Este Mundo, a veces insólito

Calendario
enero 2025
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

Astronautica

Esta es con mucho, la más antigua y mayor afición, y a la que más tiempo le he dedicado, pero a la hora de incluir temas, sería tan extensa como inacabable, por lo que sólo se incluyen temas puntuales, escuetos y a ser posible aclaratorios y didácticos.

HEAO-2 (Einstein)

Representación artística del Observatorio EinsteinHEAOB1

Información general

Organización: NASA

Fecha de lanzamiento: 13 de noviembre de 1978

Aplicación: Observatorio espacial

Equipo:

Imaging Proportional Counter (IPC)
High Resolution Imager (HRI)
Solid State Spectrometer (SSS)

Focal Plane Crystal Spectometer (FPCS)

Rango de energía: 0.2 – 20 Kev

Tipo de órbita: Circular

Inclinación: 23,5 Grados

Periastro: 500 Km

El Observatorio Einstein fue el primer telescopio capaz de tomar imágenes en rayos X puesto en el espacio y el segundo de los tres que laHEAOB2 NASA lanzó dentro del programa High Energy Astronomy Observatory HEAO-2. El observatorio fue nombrado en honor a Albert Einstein tras el lanzamiento. Fue una misión clave en el desarrollo de la astronomía de rayos X y sus resultados científicos cambiaron completamente la visión del cielo que tenían los especialistas en rayos X del momento.

HEAO-2, Einstein, fue una misión de la NASA que involucró un consorcio de científicos de diversas instituciones, incluyendo el Harvard-Smithsonian Center for Astrophysics, la Universidad de Columbia, el Goddard Space Flight Center, y el MIT. Einstein fue lanzado a órbita baja terrestre por un cohete Atlas-Centaur el 13 de noviembre de 1978 y operó sin interrupción hasta abril de 1981. Tenía una resolución de algunos arcosegundos y un campo de visión de decenas de arcominutos, con una resolución 100 veces superior a cualquier telescopio de rayos X anterior.

La segunda de los tres observatorios de la alta energía Astrophysical de la NASA, HEAO-2, rebautizado Einstein después de su lanzamiento, fue el primer telescopio de rayos X con obtención de imágenes totalmente puesto en el espacio. La resolución de pocos segundos de arco angular, de la vista de campo de de decenas de minutos de arco, y una sensibilidad varios 100 veces mayor que cualquier misión antes de que proporciona, por primera vez, la capacidad de imagen ampliado objetos, emisión difusa, y para detectar débil fuentes. También fue la primera misión de la NASA de rayos X para tener un programa de visitantes Observador.

En general, fue una misión clave en la astronomía de rayos X y su resultado científica cambió por completo la visión del cielo en rayos X.

Carga útil:

  • A Tipo I Wolter pastoreo telescopio incidencia (0.1-4 keV).
    Cuatro instrumentos podrían ser girados, uno a la vez, en el plano focal:

    • Imaging proporcional Contador (IPC; 0,4-4,0 keV)
      ef. área de 100 cm2, 75′ FOV, ~ resolución espacial de 1 minuto de arco.
    • Alta Resolución Imager (HRI; 0,15 a 3,0 keV)
      ef. zona de 5 – 20 cm 2, FOV 25′, ~ 2 segundos de arco resolución espacial.
    • Solid State Espectrómetro (SSS; 0,5-4,5 keV)
      ef. área de 200 cm2, 6’FOV, E / delta E de 3-25
    • Cristal plano focal (Espectrómetro FPCS; 0,42 a 2,6 keV)
      ef. área de 0,1 – 1,0 cm 2, 6’FOV, 1’x20′, 2’x20′, 3’x30′, E / delta E de 50-100 para E <0,4 keV, E / delta E de 100-1000 para E > 0,4 keV
  • Monitor de contador proporcional (MPC; 1,5-20 keV)
    ef. área de 667 cm2, FOV 1,5 °, resolución de energía ~ 20% a las 6 keV. Co-alineado con el telescopio de rayos X.
  • Objetivo Reja Espectrómetro (OGS): 500 mm -1 y 1000 mm -1, resolución de energía dE / E ~ 50. Se utiliza en conjunción con HRI.

Ciencia destacados:

  • espectroscopia de alta resolución en la primera y estudios morfológicos de los remanentes de supernova.
  • Reconocieron que las emisiones coronales en estrellas normales son más fuertes de lo esperado.
  • Resueltas numerosas fuentes de rayos X en la galaxia de Andrómeda y las nubes de Magallanes.
  • Primer estudio de los rayos X que emite el gas en las galaxias y cúmulos de galaxias que revelan la evolución de refrigeración de entrada y clúster.
  • Detectado chorros de rayos X de Cen A y M87 alineados con chorros de radio.
  • encuestas de rayos X profundas primer medio y
  • Descubrimiento de miles de fuentes “casuales”

Archive: catálogos, Spectra, curvas de luz, imágenes y datos sin procesar

HEAO 2 (Observatorio AstroHEAOB3nómico de alta energía 2), también conocida como Einstein, era el segundo de tres misiones en un programa de investigación en fenómenos astronómicos de alta energía. Los objetivos específicos de esta misión eran de imágenes y estudios espectrográfico de fuentes y estudios de fondo de rayos X difusa de rayos X específicos. El bus nave espacial era idéntica a la HEAO 1 del vehículo, con la adición de ruedas de reacción y la electrónica asociada para permitir que el telescopio que señalar en fuentes de dentro de 1 min de arco. La carga útil instrumento pesaba 1450 kg.

Una gran pastoreo-incidencia telescopio de rayos X proporciona imágenes de fuentes que luego fueron analizados por cuatro instrumentos intercambiables montados en una disposición de carrusel que puede girar en el plano focal del telescopio. El telescopio recoge los rayos X sobre un rango angular de aproximadamente 1 ° x 1 °, con los instrumentos de plano focal que determinan la resolución límite hasta unos pocos de arco s para cada medición. Los cuatro instrumentos eran un espectrómetro de estado sólido (SSS), un espectrómetro de cristal plano focal (FPCS), un contador proporcional de imágenes (IPC), y un detector de imágenes de alta resolución (HRI). También se incluyeron un contador proporcional monitor (MPC), que visto el cielo a lo largo del eje del telescopio, un filtro de banda ancha, y los espectrómetros de rejilla objetivas que podría ser utilizado en conjunción con instrumentos de plano focal y un sistema de aspecto.

Los objetivos científicos eran

  • para localizar con precisión y examinar fuentes de rayos X en el rango de energía 0,2-4,0 keV. con alta resolución;
  • para realizar mediciones de alta sensibilidad espectral con las dos espectrógrafos de alta y de baja dispersión; y
  • para llevar a cabo mediciones de alta sensibilidad de la conducta de rayos X transitoria.

La nave espacial era un prisma hexagonal de 5,68 m de altura y 2,67 m de diámetro. Telemetría de enlace descendente fue a una velocidad de datos de 6,5 kb / s para datos en tiempo real y 128 kb / s para ninguno de los dos sistemas registradores de cinta. Un subsistema de control de actitud y determinación se utilizó para apuntar y maniobrar la nave espacial. Giroscopios, sensores solares y sensores estelares fueron empleados como dispositivos de detección.

HEAO (Observatorio Astronómico de Alta Energía) 2 lleva un telescopio de rayos X sensible a través de la gama de energía aproximada 0,2-3,5 keV., que se centró en la energía siguientes instrumentos:

  • Imágenes de alta resolución (HRI) – una cámara de rayos X digital que proporciona alta resolución espacial y resolución temporal en el rango de 0,15 a 3,0 keV.energy;
  • Imaging proporcional Contador (IPC) – una posición delicada contador proporcional sensible entre 0,4-4,0 keV.
  • Solid State Espectrómetro (SSS) – un enfriado criogénicamente litio-deriva Si detector (Li) con un rango entre 0,5 a 4,5 keV.
  • espectrómetro de cristal Bragg (FPCS).
  • Monitor de contador proporcional (MPC), que supervisa el flujo de rayos 1-20 keV.X de la fuente (s) siendo observado por el telescopio
  • Filtro de Banda Ancha (BBFs) espectrómetro
  • Objetivo Reja Espectrómetro (OGS).

En 1978, la Alta Energía Astronomy Observatory-2 (HEAO-2) lleva a la primera proyección de imagen, extrasolar telescopio de rayos X en el espacio. Su nombre se cambió el Observatorio Einstein después del lanzamiento. De Einstein, hecha de cuarzo fundido, tenía una alta suavidad de la superficie y la eficiencia que hizo las veces telescope100 más sensible aHEAOB4 los rayos X que Uhuru, y un millón de veces más sensible que el cohete descubrimiento de 1962. Este elevado aumento de la sensibilidad representó un punto de inflexión tanto para la astronomía de rayos X, en particular, y la astronomía en general. Einstein transformó por completo la astronomía de rayos X, abriéndolo para incluir el estudio de las auroras en los planetas, las galaxias, la formación de estrellas jóvenes , estrellas de secuencia principal, y el fondo de rayos X. Dado que los datos de Einstein estaban disponibles en forma de utilidad inmediata que permitió a las observaciones de seguimiento inmediatas a través de longitudes de onda, los astrónomos encontraron en todas las disciplinas que los datos de rayos X fue relevante para sus investigaciones. La astronomía de rayos X cambia así de una herramienta utilizada por los especialistas para una nueva visión del Universo, en la que los fenómenos de alta energía jugaron un papel clave en la formación, la evolución y la dinámica de los objetos celestes.

Una lección fundamental Uhuru enseñó la importancia de establecer, antes del vuelo FL, un sistema de análisis de datos sofisticados capaces de reducir grandes cantidades de datos para su análisis casi inmediato. La complejidad de los instrumentos utilizados en astronomía de rayos X, junto con la abundancia de datos que podrían proporcionar, exigió planes para administrar, compartir y archivar datos. El esfuerzo por hacer que la astronomía de rayos X útil para los astrónomos de todas las disciplinas que estimuló para proporcionar datos de calidad garantizada para todos los observadores. Este fue un paso radical con respecto a los enfoques tradicionales en los observatorios en la Tierra, pero ahora se ha convertido en el procedimiento estándar para grandes misiones del telescopio.

Cada científico en el equipo Einstein tHEAOB5rató de especializarse en algún tema en particular de la astronomía por lo que no sería totalmente ignorantes cuando se enfrentan con los datos. Me concentré en el problema de la resolución de las fuentes del fondo de rayos X y sabía que era necesario un telescopio de 1,2 metros de resolver el problema! Junto con Harvey Tananbaum escribí una propuesta para el Mecanismo de Advanced X-Ray Astronomía (AXAF), que pasó a denominarse el Observatorio Chandra de rayos X después de su lanzamiento, casi 20 años después.

M31 de Einstein: Esta imagen tomada por los puntos Einstein Observatory al centro galáctico de la M31 – Andrómeda – la galaxia espiral más cercana a nuestra Vía Láctea. El uso de más de 150 observaciones llevadas a cabo durante 13 años por el Observatorio de rayos X Chandra, los investigadores en 2013 identificaron 26 candidatos agujero negro, el número más grande hasta la fecha, en la galaxia de Andrómeda.

Crédito: NASA

Previa al vuelo HEAO-2: Einstein Observatorio (HEAO-2) fue el primer telescopio de rayos X obtención de imágenes totalmente puesto en el espacio y el segundo de los tres observatorios astrofísicos de alta energía de la NASA. Llamado HEAO-B antes de su lanzamiento, el nombre del observatorio fue cambiado en honor a Albert Einstein en su órbita alcanzar con éxito.

Crédito: NASA

IUE

IUE (International Ultraviolet Explorer)

IUE en órbita geostacionaria, comunicando con estaciones en EEUU y España

Información generalIUE1

Organización: NASA / ESA / SERC

Fecha de lanzamiento: 26 de enero de 1978

Aplicación: Observatorio espacial

Masa: 672 Kg

Dimensiones: Diámetro 0,45 m

Tipo de órbita: Elíptica

Período orbital: 24 horas

Periastro: 26.000 km

El International Ultraviolet Explorer (IUE) fue un observatorio espacial diseñado para el estudio de la radiación ultravioleta. El satélite fue un proyecto de colaboración entre la NASA, el Science Research Council del Reino Unido y la Agencia Espacial Europea (ESA).

El IUE fue propuesto por primera vez en 1964 por un grupo de científicos en el Reino Unido, pero no fue lanzado hasta el 26 de enero de 1978, a bordo de un cohete Delta de la NASA. Se le supuso un tiempo de vida mínimo de tres años, pero las expectativas se vieron desbordadas ya que finalmente, fue desconectado el 30 de diciembre de 1996, durando casi seis veces más de lo previsto. Fue el primer observatorio espacial operado en tiempo real por astrónomos que visitaron las estaciones de seguimiento en Estados Unidos y Europa. Se realizaron unas 104.000 observaciones, incluyendo planetas, cometas, estrellas, polvo interestelar, supernovas, auroras planetarias, galaxias, y quasars

Historia del proyecto

El concepto de un satélite espectrográfico ultravioleta astronómico fue propuesto primero en ESRO, una industria ESA por un grupo de científicos británicos en 1964. En ese momento, el proyecto fue más allá de la capacidad tecnológica de la ESA y por lo que el proyecto fue propuesto a la NASA por el astrónomo Robert Wilson. La NASA que dio la bienvenida al proyecto y empezó a desarrollar el satélite, que fue nombrado SAS-D (D-Pequeño Satélite astronomía). El Consejo de Investigación de Ciencias e Ingeniería (SRC) del Reino Unido se unió al proyecto y ofreció la vidicón del vidicón de espectrógrafos, así como el software para el control de instrumentos científicos. La ESA ofreció células solares para suministrar energía al satélite, así como los servicios de una estación en tierra en Villafranca del Castillo, España. La NASA creó el telescopio, el espectrógrafo, y por satélite; Lo hizo el lanzamiento y también dio a conocer una segunda estación en tierra en Greenbelt, Maryland en el Centro de Vuelo Espacial Goddard.

El acuerdo firmado por los diferentes participantes compartió el tiempo de observación, y 2/3 fuera por la NASA, 1/6 para la ESA y 1/6 para el SRC del Reino Unido.

Hallazgos científicos clave

  • La primera detección de la existencia de una aurora en Júpiter.
  • La primera detección de azufre en un cometa.
  • La primera determinación cuantitativa de la pérdida de agua en una cometa (varias decenas de toneladas por segundo).
  • La primera evidencia de un fuerte campo magnético en las estrellas químicamente peculiares.
  • La primera curva readial velocidad orbital de una estrella Wolf-Rayet que permite la determinación de su masa.
  • Las estrellas de detección Primiera enanas blancas como compañeros Cepheidas variables binarias.
  • La primera evidencia observacional de la pérdida de semi-periódica de la masa en estrellas muy masivas.
  • El primer descubrimiento de alta velocidad del viento en otras estrellas (que sólo se había observado en el sol).
  • La primera indicación de un progenitor de la supernova en la historia (SN 1987A).
  • El descubrimiento de los movimientos a gran escala en las regiones de trasição estrellas con baja gravedad.
  • El descubrimiento de alta temperatura de formación de efectos estrellas en las primeras etapas.
  • El descubrimiento de la alta velocidad de los vientos en las variables cataclísmicas.
  • El descubrimiento del efecto de la abundancia química de la tasa de pérdida de masa de las estrellas.
  • La primera temperatura determinación y gradiente de densidad en una corona estelar.
  • El primer haz de detección de gas y fluye de estrellas binarias.
  • La determinación de que cualquier tipo de estrella de nuevos materiales expulsa con abundancias solares.
  • El descubrimiento de la nueva “O-Ne-Mg”, donde el exceso de estos elementos puede estar directamente relacionada con la composición química de las estrellas enanas blancas más masiva.
  • El descubrimiento de un anillo alrededor de la supernova SN 1987A, carente de etapas evolutivas anteriores.
  • La primera detección directa de la aureola de la galaxia.
  • Las primeras observaciones de estrellas extragaláctico simbióticas.
  • La estrella Primiera curva de luz continua durante 24 horas de duración.
  • La primera detección de fotones en longitudes de onda más cortas que 50 nm de otras fuentes astronómicas que el sol de.
  • La primera determinación directa del tamaño de las regiones activas en el núcleo de las galaxias Seyfert (mini-quásares).
  • El satélite IUE fue el primer ingenio astronómico para generar datos totalmente reducidas (tratados) dentro de 48 horas para la comunidad científica.
  • La creación del fichero de datos astronómicos primera reducida, puesta a disposición en Internet 44 000 espectros por año (5 espectros por hora) astrónomos de 31 países.

IUE fue una colaboración internacional entre tres grupos: NASA, la Agencia Espacial Europea (ESA), y Ciencia del Reino Unido y del Consejo de Investigación de Ingeniería (SERC, ahora Física de Partículas y del Consejo de Investigación de Astronomía, o PPARC). NASA proporcionó la puesta en marcha, soporte de ingeniería de la nave espacial y el software. La ESA aportó los paneles solares y un puesto de mando satélite fuera de Madrid, España, y el Reino Unido proporcionan las cámaras vidicón. El tiempo de observación se dividió entre dos estacionIUE2es de comando nave espacial. NASA operado la nave espacial durante 16 horas al día desde el Centro de Vuelo Espacial Goddard, y VILSPA (la estación de control de satélites Villafranca) operó durante 8 horas al día.

Los espectros de IUE corta longitud de onda de la Júpiter aurora del sur el 17 de julio de 1994

Las dos imágenes muestran el espectro con resolución espacial de la aurora al sur de Júpiter el 17 de julio de 1994 tras el impacto con los fragmentos del cometa SL-9 han comenzado. Los espectros se obtuvieron con la cámara del PST (1100-2000 A) utilizando la gran abertura que se centró a -60 grados de latitud en el meridiano central de Júpiter.

La firma de la aurora son las características de emisión similares en el borde superior de los espectros cerca del centro de la imagen y las personas cercanas a la línea Lyman alIUE3fa (a la izquierda) que llena en toda la abertura. Estas son las bandas de Werner y Lyman producidos por H2. El cambio de estas características es evidente entre los dos espectros tomados cuatro horas de diferencia. Esto muestra la evolución temporal y espacial de la emisión de la aurora.

La órbita geosíncrona de IUE permitido para la operación en tiempo real, lo que hizo IUE muy flexible. Los astrónomos llegaron a las estaciones de mando nave espacial para dirigir sus observaciones e inspeccionar los datos a medida que se recogieron, tanto como lo hacen en los observatorios terrestres. Dos espectrógrafos de a bordo cubiertas longitudes de onda ultravioleta 1.200 a 3.350 Å.

Los observadores de todo el mundo se aprovecharon de este observatorio caballo de batalla, la recopilación de datos de una amplia variedad de fuentes astronómicas. Cámaras espectrográficos longitud de onda corta y larga cubiertos longitudes de onda ultravioleta entre aproximadamente 120 a 340 nanómetros. Estas longitudes de onda de la radiación electromagnética están oscurecidas desde el suelo por la capa de ozono protectora de la Tierra.

Los astrónomos estudian múltiples longitudes de onda con el fin de aprender más acerca de los objetos del universo. la adquisición simultánea de datos es esencial con el fin de sacar el mayor conocimiento de ciertos eventos transitorios. Por lo tanto, muy a menudo IUE se utilizó en conjunción con otros telescopios de todo el mundo. Estas colaboraciones han implicado naves espaciales como el telescopio espacial Hubble, el ROSAT, el Observatorio de Rayos Gamma Compton, las sondas Voyager, del transbordador espacial ASTRO-1 y Astro-2 misiones, el Extreme Ultraviolet Explorer, satélite ASCA de Japón, así como numerosos observatorios terrestres.

Aspectos destacados de la ciencia

  • Objetos observados por IUE incluyen prácticamente cualquier tipo de objeto en el universo, de los planetas y las estrellas de las galaxias.
  • Uno de los puntos fuertes de IUE fue la capacidad de responder rápidamente a los objetivos de oportunidad, tales como cometas, novas y supernovas.
  • IUE obtiene los únicos datos ultravioletas de la explosión de la supernova 1987a en la Gran Nube de Magallanes.
  • Mediante el seguimiento en el núcleo de rápido movimiento Comet IRAS-Araki-Alcock, IUE fue capaz de obtener la primera detección de azufre molecular en un cometa.
  • Durante julio de 1994, IUE (junto con el resto del mundo) pasó una buena cantidad de tiempo de observación de Júpiter, cuando el cometa Shoemaker-Levy colisionó con el planeta.

El International Ultraviolet Explorer (IUE) realiza espectrofotometría a alta (0.1-0.3 Å) y baja (6-7 a) Resolución entre 1150 Å y 3200 Å. Los datos cubren un rango dinámico de aproximadamente 17 magnitudes astronómicas: -2-10 para alta dispersión; -2 Y 14.9 de baja dispersión. Más de 104.000 espectros ultravioleta se obtuvieron con IUE entre el 26 de enero de 1978, y el 30 de septiembre de 1996.IUE4

Seguimiento en tiempo real vía satélite para IUE

La exploración del Universo con IUE 1978-1996

¿Cómo se forman los planetas, las estrellas y las galaxias? ¿Cómo evolucionan?

El satélite Explorador Internacional Ultravioleta (IUE) se lanzó en 1978 y operador por la NASA, la ESA y el PPARC para ayudar a dar respuestas a algunas de las preguntas más fundamentales sobre los contenidos de nuestro universo.

IUE sirvió como observatorio orbital geoestacionario durante los siguientes 18 años acumulando más de 100.000 observaciones con sus espectrógrafos ultravioleta de a bordo. La gráfica de todo el cielo que vemos arriba sólo sugiere su prodigiosa producción científica mostrándonos las situaciones de muchas observaciones significativas de IUE durante su larga historia operativa. El brillo de un punto en el cielo representa el número de observaciones de IUE.

La gráfica está en coordenadas galácticas (el plano de nuestra galaxia corre horizontalmente a través del medio) y revela la posición de quásares, galaxias, estrellas, cúmulos estelares, nebulosas, novas y supernovas lejanas (atestiguando el amplio abanico de capacidades de IUE).

También se puede observar el plano de la eclíptica trazando una diagonal a través del centro, debido a muchas observaciones de objetos del sistema solar.

Tras más de 18 años, las operaciones científicas de IUE han terminado hoy de forma oficial al transmitirle los controladores del Centro Goddard de IUE5Vuelos Espaciales de la NASA las últimas órdenes al viejo satélite.

Astrónomos de todo el mundo cuyas carreras han sido afectadas por IUE han expresado cariñosas palabras de despedida a al satélite astronómico más productivo y longevo, además de su agradecimiento a todos aquellos que han hecho posible el destacable viaje de exploración de IUE.

Hay entre todos ellos uno que creo que merece una mención especial: el International Ultraviolet Explorer (IUE o Explorador Internacional en el Ultravioleta). Este pequeño satélite fue lanzado en 1978 y estuvo operativo durante 18 años y medio! lo que es un verdadero record dentro de la astronomía espacial. El IUE tenía un espejo de tan sólo 40 centímetros, comparable a muchos de los telescopios que hoy en día puede comprar un aficionado, pero colocado fuera de la Tierra permitió obtener una visión sin precedentes del Universo al captar su radiación ultravioleta y permitir estudios a largo plazo de muchos fenómenos astronómicos interesantes. Las primeras indicaciones de la existencia de agujeros negros de tamaño galáctico o de la existencia de discos alrededor de estrellas jovenes se basaron en datos obtenidos con este satélite. El IUE fue un proyecto conjunto de la NASA, la ESA y la Agencia Espacial del Reino Unido y, tal y como le gustaba mencionar en sus conferencias a Freeman Dyson (“Big and small science”), ha sido durante muchos años el paradigma de la astronomía espacial eficiente (grandes resultados  científicos con un coste mínimo).

En la Figura se muestra cómo era el IUE y la distribución en el espacio de todos los objetos que observó durante su larga vidIUE6a.

Se apaga tras casi dos décadas el satélite que mas tiempo ha observado el cielo

Diseñado para funcionar durante tres años en órbita, el International Ultraviolet Explorer QUE) ha sobrepasado todas las expectativas de la comunidad científica internacional con un trabajo ininterrumpido durante casi 19 años. El próximo día 30, este telescopio espacial de Europa y EE UU será definitivamente apagado. En su base de datos, ubicada por parte de la Agencia Europea del Espacio (ESA) en la estación de seguimiento de Villafranca del Castillo, Madrid, quedan casi 100.000 observaciones espectroscópicas realizadas con este extraordinario instrumento, información de la que han salido ya 3.500 artículos científicos y más de 500 tesis doctorales. Además, durante muchos años los astrofísicos seguirán exprimiendo los archivos del IUE llenos de datos, sobre la radiación ultravioleta de fuentes cósmicas, radiación que absorbe la atmósfera y que es invisible con telescopios instalados en la Tierra.

“Con el IUE se han hecho avances cruciales, como el descubrimiento de una aurora alrededor de los polos de Júpiter, el hallazgo de azufre en cometas, el descubrimiento de vientos de alta velocidad en otras estrellas, la primera detección del halo caliente en nuestra galaxia o la estrella progenitora de la supernova SN1987A y el anillo alrededor de ésta”, explica Wilem Wamsteker, director del IUE en Villafranca desde hace diez años. “También destacaría la primera detección de radiación en 50 milímetros de fuentes astronómicas distintas al sol, la subsiguiente detección de líneas transparentes en quasares que permitió deducir que en los primeros estadio del universo primitivo se formaron estrellas masivas”, continúa este astrónomo holandés.

El lUE es un programa de la NASA, la ESA y el consejo británico SERC. El satélite pesa 671 kilos y lleva un telescopio de 45 centímetros de diámetro; fue lanzado al espacio en 1978 y colocado en órbita geosíncrona sobre el Atlántico (entre 42.00 y 25.000 kilómetros de altura). Hasta octubre del año pasado su control era compartido por la NASA y la ESA, pero desde esa fecha la responsabilidad del IUE ha sido exclusivamente europea, con 1 un programa especial de la ESA en Villafranca.

Hasta el último momento este observatorio espacial se utiliza para hacer investigación de primera línea. Su equipo ha coordinado, por ejemplo, los programas recientes de estudios planetarios, en concreto de Júpiter en cooperación con la misión Galileo, datos que se añaden a los obtenidos en ultravioleta durante los impactos del cometa Shoemaker-Levy el año pasado contra el planeta gigante. También se ha apuntado el IUE -con un sólo giróscopo en funcionamiento de los seis con los que salió de Tierra para controlar su posición- a estrellas masivas para estudiar mecanismos asociados al viento estelar. En una campaña coordinada con otros telescopios, el IUE ha aportado la información ultravioleta a las observaciones en rayos X y banda óptica de pequeños cuásares. Y no se perdió el paso del cometa Hyakutake este año.”La desaparición de un instrumento estable para observaciones ultravioleta afectará a prácticamente todos los astrónomos”, comenta Wamsteker. Pero el IUE seguirá siendo útil a pesar de convertirse en un pedazo de chatarra espacial. “Es la única instalación astronómica que suministra datos completamente procesados por comunicaciones electrónicas a astrónomos de todo el mundo; cada año proporciona 44.000 espectros a científicos de 31 países”, continúa.

La estrella que no estaba

En 1987 apareció en el cielo una estrella supernova que era visible desde la Tierra a simple vista, fenómeno que no se había producido desde hacía 383 años. Los astrónomos apuntaron inmediatamente hacia la explosión, estelar (SN1987A) todos los telescopios que pudieron. El flujo de radiación ultravioleta que emitía el violento fenómeno sufrió cambios muy rápidos, se enfrió enseguida, y el IUE obtuvo información clave sobre los procesos que estaba sufriendo SN1987A.Con las observaciones del JUE los astrónomos pudieron identificar el astro progenitor de la célebre supernova, es decir, la estrella gigante, azul que estaba en la galaxia Gran Nube de Magallanes antes de la explosión y que había desaparecido tras ésta.

HEAO-1

HEAO-1 antes de su lanzamiento HEAO11

Organización: NASA

Fecha de lanzamiento: 12 de agosto de 1977

Reingreso: 15 de marzo de 1979

Vida útil: 2 años

Aplicación: Observatorio espacial

Equipo:

NRL Large Area Sky Survey Experiment (LASS)
Cosmic X-ray Experiment
MIT/SAO scanning Modulation Collimator (MC)

UCSD/MIT Hard X-ray/Low Energy Gamma Ray

Tipo de órbita: Circular

HEAO-1 fue el primer satélite de la serie High Energy Astronomy Observatory. Los tres satélites HEAO se dedicaron completamente a estudios atronómicos. HEAO-1, fue una misión de escaneo del cielo en rayos X, mientras que la pionera HEAO-2 (conocida como Obervatorio Einstein) se dedicó a la obtención de imágenes en rayos X y HEAO-3 se centró en los rayos cósmicos y rayos gamma.

Diagrama deHEAO12l instrumento A4

El HEAO-1 fue lanzado el 12 de agosto de 1977 a una órbita casi circular a unos 445 km de altura, con 22.75º de inclinación y un periodo orbital de aproximadamente 93 minutos. Llevaba a bordo los siguientes instrumentos:

  • NRL Large Area Sky Survey Experiment (LASS), también conocido por A1
  • Cosmic X-ray Experiment, también conocido por A2
  • MIT/SAO scanning Modulation Collimator (MC), también conocido por A3
  • UCSD/MIT Hard X-ray/Low Energy Gamma Ray Experiment, también conocido por A4

El 9 de enero de 1979, se le agotó el gas propelente, por lo que el 15 de marzo de ese mismo año el satélite se desintegró en la atmósfera.

Carga útil:

  • A1 – Experimento de Gran Área Sky Survey (LASE):
    0,25 a 25 keV, ef. la zona de 7 módulos cada uno de 1350-1900 cm2, FOV variaron entre 1 ° X 4 ° a 1 ° x 0,5 ° para colimadores más finos.
  • A2 – Experimento cósmico de rayos X (CXE):
    seis contadores proporcionales separadas

    • Detectores de baja energía (LED) 0,15 a 3,0 keV, FEP. zona 2 detectores de 400 cm2 cada uno
    • Detector de Energía Medio (MED) 1,5-20 keV, ef. zona 1 del detector a 800 cm 2
    • Detector de Alta Energía (HED) 2,5 a 60 keV, ef. area 3 detectores en 800 cm 2 cada uno

MED y SUH tenían varios ajustes FOV, 1.5 ° x 3 °, 3 ° x 3 ° y 3 ° x 6 °

  • A3 – Modulación del colimador (MC):
    0,9 a 13,3 keV, ef. la zona 2 colimadores 400 cm2 (MC1) y 300 cm 2 (MC2), FOV 4 ° X 4 °
  • A4 – Hard X-Ray / baja energía de rayos gamma Experimento:
    siete detectores de centelleo phoswich inorgánicos

    • Detectores de baja energía 15-200 keV, FEP. la zona 2 detectores 100 cm2 cada uno, FOV 1.7 ° x 20 °
    • Detectores de energía media de 80 keV – 2 MeV, FEP. 4 Área de detectores de 45 cm 2 cada uno, FOV 17 °
    • Detector de alta energía de 120 keV – 10 MeV, ef. área de 1 cm2 detector 100, FOV 37 °

Ciencia destacados:

  • Encuesta completa latitud galáctica Alto flujo limitado (Piccinotti et al., 1982).
  • La medición de fondo de rayos X 3-50 keV (Marshall et al. 1980, ApJ, 235, 4.)
  • amplio catálogo de fuentes de rayos X (uno para cada experimento).
  • Varios cientos de compañeros ópticos y clasificaciones fuente a partir de posiciones de la fuente de rayos X.
  • la variabilidad supervisado de una variedad de objetos de AGN a binarias de rayos-X.
  • Estudió la variabilidad aperiódica en Cyg X-1 en escalas de tiempo de unos pocos milisegundos
  • Descubierto el primer eclipse visto en una binaria de rayos X de baja masa.

HEAO13HEAO14Ilustración del instrumento A2

 

 

 

 

 

 

 

HEAO-1 A1 de todo el cielo de rayos X Catálogo Mapa

COS-B

Tipo: Observatorio espacial

Organización: ESACOS-B1

Fecha de lanzamiento: 9 de agosto de 1975[1][2][3]

Cohete portador: Delta 2913[2][4][5][6]

Sitio de lanzamiento: Base Vandenberg das Forzas Aéreas[2]

Regreso: 18 de enero de 1986[1]

NSSDC ID: 1975-072A

Masa: 277,5 kg[2][4][7]

Dimensiones: 140 cm de diámetro x 121 cm de altura[2][4]

COS-B (acrónimo de Celestial Observation Satellite[4]) fué un observatorio espacial de la Agencia Espacial Europea lanzado el 9 de agosto de 1975 mediante un cohete Delta 2913 desde la Base Vandenberg de la Fuerza Aérea.[2][4][5][6] Inicialmente pretendía lanzar el satélite mediante un cohete Europa 2, pero se descartó tras los diversos fallos técnicos del mismo.[4]

Características

La misión de COS-B consistía en la observación de la radiación gamma celeste en el rango de energías entre 25 MeV e 1 GeV con el objetivo de estudiar los púlsares de rayos gamma, cartografiar la Galaxia en rayos gamma y hacer un estudio en detalle del púlsar Geminga.[8]

El satélite fue inyectado en una órbita altamente elíptica con apogeo de 100.000 km y un perigeo de 350 km y una inclinación orbital de casi 90 graos.[2]

El satélite tiene forma cilíndrica, con diámetro de 140 centímetros y una altura de 121 centímetros. Teniendo en cuenta las cuatro antenas que sobresalían de la parte inferior del cilindro, la altura total era de 172,2 cm.[2]

COS-B obtiene información sobre a su orientación a partir de un sensor solar y de un sensor de albedo terrestre. La altitud se controlaba mediante un sistema de control que usa un gas frío (nitrógeno) como propulsor. El mismo sistema servía para ajustar la rotación del satélite a una velocidad dee de 10 revoluciones por minuto, encendiendo un par de toberas de precisión para ajustar el momento angular.[2]

El sistema de telemetría usaba un transmisor en tiempo real de 6,5 vatios de potencia y con una tasa de transmisión de datos de 160 por 320 bps, seleccionable. La energía eléctrica era proporcionada por 9480 células solares montadas en 12 paneles no cilíndricos del satélite.[2]

La misión se dio por finalizada en abril de 1982[4] tras funcionar casi el triple de lo inicialmente estimado (6 años y 8 meses frente a dos años previstos)[8]. El satélite reentro en la atmosfera el 18 de enero de 1986.[1]

Instrumentación

Como único instrumento, COS-B llevaba a bordo un telescopio de rayos gamma, que funcionó sin problemas durante toda la misión salvo problemas puntuales con la cámara de chipas y la perdida normal de rendimiento con el paso del tiempo.[4]

El objetivo principal fue estudiar el espectro y distribución de rayos gamma de lCOS-B2a Vía Láctea y el flujo de rayos gamma extragaláctico, estudiando las fuentes conocidas de esta radiación y buscando fuentes aún no conocidas.

Como resultado de la misión se creó el catálogo de fuentes de rayos gamma (catálogo 2GC) y el primer mapa completo del disco de nuestra galaxia.1

Según Brian Taylor, científico del proyecto COS-B, “Su misión era mapear el firmamento, en particular la Vía Láctea, en longitudes de onda de rayos gamma con energías superiores a 50 MeV. Estos rayos gamma pueden ser creados rayos cósmicos (protones y electrones relativistas), interactuando con el medio interestelar y en campos magnéticos. El objetivo fue buscar sitios en el firmamento donde estas partículas eran aceleradas a velocidades relativistas. Al estar cargadas, las direcciones con las que llegan a la Tierra no guardan relación con su punto de origen, dado que sus trayectorias con alteradas por los campos magnéticos interestelares, a diferencia de los rayos gamma que vienen directos hacia nosotros. COS-B únicamente tenía un instrumento, concebido a mediados de los años 60 y aprobado para su lanzamiento por la ESRO en 1969. En ese momento, los satélites de la ESRO solían portar típicamente siete instrumentos separados, por lo que COS-B fue realmente un caso diferente. No sólo eso, encontrar rayos gamma entre un cantidad 10.000 veCOS-B4ces superior de partículas cargadas de rayos cósmicos era todo un reto”.

La principal parte del desarrollo del satélite comenzó en febrero de 1972, siendo el principal contrCOS-B3atista MBB Ottobrunn (Alemania) y con subcontratistas en Bélgica, Dinamarca, España, Francia, Italia, Holanda y Reino Unido. El instrumento de rayos gamma fue diseñado y construido por un consorcio formado por cinco institutos de Alemania, Holanda, Francia e Italia.

COS-B fue lanzado el 9 de agosto de 1975 por la ESA en un vehículo de lanzamiento Thor Delta 2913 desde Western Test Range (California). Su diseño era para una vida operativa de un año con margen para otro posible año de operaciones. De hecho, COS-B funcionó correctamente durante 6 años y 8 meses, cuatro años más de lo planeado. Fue finalmente desactivado el 25 de abril de 1982.

El análisis de los datos científicos y la creación del archivo científico de la misión fueron completados en 1985, 10 años después del lanzamiento. Durante su vidCOS-B5a, COS-B incremento la cantidad de datos existentes de rayos gamma en un factor 25. Los resultados científicos incluyeron el 2CG Catalogue, que lista cerca de 25 fuentes de rayos gamma, y el primer mapeo completo en rayos gamma de la Vía Láctea. El satélite también observó la fuente binaria de rayos-X Cygnus X-3 y el primer núcleo galáctico activo en rayos gamma, 3C273.

[Fuente de la noticia: ESA]

El fabricante principal de COS-B fue MBB Ottobrunn, en Alemania, aunque hubo partes subcontratadas en Bélgica, Dinamarca, España, Francia, Italia, los Países Bajos, y el Reino Unido.

ANS

Astronomische Nederlandse SatellietANS1

ANS

Información general

Fecha de lanzamiento: 30 de agosto de 1974

Aplicación: Observatorio espacial

Configuración: Cilíndrica

Masa:129 Kg

Tipo de órbita: Elíptica

Inclinación: 98 Grados

Período orbital: 99,1 minutos

Periastro: 258 Km

Astronomische Nederlandse Satelliet o ANS (también conocido como Astronomical Netherlands Satellite) fue un observatorio espacial en rayos X y ultravioleta de los Países Bajos construido en colaboración con la NASA.

Fue lanzado el 30 de agosto de 1974 en un cohete Scout desde la base aérea de Vandenberg, en Estados Unidos, hacia una órbita heliosincrónica. La misión duró 20 meses, hasta junio de 1976.

ANS podía medir fotones en el rango energético de 2 a 30 keV con un detector de 60 cm2. Tenía un telescopio Cassegrain de 22 cm para observar en el ultravioleta.

CaracterísticasANS2

ANS se dedicó a estudiar y observar el cielo en rayos X y ultravioleta de una órbita sincronizada con el sol de 266 km x 1.176 kilometros y una inclinación orbital de 98 °. Se observó que la gama de energías de rayos X entre 2 y 15 keV y se observa en el rango ultravioleta de longitudes de onda desde 1.500 a 18.000 Angstroms.[2][4]

La actitud del satélite controlado por bobinas magnéticas que interactúan con el campo magnético por terrestre y volantes de inercia, y la determinación de la posición se lleva a cabo por los sensores solar y el horizonte estelar, así como un magnetómetro.[2][4]

ANS volvió a entrar en la atmósfera de la Tierra el 14 de junio de 1976.[1]

El primer significativa contribución espacio de los Países Bajos en los años setenta del siglo XX, se dio cuenta el diseño, construcción y puesta en marcha de los holandeses satélite astronómico, ANS Esto contribuyó a. UV – y la astronomía de rayos X.

Los astrónomos en las universidades de Groningen y Utrecht querían utilizar durante algún tiempo la posibilidad de estrellas para observar partes del espectro en la tierra por el efecto de filtrado de la atmósfera, no eran visibles. Se hicieron propuestas para un satélite con telescopios de la radiación ultravioleta y la región de rayos X.

Diseño y construcciónANS3

Tras el 18 de de diciembre de 1969 Estado obtuvo el satélite fue diseñado y construido por Philips y la antigua División Espacial Fokker y el NLR. En conjunto, estos tres partidos formaron el Industrial Consorcio ANS (ICANS). Para el sector aeroespacial inexpertos ANS era un programa ambicioso. Los instrumentos de observación tenido con gran exactitud (un minuto de arco) pueden ser dirigidos a ciertas estrellas. Esto requiere un satélite estabilizado en tres ejes con una amplia y precisa de control de posición. Con la ayuda de bobinas magnéticas y ruedas de reacción se podría cambiar la posición del satélite, en el que la posición relativa al sol y la tierra se determinó con los sensores solares y un sensor de horizonte. Este sistema fue en ese momento muy ambicioso, y muchos expertos dudaban de que alguna vez fuera a trabajar en el relativamente pequeño satélite que sería ANS. No obstante conseguido los ingenieros en su diseño, y el sistema tuvo tanto éxito que, finalmente, la exactitud de 30 segundos de arco demostraron ser. Debido a que ANS se pondrá en marcha en una época en que la fiabilidad global de misiles que desear izquierda había dos copias del satélite construido. El primer ejemplar fue equipado con instrumentos científicos, la segunda copia se mantiene en reserva. Tras el éxito de la misión ANS ANS repuesto se exhibió durante años en Philips y finalmente en 2004 se prestó para el espacio de exposición de la MRN en Aviodrome al aeropuerto de Lelystad. En el Museo de la Universidad en Groningen es un modelo de prueba totalmente equipada.

Instrumentos

Los astronómicos instrumentos de a bordo:

Sólo en una etapa posterior del diseño se añadió a la Instrumentación HXX. Esta fue una sala de instrumentos a bordo de América ANS recibido a cambio de un lanzamiento libre por un estadounidense cohete explorador. El cohete podría lanzar un peso de hasta 135 kilogramos en el trabajo correcto. Esto requiere una construcción ligera y compacta del satélite.

Trabajo

ANS tuvo que operar desde una órbita polar a una altitud de 500 km. La órbita polar (unos polos norte y sur así) para asegurar que el satélite, con una cara es siempre en el sol orientado, todo ello en medio año firmamento puede observar. Para llevar a cabo observaciones fueron controlados por el ordenador de a bordo se cargó cada doce horas desde el suelo con las instrucciones para el próximo medio día de observaciones.

ANS podían medir de rayos X fotones en el rango de energía de 2 a 30 keV , con un detector de 60 cm 2, y se utilizó para encontrar las posiciones de galáctico y fuentes de rayos X extragalácticos. También midió su espectro , y miró a sus variaciones en el tiempo. [1] Se descubrió estallidos de rayos X, y también detecta los rayos X de Capella. [5]

ANS observó también en el ultravioleta parte del espectro, con unos 22 cm (260 cm 2) Cassegrain telescopio. Las longitudes de onda de los fotones observados fueron entre 150 y 330 nm , con el detector dividido en cinco canales con longitudes de onda centrales de 155, 180, 220, 250 y 330 nm. [4] En estas frecuencias se tomó más de 18.000 mediciones de alrededor de 400 objetos. [1]

Lanzamiento, las operaciones y el retornoANS4

ANS fue el 30 de de agosto de 1974 el lanzamiento. Debido a un defecto en la etapa final del cohete ANS no era la órbita circular destinada a 500 km de altitud arriba pero en órbita elíptica cuyo punto más bajo fue sólo 266 kilometros de altitud. Gracias al hecho de que ANS fue el primer satélite con un reprogramable ordenador de a bordo tiene la forma incorrecta de que el trabajo tuvo poco impacto en el programa de vigilancia de la ANS. Los programas de observación se adaptaron a los nuevos datos del trabajo y en la planta enviada al ordenador de a bordo. En última instancia, ANS, por tanto, se puede llevar a cabo más del 95 por ciento de las observaciones pre-planificado. El satélite trabajó durante más de nueve meses más de lo previsto y las observaciones estaban en 27 de april 1976 se detuvo debido a que el gobierno holandés se detuvo el flujo de dinero, a pesar de que ANS en ese momento todavía estaba funcionando bien. Casi tres años después del lanzamiento ANS pagado el 14 de de junio de 1977 de nuevo en la atmósfera y por lo tanto fue completamente destruida.

Resultados

En 20 meses de tiempo ANS pasó gran parte del mapa del cielo en la parte ultravioleta y de rayos X del espectro. Los principales resultados de la misión fueron:

OAO-3 (Copérnico)

OAO-3 fue lanzado el 21 de agosto de 1972 y se convirtió en la más exitosa de las misiones OAO. Fue un esfuerzo de colaboración entre la NASA y el SERC británico y llevaba a bordo un detector de rayos X construido y un telescopio ultravioleta de 80 cm. Tras el lanzamiento fue renombrado como Copérnico como conmemoración del 500 aniversario del nacimiento de Nicolás Copérnico. El experimento principal a bordo era el telescopio Universidad de Princeton UV, sino que también lleva a un experimento de astronomía de rayos X desarrollado por el University College de Londres / Laboratorio de Ciencia Espacial Mullard. El experimento de rayos X University College de Londres (UCLXE) constaba de 4 detectores de rayos X co-alineado.

Copérnico estuvo operativo hasta febrero de 1981, retornando espectros de alta resolución de cientos de estrellas junto con concienzudas observaciones en rayos X. Entre los hallazgos de Copérnico destaca el descubrimiento de púlsares con periodos de rotación de varios minutos en vez del valor típico de un segundo o menos.

Características de la misión

Curso de la vida 21 agosto 1972-febrero 1981 OAO31
Rango de energía: 0,5 – 10 keV (experimento de rayos X)

Carga útil:
3 Wolter tipo 0 de pastoreo telescopios de incidencia con 2 contadores proporcionales (3-9 A y 6-18 a) y un fotomultiplicador canal en los focos.(FOV variable de 1 a 12 minutos de arco)

  • 1 contador proporcional (1-3 Å) con un simple tubo de colimación. (2,5 ° X 3,5 ° FOV)

Logros destacados:

  • Descubrimiento de varios púlsares período de registro (por ejemplo, X Per).
  • Descubrimiento de salsas absorpton en Cyg X-1.
  • El seguimiento a largo plazo de los púlsares y otros sistemas binarios de rayos X brillantes.
  • La variabilidad observada intensidad rápida de Cen A.

Misión Visión generalOAO32

El satélite Copérnico fue lanzado en una órbita casi circular de 7.123 kilometros de radio, inclinado a 35 grados, el 21 de agosto de 1972. El experimento principal era un telescopio ultravioleta. Sin embargo, también contenía un experimento cósmico de rayos X. proporcionada por la University College London / MSSL. El cuerpo principal de Copérnico mide 3 x 2 metros. Los paneles solares se fijaron en un ángulo de 34 grados con respecto al eje de observación, y se mantuvieron dentro de los 30 grados de la dom Esta restricción dio lugar a ciertas partes del cielo siendo visible sólo en ciertas épocas del año. Los instrumentos astronómicos fueron co-alineados, con el telescopio UV que reside en el cilindro central del satélite y el experimento de rayos X enOAO33 una de las bahías que lo rodean. Mientras que el telescopio UV estaba observando, los detectores de rayos X tomaron principalmente mediciones de fondo. De vez en cuando, el detector de rayos X observó una fuente de rayos X en el campo de visión del objetivo UV. Se operó hasta febrero 1981.

El experimento de rayos X

Hubo 4 detectores de rayos X en el experimento UCL / MSSL. El detector principal era un contador proporcional sensible a la keV rango de energía 2,5-10,0 (1-3 Å). Tenía un simple tubo de colimación con un campo FWHM 2,5 x 3,5 grados de visión. El área efectiva fue 17,OAO348 cm 2 con una sensibilidad de aproximadamente 3 mCrab. Los otros dos contadores proporcionales y un channeltron, en los focos de los telescopios de incidencia rasante. El channeltron sufría de fondo de alta UV y no era científicamente productiva. Los contadores proporcionales cubren el rango de energía de 0,7-1,5 keV y 1.4 a 4.2 keV (6-18 Å y 3-9 Å). Por el uso inteligente de las paradas en los focos, los campos de visión y las áreas efectivas podrían establecerse a 10′ (12,3 cm 2), 3 ‘(11,3 cm 2), o 1′(7,6 cm2) y 10′ (3,7 cm2), 6 ‘(2,4 cm 2), o 2′ (1,0 cm 2) para los sistemas de alta y baja energía, respectivamente. Estos 2 sistemas se convirtieron en inoperable en julio de 1973 debido a un fallo de un obturador de fondo.

El tiempo básico de acumulación fue de 62,5 segundos, seguido de 24 segundos de tiempo muerto. Por lo tanto, efectivamente, hubo un segundo intervalo de muestreo de 86.509. Había una manera de forzar a una mejor resolución de tiempo (a múltiplos de 1,62 s, J20 este modo fue nombrado), que fue utilizado en ocasiones para la observación de las fuentes luminosas, en busca de ráfagas, etc. Sin embargo este modo fue utilizado en algunas ocasiones y fue no científicamente útil. Un pulso analizador de altura de seis canales se podría conectar a uno cualquiera de los 3 contadores proporcionales y se utiliza para recoger información espectral.

Pioneer 10

Pioneer 10 es una sonda espacial estadounidense lanzada el 2 de marzo de 1972, siendo la primera sonda que atravesó con éxito el cinturón de asteroides y que llegó hasta el planeta Júpiter, el objetivo principal de su misión. En junio del año 1983 se convirtió en el primer objeto fabricado por el ser humano que atravesó la órbita de Neptuno, en aquel momento el planeta más distante del Sol dada la excentricidad de la órbita de Plutón, que hasta 2006 no dejó de considerarse planeta.

El paso por Júpiter el 3 de diciembre de 1973 proporcionó las mejores imágenes hasta la fecha de la atmósfera del planeta, permitiendo obtener información de la temperatura de la atmósfera y de la altura en la que se encuentran las nubes superiores de Júpiter. También estudió los cinturones de radiación del planeta y su fuerte campo magnético, de intensidad muy superior a la que se esperaba.

La nave Pioneer 10 es también famosa por el hecho de que contiene una placa inscrita con un mensaje simbólico que le informa a la civilización extraterrestre que pudiese interceptar la sonda acerca del ser humano y su lugar de procedencia, la Tierra, una especie de “mensaje en una botella” interestelar. Esta placa fue fabricada en aluminio anodizado en oro, debido a que este elemento tiene ciertas propiedades que hacen que se degrade mínimamente.

En la placa aparece:

  • a la derecha, la imagen de la sonda con el único fin de dar proporción a las dos figuras humanas dibujadas delante, una femenina y otra masculina.
  • a la izquierda, un haz de líneas que parten radialmente de un mismo punto; ese punto es el planeta Tierra; las líneas indican la dirección de los púlsares más significativos cercanos a nuestro sistema solar y en cada uno, en sistema de numeración binario, la secuencia de pulsos de cada uno; este apartado constituye nuestro “domicilio” en el universo; una civilización técnicamente avanzada, con conocimiento de los púlsares, podría interpretar la placa;
  • en la parte inferior se representa un esquema del sistema solar, con los planetas ordenados según su distancia respecto al Sol y con una indicación de la ruta inicial de la Pioneer 10;
  • arriba del conjunto, a la izquierda, se muestra, también con indicaciones en sistema binario, el spin de una molécula de hidrógeno, el elemento más común en el universo.

La placa fue diseñada y popularizada por el astrónomo y divulgador científico estadounidense Carl Sagan y por el también astrónomo estadounidense Frank Drake. Fueron dibujadas por Linda Salzman Sagan.

La sonda fue construida de aluminio y pesaba 258 kg en el despegue, con 28 kg de propelente. La parte central era un anillo hexagonal de 71 cm de ancho y 25,5 cm de altura que albergaba el sistema de radio, la computadora, baterías, la grabadora, los cables y otros elementos. Pioneer 10 lleva una antena parabólica de 2,74 m para las comunicaciones con la Tierra, además de unas antenas de media y baja ganancia. La principal transmitía a 2 kbps, con una ganancia de 38 dB. La energía era suministrada por 4 generadores termoeléctricos de radioisótopos (abreviadamente, RTG) de 15 kg de masa cada uno y 58,36 cm, y utilizaba dióxido de plutonio como fuente de energía. La Pioneer 10 requería 106 vatios de potencia y 26 vatios para los experimentos. El sistema de propulsión era alimentado por un tanque de hidracina de 26 kg, y constaba de 12 propulsores para correcciones y actitud. La orientación se realizaba mediante 3 sensores solares y un sensor estelar apuntando a Canopus. El control de la sonda lo realizaba una computadora central, constando de un procesador de comandos y memoria. La información era almacenada en una grabadora de datos con 49 kb de memoria, 50 kb para los experimentos y 222 comandos.Pioneer101

Entre los experimentos que la Pioneer 10 llevaba a bordo se encontraban detectores de meteoritos, una cámara, un radiómetro, un fotómetro, un detector de rayos cósmicos, un sensor plasma y un magnetómetro

Después de 1997, la débil señal de la Pioneer 10 continuó siendo rastreada por la Red del Espacio Profundo, como parte de un nuevo concepto en el estudio de la tecnología de comunicaciones basado en extraer mensajes coherentes usando la teoría del caos de una señal saturada de ruido. La sonda fue usada en el entrenamiento de controladores de vuelo en cómo adquirir señales de radio del espacio.1

La última recepción exitosa de telemetría fue el 27 de abril de 2002. Las señales subsecuentes apenas fueron detectables. La pérdida de contacto fue probablemente debido a la combinación del incremento de la distancia y a un lento debilitamiento de la fuente de energía de la sonda.

La última débil señal del Pioneer 10 fue recibida el 23 de enero de 2003, cuando estaba a doce mil millones de kilómetros de la Tierra. El intento por contactarla el 7 de febrero de 2003 no fue exitoso. Un último intento fue realizado la mañana del 4 de marzo de 2006, la última vez que la antena estaría correctamente alineada con la Tierra, sin embargo no se recibió respuesta alguna del Pioneer 10. En la actualidad la nave se dirige hacia la estrella Aldebarán, en la constelación de Tauro, adonde llegará dentro de 1 690 000 años.

La última señal de la nave fue recibida el 22 de enero de 2003, por la Red de Estaciones de Seguimiento en el Espacio Profundo (Deep Space Network o DSN) de la NASA. Había sido emitida desde una distancia de doce mil doscientos millones de kilómetros (1,22 · 1010 km), por lo que necesitó once horas y veinte minutos -viajando a la velocidad de la luz, trescientos mil kilómetros por segundo (3·105 km/s)- para llegar hasta nosotros.Pioneer102

El posterior intento que el 7 de febrero hizo la NASA para comunicarse con ella no tuvo éxito, por lo que no prevén realizar nuevos intentos. De hecho, las tres anteriores señales que envió la nave fueron muy tenues. La última, captada en la madrileña estación espacial de Robledo de Chavela, era tan débil que no se pudo extraer de ella ninguna información científica. La recibida el 27 de abril de 2002, fue la última con información telemétrica.

Todo hace indicar que la sonda no tiene ya capacidad para enviar señal útil, pues su fuente de energía, un generador de plutonio, se ha debilitado hasta tal punto que la información adicional que porta la señal es indescifrable. Se sabe donde está, pero no se puede comunicar con ella. Ha enmudecido, después de más de treinta años de funcionamiento.

Concebida para una misión de tan sólo 21 meses de duración, sorprendió al mundo científico la clara señal con información que envió en abril de 2001. Todos la habían dado ya por perdida. De hecho, su cada vez más débil señal era rastreada por la NASA, desde 1997, únicamente como parte de un estudio de nuevas tecnologías de comunicación para futuras misiones. Es muy probable que la Pioneer 10 haya realizado la misión de más trascendencia social y de más rentabilidad científica en toda la historia de la Astronáutica. Bien podemos decir, que es una máquina de trabajo que excedió largamente su período de garantía. Que el gasto mereció la pena. Los más de 30 años en funcionamiento le hacen ser, no ya la más veterana sino, la más exitosa de las sondas espaciales.

Construida por TRW de Redondo Beach, en California (EEUU), y lanzada el 2 de marzo de 1972 en un cohete Atlas‑Centaur de tres fases, esta pequeña nave (250 kg sin combustible) fue, en su momento, el objeto más rápido fabricado por el ser humano y enviado al espacio. No en vano, la última de las tres fases le proporcionó una velocidad de 52.142 km/h, a la vez que la hacía girar sobre sí misma a 60 rpm. A esta velocidad, en apenas once horas dejó atrás la Luna y, tres meses después de su lanzamiento, había cruzado ya la órbita de Marte (a unos 80 millones de kilómetros de la Tierra) en dirección hacia el planeta Júpiter.

La sonda Pioneer 10 entró en la historia de la humanidad el 15 de julio de 1972, al ser la primera en atravesar el cinturón de asteroides que orbita el Sol. Una región donde hay objetos que se mueven a 20 km/s y cuyos diámetros oscilan, desde unos cuantos centímetros hasta mil kilómetros (como España). Como no se tenían datos de su densidad másica ni de su cinemática interna, se preveía la posibilidad de que se estrellase con alguno de estos objetos rocosos.

Fue el primer artefacto humano en llegar a la órbita de Júpiter y en su aproximación -donde llegó a alcanzar los 131.966 km/h, debido a su gran atracción gravitatoria- pudo, el 3 de diciembre de 1973, obtener las imágenes más cercanas que se hayan tomado del planeta gigante, así como de sus anillos. Además de tomar fotografías de Júpiter, catalogó sus cinturones de radiación, localizó su campo magnético y estableció que el gigante gaseoso era en gran medida, un planeta líquido.

Pero, además, también fue la primera que transmitió a la Tierra fotografías de Saturno, e información que los astrónomos consideran todo un tesoro. Desde datos sobre los rayos cósmicos que atravesaban la porción de la Vía Láctea en la que se halla el Sistema Solar, hasta otros que tienen que ver con la mecánica gravitacional, los campos magnéticos planetarios, el estudio de partículas energéticas procedentes del Sol (viento solar) y la velocidad de las partículas de polvo espacial.

Diez años después, en 1983, se cumple por tanto el 20 aniversario, la Pioneer 10 se convertía en el primer objeto fabricado por el hombre en atravesar la órbita de Plutón y pasar por su cara oculta. A continuación salió del Sistema Solar internándose en el espacio abierto interestelar.

La Pioneer 10, como también las sondas Pioneer 11, Voyager I y Voyager II, lleva una placa de aluminio y oro anodizado, sujeta en un lugar del soporte de la antena de la nave, donde estará protegida de la erosión del polvo interestelar. Diseñada por Carl Sagan y Frank Drake y dibujada por la entonces esposa de Sagan, Linda Salzman, mide unos 15 x 23 cm y 1,2 mm. de espesor y en ella se encierra un mensaje que intenta resumir tres informaciones básicas: quién la construyó, dónde y cuándo.

Placa de la sonda Pioneer 10Pioneer103

La clave para traducir el significado de la placa se encuentra en el elemento más común del Universo, el hidrógeno. En la parte superior izquierda del diseño (ver dibujo superior), dos circunferencias representan un átomo de hidrógeno en sus dos estados fundamentales: a la izquierda, excitado; a la derecha, sin excitar. Con ellos se sugiere que el segmento horizontal trazado entre ambos representa una distancia igual a la longitud de onda de la radiación emitida en el proceso, 21 cm. Es la radiación que se origina en todas las grandes aglomeraciones de hidrógeno interestelar, por lo que se trata del establecimiento de un factor de escala longitudinal. Debajo, un breve trazo vertical representa al dígito binario 1 para corroborar aún más su carácter de unidad básica.Pioneer104

En la zona central-derecha se advierte una silueta estilizada de la sonda, con su gran antena parabólica, y, delante de ella, superpuestas, las figuras desnudas de una mujer junto a la de un hombre. Así se intenta representar el tamaño relativo aproximado de las criaturas que la enviaron. Las marcas a la derecha de la figura femenina que delimitan su altura junto con el numero 8 en binario y en vertical (8 decimal = 1.000 binario), tratan de representar que la mujer tiene 8 unidades de altura. Tomando así, como unidad, la longitud base antes definida (21 cm), estamos señalando que la mujer tiene una altura media de 168 cm (8 x 21 = 168 cm).

Además se representa al hombre con el brazo levantado en señal de buenas intenciones. Ambas representaciones humanas se basaron en un análisis por ordenador del promedio físico en nuestra civilización.

En la zona central-izquierda se advierte una especie de estrella, que no es otra cosa sino un plano a escala que establece la posición exacta de la Tierra en el Universo. Atravesándola de izquierda a derecha se encuentra la representación de la posición del Sol con respecto al centro de nuestra galaxia (la barra horizontal) y la de 14 púlsares (las barras radiales).

Cada uno de los 14 rayos indica la dirección en que se ven desde la Tierra los 14 púlsares (radiofuentes cósmicas que emiten señales extraordinariamente potentes a intervalos muy cortos y regulares) más importantes. Han sido trazados de manera que su longitud sea proporcional a la distancia a la que se encuentra dicho púlsar de nosotros.

En cada uno hay indicado, adPioneer106emás, un numero en código binario, que corresponde al período de pulsación con que emite sus señales el púlsar correspondiente, medido en múltiplos del período de la radiación de 21 cm, cuyo valPioneer105or es exactamente de 0,704024115 milmillonésimas de segundo.

Como el período de las referidas radiofuentes varía lentamente, aunque con enorme regularidad, al ritmo de unos diez nanosegundos por día, si en un futuro más o menos lejano alguien encuentra la sonda, conociendo además la existencia de los púlsares, su período en ese momento y su ritmo de variación, podrá establecer correctamente cuándo esos mismos púlsares tenían el período indicado en la placa.

Por ultimo, en la parte inferior de la placa se encuentra la representación de la posición de la Tierra, con respecto a nuestro Sistema Solar. A la izquierda se encuentra el Sol y a continuación los nueve planetas, junto con la distancia al astro rey expresada en binario. Para señalar a la Tierra se dibujó la trayectoria del Pioneer saliendo del tercer planeta del Sistema Solar, nuestro hogar.

La nave Pioneer 10 en los laboratorios antes de ser lanzada

Todo lo que siempre has querido saber sobre la anomalía de las sondas Pioneer

Publicado en 22 enero 2010

Lo siento, yo no te lo voy a contar, no voy a traducir 163 páginas de documentación sobre lo que de verdad se sabe sobre la anomalía de las sondas Pioneer. Todas tus preguntas (salvo la más importante, por qué se produce) sobre la anomalía de las sondas Pioneer te las contestará el artículo de revisión de 163 págPioneer107inas de Slava G. Turyshev, Viktor T. Toth, “The Pioneer Anomaly,” ArXiv, 20 Jan 2010. ¡Ah, que todavía no lo sabes! La anomalía de las sondas Pioneer se refiere a la aparente aceleración que las sondas Pioneer 10 y 11 han mostrado cuando se encontraban a distancias del Sol entre 20 y 70 UA (unidades astronómicas). Esta aceleración aP = (8,74 ± 1.33) × 10-10 m/s2 viola aparentemente la ley de gravitación universal de Newton (la ley de la inversa del cuadrado) y actualmente no tiene ninguna explicación definitiva, aunque se han propuesto muchísimas explicaciones posibles (más o menos convincentes). El artículo de Turyshev y Toth menciona alguna de estas especulaciones, pero no se recrea en ellas, ni pretende presentar de forma sistemática todas las que hay.

Hoy en día, la existencia de la anomalía no puede ser puesta en duda. Sin embargo, los nuevos análisis de los datos radiométricos de las Pioneer indican que la aceleración anómala no es constante sino que va decreciendo ligeramente conforme pasa el tiempo (como muestra la figura de la izquierda). Además, la dirección a la que apunta la aceleración anómala tampoco está clara (tiene un error de unos 3º). Podría apuntar al Sol (1 en la figura de la derecha), hacia la Tierra (2 en la figura), en la dirección opuesta a la velocidad de la sonsa (3 en la figura) o en la dirección del eje central de la sonda (4 en la figura). La anomalía se ha observado en la Pioneer 10 hasta una distancia de 70 UA, y en la Pioneer 11 desde una distancia de 20 UA, sin embargo, no se sabe si la anomalía estaba presenta a distancias más pequeñas. La anomalía presenta un error sistemático oscilatorio con variaciones diarias y anuales claramente visibles, pero no se sabe si tienen algo que ver con la explicación de la anomalía. Las Pioneer también presentan una anomalía de espín, pero no se sabe si está relacionada con la aceleración anomalía. Finalmente, la explicación menos esotérica, que la anomalía es debida a una radiación de calor de los motores anisótropa no se puede descartar, ya que se cree que ha sido subestimada en estudios anteriores.Pioneer108

Los autores de este artículo de revisión han emprendido un proyecto de investigación exhaustivo que reanalizará todos los datos telemétricos de las sondas Pioneer 10 y 11 mediante un nuevo software de análisis de datos y esperan que en menos de una década el problema de la anomalía de las sondas Pioneer sea resuelto. Esperemos que así sea.

La NASA publica un nuevo análisis de la anomalía de las Pioneer

Posted on 29 julio, 2011 por Felipe Campos

La misteriosa fuerza que actúa sobra las sondas Pioneer parece estar bajando exponencialmente. Esta es una gran pista de que el calor de a bordo es el culpable, dice la NASA.

Ilustración artística de una de las sondas Pioneer. Crédito: NASA.

A principios de la década de 1970, la NASA envió dos naves espaciales en una montaña rusa hacia el Sistema Solar exterior. Las Pioneer 10 y 11 viajaron más allá de Júpiter (y Saturno en el caso de Pioneer 11) y ahora se dirigen hacia el espacio interestelar.

Pero en 2002, los físicos del Laboratorio de Propulsión a Chorro de la NASA en Pasadena, notaron un desconcertante fenómeno. La sonda estaba frenando. Nadie sabía por qué, pero la NASA analizó 11 años de datos de seguimiento de Pioneer 10 y 3 años de Pioneer 11 para demostrarlo.

Esta desaceleración, la anomalía de las Pioneer, se ha convertido en uno de los mayores problemas de la astrofísica. Una idea es que la gravedad es diferente en esas distancias (Pioneer 10 y 11 están ahora a 30 y 70 UA). Ésta sería la conclusión más emocionante.

Pero antes de que los astrofísicos acepten esto, deben descartarse otras explicaciones más mundanas. De ellas, la principal es la posibilidad de que la desaceleración esté provocada por el calor procedente de las baterías radiactivas de la nave, que pueden irradiar más calor en una dirección que en otra.

El pasado marzo, físicos europeos afirmaron que un nuevo modelo por ordenador de la emisión de calor procedente de la nave había finalmente dado con el problema. Dijeron que habían demostrado que el calor era el culpable.

La NASA, que tenía su propio equipo revisando este tema, se ha mantenido en silencio sobre este resultado y hoy podemos ver por qué. Slava Turyshev del JPL y algunos colegas dicen que han filtrando los registros del JPL en busca de más datos. Y los han encontrado.Pioneer109

Estos chicos dicen que han sido capaces de duplicar los conjuntos de datos para ambas naves. Esto incrementa los datos de seguimiento de Pioneer 10 a 23 años y de Pioneer 11 a 11 años. Esto es un salto de 20.055 a 41.054 puntos de datos para Pioneer 10 y de 10.616 a 81.537 para Pioneer 11.

Entonces, ¿qué demuestra esto? En primer lugar, los nuevos datos confirman que existe la desaceleración anómala.

Pero también arroja algo interesante. Turyshev y compañía dicen que parece haber una disminución exponencial con el paso del tiempo en este frenado anómalo. No es fácil de ver en los datos con seguridad, pero sin duda hay signos de que está ahí.

Ésta es una pista importante. Pioneer 10 y 11 están alimentadas por el decaimiento radiactivo del plutonio-238, el cual, por supuesto, decae exponencialmente.

La NASA está actualmente realizando su propia simulación por ordenador de la forma en que se emite el calor desde la nave para ver si puede explicar el nuevo conjunto de datos.

Todas las pistas señalan a la idea de que el calor puede explicar la anomalía de las Pioneer. Como lo expresan Turyshev y sus colegas: “La causa más probable de la anomalía de las Pioneer es la emisión anisotrópica del calor de a bordo”.

Por lo que parece que NASA está de acuerdo con la conclusión europea y que los astrónomos pronto podrán dejar descansar este misterio de una vez por todas.

Guardar

Orión-1

En todo caso, el honor de ser el segundo telescopio en el espacio le corresponde al Orión-1, lanzado por la URSS el 19 de abril de 1971 Orion11a bordo de la primera estación espacial de la historia, la Salyut 1. El Orión-1 era un pequeño reflector de 28 cm de diámetro y 140 cm de focal de tipo Mersenne, paradójicamente muy parecido a los telescopios de aficionado Schmidt-Cassegrain que podemos encontrar en la actualidad. Al igual que el OAO-2, el Orión-1 estaba diseñado para estudiar el ultravioleta y de este modo sacar partido a su privilegiada situación.

Una nave Soyuz (izquierda) acoplándose a la Salyut 1.

La característica que hizo único al Orión-1 es que se trató del primer telescopio en ser controlado por un humano en el espacio. La tripulación de la Soyuz 10 debía haber sido la primera en trabajar con este telescopio, pero no logró acoplarse completamente con la estación y hubo de regresar a la Tierra con las manos vacías. Poco después, los cosmonautas de la Soyuz 11 Georgi Dobrovolsky, Víktor Patsáyev y Vladislav Vólkov lograron acoplarse a la Salyut y se convirtieron así en los primeros habitantes de una estación espacial. Sería Patsáyev el primero en manejar el Orión-1 dentro de la estación, por lo qOrion12ue fue el primer “astrónomo espacial”.

Telescopio espacial Orión.

Pese a que batió el récord de permanencia en el espacio, la tripulación de la Soyuz 11 murió durante su regreso a la Tierra debido a una despresurización causada por un fallo en una de las válvulas de la cápsula. En los años  siguientes se siguieron lanzando telescopios espaciales para observar distintas regiones del espectro, aunque no sería hasta 1990 cuando, tras múltiples retrasos, haría su aparición el Telescopio Espacial Hubble. El Hubble no fue, como hemos visto, el primer telescopio en órbita, pero su espejo primario de 2,4 metros lo convirtió en el primer gran observatorio espacial. Además del Hubble, varios telescopios espaciales nos han mostrado cómo son esos otros cielos en distintas longitudes de onda. Gracias a ellos, la astronomía ya no volverá a ser la misma.

Uhuru

Representación artística del UhuruUhuru1

Organización: NASA

ID COSPAR: 1970-107A

SatCat №: 4797

Fecha de lanzamiento: 12 de diciembre de 1970

Cohete: Scout B S175C

Sitio de lanzamiento: San Marcos

Vida útil: 3 años

Aplicación: Observatorio espacial (rayos X)

Equipo: Dos contadores de rayos X para el rango entre 2 y 20 keV

Peso: 141,5 kilogramos (312 lb)

Tipo de órbita: Elíptica casi ecuatorial

Excentricidad: 0.002956

Inclinación: 3 grados

Período orbital: 96 minutos

Periastro: 520 kmUhuru2

Apogeo_ 560,0 kilómetros (348,0 millas)

Instrumentos: All-Sky-Ray X Encuesta

Uhuru, lanzado por la NASA fue el primer satélite lanzado específicamente para el estudio de la astronomía de rayos-X. También es conocido como Small Astronomical Satellite 1 (SAS-1)

Este observatorio espacial fue lanzado el 12 de diciembre de 1970 a una órbita de unos 560 km de apogeo, 520 km de perigeo, 3 grados de inclinación, con un periodo de 96 minutos. La misión terminó en marzo de 1973. Llevó a cabo la primera búsqueda en todo el cielo de fuentes de rayos X en el rango de 2 a 20 keV. El satélite disponía de dos contadores de rayos X, que detectaban los fotones que llegaban con ese intervalo de energías. Se encontraron 339 fuentes que pudieron ser identificadas y analizadas.

Uhuru era una misión de exploración, con un período de rotación de ~ 12 minutos. Se realizó el primer estudio exhaustivo de todo el cielo de rayos-X de fuentes, con una sensibilidad de alrededor de 0.001 veces la intensidad de la nebulosa de cangrejo.

El nombre del satélite, Uhuru, significa «libertad» en suajili. Fue nombrado así en reconocimiento por la hospitalidad de Kenia desde donde fue lanzado a su órbita, y en conmemoración del séptimo aniversario de la declaración de independencia de ese país.

Los principales objetivos de la misión fueron: [1]

  • Para examinar el cielo de fuentes de rayos X cósmicos en el rango de 2-20 keV a una sensibilidad límite de 1.5 × 10 -18 J / (cm2 sec), 5 × 10 -4 el flujo de la nebulosa de cangrejo
  • Para determinar las ubicaciones de origen discretas con una precisión de unos pocos minutos de arco cuadrados para las fuentes fuertes y unas pocas décimas de un grado cuadrado en el límite de sensibilidad
  • Para estudiar la estructura de las fuentes extendidas o regiones complejas con una resolución de alrededor de 30 minutos de arco
  • Para determinar las características espectrales brutos y la variabilidad de las fuentes de rayos X
  • Para llevar a cabo, siempre que sea posible, coordinada y / o observaciones simultáneas de objetos de rayos X con otros observadores.

InstrumentaciónUhuru4

La carga útil consistió en dos conjuntos de contadores proporcionales, cada una conUhuru3 ~ 0,084 m2 área efectiva. Los contadores fueron sensibles con eficiencia más de 10% a de rayos X fotones en el ~ 2-20 keV gamma. El límite inferior de energía se determinó por la atenuación de las ventanas de berilio del medidor, más una cubierta térmica delgada que se necesitaba para mantener la estabilidad de la temperatura de la nave espacial. El límite de energía superior se determina por las propiedades de transmisión del contador de gas de llenado. Discriminación de pulso-forma y anticoincidence técnicas fueron utilizadas para filtrar las emisiones de partículas y fotones de alta energía indeseables en el fondo. Se utilizó el análisis de altura de impulsos en ocho canales de energía para obtener información sobre la energía del espectro de los fotones incidentes. Los dos conjuntos de contadores se colocaron de nuevo a la espalda y se colimados a 0,52 ° X 0,52 ° y 5,2 ° x 5.2 ° (anchura a media altura), respectivamente. Mientras que el detector 0.52 ° dio resolución más fina angular, el detector de 5,2 ° tenía una sensibilidad más alta para las fuentes de aislados.[1]

Resultados

Uhuru logró varios avances científicos pendientes, incluyendo el descubrimiento y el estudio detallado de las acreción de propulsión pulsantes fuentes de rayos X binarios tales como Cen X-3, Vela X-1, y su X-1, la identificación de Cygnus X-1, el primer candidato fuerte para un astrofísico agujero negro, y muchos importantes fuentes extragalácticas. El Catálogo de Uhuru, publicado en cuatro versiones sucesivas, el último de ellos el catálogo 4U, fue el primer catálogo exhaustivo de rayos X, contiene 339 objetos y cubre todo el cielo en la banda de 2-6 keV.[2] La versión final de la catálogo de fuente se conoce como el catálogo de 4U;[3] versiones anteriores fueron los catálogos 2U y 3U. Las fuentes están referenciadas como, por ejemplo, “4U 1700-37“.

  • En primer lugar completo y uniforme en todo el estudio del cielo con una sensibilidad de 10 -3 la intensidad del cangrejo.
  • Los 339 fuentes de rayos X detectados son binarios, restos de supernovas, galaxias Seyfert y cúmulo de galaxias
  • El descubrimiento de la emisión de rayos X difusa de los cúmulos de galaxias

Instrumentación

La carga útil consistió en dos conjuntos de contadores proporcionales cada uno con ~ 0.084 SQ-m área efectiva. Los contadores fueron sensibles con más del 10 por ciento de eficiencia a los fotones de rayos X en el rango de 2-20 keV ~, límite de la menor sensibilidad se determinó por la atenuación de las ventanas de berilio del medidor, más una cubierta térmica delgada que se necesitaba para mantener la estabilidad de la temperatura de la nave espacial. El límite superior se determina por las propiedades de transmisión del gas de llenado, discriminación Pulse-forma y técnicas anticoincidence se utilizaron para reducir el fondo debido a las partículas y fotones de alta energía. Se utilizó el análisis de altura de impulsos en ocho canales para obtener información sobre la distribución de la energía de los fotones incidentes. Los dos conjuntos de contadores se colocaron de nuevo a la espalda y se colimados a 0,52 ° X 0,52 ° y 5,2 ° x 5.2 ° (anchura a media altura), respectivamente. Mientras que el detector de 0,5 ° dio una resolución más fina angular, el detector 5 ° tenía una sensibilidad más alta para las fuentes aisladas.

Giacconi, Riccardo (1931).

Físico italoamericano, galardonado con el Premio Nobel de Física en 2002 “por sus pioneras contribuciones a la astrofísica que le llevaron al descubrimiento de las fuentes de Rayos X de origen cósmico”.Uhuru5

Nacido en Génova (Italia) en 1931, se doctoró en 1954 en la Universidad de Milán y después continuó sus estudios en las Universidades de Milán, Indiana y Princeton, donde ejerció como docente. Ya en 1959 se incorporó a la American Science and Engineering Corporation (ASE), una pequeña compañía con 28 empleados dedicada a proyectos de investigación espacial financiados con fondos gubernamentales. Su trabajo estaba centrado en el diseño de instrumentos para los programas espaciales impulsados por el departamento estadounidense de Defensa y por la NASA.

En el ámbito de la astrofísica, Giacconi es conocido como el padre de la astronomía de Rayos X, ya que en 1962 se convirtió en el primer investigador que lograba detectar fuentes de Rayos X extrasolares. Los Rayos X solares habían sido detectados por primera vez por T. Robert Burnright, mediante un detector montado en un cohete y, posteriormente, por Herbert Friedman que después intentó detectar Rayos X provenientes de otras estrellas pero fracasó. El grupo liderado por Giacconi desarrolló un sensor 1.000 veces más sensible que los hasta entonces existentes y, tras dos intentos fallidos, en junio de 1962 consiguió detectar una fuente de Rayos X situada en la constelación de escorpio que ha venido en llamarse Sco X-1.

En 1970 puso en marcha el proyecto UHURU; primer satélite lanzado con el objetivo exclusivo de explorar los Rayos X extrasolares. Los instrumentos del UHURU detectaron cientos de fuentes externas al sistema solar, algunas de ellas sin correspondencia con objetos visualmente reconocibles. El equipo dirigido por Giacconi llegó a la conclusión de que las emisiones de Rayos X detectadas procedían de objetos muy compactos y no visibles que se mantenían en órbita alrededor de algunas estrellas. Estas emisiones sólo podían deberse a estrellas de neutrones o agujeros negros como partes integrantes de un sistema binario de estrellas. Los agujeros negros habían sido formulados hipotéticamente con anterioridad pero nunca habían sido detectados. También se encontraron fuentes similares a escala mucho mayor en el centro de galaxias. Giacconi probó además que en el Universo existe una radiación de fondo de Rayos X procedente del instante primigenio del Universo, pareja a la demostrada en el espectro de microondas.

Guardar

OAO-2

El OAO-2 fue lanzado el 7 de diciembre de 1968, llevando 11 telescopios ultravioletas. Realizó observaciones con éxito hasta enero de 1973 y realizó bastantes descubrimientos científicos, entre los que cabe destacar que los cometas están rodeados por enormes halos de hidrógeno de varios miles de kilómetros, así como interesantes observaciones de novas en luz ultravioleta.OAO-2.1

Básicamente era un satélite de dos toneladas que fue bautizado como con el nombre de “Stargazer” una vez en el espacio.

Estrictamente hablando, el OAO contaba con varios telescopios distintos, aunque el instrumento estrella estaba formado por cuatro telescopios de 30,48 centímetros de diámetro, cada uno de ellos conectados a una cámara de televisión especial para poder estudiar el espectro ultravioleta, una de las regiones prohibidas para la astronomía terrestre.OAO-2.2

Para entonces, la NASA decidió lanzar primero el OAO-A2, en vez del OAO-B, dado que llevaba un instrumental que en parte se asemejaba al de su desgraciado antecesor. El llamado en órbita OAO-2 despegó el 7 de diciembre de 1968, esta vez a bordo de un cohete Atlas SLV3C Centaur-D, y obtuvo un éxito resonante. Pesó 1.995,8 Kg al despegue (el satélite no tripulado más pesado de la NASA hasta ese momento) y quedó situado en una órbita circular de unos 750 Km, donde recibió el nombre de Stargazer. Dedicado plenamente a la astronomía ultravioleta y equipado con 11 telescopios, funcionó con normalidad durante 16 meses, período durante el cual obtuvo más de 8.500 imágenes del cielo, aproximadamente una décima parte de la bóveda celeste. Los astrónomos pudieron hacer mediciones de unas 5.000 estrellas, así como de cometas (Bennett, Tago-Sato-Kosaka) y de la luz zodiacal. También se empleó para mirar hacia algunos planetas, como Marte y Júpiter, lo que permitió medir la composición de la atmósfera marciana y su presión, así como la de Júpiter. Especialmente interesante fue la observación como primicia de la nebulosa del Cangrejo, en el ultravioleta, OAO-2.3de estrellas variables, novas, etc. El OAO-2 fue apagado el 13 de febrero de 1973, cuando falló el sistema de energía de los instrumentos.

Por primera vez la Humanidad conseguía levantar el velo de la atmósfera y ante nosotros se nos presentaba un Universo como nunca antes nadie, literalmente, lo había visto. Desgraciadamente, la resolución del OAO no permitía obtener imágenes espectaculares, pero sí nos enseñOAO-2.4ó que el cielo en ultravioleta era muy diferente del que se podía ver desde la Tierra.

En los años siguientes se siguieron lanzando telescopios espaciales para observar distintas regiones del espectro hasta llegar finalmente en 1990 al telescopio espacial Hubble. El Hubble no fue, como hemos visto, el primer telescopio en órbita, pero su gran espejo primario de 2,4 metros lo convirtió en el primer gran observatorio espacial. Después del mismo aparecieron otros grandes observatorios que cambiaron para siempre a la astronomía.