respectivamente. Sin embargo, la credibilidad de todo ello pasaba necesariamente por la puesta en órbita del que debería ser el «MINISAT 01».
Dio comienzo la fase A, con el Estudio de Viabilidad del Proyecto, aprobado en Noviembre del mismo año por la Comisión Permanente Interministerial de Ciencia y Tecnología (CICYT).
Año 1991
Desarrollo de la fase B o de «Definición de un Sistema de Minisatélites», que sería aprobada por la CICYT en Diciembre del mismo año.
Año 1992
El Programa MINISAT había conseguido su incorporación al Plan Nacional del Espacio.
Junio de 1994
Después de superar satisfactoriamente el examen de diseño, se entraba en la última y definitiva fase de «Diseño de Detalle y Fabricación», la cual era aprobada el 21 de Junio de 1994 por la CICYT.
El Programa Integrado MINISAT, propuesto en origen por el INTA, se había venido desarrollando hasta entonces con la colaboración de diversas empresas del sector aeroespacial, y contaba con la ayuda de una Comisión de Seguimiento, creada al efecto, cuya presidencia recayó en el Centro para el Desarrollo Tecnológico e Industrial (CDTI).
Julio de 1994
Comienzan los trabajos de construcción del MINISAT. El número de empresas interesadas en participar en el desarrollo y fabricación de la plataforma prácticamente se había duplicado con respecto al inicio del programa. Era una ocasión única de aunar esfuerzos, desarrollar capacidades, adquirir y ponerse al día en las más altas tecnologías, e incorporar a España, de forma decidida y por la puerta grande, al sector y el mercado del espacio.
Bajo la dirección técnica y de gestión del INTA, y con el apoyo e impulso del Ministerio de Defensa, Construcciones Aeronáuticas (CASA) asumía el papel de contratista principal, y se responsabilizaba de la construcción de la plataforma del satélite. Tan ambicioso proyecto pretendía involucrar al mayor número posible de empresas españolas que trabajaban en el sector. En este sentido, CRISA (encargada de las unidades electrónicas del subsistema de potencia eléctrica), INDRA (encargada de la telemedida y telecomando), SENER (encargada del control de asiento del satélite), TGI e INSA, intervinieron como empresas colaboradoras y subcontratistas.
La construcción del MINISAT planteaba nuevos problemas a la ciencia y la tecnología de nuestro país. Se trataba de tener a punto un satélite, para ponerlo en órbita en tan sólo 18 meses. Además, nunca antes en España se había diseñado, fabricado, integrado y ensayado un satélite completo. Sólo hubo pequeños retrasos producidos por causas de fuerza mayor, como por ejemplo la entrega de las células de los paneles solares fotovoltaicos, que se fabricaron en la ciudad de Kobe, gravemente afectada por el terremoto que sacudió Japón.
Al mismo tiempo, comenzó a considerarse cuál sería la carga útil que habría de portar MINISAT en su primera misión. Desde el principio no hubo lugar para la duda. Con el fin de poder facilitar una amplia participación española, y para no introducir implicaciones de tipo comercial, el contenido del primer minisatélite (MINISAT 01), tendría un carácter exclusivamente científico, y estaría constituido por tres experimentos:
EURD
Espectrógrafo para medir la radiación difusa en el rango ultravioleta extremo.
CPLM
Dispositivo para estudiar el comportamiento de puentes líquidos en microgravedad.
LEGRI
Detector de rayos gamma basado en nuevas tecnologías de Ioduro de Mercurio.
A estos instrumentos se añadió una experiencia tecnológica, ETRV, que estudiaría el comportamiento en órbita de un nuevo regulador de velocidad para el despliegue de grandes reflectores y mástiles.
El lanzamiento del satélite Minisat-01 desde Gran Canaria cumple 16 años
La Isla hizo historia en abril de 1997 al poner en órbita el primer diseño fabricado en España
21.04.2013 | 12:52
El lanzamiento del satélite Minisat-01 desde Gran Canaria cumple 16 años LP/DLP
María Jesús Hernández El 21 de abril de 1997 Gran Canaria entró a formar parte de la historia aeronáutica, tras el lanzamiento del Minisat-01, el primer satélite de diseño y fabricación cien por cien española, y también, primer vehículo puesto en órbita desde España. La única misión espacial que ha sido completada por un país de la Unión Europea desde su propio territorio, cumple hoy 16 años. Arrancó a las 12.00 horas, desde la base aérea de Gando, con un cohete Pegasus XL, posteriormente bautizado con el nombre de Gran Canaria, que viajaba en el fuselaje del avión Lockheed L-1011 Tristar comandado por el capitán estadounidense Bill Weaver.
El lanzamiento del microsatélite fue seguido desde la Estación Espacial de Maspalomas por un nutrido grupo de autoridades civiles y militares, políticos, técnicos, entre ellos ingenieros de la NASA, y periodistas, con el entonces responsable del centro regional del INTA (Instituto Nacional de Técnica Aeroespacial), Julio Melián a la cabeza. Asimismo, la 2 de TVE emitió el acontecimiento en directo, con señales simultáneas desde Gran Canaria y desde la base aérea de Torrejón de Ardoz (Madrid), donde se encontraban los coordinadores del programa científico Minisat, entre ellos el secretario de Estado y presidente del INTA en aquel momento, Pedro Morenés.
La misión que constaba de tres fases, se inició en Gando a las 12.00 horas con un despegue sin contratiempos, a pesar de los riesgos que entrañaba la proximidad del cohete que transportaba la aeronave al suelo. El TriStare fue escoltado por dos cazas F-18, uno de los cuales transportaba la cámara que permitió filmar la operación. Una hora más tarde, a las 13.00 horas, cuando el avión superó los 11.000 metros de altura, se procedió al desprendimiento del cohete Gran Canaria y, tras cinco segundos de caída libre, se encendió su motor de propulsión. Así concluyó la primera etapa.
La segunda, que duró alrededor de siete minutos, consistió en el desprendimiento de las diferentes partes del Pegasus (cofias, contrapuertas) que protegían al minisatélite, hasta dejarlo en contacto con el exterior, a unos 590 kilómetros de la Tierra. Tras la separación del cohete, comenzó la tercera y definitiva etapa con la puesta en órbita del Minisat-01 y la emisión de los primeros datos, que llegaron para júbilo de todos los implicados, tres horas y media después de haberse iniciado la operación. “A las 15.28 horas se escucharon los primeros llantos del niño”, fueron las palabras con las que el INTA confirmó el éxito del lanzamiento.
A partir de ahí el Minisat pasaba por la zona de cobertura de Maspalomas cada hora y media, pudiéndose observar y enviar señales durante quince minutos
Así se puso en órbita desde Gran Canaria, a 600 km de altitud y una inclinación de 28,5 grados sobre el plano ecuatorial, el primero y hasta ahora único ingenio de la tecnología espacial, de diseño y fabricación española. Con un peso de 200 kg y una estructura hexagonal de un metro de ancho por 1,5 de alto, la principal novedad del Minisat-01 consistía en que se trataba de un vehículo ligero y modular, de bajo coste en comparación con lo existente hasta el momento, destinado a la experimentación científica. También contribuyó a la capacitación de más de 100 ingenieros y científicos en todas las áreas de un programa espacial completo.
El programa Minisat se gestó en 1990 con la finalidad de desarrollar un sistema que permitiera operaciones espaciales a bajo coste y menor tiempo de desarrollo que los grandes programas espaciales. La idea original era el desarrollo de tres generaciones de microsatélites para tres tipos distintos de misiones: de uso científico, para la observación de la tierra o del espacio y de comunicaciones. No obstante, todo dependía de la puesta en órbita del primero, el Minisat 01, que 16 años después de su exitoso lanzamiento sigue siendo el único que prosperó.
El pequeño satélite fue equipado con tres instrumentos científicos y una experiencia tecnológica. Entre ellos figuraba el EURD, un espectrógrafo para el estudio de la emisión del medio interestelar en el ultravioleta extremo y lejano, que incorporaba en su diseño tecnología avanzada , con una sensibilidad hasta mil veces mayor y una resolución espectral diez veces mejor que la existente en modelos previos.
En segundo lugar estaba el telescopio LEGRI, un detector de rayos gamma de baja energía procedentes de fuentes astronómicas, destinado fundamentalmente al estudio de las explosiones de supernovas y la existencia de agujeros negros. Este instrumento astronómico constituyó una gran escuela de formación para un buen número de astrofísicos e ingenieros españoles, dado que les aportó una valiosa experiencia en instrumentación espacial, clave en años venideros.
La Universidad Politécnica de Madrid fue la encargada de desarrollar el tercer elemento científico, el CPLM, dirigido al estudio del comportamiento de puentes líquidos en condiciones de microgravedad. Este experimento tuvo posteriormente aplicaciones prácticas en el procesado de materiales de gran calidad en industrias como la farmacéutica, o la microelectrónica.
Por último, se sumó la tecnología ETRV, para el estudio del comportamiento en órbita de un nuevo regulador de velocidad para el despliegue de grandes reflectores y mástiles. Se trataba de un experimento crucial para solucionar el problema planteado en todos los satélites lanzados al espacio hasta ese momento: el despliegue deficitario de los apéndices (antenas, paneles solares, mástiles…), después de su puesta en órbita. Construcciones Aeronáuticas diseñó un regulador de velocidad para este tipo de despliegues y se incorporó en el Minisat un año antes del lanzamiento, de forma que el programa sirvió para testar de forma satisfactoria esta nueva tecnología, que, posteriormente se empleó en el satélite Hispasat.
Con todos sus elementos, el sistema científico y tecnológico del Minisat-01 partía de un concepto totalmente novedoso en el mundo aeroespacial de la década de los 90: la fabricación de una serie de plataformas espaciales multiusos en el segmento comprendido entre los 100 y los 500 kg, con dos módulos independientes entre sí, y una plataforma de servicio estándar, versátil y polivalente.
Resultados
Si el lanzamiento fue un éxito, aún más lo fue su operatividad, dado que el Minisat-01 estaba diseñado para una vida útil de dos años pero estuvo operando y enviando datos científicos durante cinco, en los que completó miles de rotaciones a la Tierra, y se mantuvo en contacto permanente y simultáneo con el centro de control de la misión, situado en el INTA, en la Estación de Seguimiento de Maspalomas y en Torrejón de Ardoz.
“El 14 de febrero de 2002, a las 03.12 horas, tuvo lugar el último contacto del aparato con la estación de seguimiento del proyecto. Superó ampliamente los cálculos más optimistas, al permanecer operativo durante más del doble del tiempo previsto”, anunció el INTA. El fin de la misión se debió a la degradación de la órbita, producida por la fricción con las altas capas de la atmósfera. La completa desintegración del satélite se produjo el 26 de febrero cuando el Minisat-01 alcanzó una altura cercana a los 100 km sobre la superficie terrestre.
Durante sus cinco años de vida estuvo recogiendo y transmitiendo información a los equipos científicos. Entre sus contribuciones a la ciencia destacan las observaciones tomadas por el instrumento EURD durante el descenso del microsatélite en los últimos meses de la fase final de entrada en la atmósfera, proporcionando datos no conseguidos hasta la fecha por ninguna otra misión. “El análisis de estos datos permitirá profundizar en el conocimiento de la distribución en altura de los componentes atmosféricos y sus condiciones físicas, desde la órbita inicial a 575 km, hasta la última órbita registrada, cercana a los 300 km. Hemos de destacar que el espectro del brillo nocturno de la atmósfera terrestre obtenido por EURD es más de 100 veces superior en sensibilidad a las medidas anteriores”, recogen los informes del proyecto.
Dichos resultados también han tenido impacto sobre las teorías y observaciones en varios campos de la Astrofísica. “Han permitido refutar la teoría de desintegración de los neutrinos postulada por el profesor Sciama; y, por otra parte, confirmado un defecto de flujo en los modelos de atmósferas estelares de Kurucz, ya apuntado por las observaciones de Voyager. Los flujos de las estrellas en el rango de longitud de onda de EURD son entre un 10 y un 40% más intensos que en los modelos teóricos”.
La única expectativa científica que la misión Minisat no logró alcanzar fue la planteada por el estadounidense Denis Sciama, encaminada a resolver el misterio de la materia oscura, una sustancia que compone más de un cuarto del universo, pero que nunca ha sido vista. Después del Minisat, la industria espacial mundial ha dado pasos gigantescos desde el punto de vista científico y tecnológico, y sin embargo, el reto de la materia oscura sigue abierto. De hecho, el pasado 4 de abril, un equipo internacional del centro de investigación CERN en Ginebra afirmó que había registrado lo que podría ser la primera huella física dejada por una materia oscura mientras estudiaban rayos cósmicos grabados a bordo de la Estación Espacial Internacional en los últimos 18 meses.
Con todo, el balance final del satélite español Minisat-01 lanzado en Gran Canaria, 16 años desde su puesta en órbita y 11 después de que finalizara su vida operativa, es tremendamente positivo y así lo ratifica la comunidad científica internacional. Un triunfo para la industria española que se quedó en promesa de futuro, dado que el segundo satélite de la serie, proyectado con cuatro nuevos instrumentos, sigue en el cajón.
Fernando J. Ballesteros Roselló es actualmente el Jefe de Instrumentación del Observatorio Astronómico de la Universidad de Valencia. Licenciado (1992) y Doctor (1996) en Física por la Universidad de Valencia. Trabajó en el diseño y desarrollo del telescopio espacial de rayos gamma INTEGRAL, de la Agencia Espacial Europea, actualmente en órbita alrededor de la Tierra, así como del telescopio espacial LEGRI a bordo de Minisat 01 (INTA). Posteriormente sus intereses evolucionaron hacia la astrobiología, realizando su labor investigadora en temas de emergencia de la complejidad y la vida en el universo.
HALCA
Nombres: HALCA; MUSAS-B; VSOP
Operador: ES COMO
ID COSPAR: 1997-005A
SatCat №: 24720
Sitio web: Inicio HALCA
Duración de la misión: 8 años, 9 meses, 18 días
Fabricante: NEC Toshiba Space Systems
Masa de lanzamiento: 830 kg (1.830 lb)
Dimensiones: 1,5 m x 1 m (4,9 pies x 3,3 pies)
Fecha de lanzamiento: 04:50 12 de febrero de 1997
Cohete: M-5 -1
Sitio de lanzamiento: Kagoshima MV Pad
Desactivado: 30 de de noviembre de 2005
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: muy elíptica
Semieje mayor:17,259 km (10.724 millas)
Excentricidad: 0.5999671
Perigeo: 533,5 km (331,5 mi)
Apogeo: 21,244.1 13,200.5 km (mi)
Inclinación: 31.1880 grados
Período: 376,1 minutos
RAAN: 127.6566 grados
Número de revoluciones: 26766
Telescopio principal: antena de malla
Diámetro: 8 m (26 pies)
Las longitudes de onda: 1,3, 6, 18 cm (de radio)
HALCA (altamente Laboratorio Avanzado de Comunicaciones y astronomía), también conocido por su nombre de proyecto VSOP (Programa Observatorio Espacial VLBI), o el nombre en clave MUSAS-B (para el segundo de la Mu serie de la nave espacial Space Engineering), es un medidor japonesa del telescopio de radio de 8 diámetro, por satélite que fue utilizado para VLBI (VLBI). Fue la primera misión dedicada VLBI espaciales.
Fue colocado en una órbita muy elíptica con un apogeo altitud de 21.400 km y un perigeo altitud 560 km, con un período orbital de aproximadamente 6,3 horas. Esta órbita permitido de imágenes de fuentes de radio celestes por el satélite en combinación con un conjunto de telescopios de radio en tierra, de tal manera que tanto el bien (u, v) se obtuvieron cobertura de avión y de muy alta resolución.
Aunque diseñado para observar en tres bandas de frecuencia: 1,6 GHz, 5,0 GHz y 22 GHz, se encontró que la sensibilidad de la banda de 22 GHz tenía severamente degradada después de la implementación orbital, probablemente causada por la deformación de vibración de la forma de plato en el lanzamiento, por lo tanto limitar las observaciones a las bandas de 1,6 GHz y 5,0 GHz.
HALCA se puso en marcha en febrero de 1997 a partir de Kagoshima Centro Espacial, e hizo sus observaciones finales VSOP en octubre de 2003, muy por encima de su vida útil de 3 años se predijo, antes de que la pérdida de control de actitud. Todas las operaciones se terminaron oficialmente en noviembre de 2005.[2]
Una misión de seguimiento ASTRO-G fue planeada (VSOP-2), con una fecha de lanzamiento propuesto de 2012, pero el proyecto fue cancelado en 2011 debido al aumento de los costes y las dificultades de alcanzar sus objetivos científicos. Se esperaba alcanzar resoluciones de hasta diez veces mayor y hasta diez veces mayor sensibilidad que su predecesor HALCA.
La cancelación de ASTRO-G sale del ruso radioastron misión como la instalación de VLBI espacio sólo está operativa actualmente.
Aspectos destacados
- Las observaciones de máseres hidroxilo y púlsares a 1,6 GHz
- La detección de franjas de interferencia para cuasar PKS1519-273 entre HALCA y radiotelescopios terrestres
- Rutinas de imágenes de los cuásares y galaxias de radio, etc. mediante observaciones VLBI experimentales con redes de radiotelescopios terrestres y HALCA
Enlaces externos
http://www.isas.jaxa.jp/e/enterp/missions/halca/
Antena con un diámetro efectivo de 8 m, hecho de una combinación de redes de cable y el plano de simetría de malla metálica. Las ondas de radio son conducidos a la bocina de alimentación de 2,5 m de largo por dos (principal y secundaria) espejos de reflexión.
Después del lanzamiento, el control orbital del satélite se realizó el 14 de febrero, 16 y 21 de 1997, tras el establecimiento del control de actitud de tres ejes. El 28 de febrero, se completó el despliegue de la reflexión de espejo principal de la gran antena. pleno funcionamiento como un satélite VLBI espacial comenzó después de los chequeos técnicos, tales como el establecimiento de un enlace de comunicación interactiva con la estación de seguimiento.
HALCA previsto utilizar tres bandas de frecuencia, 1,60 / 1,73 GHz, 4,7 / 5,0 GHz y 22.0 / 22.3GHz. La sensibilidad de la banda de 22GHz disminuyó drásticamente, sin embargo, probablemente causado por la vibración en el lanzamiento. Las observaciones fueron hechas tanto por el uso de las bandas de 1,6 GHz y 5,0 GHz intensamente.
Antes del lanzamiento, la vida de la misión HALCA se estimó en alrededor de 3 años, debido a la radiación dañaría su panel solar-array y acortar su vida drásticamente. Sin embargo, el satélite continuó operando hasta noviembre de 2005, 8 años y 9 meses después del lanzamiento.
Usando HALCA, un radiotelescopio virtual con una abertura 30.000 km (radio de aproximadamente tres veces la de la Tierra) fue creado. Las observaciones de los cuerpos celestes se realizaron en colaboración con las redes de radiotelescopios en el suelo en todo el mundo,
Hemos tenido éxito en la observación de las ondas de radio y de chorro de rayos X a partir de PKS0637-752 cuásar con una resolución de 2 / 10.000 seg de arco y un chorro de M87 Galaxy con 1 / 1.000 seg resolución de arco.
El equipo internacional VSOP se dio cuenta de VLBI espacial por primera vez en el mundo y las observaciones realizadas. Fue galardonado con el Premio Laurel de 2005 IAA (Academia Internacional de Astronáutica).
Los astrónomos Hacer Primeras imágenes del telescopio espacial Con Radio
Marcando un importante hito en la historia de la astronomía de radio, los científicos del Observatorio Nacional de Radioastronomía (NRAO) en Socorro, Nuevo México, se han realizado las primeras imágenes utilizando una antena de radio telescopio en el espacio. Las imágenes, más de un millón de veces más detalladas que las producidas por el ojo humano, utilizan el nuevo satélite HALCA japonesa, trabajando en conjunto con la Fundación Nacional de Ciencia (NSF) de matriz de base muy larga (VLBA) y el Very Large Array (VLA) radiotelescopios terrestres. Las imágenes de estos lugares es el resultado de un esfuerzo NRAO a largo plazo con el apoyo de la National Aeronautics and Space Administration (NASA).
“Este éxito significa que nuestra capacidad para crear imágenes detalladas de radio de los objetos en el universo ya no está limitado por el tamaño de la Tierra”, dijo el Director de NRAO Paul Vanden Bout. “La visión de la astronomía acaba de convertirse en mucho más nítida.”
HALCA, lanzado el 11 de febrero por el Instituto de Ciencia Espacial y Astronáutica (ISAS) de Japón, es el primer satélite diseñado para obtener imágenes de radioastronomía. Es parte de una colaboración internacional dirigida por ICEA y respaldada por NRAO; Observatorio Astronómico Nacional de Japón; Laboratorio de Propulsión a Chorro de la NASA (JPL); la Agencia Espacial Canadiense; el Fondo Nacional de Australia Telescope; la Red VLBI Europea y el Instituto Conjunto para VLBI en Europa.
El 22 de mayo, HALCA observó una galaxia lejana llamada activa PKS 1519-273, mientras que el VLBA y VLA también observaron la misma. Los datos del satélite fue recibida por una estación de seguimiento en las instalaciones de NRAO en Green Bank, Virginia Occidental. los datos grabados en cinta desde el satélite y desde los telescopios de radio en el suelo fueron enviados al Centro de Operaciones (AOC) en Socorro, Nuevo México matriz de NRAO.
En Socorro, astrónomos y científicos informáticos utilizan una computadora de propósito especial para combinar digitalmente las señales del satélite y los telescopios terrestres para hacerlos trabajar todos juntos como una sola, radiotelescopio gigante. Esta máquina dedicada, la VLBA Correlator, construido como parte del instrumento VLBA, se modificó en los últimos cuatro años para permitir que se incorporan datos del satélite. La correlación de los datos de observación se completó con éxito el 12 de junio, después de que se estableció la fecha exacta de la grabación por satélite. El tratamiento posterior del ordenador produce una imagen de PKS 1519-273 – la primera imagen jamás producido utilizando un telescopio de radio en el espacio.
Por Jim Ulvestad, el astrónomo NRAO que hizo la primera imagen, el éxito puso fin a una larga búsqueda de esta nueva capacidad. Ulvestad participó en un experimento hace más de una década en la que un satélite de comunicaciones de la NASA, TDRSS, se utilizó para probar la idea de hacer imágenes astronómicas de radio mediante la combinación de datos de espacio y de radio telescopios de tierra. Este experimento mostró que una antena en órbita podría, de hecho, el trabajo en conjunto con los observatorios de radio basados en tierra, y allanado el camino para HALCA y un satélite ruso radioastronomía planeado llamada RadioAstron.
“Esta primera imagen es un hito importante técnica, y demuestra la viabilidad de una misión mucho más avanzada, surgen, actualmente en estudio por la NASA”, dijo Ulvestad.
La primera imagen mostraba ninguna estructura en el objeto, incluso en el nivel de detalle extremadamente fino alcanzable con HALCA; es lo que los astrónomos llaman una “fuente puntual”. Este objeto también aparece como una fuente puntual en todas-terrestres observaciones. Además, el experimento TDRSS 1986 observó el objeto, y, si bien este experimento no produjo una imagen, se indicó que PKS 1519-273 debería ser una fuente de punto.
“Esta imagen simple punto puede no parecer muy impresionante, pero su belleza para nosotros es que muestra todo nuestro sistema, complejo está funcionando correctamente. El sistema incluye no sólo los que orbitan y terrestres antenas, sino también la determinación de la órbita, estaciones de seguimiento , el correlador, y el software de procesamiento de imágenes, “dijo Jonathan Romney, el astrónomo NRAO que dirigió el desarrollo del correlador VLBA, y su mejora para procesar los datos de los telescopios en órbita de radio. “Nos gustaría ser escéptico de una imagen compleja si no hubiéramos sido capaces de obtener una buena imagen de punto en primer lugar,” añadió Romney.
Un segundo objetivo de la observación, el quásar 1156 + 295, observado el 5 de junio, hizo una imagen más interesante. Visto por los observatorios de radio basados en tierra, este objeto, a una distancia de 6,5 mil millones de años luz, se ha sabido para mostrar un alargamiento en su estructura al noreste del núcleo. Sin embargo, visto con el sistema tierra-espacio, está claramente demostrado que tiene tanto un núcleo y un complejo de “chorro” que emerge del núcleo. Tales chorros, que consisten en partículas subatómicas que se mueven cerca de la velocidad de la luz, se ven en muchos quásares y galaxias activas en todo el universo. De hecho, 1156 + 295 es uno de una clase de objetos encontrados recientemente por el Observatorio Compton de Rayos Gamma de la NASA para exhibir potente emisión de rayos gamma; estos objetos se encuentran entre los más compactos y energético conocido en el universo.
“Si se demuestra que este objeto es en realidad un sistema central de chorro, HALCA ha producido su primera nueva información científica, y demuestra sus capacidades de imagen para una variedad de investigaciones astrofísicas”, dijo Romney. “Esta imagen muestra que el chorro se extiende mucho más cerca del núcleo, o” motor central ‘del quásar que se muestra mediante imágenes de planta única, “añadió Romney.
“Este es un logro emocionante e histórico para la radioastronomía,” dijo Miller Goss, director de VLA / VLBA de NRAO. “En NRAO, hemos visto a nuestros colegas – los científicos, ingenieros eléctricos, informáticos y técnicos en Socorro y Green Bank – trabajo durante años en este proyecto Ahora, pueden estar orgullosos de su éxito.”.
Los radioastrónomos, al igual que los astrónomos usando la luz visible, por lo general tratan de hacer que las imágenes de los objetos a los que apuntan sus telescopios. Debido a que las ondas de radio son mucho más largas que las ondas de luz, un telescopio de radio debe ser mucho más grande que un instrumento óptico con el fin de ver la misma cantidad de detalles. Una mayor capacidad de ver los detalles, llamado poder de resolución, ha sido una búsqueda de astrónomos de radio durante más de medio siglo.
Para ver un nivel de detalle igual a la revelada por los telescopios ópticos requeriría un plato de radio-telescopio de millas de diámetro. En la década de 1950, los científicos británicos y australianos desarrollado una técnica que utiliza antenas más pequeñas, separadas ampliamente, y se combinan sus señales para producir poder de resolución igual a la de un solo plato tan grande como la distancia entre los platos más pequeños. Esta técnica, llamada interferometría, es utilizado por el VLA, con 27 antenas y una separación máxima de 20 millas, y el VLBA, con 10 antenas y una separación máxima de 5.000 millas. Los sistemas como el VLBA, en el que las antenas son tan ampliamente separados que los datos deben ser individualmente grabada en cada sitio y combinado después de la observación, se denominan sistemas de interferometría de base muy larga (VLBI). VLBI fue desarrollado por astrónomos estadounidenses y canadienses y la primera se presentó con éxito en 1967.
El VLBA, el trabajo con los telescopios de radio en Europa, representa el mayor telescopio de radio que pueden ser acomodadas en la superficie de la Tierra. Con una órbita que la lleva más de 13.000 millas sobre la Tierra, HALCA, trabajando con los telescopios basados en tierra, se extiende la “visión aguda” de la radioastronomía más lejos que nunca. Usando HALCA, radioastrónomos esperan producir rutinariamente imágenes con más de 100 veces el detalle visto por el telescopio espacial Hubble.
Los astrónomos de todo el mundo están esperando para usar el satélite para buscar respuestas a preguntas acerca de algunos de los objetos más distantes y intriging en el universo. Tanto como un tercio del tiempo de observación del VLBA se dedicará a las observaciones en conjunto con HALCA. Durante la vida útil esperada de cinco años de HALCA, los científicos esperan observar cientos de quasares, pulsares, galaxias y otros objetos.
Lanzado desde el Centro Espacial de Japón Kagoshima, HALCA orbita la Tierra cada seis horas, que van desde 350 a 13.200 millas de altura. El satélite de 1.830 libras tiene una antena parabólica de 26 pies de diámetro. La antena, doblado como un paraguas para la puesta en marcha, se desplegó bajo control de radio de la tierra el 26 de febrero se señaló la antena hacia PKS 1519-273 después de una salida de tres meses de la de la electrónica, las computadoras y los sistemas de orientación nave espacial.
HALCA observaciones representan una verdadera colaboración científica internacional. Además de la nave espacial HALCA, construido, lanzado y operado por el ICEA de Japón, la participación de un gran número de telescopios de radio en tierra es también esencial. Instrumentos VLBA y VLA de NRAO, incluyendo el correlador VLBA, serán un componente vital de esta colaboración. Otros telescopios de radio en los EE.UU., Japón, Europa y Australia, también participarán.
Instalación de NRAO en Green Bank, Virginia Occidental, es una de las cinco estaciones de seguimiento en los que se recibidos y registrados los datos recogidos en la nave espacial. Otra es en un centro de ICEA en Japón, y el JPL opera tres estaciones de seguimiento adicionales, en California, Australia y España. JPL además contiene información de todas las estaciones de seguimiento para determinar la órbita de la nave espacial muy precisa necesaria para reducir estas observaciones.
Los esfuerzos NRAO VLBI espacial en Socorro y Green Bank fueron apoyados por la financiación de la National Aeronautics and Space Administration. El Observatorio Nacional de Radioastronomía es una instalación de la Fundación Nacional de Ciencia, operada bajo un acuerdo cooperativo por Associated Universities, Inc.
ORFEUS
ORFEUS (Orbiting and Retrievable Far and Extreme UV Spectrometer) fue un observatorio espacial alemán que voló a bordo de la misión STS-80 (lanzada el 19 de noviembre de 1996) del transbordador espacial. Integrado en una plataforma SPAS (Shuttle Pallet Satellite), estaba diseñado para ser soltado desde el transbordador mediante el Canadarm y ser recuperado tras seis días de vuelo libre.
ORFEUS era un telescopio ultravioleta con espejo de 1 m de diámetro, que se produjo en las misiones del transbordador espacial STS-51 del 12 al 22 septiembre de 1993 y STS-80 del 19 de noviembre a la 7 diciembre de 1996 para su uso. El nombre se refiere a que está en órbita y recuperable Lejos y Espectrómetro ultravioleta extremo, o orbital y la distancia rastreable y el espectrómetro ultravioleta extrema. ORFEUS fue un proyecto conjunto de la NASA y de DARA.
STS-80 era un transbordador espacial misión pilotada por el transbordador espacial Columbia. El lanzamiento fue programado originalmente para el 31 de octubre de 1996, pero se retrasó al 19 de noviembre por varias razones.[1] Del mismo modo, el aterrizaje, que estaba prevista originalmente para el 5 de diciembre se retrasó al 7 de diciembre después de que el mal tiempo de aterrizaje impedido por dos días.[2] la misión fue la misión de traslado más largo jamás lanzado a los 17 días, 15 horas y 53 minutos.[2] a pesar de que dos paseos espaciales fueron planeados para la misión, ambos fueron cancelados después de los problemas con la escotilla de la esclusa astronautas impedido Tom Jones y Tammy Jernigan salga del orbitador.
Resumen de la misión
- La misión desplegó dos satélites y con éxito los recuperó después de haber cumplido con sus tareas.[1]
- En órbita y recuperable Lejos y ultravioleta extremo Espectrómetro-Shuttle Pallet Satélite II (ORFEUS-SPAS II) se desplegó en el día de avión de ida.[3] Fue capturado en el día dieciséis de vuelo.[4]
- El Fondo para el 3-Wake Shield se desplegó en el día 4 de vuelo, y fue capturado tres días más tarde.[1]
- La misión fue la misión más larga en la historia del transbordador espacial.[5]
- En esta misión, historia Musgrave se convirtió en la única persona en volar sobre los cinco transbordadores espaciales – Challenger, Atlantis, Descubrimiento, Endeavour y Columbia.[6]
- Musgrave también empató un récord para vuelos espaciales, y estableció un récord de ser el hombre más viejo en el espacio.[1] Ambos registros ya han sido superados.[7] [8]
Misión de la carga útil
La carga útil se prepara para el lanzamiento. Visible es la FSM-3 (de ser bajado en), y ORFEUS-SPAS II (ya en su lugar)
Columbia trajo consigo dos satélites flotantes libres, los cuales estaban en las visitas repetidas al espacio. Además, una variedad de equipos para ser probado en dos caminatas espaciales planeadas era parte de la carga útil. Éstos habrían sido utilizados para prepararse para la construcción de la Estación Espacial Internacional. Incluido en la carga útil del transbordador fueron [9]
- En órbita y recuperable Lejos y ultravioleta extremo Espectrómetro-Shuttle Pallet Satélite II (ORFEUS-SPAS II)
- Lejos ultravioleta (UVL) espectrógrafo
- Ultravioleta extremo (EUV) espectrógrafo
- Medio Interestelar Absorción Perfil espectrógrafo (IMAPS)
- Efectos de la superficie del monitor muestra (SESAM)
- ATV Rendezvous Pre-Desarrollo de Proyectos (ARP)
- Experimento del estudiante en Astro-SPAS (SEAS)
- Fondo para despertar Escudo (FSM-3)
- NIH-R4
- Módulo Experimental Espacial (SEM)
- Las pruebas de vuelo para el Desarrollo de EVA (EDTF-5)
- Grua
- Unidad de reemplazo de la batería Orbital
- cable Caddy
- Plataforma de trabajo portátil
- Estación de trabajo portátil Pie de sujeción (PFRWS)
- Equipo de sujeción temporal de la Ayuda (TERA)
- La articulación de restricción del pie portátil
- Restricción cuerpo Tether (BRT)
- Multi-Uso Tether (MUT)
- La visualización en un capilar de agua bombeada Experimental Loop (VER-CPL)
- En Investigaciones Biológicas del frasco (BRIC)
- Materiales Dispersión comercial Aparato Instrumentation Technology Associates Experimento (MCP-A) (anteriormente STL / NIH-C-6)
- Experimento comercial MDA ITA (CMIX-5)
Proyectos científicos
Columbia puesto en órbita dos satélites que fueron liberados y recapturados después de un tiempo a solas. La primera fue la que está en órbita y recuperable Lejos y ultravioleta extremo Espectrómetro-Shuttle Pallet Satélite II (ORFEUS-SPAS II). El componente principal del satélite, el telescopio ORFEUS, tenía dos espectrógrafos, por ultravioleta lejano y extremo.
La SPAS ORFEUS se prepara para su lanzamiento
Otra espectrógrafo, el medio interestelar Absorción Perfil espectrógrafo, también estaba a bordo del satélite. Varias cargas útiles que no son pertinentes a la astronomía completaron el satélite. Se lleva a cabo sin problemas para su vuelo, teniendo 422 observaciones de casi 150 cuerpos astronómicos, que van desde la luna a las estrellas extra-galácticos y un cuásar. Siendo el segundo tramo de ORFEUS-SPAS II permitido para los equipos más sensibles, provocando que se proporcionan más del doble de los datos de su funcionamiento inicial.[1]
También desplegado desde Columbia fue el Fondo para Wake-Shield (FSM), un satélite que creó un ultra-vacío detrás de él, lo que permite la creación de películas delgadas de semiconductores para su uso en la electrónica avanzada. FSM creó siete películas antes de ser recapturado por el brazo robótico de Columbia después de tres días de vuelo.[1] La embarcación de 12 pies de diámetro (3,7 m) estaba en su tercera misión, incluyendo STS-60, cuando los problemas de hardware impidieron el despliegue fuera el brazo robótico. Wake escudo fue diseñado y construido por el Centro de epitaxia de vacío espacial en la Universidad de Houston en conjunto con su socio industrial, Space Industries, Inc.[10]
Otra inclusión era un módulo experimental Espacial (SEM).[10] El SEM incluyen proyectos de investigación de estudiantes seleccionados para viajar al espacio.[11] Este fue el primer vuelo del programa.[12] Entre los experimentos llevados a cabo fueron el análisis del crecimiento de bacterias en alimentos en órbita, el crecimiento de cristales en el espacio, y el efecto de la microgravedad en un péndulo.[13]
NIH.R4 fue un experimento llevado a cabo por el Instituto Nacional de Salud y la Universidad de Ciencias de la Salud de Oregón.[10] Fue diseñado para probar los efectos del vuelo espacial en la circulación y la constricción vascular.[14] La investigación biológica en el frasco (BRIC) explorados efectos de la gravedad el tabaco y el tomate plántulas. La visualización en un capilar de agua Experimental Pumped Loop (VER-CPL) se llevó a cabo para poner a prueba una nueva idea en la gestión de las naves espaciales térmica.[15] El Experimento Comercial MDA ITA eran una variedad de experimentos presentados por la escuela secundaria y estudiantes de secundaria patrocinado por Tecnología de la Información Associates.[16]
KAO
Kuiper Airborne Observatory
Organización: NASA
Ubicación:Hangar 211 del Ames Research Center, en Moffett Field, California, Estados Unidos.
Coordenadas: 37°25′17″N 122°02′51″O
Altitud: Hasta 14 000 m (45 000 pies)
Longitud de onda: Entre 1 y 500 μm.
Fecha de construcción: 1974. Retirado en 1995.
Diámetro: 91,5 cm (36 pulgadas)
Tipo de montaje: Reflector Cassegrain con apertura de 36 pulgadas (91.5 cm) montado a bordo de un Lockheed C-141 modificado.
Sitio web: Sobre el Kuiper Airborne Observatory
El Kuiper Airborne Observatory (KAO), en español Observatorio Aerotransportado Kuiper, fue una instalación dirigida por la NASA para realizar investigaciones en astronomía en la franja del infrarrojo. La plataforma para las observaciones era un avión de transporte C-141 muy modificado, con una autonomía de unos 10 000 km y que alcanzaba una altitud de vuelo para las investigaciones de hasta 45 000 pies (14 km). Se le dio el nombre en honor al astrónomo Gerard Kuiper.
El diagrama muestra el interior del “Kuiper Airborne Observatory”. Nótese el telescopio montado entre el area de la cabina de mando y del astrónomo P.I. (Investigador Principal).
Características
El telescopio montado en el KAO era un reflector Cassegrain con una apertura de 36 pulgadas (91.5 cm), diseñado principalmente para las observaciones de entre 1 y 500 μm del espectro. Su capacidad de vuelo le permitía elevarse por encima del vapor del agua de la atmósfera terrestre, permitiendo así las observaciones de la radiación infrarroja, que es absorbida por el señalado vapor antes de llegar a las instalaciones situadas en la superficie de la Tierra. Además al estar montado sobre un avión se podían realizar observaciones en prácticamente cualquier punto del mundo.
El KAO realizó bastante descubrimientos importantes, como la primera observación de los anillos planetarios de Urano en 1977 y la identificación definitiva de la atmósfera de Plutón en 1988. Fue usado también para estudiar el origen y distribución del agua y moléculas orgánicas en regiones de formación estelar y en las regiones interestelares. Los astrónomos del Kuiper Airbone Observatory también investigaron los discos que rodean algunas estrellas probablemente asociados a la formación de planetas alrededor de las mismas.
Se hicieron observaciones más lejanas en el espacio, como las potentes emisiones del infrarrojo lejano procedentes de centro de nuestra galaxia y de otras galaxias. También se rastreó la formación de elementos pesados como hierro, níquel y cobalto por la fusión masiva de la explosión de la supernova 1987A.
El KAO tenía su base en el Ames Research Center en Moffett Field, California (cerca de San José). Comenzó a funcionar en 1974 y fue retirado en 1995. En febrero de 2006, el avión permanecía almacenado en el Hangar 211 en Moffett Field; no está operativo y posiblemente sea donado a un museo en el futuro. Fue sustituido por el observatorio SOFIA
En sus 21 años de operación, el KAO hizo observaciones cruciales para el descubrimiento de los anillos de Urano (en 1977) y el descubrimiento de la atmósfera de Plutón (en 1988). Halló moléculas orgánicas en los lugares de formación de estrellas y encontró trazas de hierro, níquel y cobalto producto de la fusión nuclear en la célebre supernova 1987A. Para remplazar al KAO se ideó Sofia, un proyecto conjunto entre la Nasa y el Centro Aeroespacial de Alemania (DLR).
El KAO en vuelo. Se puede ver la apertura del telescopio en el fuselaje delante del ala – NASA
Algunos de los descubrimientos del KAO inlcuyen el de los anillos de Urano en 1977 y la confirmación de la existencia de la atmósfera de Plutón en 1988.
Estos investigadores están trabajando en los controles del telescopio. La fotografía se tomo mirando hacia atrás desde el área del telecopio hacia la parte trasera del aeroplano.
Image right: C-141 NASA-714 KAO Telescope. Image courtesy: NASA.
BeppoSAX
BeppoSAX fue un observatorio espacial de rayos X fruto de la colaboración entre los Países Bajos e Italia. Originalmente denominado SAX (Satellite per Astronomia X, en italiano), fue renombrado BeppoSAX en honor a Giuseppe “Beppo” Occhialini, físico italiano. El observatorio fue lanzado el 30 de abril de 1996 mediante un cohete Atlas desde Cabo Cañaveral. Al final de su misión reentró en la atmósfera, el 29 de abril de 2003.
La misión de BeppoSAX fue realizar estudios espectroscópicos y de variabilidad temporal de fuentes celestes de rayos X en la banda de energías entre 1 y 200 keV, incluyendo una monitorización completa del cielo para la detección de eventos transitorios en el rango entre 2 a 30 keV.
Entre la instrumentación, el satélite portaba cuatro concentradores de rayos X sensibles a energías entre 1 y 10 keV (con uno de ellos capaz de detectar energías tan bajas como 0,1 keV), un centelleador de gas sensible a entre 3 y 12 keV y un centelleador de cristal de ioduro de sodio para energías entre 15 y 200 keV.
BeppoSAX fue un italiano – holandesa por satélite para la astronomía de rayos X que jugó un papel crucial en la resolución del origen de los estallidos de rayos gamma (GRBs), los eventos más energéticos conocidos en el universo. Fue la primera misión de rayos X capaz de observar simultáneamente objetivos de más de más de 3 décadas de la energía, de 0,1 a 300 kiloelectronvolts (keV) con área relativamente grande, buena (por el momento) la capacidad de resolución de energía y de imagen (con una resolución espacial de 1 de minutos de arco entre 0,1 y 10 keV). BeppoSAX es un importante programa de la Agencia Espacial Italiana (ASI) con la participación de la Agencia Holandesa de Programas Aeroespaciales (NIVR). El contratista principal del segmento espacial era Alenia mientras Nuova Telespazio dirigió el desarrollo del segmento terreno . La mayor parte de los instrumentos científicos fueron desarrollados por el Consejo Nacional Italiano de Investigación (CNR), mientras que las cámaras Wide Field fueron desarrollados por el Instituto Holandés para la Investigación Espacial (SRON) y el LECS fue desarrollado por la División de Astrofísica de la Agencia Espacial Europea ‘s ESTEC instalaciones.
BeppoSAX fue nombrado en honor a la italiana físico Giuseppe “Beppo” Occhialini . SAX significa “Satélite por un Astronomia raggi X” o “Satélite de Astronomía de rayos X”.
De rayos X observaciones no se pueden realizar desde basados en tierra telescopios , ya que la atmósfera de la Tierra bloquea la mayoría de la radiación entrante.
Uno de los principales logros del BeppoSAX fue la identificación de numerosas explosiones de rayos gamma con objetos extragalácticos. (Véase el artículo enlazado para más detalles.)
Lanzado por un Atlas-Centaur el 30 de abril de 1996 en una baja inclinación (<4 grados) la órbita terrestre baja, la vida útil esperada de dos años se amplió al 30 de abril, 2002, debido a un alto interés científico en la misión y la continua buena estado técnico. Después de esta fecha, la órbita comenzó a deteriorarse rápidamente y diversos subsistemas estaban empezando a fallar por lo que es ya no vale la pena llevar a cabo observaciones científicas.
El 29 de abril de 2003, el satélite acabó con su vida que cae en el océano Pacífico .
Características de la nave espacial
BeppoSAX es un tres ejes estabilizado por satélite, con una precisión de puntería de 1 ‘. La restricción principal actitud deriva de la necesidad de mantener la normal a los paneles solares dentro de los 30 ° del Sol, con excursiones ocasionales a 45 ° para algunas observaciones WFC. Debido a la baja órbita del satélite estaba a la vista de la estación de tierra de Malindi por sólo una fracción limitada del tiempo. Los datos fueron almacenados a bordo de una unidad de cinta con una capacidad de 450 Mbits y se transmite a tierra en cada órbita durante el paso de la estación. La velocidad de datos media disponible para instrumentos estaba a punto de 60 kbit / s, pero las tasas de pico de hasta 100 kbit / s puede ser retenido por parte de cada órbita. Con los paneles solares cerrados, la nave fue de 3,6 m de altura y 2,7 m de diámetro. La masa total es de 1.400 kg, con una carga útil de 480 kg.
La estructura del satélite consistió en tres subconjuntos funcionales básicos:
- el módulo de servicio, en la parte inferior de la nave espacial, que albergaba a todos los subsistemas y las cajas electrónicas de los instrumentos científicos.
- el módulo de carga útil, que albergaba los instrumentos científicos y los rastreadores de estrellas .
- la estructura de sombra térmica, que cerraba el módulo de carga útil.
Los principales subsistemas del satélite son:
- La actitud del sistema de control orbital (AOCS), que lleva a cabo la determinación de la actitud y maniobrado y operado el subsistema de control de Reacción a cargo de la órbita de la recuperación. Se incluyó redundantes magnetomers , sensores de adquisición de Sun, tres sensores estelares, seis giroscopios (tres de los cuales son para la redundancia), tres torquers magnéticos y cuatro ruedas de reacción , todos controlados por un equipo dedicado. Los AOCS garantizarse una precisión de puntería de 1 ‘durante las observaciones de origen y las maniobras con una velocidad de subida de 10 ° por minuto.
- El manejador de datos de a bordo (OBDH) era el núcleo de la gestión de datos y de control del sistema en el satélite y también logró las interfaces de comunicación entre el satélite y la estación de tierra. Su ordenador supervisado todas las actividades de los subsistemas de procesador, tales como los de cada instrumento, y los buses de comunicación.
Instrumentación
BeppoSAX contenía cinco instrumentos científicos:
- Espectrómetro de baja energía Concentrador (LECS)
- Medio de Energía Concentrador Espectrómetro (MECS)
- Alta presión de gas de centelleo proporcional Contador (HPGSPC)
- Sistema detector phoswich (PDS)
- Wide Field Camera (WFC)
Los primeros cuatro instrumentos (a menudo llamados instrumentos de campo estrecho o IFN) apuntan a la misma dirección, y permiten observaciones de un objeto en una amplia banda de energía de 0,1 a 300 keV (16 a 48.000 attojoules (AJ)).
El WFC contenía dos apertura codificada cámaras que operan en el 2 a 30 keV (320 a 4.800 AJ) y cada gama que cubre una región de 40 x 40 grados (20 grados por 20 de anchura a media altura) en el cielo. El Congreso, que se complementa con el blindaje del PDS que tenía una (casi) todo el cielo vista en el 100 a 600 keV (16.000 a 96.000 aJ) banda, ideal para detectar explosiones de rayos gamma (GRB).
El blindaje PDS tiene una pobre resolución angular. En teoría, después de un GRB se observó en el PDS, la posición fue refinada por primera vez con el CFM. Sin embargo, debido a los muchos picos en el PDS, en la práctica un GRB se encontró utilizando el CFM, a menudo corroboradas por un BATSE -signal. La posición hasta minuto de arco de precisión – en función de la relación señal a ruido de la explosión – se encontró con el CFM-imagen deconvoluted. Las coordenadas fueron enviadas rápidamente a cabo como una Unión Astronómica Internacional (UAI) y la explosión de rayos gamma de coordenadas circular red. Después de esto, las observaciones de seguimiento inmediatas con el NFI y observatorios ópticos en todo el mundo permiten un posicionamiento preciso del PSG y observaciones detalladas del resplandor de rayos X, óptica y radio.
Los MECS contenían tres idéntica contadores proporcionales de centelleo de gas que operan en los 1,3 como 10 keV (208 a la 1602 AJ) gama. El 6 de mayo de 1997 una de las tres unidades idénticas MECS se perdió cuando una falla desarrollado en la fuente de alimentación de alto voltaje.
El LECS fue similar a las unidades MECS, es de esperar que tenía una ventana más delgada que permite que los fotones con energías más bajas de hasta 0,1 keV (16 aJ) pase a través y operado en un modo “sin propósito”, que es necesaria para detectar la energía más baja X rayos gamma como estos se perderían en el régimen de baja campo cerca de la ventana de entrada de un GSPC convencional. Los datos anteriores LECS 4 keV (641 aJ) no es utilizable debido a problemas de calibración, probablemente causado por el diseño sin propósito. El LECS y MECS tenían capacidad de imagen, mientras que los instrumentos de campo estrecho de alta energía estaban sin imágenes.
El HPGSPC era también un contador proporcional de centelleo de gas, operando a una presión alta (5 atmósferas). Alta presión es igual de alta densidad y densa de material de fotones parar permitió la detección de fotones hasta 120 keV (19.000 AJ).
El PDS era un cristal (yoduro de sodio / yoduro de cesio detector de centelleo) capaz de absorber fotones de hasta 300 keV (48000 AJ). La resolución espectral del PDS era más bien modesta en comparación con los detectores de gas, pero la tasa de recuento bajo de fondo resultante de la órbita de baja inclinación BeppoSAX y una buena capacidad de rechazo fondo significaba que el PDS sigue siendo uno de los instrumentos de alta energía más sensibles voladas.
B eppoSAX era un importante programa de la Agencia Espacial Italiana con la participación de la Agencia Holandesa para Programas Aereospace.Se puso en marcha el 30 de abril de 1996 Cabo Cañaveral y operados por 6 años.Fue la primera misión de rayos X con una carga útil científica que abarca más de tres décadas de la energía – de 0,1 a 300 keV – con un área relativamente grande efectiva, resolución media energía y de imagen en el intervalo de 0,1-10 keV.
Características de la misión
Vida útil: 04 30, 1996-abril 30, 2002
Rango de energía: 0.1 – 300 keV
Características especiales: Amplio-banda de energía
Carga útil:
- Los instrumentos de campo estrecho (NFI):
- Cuatro telescopios Xray trabajan en conjnction con uno de los siguientes detectores:
- Espectrómetro de baja energía Concentrador (LECS)
(una unidad) 0.1-10 keV, área ef 22 cm2 @ 0,28 keV, diámetro FOV 37′, resolución angular 9.7′ FWHM @ 0,28 keV. - Medio de Energía Concentrador Espectrómetro (MECS)
(tres unidades) 1.3-10 keV, el área total del FEP 150 cm2 @ 6 keV, diámetro FOV 56′, resolución angular para el radio de señal total 50% 75 “@ 6 keV.
- Espectrómetro de baja energía Concentrador (LECS)
- Alta presión de gas de centelleo proporcional Contador (HPGSPC)
4-120 keV, área ef 240 cm2 @ 30 keV - Sistema de detección de phoswich (PDS)
15-300 keV. Los escudos laterales de los PDS se utilizan como monitor de estallido de rayos gamma en el intervalo de 60 a 600 keV. Área Ef 600 cm 2 @ 80 keV
- Cuatro telescopios Xray trabajan en conjnction con uno de los siguientes detectores:
- Cámara de Gran Angular
(2 unidades) 2-30 keV con un campo de visión 20 deg X 20 deg. El WFC son perpendiculares al eje de la NFI y el punto en direcciones opuestas entre sí. Ef área 140 cm2.
Resalte la ciencia:
- Primero minutos de arco posición de GRB. determinación de la posición en la escala de tiempo rápida
- En primer lugar de rayos X de observación y vigilancia de la PSG de seguimiento
- espectroscopía de banda ancha de diferentes clases de fuentes de rayos X
Archivo: espectros, curvas de luz, imágenes y datos en bruto para el MECS, LECS y el PDS.
MSX
MSX (acrónimo del experimento espacial de mediano plazo) era un proyecto de BMDO (Organización de Defensa de Misiles Balísticos, Organización de defensa contra misiles balísticos) con el objetivo principal de la recogida de datos en una amplia gama de longitudes de onda (de la radiación ultravioleta a infrarrojo) para demostrar la viabilidad para descubrir y realizar un seguimiento de misiles balísticos durante su fase de vuelo crucero. Además de los instrumentos de a bordo fueron utilizados para realizar los estudios aeronómicos (que estudian la abundancia de ozono, clorofluorocarbonos , dióxido de carbono y metano) y auroras.[1] [3]
Especie: Observatorio del espacio / Militar
Organización: Departamento de Defensa de los Estados Unidos [1]
Fecha de lanzamiento: 24 de abril de 1996, 12:27 GMT [2] [3] [4]
Cohete portador: Delta 7920 [1] [3]
Lugar de lanzamiento: Fuerza Aérea Vandenberg [3] [5]
Objetivo de la misión: observaciones y misiles detectores astronómicos. [3] [5]
Designación internacional: 1996-024A
Potencia: 1200 vatios [1] [3] [5]
Características
MSX se compone de tres secciones de 1,5 x 1,5 m cuadrados que albergaba la electrónica, el hidrógeno en un sólido de temperatura de 8,5 K para enfriar los detectores y los tres instrumentos de observación. Los datos recogidos se procesan en tiempo real por OSDP (On-Board de señal y procesadores de datos) para detectar y seguir las señales generadas por los instrumentos. También sensores para medir la contaminación y la degradación del rendimiento de los instrumentos de procesos de desgasificación principalmente celebrada, y dio a conocer un número de áreas de 2 cm de diámetro para calibrar los instrumentos. [1] [3] [4]
La nave estabilizada en tres ejes con una precisión de 0,01 grados usando volantes. Fue capaz de almacenar hasta 108 GB de datos y se comunica con la Tierra en banda X antenas usando ajustable y con un ancho de banda de 2 kbps de subida y 25 Mbps en bajada. Los dos paneles solares del satélite xeneraban hasta 1200 vatios de potencia que alimentan las baterías de hidruro metálico de níquel.[5]
El satélite se insertó en órbita inicial de 908 kilometros de perigeo y 913 kilometros apogeo con una inclinación orbital de 99,4 grados y un periodo orbital de 102,9 minutos. Dejó de funcionar en junio de 2008.[4]
Instrumentos
MSX era tres instrumentos a bordo: [1] [2] [3]
- SPIRIT III (Infrared Space Imaging Telescope): un radiómetro de alta resolución espacial y cinco longitudes de onda a lo largo con un espectrómetro de transformada de Fourier de seis canales y alta resolución espectral.
- UVIS (ultravioleta y visible Reproductores de imágenes y espectrógrafo Imager) formados por cinco detectores espectrográfico y cuatro detectores en el ultravioleta y el rango visible.
- SBV (espacio-base Visible): un telescopio de 15 cm de abertura a la gama visible con un CCD y procesamiento de imagen electrónica.
El experimento espacial de mediano plazo (MSX) [página en inglés] fue lanzado en abril de 1996 y operó hasta febrero de 1997, cuando agotó el helio liquido refrigerante. Durante sus 10 meses de operación, el MSX recopiló una gran cantidad de datos en la banda de 4,2 a 26 micrones. Estudió la emisión infrarroja del gas y el polvo que ocupan todo el universo. MSX tenía 30 veces más resolución espacial que IRAS y observó áreas que no habían sido rastreadas por éste.
RXTE
Rossi X-ray Timing Explorer
Nombres: RXTE; XTE; Explorador 69
Operador: NASA: ID COSPAR: 1995-074ª: SatCat № 23757
Sitio web: Página de inicio RXTE
Duración de la misión: 16 años, 6 días
Fabricante: GSFC: MIT (All-Sky Monitor)
Masa de lanzamiento: 3.200 kg (7.100 lb)
Potencia: 800 W
Fecha de lanzamiento: 13:48 30 de diciembre de 1995 [1]
Cohete: Delta II 7920
Sitio de lanzamiento: Cabo Cañaveral SLC-17A
Fin de la misión: 5 de enero de, 2012
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: bajo Tierra
Semieje mayor: 6.753 km (4.196 millas)
Excentricidad: 0.0002672
Perigeo: 380,9 km (236,7 mi)
Apogeo: 384,5 km (238,9 mi)
Inclinación: 22.9842 grados
Período: 92.1 minutos
RAAN: 221.8627 grados
Argumento del perigeo: 256.7652 grados
La media de anomalía: 103.2545 grados
La media de movimiento: 14.04728277 rev / día
Época: 27 de de abril de 2016, 10:21:58 UTC [2]
Número de revoluciones: 13218
Telescopio principal
Tipo: contador proporcional: Centelleador (HEXTE)
Las longitudes de onda: 2-250 keV ( X-ray )
Instrumentos: ASM; Todo Sky Monitor (2-12 keV) [3]
PCA: Matriz contador proporcional (2-60 keV)
HEXTE: Experimento de alta energía de rayos X Timing (15-250 keV)
El Explorador Sincrónico de rayos X Rossi (RXTE) es un satélite que observa la estructura temporal de las fuentes de rayos X astronómicos, el nombre de Bruno Rossi. El RXTE tiene tres instrumentos: la matriz proporcional Contador, el Experimento de alta energía de rayos X Timing (HEXTE), y el All Sky Monitor. El RXTE observó rayos X de los agujeros negros, estrellas de neutrones, púlsares de rayos X y los estallidos de rayos X. Fue financiado como parte del programa de explorador, y es a veces también llamado Explorador 69.
RXTE fue lanzado desde Cabo Cañaveral el 30 de diciembre de 1995, sobre un delta cohete, tiene una designación internacional de 1995-074A y una masa de 3200 kg.
Observaciones del Explorador Sincrónico de rayos X Rossi se han utilizado como evidencia de la existencia de la torsión por arrastre efecto predicho por la teoría de la relatividad general. Los resultados han RXTE, a partir de finales de 2007, han utilizado en más de 1400 artículos científicos.
En enero de 2006, se anunció que Rossi había sido utilizado para localizar un candidato agujero negro de masa intermedia denominada M82 X-1.[4] En febrero de 2006, los datos de RXTE se utilizó para probar que el fondo difuso resplandor de rayos X en nuestra galaxia proviene de innumerables, no detectada previamente enanas blancas y de otras estrellas ‘ coronas.[5] En abril de 2008, los datos RXTE se utilizó para inferir el tamaño del agujero negro más pequeño conocido.[6]
Impresión artística del telescopio RXTE
RXTE cesó operaciones científicas, el 3 de enero de 2012.[7]
Científicos de la NASA dijeron que el RXTE fuera de servicio podría volver a entrar en la atmósfera de la Tierra “entre 2014 y 2023”.[8]
Instrumentos
All-Sky Monitor (ASM)
La ASM se compone de tres cámaras de sombra de grandes angulares equipadas con contadores proporcionales con una superficie total de recogida de 90 cm cuadrados. Las propiedades instrumentales fueron: [9]
- rango de energía: 2-12 keV
- Resolución de tiempo: 80% del cielo cada 90 minutos
- Resolución espacial: 3 ‘× 15’
- Número de cámaras sombra: 3, ambos de 6 × 90 grados de campo de visión
- Área de recolección: 90 cm2
- Detector: Xenón contador proporcional, sensible a la posición
- Sensibilidad: 30 mCrab
Fue construido por la RSE en el MIT. El investigador principal fue el Dr. Hale Bradt.
Contador proporcional de Array (PCA)
El PCA es una serie de cinco contadores proporcionales con una superficie total de recogida de 6500 cm cuadrados. El instrumento fue construido por la DUE (anteriormente ‘LHEA’) en el GSFC. El PCA investigador principal fue el Dr. Jean H. Swank.
Las propiedades instrumentales fueron los siguientes:[10]
- rango de energía: 2-60 keV
- resolución de energía: <18% a los 6 keV
- Resolución de tiempo: 1 microsegundo
- Resolución espacial: colimador con 1 grado FWHM (anchura a media altura)
- Detectores: 5 contadores proporcionales
- Área de recepción: 6500 cm2
- Capas: 1 de veto propano; 3 xenón, cada una dividida en dos; 1 capa de veto de xenón
- Sensibilidad: 0,1 mCrab
- Antecedentes: 2 mCrab
El experimento de rayos X de alta energía Timing (HEXTE)
El HEXTE consiste en dos grupos cada uno conteniendo cuatro detectores de centelleo phoswich. Cada agrupación podría “roca” (beamswitch) a lo largo de direcciones ortogonales entre sí para proporcionar mediciones de fondo de 1,5 o 3,0 grados de distancia de la fuente de cada 16 a 128 s. Control automático de ganancia se proporciona mediante el uso de un 241 Am fuente radiactiva montado en el campo de vista de cada detector. Propiedades básicas de la HEXTE fueron los siguientes:[11]
- rango de energía: 15-250 keV
- resolución de energía: 15% a 60 keV
- Tiempo de muestreo: 8 microsegundos
- Campo de visión: 1 grado FWHM
- Detectores: 2 grupos de 4 contadores de centelleo de NaI / CSI
- Área de recepción: 2 x 800 cm2
- Sensibilidad: 1 cangrejo = 360 count / s por clúster HEXTE
- Antecedentes: 50 count / s por clúster HEXTE
El HEXTE fue diseñado y construido por el Centro de Astrofísica y Ciencias del Espacio (CASS) en la Universidad de California , San Diego. El HEXTE investigador principal fue el Dr. Richard E. Rothschild.
Después de la retirada de RXTE, la NASA lanzará NuStar
por Octavio Ortega
16/01/2012
Después de la retirada del satélite RXTE, en órbita desde 1995, la NASA lanzará NuStar, otro satélite que también operará en el ámbito de los rayos X. Consta de dos telescopios ópticos y detectores de nueva generación, observará los rayos más energéticos (6-79 keV), incluyendo los famosos Hard X-ray (de menor longitud de onda y por lo tanto asociados con fotones de energía más alta) que los que actualmente están estudiado XMM-Newton y Chandra.
Para ello, utilizará un lente focal de diez metros de largo. En efecto, para enfocar los rayos X, hay una gran distancia entre los espejos y el detector y el golpeo de los espejos sobre un ángulo de incidencia débil. Es por eso que los telescopios de rayos X utilizan una serie de espejos que concentran a través de sucesivas reflexiones bajo ángulo de incidencia, los rayos X en un punto focal.
En el caso de NuStar y como es difícil lanzar un satélite de más de 10 metros, la distancia entre la óptica y el plano focal se obtiene por medio de un mástil que será desplegado en órbita. La NASA ha utilizado un sistema similar con los paneles solares de la Estación Espacial Internacional.
Después de dieciséis años de servicio, el satélite RXTE será sustituido por NuStar. © NASA
Identificado el momento en que explosiona material en un agujero negro
Posted on 17 enero, 2012 por Felipe Campos
Un equipo internacional de astrónomos ha conseguido identificar el momento en el que se emitieron grandes masas de material a velocidades próximas a la de la luz desde la región que rodea a un agujero negro.
Representación artística del fenómeno. Los proyectiles de plasma proceden de una región próxima al horizonte de sucesos del agujero negro. Crédito: NRAO, Centro Goddard para Vuelos Espaciales.
Un grupo internacional de astrónomos ha podido determinar el momento en el que se emitieron grandes cantidades de material a velocidades cercanas a la de la luz desde la región que rodea a un agujero negro. Dicho descubrimiento, en el que ha participado el investigador Simone Migliari, del Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB) y del Departamento de Astronomía y Meteorología, es el resultado del seguimiento de este fenómeno, que tuvo lugar en un sistema binario formado por un agujero negro y su estrella compañera.
Estas observaciones se realizaron durante 2009 mediante el Very Long Baseline Array (VLBA) y el observatorio espacial Rossi X-Ray Timing Explorer (RXTE) de la NASA. Los resultados están pendientes de su publicación en la revista Monthly Notices of the Royal Astronomical Society.
Se cree que esos proyectiles de plasma proceden de una región próxima al horizonte de sucesos del agujero negro, es decir, el punto a partir del cual nada puede escapar. Según Simone Migliari, “El estudio de la variabilidad rápida de rayos X es como abrir una ventana a los fenómenos más cercanos a los agujeros negros. Las observaciones simultáneas con RXTE y VLBA permiten asociar variaciones específicas de rayos X con la proyección de materia a gran velocidad observada en la banda de radio”.
En este trabajo, liderado por el investigador James Miller-Jones, de la Universidad de Curtin (Australia), y que se presentó el 10 de enero durante el encuentro anual de la Sociedad Astronómica Americana celebrado en Texas, los astrónomos han estudiado un sistema de agujero negro llamado H1743-322, situado a 28.000 años-luz de la Tierra, en la constelación de Escorpio. Desde su descubrimiento, en 1977, ha estallado varias veces. En este trabajo se presenta concretamente el estallido que se produjo entre mayo y agosto de 2009.
Los agujeros negros en sistemas binarios atrapan material de sus compañeros formando así un disco de material que rota alrededor del agujero negro a una gran velocidad. Como consecuencia, la materia se comprime y se calienta lo suficiente como para emitir rayos X.
A su vez, también emiten chorros de flujo constante de materia que son arrojados en dirección perpendicular al disco. En ocasiones desaparecen y se producen eyecciones energéticas en las que se expulsa material a velocidades cercanas a la de la luz, como las que se han estudiado en este trabajo. Este tipo de fenómenos pueden producir tanta energía en una hora como la que emite el Sol en cinco años. Además, tal y como se ha podido comprobar en el estudio, van acompañados de cambios en la emisión de rayos X y en el espectro de radio de manera correlacionada.
RXTE Revela los Núcleos Nublados de Galaxias Activas
19.02.14.- Imagínese una sola nube lo suficientemente grande como para abarcar el Sistema Solar desde el Sol hasta más allá de la órbita de Plutón. Ahora imagine muchas de esas nubes orbitando un vasto anillo en el centro de una galaxia distante, de vez en cuando reduciendo la intensidad de la luz de rayos X producido por el enorme agujero negro de la galaxia.
Utilizando datos del satélite RXTE de la NASA, un equipo internacional ha descubierto una docena de casos en los que las señales de rayos X de galaxias activas reducían su intensidad como consecuencia de una nube de gas que se mueve a través de nuestra línea de visión. El nuevo estudio triplica el número de casos de nubes previamente identificadas en un archivo durante 16 años.
Recreación artística del núcleo nuboso de una galaxia activa. Image Credit: NASA/GSFC
En el corazón de la mayoría de las grandes galaxias, incluyendo nuestra propia Vía Láctea, se esconde un agujero negro supermasivo que pesa de millones a miles de millones de veces la masa del Sol. Cuando el gas cae hacia un agujero negro, éste se recoge en un disco de acreción y se comprime y se calienta, emitiendo finalmente Rayos X. Los centros de algunas galaxias producen inusualmente poderosas emisiones que exceden la producción de energía del Sol en miles de millones de veces. Estos son los núcleos activos de galaxias o AGN.
“Una de las grandes preguntas sin respuesta sobre los AGN es como gases a miles de años luz de distancia son canalizados hacia el disco de acreción caliente que alimenta el agujero negro supermasivo”, dijo Alex Markowitz, astrofísico de la Universidad de California, San Diego y del Observatorio Karl Remeis en Bamberg, Alemania. “Entender el tamaño, la forma y el número de nubes lejos del agujero negro nos dará una mayor idea de cómo funciona este mecanismo de transporte.”
El estudio es el primer estudio estadístico de los entornos alrededor de agujeros negros supermasivos y es el de más larga duración de un estudio de seguimiento de AGN llevado a cabo en rayos X. En el documento los científicos describen varias propiedades de las nubes que ocultan, que varían en tamaño y forma, pero con un promedio de 6.500 millones de kilómetros de un extremo a otro – mayor que la distancia que separa a Plutón del Sol – y dos veces la masa de la Tierra.
IRTS
El telescopio infrarrojo espacial (IRTS) es lanzado por Japón en marzo de 1995. Durante su misión de 28 días, el IRTS hace un estudio de 7% del cielo con sus cuatro instrumentos: un doble espectrómetro en el infrarrojo cercano y mediano a longitudes de onda de 1,4 a 4 micrones y de 4,5 a 11 micrones, respectivamente; un rastreador de líneas espectrales en el infrarrojo lejano, que estudia las líneas de oxígeno a 63 micrones y del carbono a 158 micrones; y un fotómetro en el infrarrojo lejano que estudia el cielo en cuatro bandas centradas en 150, 250, 400, y 700 micrones. Estos datos mejoran nuestro conocimiento de la cosmología, la materia interestelar, las estrellas tardías y el polvo interplanetario.
El telescopio infrarrojo espacial (IRTS)* [página en inglés], lanzado en marzo de 1995, es el primer satélite infrarrojo astronómico del Japón. Durante su misión de 28 días, el IRTS estudió 7% del cielo utilizando cuatro instrumentos: un doble espectrómetro en el infrarrojo cercano y mediano, a longitudes de onda de 1,4 a 4 micrones y de 4,5 a 11 micrones, respectivamente; un rastreador de líneas espectrales en el infrarrojo lejano, que estudió las líneas del oxígeno y del carbono a 63 y 158 micrones; y un fotómetro en el infrarrojo lejano, que analizó el cielo en cuatro bandas centradas en 150, 250, 400 y 700 micrones. Estos datos han aumentado nuestro conocimiento de la cosmología, la materia interestelar, las estrellas tardías y el polvo interplanetario.
Operator: NASDA; ISAS; NEDO; USEF
COSPAR ID: 1995-011A
SATCAT №: 23521
Website: www.isas.jaxa.jp/e/enterp/missions/sfu.shtml
Duración de la misión: 10 meses
Spacecraft properties Manufacturer: Mitsubishi Electric
Launch mass: 3,846 kilograms (8,479 lb)
Landing mass: 3,492 kilograms (7,699 lb)
Lanzamiento: 18 March 1995, 08:01 UTC
Rocket: H-II 3F
Lugar: Tanegashima Yoshinobu 1
Recogido por: Space Shuttle Endeavour STS-72
Recogido el día: 13 January 1996
Fecha de aterrizaje: 20 January 1996, 07:41:41 UTC
Lugar: Kennedy SLF Runway 15
Orbital parameters
Reference system: Geocentric
Regime: Low Earth
Perigee: 470 kilometres (290 mi)
Apogee: 492 kilometres (306 mi)
Inclination: 28.4 degrees
Period: 94.22 minutes
El satélite Unidad espacial fue lanzado desde el Centro Espacial de Tanegashima desde un vehículo H-II. [2] Transportaba materiales de prueba y los datos de la investigación que realizó el valor de la NASA. Se recuperan los datos de la unidad volante espacial por el transbordador espacial Endeavour el 20 de de enero, 1996 (el cual fue de 10 meses después del lanzamiento del satélite Unidad Espacial. [2]
La idea detrás de la aplicación de la SFU fue un esfuerzo conjunto de múltiples importante corporaciones. Los que estaban involucrados con el lanzamiento eran Instituto de Ciencia espacial y Astronáutica, la Agencia Nacional de Desarrollo espacial, y el Ministerio de Comercio Internacional e Industria. [3]
Después que la lanzadera devuelve la SFU desde el espacio, la SFU es transportado a Japón y renovados para el siguiente vuelo. [4]
Con la finalidad original detrás de la SFU fueron a [5] permitirá a los investigadores un mejor acceso a las condiciones de investigación espacial. Dar a los investigadores una instalación experimental de grupo. Ser capaz de volver a utilizar la SFU para ahorrar dinero recuperar datos
Una variedad de sistemas que estaban en funcionamiento dentro de la SFU nunca se había aplicado antes. Equipo a bordo apoyó un telescopio infrarrojo, matriz bidimensional solar, alta tensión del campo solar, el diagnóstico del plasma espacial, la propulsión eléctrica, la experimentación de materiales, dinámica de gases, productos químicos de calentamiento de gradiente, calefacción isotérmica horno y mucho más. [6]
El núcleo del sistema que fue construido en el SFU contenía un armazón de aluminio octogonal. Dentro de ese eran ocho cajas de forma trapezoidal. [6] El SFU se conecta directamente al Centro Espacial Kagoshima. [7]
Había un gran número de diversos tipos de experimentos que se realizaron a bordo de la SFU durante su ciclo de vida del lanzamiento. Esos experimentos, y los datos de luz relacionados con ellos se enumeran a continuación.
Telescopio de infrarrojos en el espacio (IRTS) – El experimento se llevó a cabo IRTS por el telescopio infrarrojo que estaba a bordo del SFU. La intención era producir información importante en la historia del universo y la estructura de la Vía Láctea. El telescopio tenía un ventilador de refrigeración de helio súper fluido construido en él para evitar que se sobrecaliente [8]
Array 2D -. El sistema de matriz 2d se lanzó como un pequeño módulo dentro de la SFU. Este experimento se despliega para mostrar que las estructuras grandes podrían (de hecho) se construirán en el espacio [9]
HVSA -. La matriz solar era una fuente de energía puesto en este sistema para dirigir múltiples experimentos. Se utiliza para probar la creación de “electricidad” en la densidad del espacio de la utilización de la tecnología única [10]
SPDP -. Esto fue utilizado en la SFU para probar cosas van muy rápido en el espacio. SPDP significa (Paquete de diagnóstico de plasma espacial) y se implementa con diferentes sensores para comprobar los efectos de la velocidad en la espesura de la gravedad. [11]
EPEX – Este hardware que fue construido en el SFU estaba destinado a hacer experimentos relacionados con la creación de combustible y la gestión en el espacio [12]
MEX -. Este software estaba destinado a revisar e investigar los efectos de diversos tipos de líquido dentro de un entorno espacial [13]
BIO – Esta prueba requiere tomar especies vivas en el espacio. Se trataba de la observación de una eclosión de los huevos en el espacio profundo. [14]
El IRTS es un telescopio infrarrojo enfriado criogénicamente que elevado a bordo de una plataforma espacial de usos múltiples SFU (folleto Unidad Espacial). Fue lanzado por un nuevo cohete HII japonesa el 18 de marzo de 1995. Se encuestó a aproximadamente el 7% del cielo con un relativamente amplio haz durante su misión de 28 días. Cuatro instrumentos de plano focal hechas observaciones simultáneas del cielo en longitudes de onda de 1 a 1000 micron. El IRTS agregará información significativa sobre la cosmología, la materia interestelar, las estrellas tardías y archivo de datos dust. IRTS interplanetarias están abiertos para el público el archivo de datos del espacio de la ICEA sistema, los dardos. Actualmente se incluyen los catálogos de fuentes puntuales y NIRS MIRS y los mapas de imágenes de infrarrojo lejano de la película y FIRP.
El telescopio IRTS tenía una abertura de 15 cm, y se enfrió criogénicamente con helio líquido.
Instrumentos focales plano de la IRTSNIRS (Espectrómetro Infrarrojo Cercano) El NIRS es un espectrómetro de rejilla con dos elementos 12 InSb matrices lineales. La cobertura de longitud de onda rangos from1.4 micras a 4,0 micras, con una resolución espectral de 0,12 micras. El campo de visión es de 8 minutos de arco X 8 arcmin. MIRS (Espectrómetro Infrarrojo Medio) El MIRS es también un espectrómetro de rejilla con 32 Si: fotoconductores Bi. La cobertura de longitud de onda varía de 4,5 micras a 11,7 micras, con una resolución espectral de 0,23 hasta 0,36 micras. El campo de visión es de 8 minutos de arco X 8 arcmin. FILM (infrarrojo lejano Línea Mapper) (en japonés) La película es un espectrómetro de rejilla diseñado para medir de forma simultánea [CII] 158 micras línea y [OI] intensidades de línea de 63 micras y emisión cotinuum cerca de la línea [CII] con una resolución espacial de 13 minutos de arco X 8 minutos de arco. Los detectores están sin tensión y destacaron Ge: fotoconductores Ga.
FIRP (fotómetro de infrarrojo lejano) El FIRP ofrece la fotometría absoluta en cuatro bandas centradas a 150, 250, 400 y 700 micras con una resolución espectral y espacial de 3 grados Resolución 0.5. La alta sensibilidad se consigue mediante el uso de detectores bolométricos operados a 300 mK en un circuito de puente de corriente alterna. El ciclo cerrado 3He refrigerador se recicló tres veces en órbita. La RIET fue diseñado para la radiación IR difusa.
La RIET a bordo de una plataforma espacial experment múltiples pupose llamada SFU (unidad volante espacial). Hay varios tipos de experimentos se realizaron en SFU.
SFU junto con el IRTS fue recuperado por el transbordador espacial STS-72 el 13 de enero de 1996. El astronauta japonés Wakata operó el brazo robótico a bordo de la lanzadera para recuperar SFU.
STS-72 fue una misión del transbordador espacial Endeavour para capturar y volver a la Tierra una nave espacial investigación de la microgravedad japonés conocido como unidad volante espacial (SFU). La misión lanzado desde el Centro Espacial Kennedy, Florida el 11 de enero de 1996.
SOHO
El Solar and Heliospheric Observatory (SOHO) es una sonda espacial lanzada el 2 de diciembre de 1995 para estudiar el sol, comenzando sus operaciones científicas en mayo de 1996. Es un proyecto conjunto entre la ESA y la NASA. Aunque originalmente se planeó como una misión de sólo dos años, SOHO continúa en funcionamiento tras más de diez años en el espacio. Además actualmente es la fuente principal de datos del sol en tiempo real tan necesarios para la predicción del tiempo espacial. Hoy por hoy es una de las dos sondas (junto con el Advanced Composition Explorer) que se encuentran en la vecindad del punto L1, uno de los Puntos de Lagrange.
Dicho punto se define como aquel en que la gravedad de la tierra contrarresta la del sol, por lo que una sonda en dicho lugar quedaría en equilibrio dinámico, por tanto la órbita será mucho más estable.
Dicha estabilidad se consigue exactamente en el punto L1, pero en realidad SOHO orbita alrededor del punto L1 cada once meses, para favorecer las comunicaciones.
En condiciones normales la sonda transmite continuamente a 200 Kbps de fotografías y otras medidas solares a través de la Red del Espacio Profundo (Deep Space Network). Los datos de actividad solar del SOHO se usan para predecir las llamaradas solares, que tan perjudiciales pueden resultar para los satélites.
En 2003 la ESA comunicó el fallo de uno de los motores necesarios para reorientar la antena hacia la tierra para transmitir los datos, lo que causa entre dos y tres semanas de bloqueo de datos cada tres meses. De todos modos, los científicos de la ESA y de la Red de espacio profundo (DSN) usan la antena de baja ganancia junto con las antenas más grandes de las estaciones terrestres del DSN para evitar la pérdida de ningún dato, solamente una ligera reducción del flujo de datos una vez cada tres meses.
Instrumentos
SOHO contiene doce instrumentos principales, cada uno capaz de observar de manera independiente el Sol o alguna de sus partes. Estos son:
- Global Oscillations at Low Frecuence (GOLF): mide variaciones de la velocidad en todo el disco solar para explorar el núcleo del sol.
- Variability of Solar Irradance (VIRGO): mide oscilaciones y constantes en todo el disco solar, también para estudiar su núcleo.
- Michelson Doppler Imager (MDI): mide el campo de velocidad y el magnético en la fotosfera, para estudiar la zona de convección, la cual forma la capa exterior del interior del Sol, y los campos magnéticos que controlan la estructura de la corona. Véase también Heliosismología
- Solar UV Measurement of Emitted radiation (SUMER): mide los flujos de plasma, temperatura y densidad de la corona.
- Coronial Diagnostic Spectrometer (CDS): mide densidad, temperatura y flujos coronales.
- Extreme UV Imaging Telescope (EIT): mide la estructura y actividad de la zona baja de la corona.
- UV Coronagraph and Spectrometer (UVCS): mide densidades y temperaturas de la corona.
- Solar Wind Anisotropies (SWAN): Usa un telescopio sensible a la longitud de onda característica del hidrógeno para medir el flujo másico del viento solar, mapear la densidad de la heliosfera y observar las estructura de las corrientes de viento solar a gran escala.
- Charge, Element, Isotope Analysis (CELIAS): estudia la composición iónica del viento solar
- Suprathermal & Energetic Particle Analyser (COSTEP): Estudia la composición iónica y electrónica del viento solar.
- Energetic Particle Analyser (ERNE): Estudia la composición iónica y electrónica del viento solar.
- Large Angle and Spectrometric Coronagraph (LASCO): Estudia la estructura y evolución de la corona solar mediante la creación de un falso eclipse solar.
Las observaciones de algunos de estos instrumentos pueden tener formato de imagen, la mayoría de las cuales esta disponible en internet para uso público o de investigación (ver página oficial). Otras series de datos, como espectros y medidas de partículas en el viento solar, no se prestan a este tipo de difusión. Las imágenes publicadas suelen estar en el rango de longitudes de onda o frecuencias de visible hasta ultravioleta. Las imágenes tomadas parcial o exclusivamente en longitudes de onda no visibles, se muestran (no sólo en SOHO, sino cualquier imagen de este estilo) en falso color.
Como consecuencia de su observación del Sol, SOHO ha descubierto cometas que bloqueaban la luz del Sol por un instante. Aproximadamente, la mitad de los cometas conocidos han sido descubiertos por el SOHO, de los cuales un 85% son los llamados Rasantes del sol Kreutz o Sungrazers. Hasta agosto de 2011 ha descubierto ya más de 2.200 cometas.
Los objetivos científicos primarios del Observatorio Solar y Heilosférico son investigar (1) los procesos físicos que forman y calientan la corona del Sol, la mantienen y dan lugar a los vientos solares, y (2) la estructura interior del Sol. La nave spacial fue lanzada a bordo del cohete Atlas 2-AS el 12 de Diciembre de 1995 desde Cabo Cañaveral, Florida.
Las imágenes y los diagnósticos espectroscópicos del plasma del cromosfera solar, la región de transición y la corona, así como las medidas in-situ de los vientos solares se emplean para estudiar la corona y los vientos solares. La estructura interior del Sol se investiga usando medios heliosismológicos y mediante la observación de las variaciones en la radiación solar. SOHO es parte del Programa Internacional de Física Solar-Terrestre (ISTP).
La nave espacial SOHO está estabilizada en tres ejes y apunta hacia el Sol con una precisión de +/- 10 segundos de arco cada 15 min. Consta de un módulo de carga donde se acomodan los instrumentos y un módulo de servicio que alberga los subsistemas de la nave y los paneles solares. SOHO ocupa una órbita en el punto Lagrangiano L1 Tierra-Sol desde donde puede observar ininterrumpidamente al Sol. La vida de la nave se estima en dos años, pero los consumibles a bordo son suficientes para una período extra de cuatro años de operación. El módulo de carga comprende doce instrumentos, produciendo una corriente continua de 40 kbs, excepto cuando el observatorio de oscilaciones solares Michelson Doppler (MDI) es operado en modo de alta densidad, lo que produce 160 kbs. El modo de alta resolución se emplea durante períodos diarios de ochos horas o durante campañas específicas. Cintas magnéticas almacenan los datos entre los contactos telemétricos con el Servicio de Operaciones Experimentales, situado en el Centro de Vuelos Espaciales Goddard de la NASA.
La nave espacial SoHO (Solar & Heliospheric Observatory), lanzada al espacio por la Agencia Espacial Europea (ESA) y la NASA cumple dos décadas ya. Su despegue se dio a mediados de la década de 1990 y hasta la fecha sigue proporcionando valiosa información astronómica.
El vehículo cuenta con herramientas para llevar a cabo doce experimentos diferentes todos ellos relacionados con el Sol. Algunos de ellos se enfocan al núcleo, unos más a la corona exterior y otros más al viento solar. Dos de esos experimentos, denominados Virgo y Golf, cuentan con una significativa participación de científicos españoles.
Por lo pronto, SoHO se ubica a millón y medio de kilómetros de nuestro planeta. Se trata de un satélite especial para desplazamiento estabilizado con una extensión de 10 metros, al tener desplegados los paneles solares. Estos últimos pueden ser dirigidos a cualquier parte del Sol de acuerdo a las necesidades de la nave. La misión estaba prevista para completarse en dos años, con dos más de prórroga, de manera que tenía que haber concluido a finales de 1999. Afortunadamente tuvo un éxito inusitado y actualmente se mantiene en órbita.
La más reciente extensión de tiempo le fue otorgada a la misión el 20 de noviembre del 2014 y comprende 4 años más. Tal decisión fue tomada por los astrónomos responsables del proyecto, considerando la valía de los datos que nos sigue haciendo llegar esta nave espacial.
Durante los veinte años que ha estado activa la misión SoHO, han sido enviados al espacio otros artefactos diseñados para monitorear el Sol. Específicamente han sido la NASA y la agencia espacial japonesa los responsables de estos lanzamientos. De cualquier manera los científicos dedicados al estudio de nuestro astro coinciden en que mucha de la información que proporciona SoHO, continúa siendo única y extremadamente valiosa.
Hay que considerar que este satélite solar ha experimentado uno de los eventos más dramáticos de los anales de la astronáutica. En 1998, el centro de control de la misión SoHO perdió contacto con la nave y la operación quedó suspendida. Los conocedores piensan que tal vez la nave estuvo extraviada en el espacio, orientada hacia cualquier zona, acaso dando giros sin control y con los paneles solares sin desplegar. Pronto la NASA y la ESA se coordinaron para la recuperación de la nave. El procedimiento que se siguió para ello, está considerado como una de las más grandes hazañas en la historia de la exploración espacial.
El distante observatorio orbita el Sol a 1,5 millones de kilómetros, o 932.000 millas de distancia de la Tierra, y acaba de descubrir su cometa número 3000 (más que cualquier otra nave espacial o que cualquier otro astrónomo). Y casi todos los cometas que descubrió SOHO han sido destruidos.
“Simplemente se desintegran cada vez que observamos uno”, dijo Karl Battams, un científico solar del Laboratorio de Investigaciones Navales (Naval Research Labs, en idioma inglés), en Washington, D.C. Desde el año 2003, Battams ha estado a cargo del funcionamiento del sitio del SOHO en Internet a través del cual se puede ver cometas. “SOHO ve cometas que pasan muy cerca del Sol; y estos simplemente no pueden soportar la intense luz solar”.
La abrumadora mayoría de los descubrimientos de cometas que realiza el SOHO corresponde a la familia Kreutz. Los cometas Kreutz que rozan el Sol son fragmentos que provienen de la ruptura de un solo cometa gigante, que se produjo hace miles de años. Se denominan de este modo en honor al astrónomo alemán del siglo XIX Heinrich Kreutz, quien los estudió en detalle. En promedio, se descubre un nuevo miembro de la familia de cometas Kreutz cada tres días. Lamentablemente para estos pequeños cometas, sus órbitas se precipitan peligrosamente cerca del Sol.
“Hay un solo cometa Kreutz que rodeó el Sol; se trata del cometa Lovejoy. Y estamos seguros de que se desintegró un par de semanas después de eso”, dice Battams.
A pesar de que los cometas que descubre el SOHO se destruyen rápidamente, poseen un gran valor científico. Por ejemplo, las colas de los cometas son azotadas y guiadas por los campos magnéticos del Sol. La observación de cómo se doblan y se balancean las colas puede proporcionar mucha información a los investigadores sobre el campo magnético del Sol.
Antes del lanzamiento del SOHO, en el año 1995, solamente se había descubierto aproximadamente una docena de cometas desde el espacio, y alrededor de 900 habían sido descubiertos desde nuestro planeta, a partir del año 1761. El SOHO ha dado vuelta el marcador respecto de estas cifras y se ha convertido en el mayor cazador de cometas de todos los tiempos.
Pero el SOHO no ha logrado estar en este pedestal solo. La nave espacial depende de personas que examinan cuidadosamente estos datos. Todos pueden ayudar porque las imágenes que proporciona el SOHO se encuentran disponibles gratuitamente en Internet, en tiempo real. Muchos astrónomos voluntarios aficionados escudriñan los datos diariamente en busca de signos de la existencia de un nuevo cometa. El resultado: el 95% de los cometas que descubre el SOHO han sido hallados por científicos aficionados.
Siempre que alguien divisa un cometa, ellos lo informan a Battams. Él analiza la imagen para confirmar lo que se vio y luego la envía a la Oficina Central para Telegramas Astronómicos (Central Bureau for Astronomical Telegrams, en idioma inglés), la cual le confiere un nombre oficial.
Y el nombre es… ¡sí, lo adivinó!: “SOHO”.
Mientras que los cometas que se ven desde la Tierra llevan el nombre de la persona que los descubrió, los cometas que se observan por primera vez desde el espacio a través de un telescopio llevan el nombre de la nave espacial. El cometa número 3000 se llama “SOHO-3000”.
Naturalmente, ya resultó destruido. Pero al SOHO no le importa. El cazador de cometas más grandioso de todos los tiempos ya continuó avanzando para descubrir el próximo cometa rasante del Sol.
ISO
Observatorio Espacial Infrarrojo
El Observatorio Espacial Infrarrojo (en inglés: Infrared Space Observatory, ISO) es un telescopio espacial diseñado para observar en el infrarrojo y operado por la Agencia Espacial Europea (ESA) en colaboración con las agencias espaciales ISAS (integrada actualmente en la JAXA de Japón) y la estadounidense NASA. Su construcción fue inicialmente propuesta en 1979 y fue puesto en órbita el 17 de noviembre de 1995 por un Ariane 44P desde Kourou, funcionando hasta el 16 de mayo de 1998, cuando fue incinerado en la atmósfera. En su tiempo fue el satélite de estudios en infrarrojo más sensible lanzado nunca.
El telescopio contaba con un espejo principal de 0.6 m y refrigeración por medio de helio líquido. El espejo principal era capaz de enviar la luz a cuatro instrumentos diferentes a través de un espejo piramidal. Los cuatro instrumentos eran:
- ISOCAM, una cámara en infrarrojo operativa de 2.5 a 18 micras.
- ISOPHOT un fotopolarímetro operativo entre 2.5 y 240 micras capaz de observar objetos a muy pocos grados por encima del cero absoluto.
- SWS (Short-Wave Spectrometer) capaz de observar de 2.4 a 45 micras, capaz de analizar la composición química de objetos muy fríos.
- LWS (Long-Wave Spectrometer) operativo entre las 45 y 197 micras enfocado al estudio espectroscópico de objetos muy fríos como nubes de polvo en el espacio interestelar.
La vida efectiva del satélite ISO estaba limitada por su depósito de helio líquido como refrigerante. Inicialmente contaba con un depósito de 2286 litros de helio líquido que fue agotándose conforme proseguía la misión. Inicialmente se le preveía una duración de 18 meses, durando finalmente 28.
La Agencia Espacial Europea (ESA) lanzó el Observatorio Espacial Infrarrojo (ISO)* [página en inglés] en noviembre de 1995. Este satélite observó longitudes de onda entre 2,5 y 240 micrones. No solamente abarcó un ancho de banda mucho más amplio que el IRAS, sino que también era miles de veces más sensible que éste y posee una mejor resolución espacial. ISO recopiló datos por cerca de 2 años y medio —tres veces más tiempo que IRAS—, hasta que consumió todo el helio refrigerante a principios de 1998. Su instrumental midió detalles de las regiones extremas del espectro infrarrojo —las ondas más cortas y las más largas—, e incluía una cámara infrarroja con dos matrices de detectores y un fotómetro. A diferencia de IRAS, que realizó un estudio infrarrojo del espacio, ISO funcionó de manera similar a los telescopios terrestres, en los cuales los astrónomos proponen distintas observaciones para estudiar en detalle objetos o fenómenos específicos. Centenares de astrónomos de distintos países aún continúan analizando los datos recopilados por ISO, de los que se espera obtener nuevos descubrimientos* [página en inglés] sobre el universo. ISO ya ha detectado hielo seco en el polvo interestelar, así como hidrocarburos en algunas nebulosas.
La ESA y Europa tienen una larga tradición en astronomía infrarroja, que se mantiene ahora con la participación del Reino Unido, Holanda y la ESA en Akari. La ESA está proporcionando soporte a Akari a través de su estación de tierra en Kiruna (Suecia), en una colaboración parecida a la otorgada por los japoneses en ISO. Además, un equipo en el Centro de Astronomia Espacial de la ESA (ESAC) en Villafranca, Madrid, colabora en el barrido del cielo infrarrojo, en concreto en la mejora de la resolución del apuntado, que implica medir con precisión la posición de los objetos observados. Esto es esencial para acelerar la producción de catálogos celestes y, en última instancia, proporcionar un censo del Universo infrarrojo. Los científicos e ingenieros de ESAC han desarrollado el software que ha ya sido utilizado con éxito en la primera fase operacional de la misión. A cambio de su colaboración, la ESA ha obtenido el diez por ciento del tiempo de observación en la segunda y tercera fases operacionales de Akari.
ESAC también funciona como centro de soporte a usuarios europeos de Akari. Desde ESAC el mismo equipo (que también sigue trabajando como el Centro de Datos de ISO) ha gestionado la convocatoria de peticiones de tiempo de observación realizada por la ESA para adjudicar el tiempo de Akari a los astrónomos europeos. La respuesta de la comunidad astronómica europea a la convocatoria ha sido muy elevada. Cuarenta y dos Investigadores Principales de nueve países europeos han enviado cincuenta peticiones, una cuantidad ligeramente superior a la obtenida en la convocatoria paralela para las comunidades japonesas y coreanas, que tienen a disposición el doble del tiempo de observación. El grado de “sobresuscripción” (tiempo de observación solicitado frente a tiempo disponible) de la convocatoria europea es comparable a la de otras misiones como de la ESA, como el XMM-Newton. El programa de observaciones de Akari se selecciona también a través de un proceso de revisión por parte de comités paralelos, de las propuestas que son enviadas por los astrónomos en la convocatoria abierta.
La cooperación ofrecida a la ESA por parte de Japón contribuirá a mantener en la vanguardia de la investigación a los astrónomos europeos, mientras trabajan con los datos de ISO y esperan el lanzamiento de la próxima misión infrarroja de la ESA, Herschel, a principios de 2008. Herschel será el mayor y más sensible telescopio espacial, con un diámetro de 3,5 metros. Sus datos se sumarán a los del censo del Universo infrarrojo de Akari, y a los de otras misiones como ISO, de la ESA, y Spitzer, de la NASA. Herschel desvelará cómo se formaron y evolucionaron las primeras estrellas y galaxias, y estudiará la química del cosmos más frío y oculto.
Satélite espacial europeo ISO supera al Hubble
Por: DAVID JIMENEZ De El Mundo para EL TIEMPO 19 de febrero de 1996
Después de cuatro meses de rondar el universo, ha conseguido acercarse más que nadie a galaxias, estrellas y planetas. También al origen de la Tierra y el Sol.
El proyecto forma parte de Programa de la Agencia Espacial Europea (ESA) y su control se lleva desde la base instalada junto a la pequeña localidad de Villafranca del Castillo (Madrid, España).
Allí se reunieron la semana pasada los responsables e investigadores encargados de los resultados para anunciar que el ISO está dándonos nuevas y valiosas informaciones sobre el Sol y la Tierra.
Las razones de este optimismo no son casualidad. El satélite europeo, lanzado el pasado 17 de noviembre, consigue ver a través de las densas nubes que se forman en el espacio y sacar imágenes desconocidas hasta ahora.
El ISO ha logrado ver incluso allá donde ni siquiera el prestigioso telescopio Hubble de la NASA lo había conseguido.
Pronto habrá nuevas revelaciones que pueden ser prometedoras, vaticinó hoy el director general de la Agencia Espacial Europea, J.M. Luton.
Por primera vez, las imágenes exhibidas dejaban ver las consecuencias que produce una colisión de galaxias, mostrando los millones de estrellas que quedan esparcidas.
El telescopio infrarrojo europeo puede realizar desde la Tierra el seguimiento de un hombre en la luna simplemente por el calor que éste desprende.
Este es un avance científico que permite detectar los objetos más fríos del Universo a través de las nubes de polvo cósmico. Tan pronto puede penetrar en el interior y origen de las galaxias como detectar el calor emitido por un cubito de hielo a un kilómetro de distancia.
El Sol también está más cerca, afirmó la Agencia Espacial Europea. Porque los expertos reunidos hoy coincidieron en que son las estrellas las que tienen la respuesta de nuestra existencia, el gran secreto.
La profesora Catherine Cesarsky, investigadora principal del Isocam, uno de los instrumentos que transporta el telescopio, explicó que el ISO puede observar el interior de galaxias muy jóvenes y trazar su historia, lo que nos permitirá entender mejor nuestra galaxia, la Vía Láctea, y cómo se crearon las condiciones para la vida.
Para García Castañer, director de ESOC (Centro de Operaciones de la ESA), Europa ha dejado de estar a la zaga de Estados Unidos en esta ciencia, y por supuesto, en lo que se refiere a la observación astronómica.
Se calcula que hacia el mes de noviembre de 1997 el ISO morirá y quedará totalmente inoperante. A partir de entonces, no será más que un objeto en el espacio, ya que su retirada de la órbita es demasiado costosa.
Será el final de un proceso normal debido a la evaporación del helio superfluido, que transporta para mantener bajo cero la temperatura de los instrumentos de observación (dos espectrómetros de onda larga y corta, una cámara -Isocam- y un fotómetro de imagen). Sin embargo, la vida del ISO va a ser más larga de lo esperado, al menos seis meses, debido a que esa evaporación está siendo más lenta de lo previsto.
Antes de que eso ocurra, el satélite habrá mandado información y estudios de cerca de 30.000 objetos del universo (planetas, estrellas, galaxias…).
Una vez inoperante, tendremos datos y acontecimientos para estudiar los resultados durante años, aseguró el científico italiano Alberto Salama, uno de los 50 investigadores que se encargan de vigilar el ISO las 24 horas del día.
Será la continuidad de lo que para muchos es una carrera imparable hacia el conocimiento de nuestro origen, el de la Tierra y el del Sol.
El telescopio espacial ‘ISO’ descubre procesos de formación de estrellas en galaxias primitivas
Madrid 13 NOV 1996
Las regiones del cielo donde nacen estrellas emiten mucha radiación en infrarrojo. En regiones cercanas, sobre todo en nuestra galaxia, la Vía Láctea, el proceso se ha llegado a conocer bien. Ahora, un grupo de astrónomos ha logrado identificar esos procesos en unas galaxias lejanísimas, a unos 10.000 millones de años luz de distancia, y la sorpresa, además, ha sido comprobar que la velocidad a que se crean estrellas allí es entre diez y mil masas solares por año, mucho más alta que la de nuestro entorno galáctico, donde la tasa de producción de astros es de una masa solar anual.Para hacer esta investigación, anunciada la semana pasada en Londres, en una reunión de la Royal Astronomical Society, Michael Rowan-Robinson (Imperial College) y sus colegas han utilizado el telescopio infrarrojo en órbita ISO, un satélite científico de la Agencia Europea del Espacio (ESA) en funcionamiento desde hace casi un año. Y lo han apuntado hacia una región minúscula del cielo que está siendo escudriñada intensamente por los astrónomos: el denominado Deep Field, que se realizó hace casi un año con el telescopio espacial Hubble.
Esta región cubre un área del cielo de tan sólo cinco minutos de arco cuadrados (el tamaño aparente de Venus). En la imagen del Deep Field, que plasma en dos dimensiones las miles de galaxias que hay en el fino cono de observación desde aquí hasta los límites del un¡ verso visible, aparecen algunas galaxias tan lejanas que su luz ha debido tardar unos 10.000 millones de años en llegar a la Tierra, por lo que se ven aquí ahora tal y como eran hace 10.000 millones de años, es decir, poco después de que se formasen en el universo muy joven (un 10% de su edad actual).
En el proceso de nacimiento de estrellas, las nubes de gas y polvo van condensándose por efecto de la gravedad hasta formar bolas de materia que se enciende en las reacciones de fusión nuclear que hacen brillar a los astros. El polvo presente en estas regiones absorbe la radiación más energétrica de las estrellas recién formadas, impidiendo su observación en el visible; esto provoca un calentamiento del polvo a temperaturas de decenas o pocos centenares de grados y, como consecuencia, la radiación se reemite en el infrarrojo.
Por eso los astrónomos han necesitado el avanzado telescopio infrarrojo ISO para detectar el proceso en galaxias lejanas. Rowan-Robinson y sus colegas han identificado varias fuentes de radiación infrarroja que pueden asociarse a galaxias primitivas detectadas en el Deep Field en la longitud de onda visible. De los siete mejores casos identificados, dos probablemente son estrellas gigantes rojas en esas galaxias, pero los otras cinco son interpretadas como emisiones de regiones de polvo en las que se están produciendo tremendas erupciones de formación estelar según por Rowan-Robinson y sus colegas, incluidos los españoles Pérez Fournon (Instituto de Astrofísica de Canarias) y González-Serrano (Instituto de Física de Cantabria).
“Creemos que estamos viendo el principal episodio de formación estelar en algunas de esas galaxias, proceso durante el cual se están fabricando la mayoría de los elementos pesados en una galaxia, la materia de la que estamos hechos nosotros (carbono, nitrógeno, oxígeno, hierro, etcétera)”, ha dicho Rowan-Robinson.
Termina la vida útil del telescopio espacial ISO
Madrid 17 MAY 1998
El equipo de científicos del satélite astronómico ISO celebró ayer con champán la desconexión de este telescopio espacial europeo, que durante sus dos años y medio de vida ha sido controlado desde la Estación de Seguimiento de Villafranca del Castillo (Madrid).El ISO, de la Agencia Europea del Espacio (ESA), ha durado dos años y medio, y durante este tiempo ha sido el mejor telescopio espacial para detectar la luz infrarroja que emiten los objetos astronómicos. La luz infrarroja no puede ser observada en su totalidad desde la Tierra porque la atmósfera lo impide y, sin embargo, los astrónomos necesitan estudiarla para desentrañar, por ejemplo, cómo nacen y mueren las estrellas o qué moléculas hay en el espacio interestelar.
La desconexión del satélite, a las 14:00 de la tarde de ayer, pone fin a la misión. El ISO no podía realizar más observaciones porque se había agotado su provisión de helio líquido, necesario para enfriar sus instrumentos. Los científicos consideran un éxito la misión.
Ahora el ISO apagado irá modificando su órbita cada vez más por efecto de la gravedad terrestre. Es imposible calcular exactamente cuándo, pero se estima que hacia el 2020 el ISO estará rozando las capas superiores de la atmósfera y la fricción acabará desintegrándolo.
El ISO de la ESA proporciona las primeras imágenes del nacimiento de estrellas monstruosas
20 de julio de 2006 | 12:00 am
El descubrimiento permite a los astrónomos comenzar a investigar por qué sólo se da el crecimiento de estas estrellas masivas en algunas regiones del espacio.
El espacio está lleno de nubes gigantes de gas desperdigadas.
Ocasionalmente, regiones de estas nubes se colapsan, formando estrellas. ‘Una de las principales cuestiones en el campo de estudio es por qué algunas nubes producen tanto estrellas de gran masa como estrellas de pequeña masa, mientras que otras producen sólo estrellas de pequeña masa’, pregunta Oliver Krause del Instituto Max Planck de astronomía, Heidelberg y el Observatorio Steward, Arizona.
Es difícil deducir cuáles son las condiciones necesarias para la formación de estrellas de gran masa porque estos monstruos estelares se forman muy lejos y están oscurecidas tras cortinas de polvo. Sólo las largas longitudes de onda de la radiación infrarroja pueden escapar de estos envoltorios opacos y revelar los núcleos de polvo a baja temperatura que marcan los lugares de formación estelar. Esta radiación es exactamente la que ha recogido la cámara de infrarrojo lejano ISOPHOT del ISO.
Stephan Birkmann, Oliver Krause y Dietrich Lemke, todos ellos del Instituto Max Planck de Astronomía, Heidelberg, utilizaron los datos de la ISOPHOT para localizar dos núcleos intensamente fríos y muy densos, cada uno de los cuales contenía suficiente materia para formar al menos una estrella masiva. ‘Esto abre una nueva era de observación de los detalles tempranos de la formación de estrellas de gran masa’, dice Krause.
Los datos fueron recopilados por la Inspección Serendipia de la ISOPHOT (ISOPHOT Serendipity Survey, ISOSS), un inteligente estudio liderado por Lemke. Este se dio cuenta de que mientras el ISO giraba de un objeto celeste a otro se estaba perdiendo precioso tiempo de observación. Organizó que la cámara de infrarrojo lejano ISOPHOT grabase continuamente durante estas recolocaciones y enviara los datos a la Tierra.
#2#Durante la misión del ISO, que duró dos años y medio entre 1995 y 1998, la nave realizó 10 000 de estos giros, proporcionando una red de datos por todo el cielo de la ventana infrarroja de 170 micrómetros, anteriormente inexplorada. Esta longitud de onda es 310 veces más larga que la radiación óptica y revela polvo frío hasta temperaturas tan bajas como 10K (-263º Celsius). En el estudio se creó un catálogo de los puntos fríos.
Birkmann y sus colegas investigaron este catálogo y encontraron cincuenta lugares potenciales de nacimiento de estrellas de gran masa. Una campaña de observaciones de seguimiento utilizando telescopios terrestres reveló que el objeto ISOSS J18364-0221 estaba compuesto en realidad por dos núcleos densos fríos sospechosamente parecidos a los asociados con el nacimiento de las estrellas de pequeña masa, pero que contenían mucha más materia.
El primer núcleo está a 16,5 Kelvin (-265,5º Celsius). Contiene setenta y cinco veces la masa del Sol y muestra signos de colapso gravitatorio. El segundo está a unos 12K (-261º Celsius) y contiene 280 masas solares. El equipo estudia ahora otros lugares potenciales.
Aunque el ISO ya no está operativo, la ESA participa actualmente en la misión de infrarrojos de la Agencia de Exploración Aeroespacial Japonesa, Akari (anteriormente ASTRO-F). Esta misión rellenará los huecos en los datos de la ISOSS examinando todo el cielo en seis bandas de longitud de onda infrarroja. Después de Akari, la ESA continuará avanzando en la astronomía en infrarrojos con su telescopio espacial, Herschel, cuyo lanzamiento está previsto para 2008. Birkmann dice: ‘Con su espejo de 3,5 metros y sus detectores de infrarrojo lejano, Herschel desvelará las fases más tempranas del nacimiento de estrellas masivas con detalle sin precedentes’.
Este trabajo también podría ayudar a detectar los objetos más distantes del Universo. ‘Cuando los astrónomos miran a miles de millones de años luz en el espacio, todo lo que pueden ver son las estrellas brillantes de gran masa en galaxias muy distantes. Si podemos entender cómo se forman estas estrellas quizá podríamos ser capaces de aplicar ese conocimiento para comprender cómo evolucionan las galaxias’, dice Krause.
Los descubrimientos aparecen en el ejemplar de 20 de enero de 2006 de la Revista de Astrofísica (Astrophysical Journal 637:380-383). El artículo original, titulado ‘Very cold and massive cores near ISOSS J18364_0221: implications for the initial conditions of high-mass star formation’ (Núcleos masivos muy fríos próximos a ISOSS J18364_0221: implicaciones en las condiciones iniciales de formación de estrellas de gran masa), es de S. M. Birkmann and D. Lemke (Instituto Max Planck de Astronomía, Heidelberg, Alemania), y O. Krause (Instituto Max Planck de Astronomía, Heidelberg, Alemania, y el Observatorio Steward, Universidad de Arizona, Tucson, Arizona, EEUU) .
Se sabe que la atmósfera de Saturno contiene restos de agua en estado gaseoso en sus capas más profundas. La presencia de agua en las capas superiores de la atmósfera ha constituido un enigma hasta ahora.
El telescopio predecesor de Herschel, el Observatorio Espacial Infrarrojo ISO, también de la ESA, detectó el agua en las capas superiores de Saturno en 1997. Pero se desconocía su origen. Los modelos computacionales desarrollados a partir de los últimos datos de Herschel revelan que entre el 3% y el 5% del agua que expele Encélado acaba cayendo en Saturno.
Debe estar conectado para enviar un comentario.