Astronautica
Esta es con mucho, la más antigua y mayor afición, y a la que más tiempo le he dedicado, pero a la hora de incluir temas, sería tan extensa como inacabable, por lo que sólo se incluyen temas puntuales, escuetos y a ser posible aclaratorios y didácticos.
Yutu-2
Yutu-2
Es un rover que fue lanzado por la nave Chang’e 4, de cuyo programa forma parte.
Chang’e 4 (chino simplificado: 嫦娥四号) es una misión de exploración lunar de nacionalidad china, lanzada el 7 de diciembre de 2018, que incorpora un orbitador, un módulo de aterrizador robótico y un rover. Es el segundo módulo lunar y explorador lunar de China. Se construyó como copia de seguridad de la Chang’e 3, como Chang’e 2 fue igualmente para Chang’e 1. Tras el exitoso aterrizaje de la misión Chang’e 3, la configuración de Chang’e 4 va equipada para cumplir nuevos objetivos científicos. Al igual que sus predecesores, la nave espacial lleva el nombre de la diosa de la luna china.
Chang’e 4 fue lanzada por un Larga Marcha 3B el 7 de diciembre de 2018. Entró en órbita de aterrizaje el 30 de diciembre de 20184, alunizando con éxito el 3 de enero de 2019, por lo que ha sido el primer alunizaje en el lado oculto de la Luna.5
Los instrumentos de los que va provisto el Rover son:
- Cámara panorámica
- Georradar
- Espectrómetro infrarrojo
- Active Source Hammer (ASH) para experimentos sísmicos de fuente activa
- Energetic neutral atom: Analizador pequeño avanzado para neutrales (ASAN), proporcionado por el Instituto Sueco de Física Espacial (IRF). Revelará cómo el viento solar interactúa con la superficie lunar y quizás incluso el proceso detrás de la formación del agua lunar.14
El rover de la Chang’e 4 antes del lanzamiento (Xinhua).
Más inteligente que su predecesor
El director ejecutivo del proyecto de sondeo Change-4 de la CAST, Zhang He, ha detallado que “durante la noche en la Luna, las temperaturas pueden bajar a aproximadamente 180 grados celsius. Durante la misión Change-3, el centro de control terrestre ordenó que el vehículo permaneciera inactivo cada noche. Una vez que el sol saliera, Yutu se despertaría automáticamente, pero necesitaba un control sobre el terreno para indicarle que iniciara el modo de trabajo”.
Sin embargo, Yutu-2 entrará automáticamente en el estado inactivo según el nivel de luz solar. “Hicimos este ajuste porque la comunicación entre el control de tierra y la sonda en la cara oculta de la Luna no es tan conveniente como la comunicación con Change-3“, ha añadido Zhang.
El primer rover lunar de China, Yutu, sufrió una falla mecánica después de conducir unos 114 metros hace cinco años. “Cómo resolver ese problema para que no volviese a suceder fue el principal desafío en el desarrollo del nuevo rover”, ha indicado Zhang.
La nave Chang’e 4 se posó en la cuenca Aitken, que con 2500 kilómetros de diámetro es uno de los mayores cráteres de impacto del Sistema Solar. De las entrañas del módulo de aterrizaje salió el robot Yutu-2, que recorrió una pequeña zona de este enorme cráter dentro del cual hay muchos otros —la misión se encuentra en el Von Kármán, con 180 kilómetros de lado a lado— y encontró restos de un antiguo océano de lava que cubría todo el satélite.
La Luna se formó hace unos 4.500 millones de años, cuando un planeta del tamaño de Marte —Theia— chocó contra la Tierra y la desintegró durante unas horas. Un fragmento de Tierra se fundió con los restos de Theia y formó la Luna, que durante un tiempo estuvo cubierta por ese océano de roca fundida del que Yutu encontró indicios el año pasado.
La depresión Aitken es uno de los mayores y más antiguos cráteres del sistema solar. En imagen de la Luna, la depresión Aitken está marcada en azul y violeta. A su alrededor, las zonas más elevadas se ven en rojo y amarillo.
Ahora salen a la luz los datos del radar de alta frecuencia que el vehículo lleva instalado y que es el primero que se ha usado nunca para aclarar la composición detallada del subsuelo de esta zona.
“Es la primera vez que obtenemos una estructura detallada de los diferentes estratos del terreno en la cara oculta de la Luna”, explica Yan Su, investigadora de los Observatorios Nacionales de China y coautora del estudio, publicado en Science Advances. La científica resalta que este tipo de estudios ayudan a conocer mejor la historia de los impactos de meteoritos y volcanismo en la Luna y pueden desvelar reservas de minerales de interés como la ilmenita, “un recurso importante” del que pueden extraerse hierro, titanio y oxígeno para abastecer la exploración humana de la Luna.
La sonda Chang”E 4 lleva en su interior un pequeño robot explorador, YuTu 2.
Un día en la cara oculta dura unos 14 días terrestres. La noche dura otros tantos y se alcanzan temperaturas de 170 grados bajo cero, por lo que el vehículo explorador, que funciona con paneles solares, deja de operar. Los datos publicados hoy corresponden a los dos primeros días lunares de la misión —ahora ya va por el 15º—, durante los cuales sus antenas lanzaron ondas de radio contra el suelo que penetraron en el terreno, rebotaron en los accidentes geográficos y desvelaron su composición detallada.
“Uno de los resultados más destacados es la transparencia del terreno”, resalta Elena Pettinelli, geofísica de la Universidad de Roma Tres, cuyo equipo ha colaborado en el análisis de los datos de la misión. “En la Tierra, con una frecuencia similar [500 megahercios] solo podríamos penetrar dos metros debido a la presencia de agua, que atenúa la señal”, explica la investigadora.
Las capas de la Luna
El radar muestra que el interior de la cara oculta de la Luna está hecho de una primera capa de terreno muy fino que llega hasta los 12 metros de profundidad. Son viejas rocas literalmente machacadas por la lluvia de meteoritos y el efecto de la radiación solar. Esta composición ha facilitado que las ondas del radar penetren mucho más que en la cara visible, donde otro robot chino hizo el mismo experimento alcanzando una profundidad de solo 10 metros. Debajo de esa primera capa hay un segundo nivel que alcanza hasta los 24 metros y donde aparecen grandes rocas de entre medio metro y dos metros de largo. Más abajo y hasta donde han podido llegar las ondas del radar —unos 40 metros— hay terreno más mezclado con capas de tierra fina y rocas.
Una estratigrafía que muestra las capas geológicas detectadas por el radar de Yutu-2CLEP/CRAS/NAOC
Los investigadores creen que lo que ven en la segunda capa son los escombros levantados hace unos 3200 millones de años por el meteorito que formó el cráter Finsen, de 72 kilómetros de diámetro y cuyo borde se toca con el Von Kármán, en el que está el robot chino. En el tercer nivel se encuentran restos de impactos más antiguos. El propio Von Kármán se formó hace unos 3600 millones de años.
Los resultados de la misión suponen uno de los mayores éxitos hasta la fecha del programa espacial chino. Ningún otro país ha viajado con éxito a este lado del satélite y ha logrado mantener una misión durante tanto tiempo, para cuya comunicación hubo que lanzar un satélite de comunicaciones que orbita la Luna y envía los datos de la misión a la Tierra. “Esta es una tecnología que otras naciones quieren desarrollar y ellos han sido los primeros en lograrlo”, destaca Bob Grimm, experto en geología lunar del Instituto de Investigación del Suroeste (EE UU). “Los resultados obtenidos en la cara visible y ahora en la oculta demuestran que la penetración del radar depende en parte de la abundancia de hierro y titanio en el subsuelo”, añade.
“Es la primera vez en la historia que se estudia el interior de la Luna con un radar de penetración de suelo”, explica Jorge Pla-García, astrofísico del Centro de Astrobiología, en Madrid. “Antes solo se habían hecho mediciones remotas por satélites, una con el Apolo 17 [1972] y otra con Kaguya [Japón, 2007], ambas con menor resolución. Uno de los descubrimientos interesantes es que se pensaba que el Von Kármán estaba lleno de los restos del impacto que formó este cráter, pero ahora vemos que casi todo se llenó con restos de otros impactos”, resalta.
En este punto los científicos de la misión reconocen un contratiempo. Para penetrar más y determinar a qué profundidad está el manto lunar en esta zona hay que usar el radar de baja frecuencia, capaz de alcanzar cientos de metros bajo el suelo. Por desgracia, su diseño no fue el mejor, ya que el propio cuerpo metálico del vehículo genera interferencias que, por ahora, no permiten aclarar si las imágenes que llegan del subsuelo son reales o simple ruido. Los responsables esperan poder limpiar las mediciones para saber qué se esconde a cientos de metros bajo la cara oculta del satélite.
La hazaña china tuvo un gran eco y fue recogida por medios de comunicación de todo el mundo. Pero, tras la resaca y después de haber demostrado el éxito de la parte tecnológica de la misión, ha llegado para Yutu 2 el momento de hacer ciencia.
Ocho instrumentos para hacer ciencia
Con sus cuatro instrumentos a bordo, el robot se moverá por la superficie para estudiar la interesante geología de esta región lunar, bombardeada a lo largo de su historia por el impacto de numerosos asteroides, sobre todo, durante las primeras etapas del sistema solar que, según se cree, comenzó a formarse hace unos 4.600 millones de años.
Esta misión robótica, compuesta también por la sonda Chang’e 4, dotada de otros cuatro instrumentos, debe hacer también diversos experimentos para entender mejor cómo se desarrolla la vida en la Luna de cara a futuras misiones tripuladas. Entre otras tareas, se va a estudiar cómo afecta el ambiente lunar al crecimiento de vegetales y gusanos de seda.
El director del departamento de exploración lunar y del espacio de la Academia China de Ciencias (CAS), Zou Yongliao, ha mostrado su confianza en que Yutu 2 “hará descubrimientos científicos sorprendentes”, pues “la cara oculta de la luna tiene características muy especiales y nunca ha sido explorada in situ“, informa Efe.
Astronomía desde la cara oculta
En concreto, sus instrumentos le permitirán detectar la composición de minerales, medir la radiación para estudiar el entorno que hay en la cara oculta y realizar observaciones de radioastronomía de baja frecuencia. Según ha explicado la CNSA en un comunicado, el lado oculto de la Luna es una zona libre de interferencias de la Tierra. Por ello, sostiene la agencia espacial china, este emplazamiento es idóneo para que los astrónomos puedan estudiar los orígenes y evolución de las estrellas y las galaxias.
Dos de los instrumentos de la misión han sido desarrollados en colaboración con Suecia, Alemania y Holanda. En los últimos años, China ha incrementado su cooperación con los países de la Agencia Espacial Europea (ESA) y con Rusia. Sin embargo, el recelo de EEUU a que formara parte de la Estación Espacial Internacional (ISS), como deseaba China, hizo que el gigante asiático tuviera que construirse en 2011 su propia estación espacial, Tiangong-1 (palacio celestial) que, por cierto, dio un susto el pasado abril cuando, al quedar en desuso, cayó de forma descontrolada en la Tierra, afortunadamente, sin causar ningún daño. Ahora ha demostrado que puede tratar de tú a tú tanto a la NASA como a las otras grandes agencias espaciales.
Y es que en los últimos 15 años, China ha hecho grandes progresos en su programa espacial, demostrando que quiere ser una de las grandes potencias. Desde que en 2003 mandó al primer hombre al espacio, Yang Liwei, a bordo de la nave Shenzhou 5, 11 taikonautas han formado parte de misiones espaciales.
Por lo que respecta a su programa lunar, Chang’e, las dos primeras naves orbitadoras fueron lanzadas entre 2007 y 2010. La primera que alunizó fue la Chang’e 3, en diciembre de 2013, y esta semana lo ha vuelto a lograr con la Chang’e 4. Está previsto que la siguiente, la Chang’e 5, despegue en diciembre de este año. Su objetivo no será sólo alunizar, sino recoger muestras y traerlas de vuelta a la Tierra. Si lo consigue, volverá a lograr un hito espacial, pues las únicas rocas lunares que hay en nuestro planeta son las recogidas por los astronautas de la NASA que viajaron al satélite entre 1969 y 1972 y, en menor cantidad, por tres sondas soviéticas del programa Luna en los años 70.
El rover chino Yutu-2 comienza su misión en la cara oculta de la Luna 09/01/2019 | Madrid
La Administración Nacional del Espacio de China (ANEC) ha anunciado que el rover de la sonda Change-4, que llegó la semana pasada a la cara oculta de la Luna por primera vez en la historia, se ha separado del módulo y ha descendido a la superficie lunar.
El rover, llamado Yutu-2, es, según los científicos chinos, más ligero, más inteligente, más fuerte y más confiable que su predecesor. En este sentido, los investigadores esperan que el aparato viaje más lejos para enviar más imágenes del terreno desconocido.
El jefe del diseño de la sonda Change-4 de la Academia China de Tecnología Espacial (CAST), Jia Yang, ha explicado que “Yutu-2 de 135 kilogramos es dos kilogramos más ligero que su predecesor. La razón principal de la reducción de peso es la eliminación de un brazo robótico y su reemplazo por un instrumento desarrollado por científicos suecos para analizar el entorno de radiación en la superficie lunar”.
Al igual que Yutu, que aterrizó en la Luna a fines de 2013, el nuevo rover lleva un radar de penetración en el subsuelo para detectar la estructura de la Luna cerca de la superficie y un espectrómetro infrarrojo para analizar la composición química de las sustancias lunares. El sistema tiene una vida útil de tres meses y puede atravesar rocas de hasta 20 centímetros a una velocidad máxima de 200 metros por hora.
Una imagen tomada por el módulo de alunizaje de la sonda ‘Chang’e 4’ muestra al explorador que se desplazará por la superficie lunar para recoger datos
El robot ‘Yutu-2’ descendiendo del módulo de alunizaje, en una foto tomada en el lado oculto de la Luna.
La agencia espacial china, CNSA, mostró las primeras imágenes del robot Yutu-2 avanzando por la superficie del cráter Von Kármán, una formación de 186 kilómetros de diámetro cubierta de polvo gris. Allí, comenzará a realizar el primer análisis sobre el terreno del lado oculto de la Luna. El Yutu-2, que comparte buena parte de su tecnología con el primer Yutu, que llegó a la Luna en 2013 con la misión Chang’e 3, espera tener una vida más longeva que aquella máquina, que se averió después de recorrer poco más de 100 metros.
Yutu-2 y el módulo de alunizaje de la sonda Chang’e 4 tienen cuatro instrumentos cada uno, con los que pretenden estudiar en detalle la superficie y el subsuelo del cráter. Dentro del módulo que no se moverá habrá también un experimento biológico que incluye huevos de gusano de seda y semillas de varias plantas. El objetivo de este trabajo es comprender cómo crecen estos seres vivos en un entorno con una gravedad tan débil como la lunar.
El nombre de Yutu-2 (que se traduce como Conejo de Jade-2) hace referencia a una leyenda china. Según explica la agencia de noticias Xinhua, Yutu es el conejo blanco mascota de Chang’e, la diosa de la Luna que prestó su nombre a la misión lunar china. La leyenda cuenta que Chang’e, después de tragarse una píldora mágica, tomó a su mascota y voló hacia la Luna, donde se convirtió en una diosa y desde entonces ha vivido con el conejo de jade blanco.
Yutu-2 se enfrenta a mayores desafíos que Yutu. Su lugar de aterrizaje, la cuenca Aitken, es el segundo mayor cráter del sistema solar. Al igual que su predecesor, el Yutu-2, capaz de soportar presión al vacío, radiación intensa y temperaturas extremas, está equipado con cuatro cargas científicas, incluidas una cámara panorámica, un espectrómetro para captar imágenes infrarrojas y dispositivos de medición de radar para obtener imágenes de la superficie de la Luna y analizar el suelo y la estructura lunar.
Las primeras imágenes de la cara oculta de la Luna captadas por la ‘Chang’e 4’
El robot chino Yutu-2 recorre la cara oculta de la Luna para mostrar de qué está hecha
2 de marzo de 2020-07:49
El robot Yutu-2 visto desde la sonda Chang”E 4, en el crater Aitken de la Luna.
Un pequeño robot chino desvela, gracias a un radar que le permite explorar el subsuelo lunar, de qué está hecho el interior de la cara oculta de la Luna. El nivel de detalle no tiene precedentes y ha permitido reconstruir el pasado de nuestro satélite y localizar los escombros del impacto de un asteroide que sucedió hace 3200 millones de años, cuando la vida en la Tierra apenas empezaba a surgir.
El 3 de enero de 2019 China se convirtió en el primer país en aterrizar con éxito en la cara no visible de la Luna, un territorio repleto de cráteres hasta ahora inexplorado por la imposibilidad de mantener una comunicación directa con la Tierra.
Cara oculta de la Luna: primeras imágenes de la sonda china Chang’e-4
Yutu-2 supera su vida útil y ya es el rover que más ha sobrevivido en la Luna
Rover en la Luna. Foto: CASC.
07/02/2020 | Madrid 1
El rover lunar chino Yutu-2, que puede atravesar rocas de hasta 20 centímetros a una velocidad máxima de 200 metros por hora, ya ha sobrepasado su vida una vida útil de tres meses, convirtiéndose en el rover que más ha sobrevivido en la Luna. El sistema que llegó en la sonda Change-4 en enero de 2019, ha recorrido 367,25 metros en su misión en la cara oculta de la Luna para realizar una exploración científica.
Durante la misión científica, tanto el módulo de aterrizaje como el rover de la sonda Change-4 terminaron su trabajo el 14º día lunar y cambiaron al modo inactivo durante la noche lunar. El 14º día lunar, Yutu-2 continuó moviéndose a lo largo de la ruta planificada. Los instrumentos científicos en el módulo de aterrizaje y el rover funcionaron según lo planeado.
El detector de radiación de neutrones y el radio espectrómetro de baja frecuencia en el módulo de aterrizaje funcionaron normalmente y adquirieron datos científicos. En el vehículo explorador, el espectrómetro de infrarrojo cercano, la cámara panorámica, el detector de átomos neutros y el radar lunar llevaron a cabo la exploración científica según lo previsto.
Al igual que Yutu, que aterrizó en la Luna a fines de 2013, el nuevo rover lleva un radar de penetración en el subsuelo para detectar la estructura de la Luna cerca de la superficie y un espectrómetro infrarrojo para analizar la composición química de las sustancias lunares.China planea lanzar la sonda Change-5 en 2020 para traer muestras lunares a la Tierra. Change-5 incluirá un módulo de aterrizaje, un orbitador, un ascendente y un regresador. Las tareas clave de la misión serán la recolección de muestras lunares, el despegue de la luna, el encuentro y el atraque en la órbita lunar y el reingreso a alta velocidad a la atmósfera de la Tierra.
El rover chino Yutu-2 continúa descubriendo los secretos del lado oculto de la Luna
REPÚBLICA/EP | 30/04/2020
El rover lunar chino Yutu-2 (Conejo de Jade), ha recorrido 447,68 metros en el lado opuesto de la luna relazando exploración científica del territorio, tras cubrir una distancia adicional de 27 metros en su decimoséptimo día lunar.
Tanto el módulo de aterrizaje como el rover de la sonda Chang’e-4 han cambiado al modo inactivo durante la noche lunar debido a la falta de energía solar, según el Centro de Programa de Exploración y Espacio Lunar de la Administración Nacional del Espacio de China, citada por Xinhua.
La sonda Chang’e-4 de China, lanzada el 8 de diciembre de 2018, realizó el primer aterrizaje suave en el Cráter Von Karman en la Cuenca del Polo Sur-Aitken en el extremo más alejado de la luna el 3 de enero de 2019.
Como resultado del efecto de bloqueo de marea, el ciclo de revolución de la Luna es el mismo que su ciclo de rotación, y el mismo lado siempre mira hacia la Tierra. Un día lunar equivale a 14 días en la Tierra, y una noche lunar tiene la misma longitud. Durante el decimoséptimo día lunar, Yutu-2 continuó su exploración hacia el noroeste del sitio de aterrizaje de la sonda y obtuvo un nuevo lote de datos de detección científica.
Yutu-2 ha trabajado mucho más tiempo que su vida de diseño de tres meses, convirtiéndose en el rover lunar de más larga duración en la luna.
Las tareas científicas de la misión Chang’e-4 incluyen realizar observaciones de radioastronomía de baja frecuencia, inspeccionar el terreno y los accidentes geográficos, detectar la composición mineral y la estructura superficial lunar superficial y medir la radiación de neutrones y los átomos neutros.
682 metros recorridos por la cara oculta de la Luna por el rover chino desde su llegada hace más de 800 días
23 Marzo 2021
Un día y una noche lunares equivalen cada uno a unos 14 días en la Tierra. El rover chino YuTu-2, como parte de la misión Chang’e 4, lleva 800 días terrestres.
El odómetro del rover chino YuTu-2 suma ya 682,77 metros, según el Centro de Exploración Lunar y Programa Espacial de la Administración Nacional del Espacio de China.
Chang’e 4
Para atenuar el frío de la noche lunar, tanto el rover como el aterrizador incorporan un generador de radioisótopos de plutonio-238, de fabricación rusa. Desprende 120 vatios de potencia térmica, lo que permite calentar los instrumentos durante la noche, por medio de un líquido conductor circulante.
Tanto el vehículo como su módulo de aterrizaje cambiaron el pasado fin de semana al modo inactivo para la noche lunar después de funcionar de manera estable durante el 28º día lunar de estancia.
A través de un análisis de los datos de detección obtenidos por la sonda Chang’e-4, los investigadores han realizado una serie de descubrimientos científicos que incluyen la composición mineral y la historia de la evolución topográfica y geológica del lugar de aterrizaje.
El Chang’e 4 fue diseñado originalmente para funcionar durante un año y Yutu 2 durante tres meses. Efectivamente, ambas embarcaciones ya han excedido ese tiempo pero también ambas siguen funcionando correctamente.
El rover Yutu 2 de China está a punto de ‘despertar’ en el otro lado de la luna
Por Andrew Jones
El rover Yutu-2 de China se despertará en el lado opuesto de la luna este mes de mayo. (Crédito de la imagen: CLEP / CNSA)
El valiente rover Yutu 2 de China está a punto de despertar y continuará explorando el lado lejano de la luna mientras la nación trabaja para aterrizar un rover en Marte este mes de mayo.
El rover, que se lanzó con la misión Chang’e 4 , aterrizó en el lado opuesto de la luna en enero de 2019 y recientemente completó su 29 ° día lunar de actividades, dijo el Proyecto de Exploración Lunar de China (CLEP) el 23 de abril.
El módulo de aterrizaje y el rover impulsados por energía solar de la misión entraron en estado inactivo el 19 de abril, hora de Beijing, justo antes de la puesta del sol. Las dos naves espaciales estarán protegidas de temperaturas tan frías como menos 290 grados Fahrenheit (menos 180 grados Celsius).
El rover y el módulo de aterrizaje se despertarán de su hibernación a principios de mayo después del amanecer sobre la nave espacial en el cráter Von Kármán.
Yutu 2 ha estado avanzando hacia el noroeste de su punto de aterrizaje en el cráter Von Kármán y hasta ahora ha viajado un total de 2,325 pies (708,9 metros), recopilando datos a lo largo del camino con sus cámaras panorámicas, radar de penetración lunar (LPR) y un espectrómetro de imágenes visible e infrarrojo cercano.
El de seis ruedas y 310 libras. (140 kilogramos) el rover ha descubierto una serie de capas distintas de roca debajo de la superficie lunar, que los científicos creen que fue creada por el vulcanismo y los intensos impactos de asteroides. El área que ha observado también incluye material procedente de cráteres cercanos como el cráter Finsen, según un documento presentado durante la Conferencia de Ciencias Lunar y Planetaria en marzo.
El documento afirma que el LPR podría ser un instrumento crucial para determinar la historia de la evolución de la superficie de la luna y rastrear las fuentes de los materiales de la superficie descubiertos por Yutu 2.
El rover está operando dentro de la antigua cuenca del Polo Sur-Aitken en el lado lunar lejano, una cuenca de impacto masivo. Los científicos piensan que el evento que creó la cuenca pudo haber excavado roca debajo de la corteza lunar y esperan que dicho material pueda ayudar a desentrañar los secretos de la formación de la luna.
Yutu 2 también se ha encontrado con una serie de fragmentos de roca que contienen vidrio creados o producidos por impactos más pequeños en la superficie lunar, algunos de los cuales han generado un gran interés .
Una vez que el rover se despierte en mayo, continuará su viaje hacia el noreste, donde los científicos esperan encontrar roca basáltica de un área cercana para proporcionar más información sobre la historia de la superficie lunar local.
Pero Yutu 2 no es el único rover de China que está progresando. A mediados de mayo, el recién nombrado rover Zhurong de China , parte de la misión nacional Tianwen 1, intentará aterrizar de forma segura en Utopia Planitia en Marte. El rover Zhurong de seis ruedas, impulsado por energía solar, lleva algo de tecnología y lecciones derivadas de Yutu 2, pero es más grande con 530 libras. (240 kilogramos) y lleva más instrumentos científicos.
Este mapa muestra la ruta que Yutu 2 en un año. El mapa fue producido por el historiador y cartógrafo de exploración espacial Phil Stooke.
Para saber más: https://enciclopediauniverso.com/el-universo-es-enorme/change-4-celebra-un-ano-al-otro-lado-de-la-luna/
SpaceX Nave comercial en la ISS
SpaceX Nave comercial en la ISS
SpaceX acaba de acoplar la primera nave espacial privada a la Estación Espacial Internacional, un “hito histórico” según la NASA
Una ilustración de la nave de SpaceX Crew Dragon, en su fase de acoplamiento a la Estación Espacial Internacional. SpaceX SpaceX
A las 07:49 UTC del sábado 2 de marzo de 2019 despegó la primera cápsula Dragon 2 de SpaceX desde la mítica rampa 39A del Centro Espacial Kennedy de la NASA (Florida) mediante un cohete Flacon 9 v1.2 Block 5.
La compañía aeroespacial de Elon Musk, SpaceX, lanzó el sábado la primera nave espacial comercial diseñada para transportar astronautas de la NASA.
La nave, llamada Crew Dragon, logró su objetivo este domingo (03/03/2019): acoplarse a la Estación Espacial Internacional. Logró la maniobra de acople autónomo poco antes de las 11:00 GMT.
Nadie volaba en el interior de Crew Dragon (solo había cargamento y un maniquí), pero la tripulación que estaba en la EEI abrió la escotilla y saludó a la nave espacial de SpaceX.
“Bienvenido a la nueva era de los vuelos espaciales”, dijo un astronauta desde el interior de la nave de SpaceX.
SpaceX se ha convertido en la primera empresa en diseñar, construir, lanzar y ahora acoplar una nave espacial comercial diseñada para astronautas en la Estación Espacial Internacional.
La compañía aeroespacial de Elon Musk lanzó este sábado el vehículo, de siete asientos, llamado a revolucionar los vuelos espaciales a corto, medio y largo plazo.
El domingo, después de una serie de comprobaciones de seguridad, SpaceX comenzó el proceso de acoplamiento de la nave a la Estación Espacial Internacional. Primero se produjo un contacto suave con el nodo de acoplamiento, se conectaron seis brazos y la nave se terminó enganchando a la EEI. Aproximadamente 11 minutos después del primer contacto, la nave espacial se atornilló finalmente al nodo número 2 de la EEI.
No había nadie a bordo para abrir la escotilla de la Crew Dragon, en cuyo interior únicamente había unos 180 kilos de mercancía y un maniquí femenino bautizado como “Ripley“. Sea como sea, la NASA aseguró que la demostración de SpaceX en esta misión denominada Demo-1 ha sido “un primer paso crítico” para restaurar el acceso al espacio de la tripulación estadounidense, ya que el objetivo final es demostrar que la nueva nave espacial es segura para los astronautas.
El transbordador espacial Endeavour de la NASA fue la última nave estadounidense de uso humano que tocó la estación espacial, y eso se produjo por última vez en julio de 2011.
El domingo, Crew Dragon atracó en el Nodo 2: el lugar donde los transbordadores espaciales de la NASA solían acoplarse.
La actual expedición de la Estación Espacial Internacional, compuesta por 3 personas, mantuvo el simbolismo al abrir la escotilla, flotar por el interior de la nave Crew Dragon y celebrar una ceremonia de bienvenida que se pudo ver en directo en la TV de la NASA.
“Ha sido algo hermoso de ver”, explicó David Saint-Jacques, astronauta canadiense y miembro de la tripulación de la estación. “Hoy damos la bienvenida a la estación espacial a una nueva nave espacial, y a una nueva gran incorporación al conjunto de herramientas que tenemos para que los humanos puedan seguir explorando el espacio. Es un buen día, el primero de una nueva era para la próxima generación de exploradores del espacio”.
“Bienvenidos a la nueva era de los vuelos espaciales”
Durante la breve ceremonia de bienvenida, el comandante de la Expedición 58 y miembro de la tripulación rusa Oleg Kononenko habló primero.
“En nombre de mi tripulación, quisiera felicitar a los Estados Unidos y al equipo de la NASA por este acontecimiento tan importante: el lanzamiento y el atraque de la nave espacial SpaceX Crew Dragon”, dijo Kononenko. “Es un paso histórico…. en el camino de los seres humanos más allá de la órbita de la Tierra hacia la luna, Marte y el futuro”.
Saint-Jacques habló a continuación, maravillado por los miles de personas, los años de trabajo y la estrecha colaboración entre SpaceX y la NASA que se necesitó para llevar a cabo el atraque de una nave espacial comercial.
Por último fue el turno de Anne McClain, astronauta de la NASA y miembro de la tripulación de la estación espacial. Ella tenía mucho que decir sobre la exitosa llegada de Crew Dragon a su actual hogar en el cielo.
“Nuestra más sincera enhorabuena a todos los terrícolas que han permitido la apertura de este próximo capítulo en la exploración espacial”, dijo McClain. “Y felicitaciones a todas las naciones, empresas espaciales privadas e individuos que se despiertan todos los días impulsados por la magia de la exploración. Este día nos pertenece a todos”.
“Los vuelos espaciales nos dan la oportunidad de reflexionar sobre el contexto de nuestra existencia. Se nos recuerda que somos humanos ante cualquiera de nuestras diferencias, ante todas las líneas que nos dividen”, dijo. “Se nos recuerda que estamos en nuestro mejor momento cuando somos parte de algo más grande que nosotros mismos.
McClain y sus colegas luego flotaron por la nave Crew Dragon para mostrar cómo es por dentro al resto del mundo.
Dentro de la nave espacial, McClain agarró un juguete de felpa de la Tierra que SpaceX había atado a un asiento antes del lanzamiento. Musk ha llamado al juguete un “indicador de gravedad cero de súper alta tecnología”, y ha estado flotando alrededor de la cabina al final de una cuerda desde que Crew Dragon entró en órbita.
“En nombre de Ripley, de la pequeña Tierra, de mí y de nuestra tripulación, bienvenidos al Crew Dragon”, dijo. “Estas increíbles hazañas nos muestran no lo fácil que es nuestra misión, sino lo capaces que somos de hacer cosas difíciles. Bienvenidos a la nueva era de los vuelos espaciales”.
Luego hizo girar el juguete de la Tierra con un suave empujón:
Todavía queda un camino complicado para la Crew Dragon
La misión de Crew Dragon no ha terminado con la apertura del muelle y de la escotilla. Tiene que llevar a cabo otras hazañas antes de que la NASA permita el embarque de astronautas, incluyendo un aterrizaje de manual.
El lanzamiento y el acoplamiento son lo que Musk describió el sábado como “algunos de los objetos más peligrosos” en la misión Demo-1. Pero el desacoplamiento, el desorbitamiento y el amerizaje en el agua son los siguientes.
Se supone que la tripulación de la estación espacial cerrará la escotilla del Crew Dragon en algún momento del jueves, y la nave se desacoplará a continuación.
La nave Crew Dragon aterrizará en el Océano Atlántico cerca del Centro Espacial Kennedy el viernes alrededor hacia las 13.30 horas en España.
Si SpaceX puede llevar a cabo la Demo-1 con éxito, la misión podría ser un punto de inflexión importante para la compañía.
SpaceX founder Elon Musk (left), NASA astronauts Victor Glover, Doug Hurley, Bob Behnken, NASA Administrator Jim Bridenstine, and NASA astronaut Mike Hopkins are seen inside the crew access arm with the SpaceX Crew Dragon spacecraft visible behind them Joel Kowsky/NASA Joel Kowsky/NASA
“El objetivo principal de SpaceX era realizar vuelos espaciales con tripulación y mejorar las tecnologías de exploración espacial — ese es el nombre completo de la compañía: Tecnologías de Exploración Espacial”, dijo Musk durante una rueda de prensa el sábado después del lanzamiento.
Y añadió: “Han pasado 17 años —todavía no hemos lanzado a nadie al espacio— esperamos hacerlo más adelante este año. Eso definitivamente sería la culminación de un largo sueño para mí y para mucha gente en SpaceX”.
Los datos recopilados por Demo-1 se utilizarán para modificar y finalizar una nueva nave Crew Dragon que en realidad volará astronautas en una misión experimental llamada Demo-2.
SpaceX y la NASA podrían realizar esa primera misión tripulada hacia la estación espacial tan pronto como el próximo mes julio, con los astronautas veteranos Bob Behnken y Doug Hurley a bordo.
“Es un vehículo increíblemente elegante”, dijo Hurley durante una sesión informativa improvisada con la prensa el viernes en el Centro Espacial Kennedy, añadiendo que es “mucho más intuitivo” que el transbordador espacial. Señaló que en lugar de unos 2.000 mandos, botones, diales, interruptores y otros controles como un orbitador de lanzadera, Crew Dragon tiene unos 30.
“Hemos estado siguiendo el proceso durante algunos años en este punto”, dijo Behnken después del lanzamiento el domingo. “Así que ver un éxito como este definitivamente nos da mucha confianza para el futuro.”
Una de las grandes diferencias de esta misión y las de carga es la manera en que se aproxima y acopla a la EEI.
Los de carga son agarradas por un brazo robótico y atraídas al punto de atraque.
Pero Dragon se aproximó al muelle de acople de manera automática utilizando sus computadoras y sensores para guiarse.
Más información en: https://danielmarin.naukas.com/2019/03/02/primer-lanzamiento-de-la-capsula-dragon-2-de-spacex/
Quién es Ripley
Debido a que es solo una prueba, la nave despegó sin astronautas. Pero no salió vacía.
En su interior, con traje de astronauta, estaba Ripley, un maniquí lleno de sensores como los que se usan en los test de accidentes de autos.
Derechos de autor de la imagen SPACEX Image caption
El Dragon emplea infraestructura que ya se usó para las misiones Apollo a la Luna, aunque con grandes modificaciones.
Derechos de autor de la imagen SPACEX Image caption Ripley lleva un micrófono para grabar lo que oirían los astronautas en el módulo Dragon.
El dummy Ripley, en la cápsula Dragon, junto a su mascota NASA
En esta ocasión, la nave transporta un maniquí y 90 kilos de provisiones.
Aterrizaje en el lado oculto de la Luna
Aterrizaje en el lado oculto de la Luna
Chang’e 4
Chang’e 4 (chino simplificado: 嫦娥四号) es una misión de exploración lunar de nacionalidad china, lanzada el 7 de diciembre de 2018, que incorpora un orbitador, un módulo de aterrizador robótico y un rover (Yutu-2). Es el segundo módulo lunar y explorador lunar de China. Se construyó como copia de seguridad de la Chang’e 3, como Chang’e 2 fue igualmente para Chang’e 1. Tras el exitoso aterrizaje de la misión Chang’e 3, la configuración de Chang’e 4 va equipada para cumplir nuevos objetivos científicos. Al igual que sus predecesores, la nave espacial lleva el nombre de la diosa de la luna china.
Misión
La misión estaba programada para ser lanzada en el año 2015 formando parte de la segunda fase del Programa Chino de Exploración Lunar12 pero por tener objetivos tan ajustados y el retraso en el diseño de la misión hubo que aplazarla, finalmente fue lanzada el 7 de diciembre de 2018 mediante un cohete Larga Marcha 3B.
El plan es hacer que Chang’e 4 aterrice en la cara oculta de la Luna,3 la Administración Espacial Nacional China (CNSA) lanzó, el 21 de mayo de 2018, el satélite de retransmisión de comunicaciones Queqiao al punto L2 Queqiao (Puente de las Urracas), el nombre de un antiguo cuento popular chino, como una estación de retransmisión de comunicaciones para retransmitir las señales entre el módulo de aterrizaje/rover y la estación de la Tierra.4 El módulo de aterrizaje y el róver aterrizarán a principios de 2019. Será el primer aterrizaje en el lado más alejado de la Luna, región de la Luna que aún está sin explorar conocida como Cuenca Aitken,5 que es una gran cuenca ubicada en el hemisferio sur del extremo que se extiende desde el Polo Sur hasta el cráter Aitken.6 La misión Chang’e 4 de China se ha convertido también en pionera en el primer mini experimento de biosfera en la Luna.
El Programa Chino de Exploración Lunar ha comenzado a recibir inversiones privadas tanto de empresas como de particulares por primera vez, medida destinada a acelerar la innovación aeroespacial, reducir costos de producción y promover relaciones entre militares y civiles.7 Después de Chang’e 4, China seguirá con misiones lunares robóticas que se construirán con la intención de realizar misiones para enviar humanos en un plazo aproximado de 15 años.89
Lugar de aterrizaje
El lugar de aterrizaje propuesto es el cráter Von Kármán10 (de 180 km de diámetro) en la Cuenca Aitken en el lado oculto de la Luna. Se cree que el cráter es consecuencia del impacto más antiguo en la Luna. En cuanto a su composición, contiene aproximadamente 10% de óxido de hierro (FeO) y 4-5 partes por millón de torio,10 que puede ser utilizado en lugar del uranio como combustible nuclear en reactores de torio.
Carga útil
Mientras que el orbitador facilitará las retransmisiones de comunicación,11 el módulo de aterrizaje y el rover llevarán experimentos científicos para estudiar la geofísica en la zona de aterrizaje, con una capacidad de análisis químico muy limitada.12910 Además, Chang’e 4 también transportará material internacional originaria de Suecia, Alemania, los Países Bajos y Arabia Saudita.13
Rover
- Cámara panorámica
- Georradar
- Espectrómetro infrarrojo
- Active Source Hammer (ASH) para experimentos sísmicos de fuente activa
- Energetic neutral atom: Analizador pequeño avanzado para neutrales (ASAN), proporcionado por el Instituto Sueco de Física Espacial (IRF). Revelará cómo el viento solar interactúa con la superficie lunar y quizás incluso el proceso detrás de la formación del agua lunar.14
Aterrizador
- Analizador de Polvo Lunar (LDA)
- Analizador de campo eléctrico (EFA)
- Paquete de observación de campo magnético y plasma (PMFOP)
- Sismómetro Lunar (LS), para estructura interna
- Interferómetro de radio VLF (VRI), un radiotelescopio para observaciones astronómicas9
- Neutron dosimeter: proyecto Lunar Lander Neutron Dosimetry (LND) desarrollado por la Universidad de Kiel en Alemania.14
Además, el módulo de aterrizaje lleva un contenedor con semillas y huevos de insectos para probar si las plantas y los insectos pueden eclosionar y crecer de manera conjunta.9 El experimento incluye semillas de patata y Arabidopsis thaliana, así como huevos de gusanos de seda. Si los huevos eclosionan, las larvas producirían dióxido de carbono, mientras que las plantas germinadas liberarían oxígeno mediante la fotosíntesis. Se espera que, juntos, las plantas y los gusanos de seda puedan establecer una sinergia simple dentro del contenedor.9 En el año 1982, la tripulación de la estación espacial soviética Saliut 7 consiguió hacer crecer un poco de Arabidopsis, convirtiéndose así en las primeras plantas en florecer y producir semillas en el espacio. Tuvieron una vida de 40 días.15
En esta fotografía facilitada por la Agencia de Noticias Xinhua, un cohete chino despega con la sonda lunar Chang’e 4 desde el Centro de Lanzamiento de Satélites Xichang en la provincia de Sichuan, suroeste de China. (AP)
El cohete Gran Marcha 3B que transporta la sonda lunar despegó a las 2:23 de la mañana del Centro de Lanzamiento de Satélites Xichang, en la provincia de Sichuan, en el suroeste de China, dijo la agencia de noticias estatal Xinhua.
China lanza la sonda Chang’e 4 rumbo a la cara oculta de la Luna
China ha lanzado la primera sonda que aterrizará en la cara oculta de la Luna. El 7 de diciembre de 2018 a las 18:23 UTC despegó la Cháng’é 4 desde la rampa LC-2 del centro de Xichang a bordo de un cohete Larga Marcha CZ-3B/G3Z (o CZ-3B/GIII, una variante del CZ-3B con una tercera etapa criogénica modificada para misiones de espacio profundo que ya fue empleado en el lanzamiento de la Cháng’é 3 en diciembre de 2013). Si todo va bien, la misión Cháng’é 4 se convertirá en la segunda sonda china que aterriza en la superficie lunar después de la Chang’e 3. También es la octava nave lunar china tras las Cháng’é 1, Cháng’é 2, Cháng’é 3, Cháng’é 5-T1, Quèqiáo, Lonngjiang 1 y Longjiang 2. La órbita inicial de transferencia es de 200 x 420.000 kilómetros. Está previsto que la Cháng’é 4 entre en órbita lunar el 11 de diciembre.
La Cháng’é 4 (CE-4 o 嫦娥四号) y su rover aterrizarán en el cráter Von Kármán de la zona de la cuenca Aitken, situada a 45,5º de latitud sur y 178º de longitud este, en la cara oculta de nuestro satélite el próximo 3 de enero de 2019. Se trata de una nave de unas 3.780 kg con un diseño idéntico a la de la sonda Cháng’é 3 y lleva un pequeño rover de 140 kg idéntico al Yùtù de la Chang’e 3. La sonda Cháng’é 4 fue construida originalmente como reserva de la Cháng’é 3. En principio la sonda debía despegar en 2015, pero fue retrasada repetidas veces hasta el punto de que se rumoreó que había sido cancelada. El éxito de la Chang’e 3, que logró casi todos sus objetivos al primer intento, convirtió a la misión de la Cháng’é 4 en un tanto superflua. Además, China quería concentrarse en la Cháng’é 5, una misión de retorno de muestras mucho más ambiciosa que debía despegar en 2018. Finalmente, en 2015 China confirmó que lanzaría la Cháng’é 4 después de la Cháng’é 5 a la cara oculta de la Luna.
Pero los problemas de desarrollo del cohete lanzador de la Cháng’é 5, el Larga Marcha CZ-5, obligaron a posponer la misión Cháng’é 5 a 2019, por lo que al final la Cháng’é 4 despegaría antes. La Cháng’é 4 incorpora varios instrumentos, entre ellos el detector de neutrones alemán LND (Lunar Lander Neutrons and Dosimetry) construido por la agencia espacial alemana (DLR), un pequeño experimento de «astrobiología» y otro de radioastronomía. El experimento astrobiológico, de 3 kg, lleva gusanos de seda, además de semillas de patatas y arabidopsis, una planta muy común en los ensayos espaciales, incluido un experimento en la estación espacial china Tiangong 2. Las semillas deberán germinar dentro de un contenedor presurizado de 18 x 16 centímetros y 3 kilogramos. El experimento, desarrollado por 28 universidades chinas, incorpora su propias reservas de aire, agua y nutrientes, además de una cámara.
Sonda Chang’e 4 para estudiar la cara oculta de la Luna. La Chang’e 4 antes del lanzamiento (Xinhua). La Chang’e 4 en l aLuna (Xinhua). La Chang’e 4 durante las pruebas de la cámara de vacío (Xinhua).
El experimento de radioastronomía LFS (Low Frequency Spectrometer) usará cinco antenas desplegables para observar el cielo en las frecuencias de 0,1 a 40 megahertzios. Estas frecuencias tan bajas son la parte menos explorada del espectro electromagnético por culpa de las interferencias con las señales de radio artificiales, pero la Cháng’é 4 será capaz de estudiar la bóveda celeste usando toda la masa de la Luna como escudo. Las observaciones se llevarán a cabo conjuntamente con el satélite repetidor Quèqiáo, dotado de un instrumento similar. La sonda lleva también la cámara inferior LCAM (Landing Camera) para filmar el alunizaje y la cámara panorámica a color TCAM (Terrain Camera) similares a las de la Chang’e 3.
El rover de 140 kg (月球车) no ha recibido todavía ningún nombre oficial a pesar de que China organizó un concurso para bautizarlo. Es posible que en los próximos días sepamos cuál es el nombre del que debe convertirse en el cuarto rover automático que recorre la Luna y el primero que se moverá por la cara oculta. El rover lleva una cámara panorámica PCAM (Panoramic Camera), el radar LPR (Lunar Penetrating Radar) para estudiar el subsuelo, el espectrómetro infrarrojo VNIS (Near-Infrared Imaging Spectrometer) y el detector de átomos neutros ASAN (Advanced Small Analyser for Neutrals) fabricado en Suecia. El rover de la Cháng’é 4 no incorpora un espectrómetro de rayos X mediante partículas alfa (APXS) como el que llevaba el rover Yùtù de la Cháng’é 3.
Experimento de astrobiología a bordo de la Chang’e 4 (Xinhua). El rover de la Cháng’é 4 (Xinhua). El rover de la Chang’e 4 antes del lanzamiento (Xinhua).
Para garantizar las comunicaciones con la Cháng’é 4 con la Tierra, China lanzó el 20 de mayo el satélite repetidor Quèqiáo (“鹊桥”号中继星), también conocido como LRS ([Chang’e 4] Lunar Relay Satellite) o 嫦娥四号中继星 / Cháng’é 4 hào Zhōngjì Xīng). Quèqiáo tiene una masa de 425 kg y fue lanzado mediante un cohete Larga Marcha CZ-4B desde Xichang. Actualmente está situado en una órbita de halo —con un diámetro de 13.000 kilómetros) alrededor del punto de Lagrange L2 del sistema Tierra-Luna (EML-2), entre 64.500 y 80.000 kilómetros sobre la cara oculta de nuestro satélite. Quèqiáo usa la plataforma CAST-100 e incluye una antena desplegable de 4,2 metros de diámetro que transmitirá datos hacia y desde la Chang’e 4 en cuatro canales en banda X a 256 kbps y un canal en banda S a 2 MBps hacia la Tierra. Dispone de varios motores con un empuje total de 130 newton alimentados por un tanque con 100 kg de hidrazina. La precisión en el apuntado de la antena será de 0,06º y su vida útil se espera que estima en cinco años. Quèqiáo lleva además un retrorreflector láser de 17 cm de diámetro para medir su posición precisa con respecto a la Tierra. Por cierto, Quèqiáo significa en mandarín el «puente de urracas» y es un elemento de la leyenda china que ve en la Vía Láctea un puente formado por aves —urracas— que cada año une a los amantes representados por las estrellas Vega y Altair (se trata de leyenda una leyenda muy popular en Asia que sirve como excusa para celebrar varios festivales anuales, siendo el Tanabata japonés el más conocido).
El cohete lanzador de la Chnag’e 4. La cofia de la Chang’e 4 (Xinhua).
Satélite retransmisor Queqiao (chinaspaceflight.com). Queqiao antes del lanzamiento con la antena plegada (Xinhua). Situación esquemática del punto EML2 y la órbita de halo de Queqiao. La sonda lunar Chang’e 4 y el satélite retransmisor Queqiao que usará para las comunicaciones (chinaspaeceflight.com).
La Tierra y la cara oculta de la Luna vistos por el satélite Longjiang 2 (Xinhua).
La cara oculta de la Luna y la Tierra vistas por la Chang’e 5-T1 (Xinhua).
La Tierra vista desde la Luna por la cámara saudí del Longjiang 2 (Xinhua).
Zona de aterrizaje de la Cháng’é 4. Arriba a la izquierda la cuenca Aitken. Abajo, el cráter Von Kármán donde alunizará la sonda (en uno de las regiones que aparecen en rectángulos) (Huang et al.). Reconstrucción del alunizaje de la Chang’ e 4 (Xinhua). La Chang’e 4 sobre la Luna (Xinhua). La Chang’e 3 en la Luna vista desde el rover Yutu (http://moon.bao.ac.cn).
Si todo sale bien, la Cháng’é 4 será un paso adelante fundamental en el ambicioso programa chino de exploración lunar (CLEP) que durante la próxima década debe lanzar una flota de sondas hacia nuestro satélite. En 2019 se lanzará la Cháng’é 5 para traer muestras de la zona de Mons Rümker, en el Oceanus Procellarum. Entre 2020 y 2024 deben despegar hasta tres Cháng’é adicionales que se posarán en el polo sur de la Luna. Una de ellas, probablemente la Cháng’é 6, traerá muestras de esta zona.
Uno de los mayores desafíos es lograr comunicarse con el robot lunar. Como la cara oscura de la Luna está orientada en sentido opuesto a la Tierra, no hay una “línea de visión” directa para transmitir señales, salvo que se instale un relevo.
Así, China lanzó en mayo un satélite que bautizó Queqiao, posicionado en la órbita lunar para transmitir órdenes y datos intercambiados entre la Tierra y el módulo.
Imagen tomada por la sonda Chang’e 4 durante el proceso de alunizaje. (China National Space Administration/Xinhua News Agency via AP)
El satélite de retransmisión de datos LRS será parecido a las Chang’e 1 y 2 (CNSA).
Sonda de retorno de muestras lunares Chang’e 5.
Llegando a donde ningún occidental ha llegado jamás.
El 14 de diciembre de 2013 China se convirtió en la tercera nación del planeta Tierra que realizó un aterrizaje suave en la superficie lunar cuando la sonda Chang’e 3 (CE-3) se posó en el Mare Imbrium (44,12° norte, 19,51° oeste). Aunque el rover Yutu sucumbió a las pocas semanas del alunizaje, la sonda sigue activa, lo que constituye un logro de primera magnitud para el programa espacial chino. Tras la Chang’e 3 debía haber despegado la Chang’e 4 (CE-5), una sonda gemela de la anterior construida como reserva en caso de que el primer intento de alunizaje no hubiese salido según lo esperado. Originalmente planeada para 2015, la Chang’e 4 ha sido aplazada una y otra vez, hasta el punto de que ha estado a punto de ser cancelada. Sin embargo, las últimas noticias que nos llegan desde China indican que la misión sigue adelante con un objetivo más ambicioso: convertirse en el primer artefacto humano que aterriza en la cara oculta de la Luna.
Vista de la Chang’e-3 en la superficie lunar desde el rover Yutu (http://moon.bao.ac.cn).
Los motivos de la casi cancelación de la Chang’e 4 hay que buscarlos, por un lado, en el tremendo éxito de la Chang’e 3. La Chang’e 3 completó todos los objetivos de la misión al primer intento y, a pesar de que la corta vida útil de Yutu fue un poco decepcionante, ciertamente es casi imposible imaginar una misión similar que lo pueda hacerlo mejor. El segundo motivo tiene que ver con las próximas misiones lunares que China planea lanzar durante los próximos años.
La Chang’e 4 tendrá un diseño similar a la Chang’e 3 (Research in Astronomy and Astrophysics).
China sitúa la ‘Chang’e 4’ en la cara oculta de la Luna
El éxito de la misión supone un paso más en el ambicioso programa espacial del país asiático
Pekín 3 ENE 2019 – 09:33 CET
China ha logrado por primera vez en la historia alunizar una nave en la cara oculta de la Luna. La sonda Chang’e 4, que fue lanzada el 8 de diciembre, tocó el suelo del satélite este jueves a las 10.26 hora local, según informó la Administración Nacional del Espacio de China. El éxito del alunizaje, que no se anunció de forma oficial hasta aproximadamente dos horas después de haberse producido, supone un hito más para el ambicioso programa espacial del país asiático, aún lejos del de Estados Unidos en financiación pero convertido en una prioridad absoluta para las autoridades chinas.
MÁS INFORMACIÓN
La nave no tripulada ya había entrado en órbita lunar elíptica durante el pasado domingo, con el punto más cercano al astro a unos 15 kilómetros de su superficie y el más lejano a unos 100 kilómetros, según informó la Administración Nacional del Espacio de China. Desde entonces se buscó el momento idóneo para posar la sonda en la superficie lunar, porque la parte no visible del astro tiene periodos de día y noche que duran unos 14 días terrestres y se necesitaba la luz solar para que tanto el módulo de aterrizaje como el vehículo móvil de exploración funcionaran como estaba previsto.
Entretanto, los ingenieros verificaron el buen funcionamiento de la sonda y del satélite Queqiao, que sirve de enlace para comunicar este vehículo explorador con la Tierra. El hecho de que la comunicación con la sonda no pueda ser directa —la propia masa de la Luna lo impide— es uno de los principales obstáculos técnicos de la misión. Finalmente la sonda tocó superficie sin problemas en el cráter Von Kárman, de 186 kilómetros de diámetro, situado en la cuenca Aitken (en el Polo Sur), que a su vez es uno de los mayores cráteres de impacto conocidos en el sistema solar y uno de los más antiguos de la Luna. “Se ha abierto un nuevo capítulo en la exploración lunar por parte del hombre”, dijo la agencia espacial china en un comunicado.
El objetivo de la sonda Chang’e 4 es principalmente analizar la composición del terreno y el relieve de la zona, lo que podría dar pistas sobre los orígenes y evolución del satélite. Esa cara lunar, invisible desde la Tierra, es muy distinta de la que sí conocemos. Si la cara vista muestra “mares” llanos de basalto y relativamente pocos cráteres, el otro lado está lleno de éstos y su composición parece diferente. La misión china podría recabar datos sobre la evolución y la geología de esta área desconocida del satélite.
Recreación del vehículo lunar de la sonda ‘Chang’e-4’. Administración Nacional Espacial
La nave china ha completado así un nuevo hito de la exploración espacial.
La primera imagen tomada por la sonda Chang’e 4 en el momento del alunizaje en la cara oculta de la Luna. Administración Nacional del Espacio de China AP
La nave es hermana de la Chang’e 3, que en 2013 aterrizó en la cara visible de la Luna con el explorador lunar Yutu a bordo. La misión se consideró un éxito, aunque Yutu (que significa liebre de jade en mandarín) apenas logró recorrer 110 metros antes de que sus sistemas fallaran sin reparación posible.
En este caso, ha precisado el responsable del programa de exploración lunar chino, Wu Weiren, en una rueda de prensa en agosto, el vehículo espacial se ha diseñado con una “mayor adaptabilidad” a los terrenos abruptos. El artefacto, según Wu, es “el más ligero del mundo de su tipo”, con 140 kilos de peso. Aunque se había anunciado que su nombre se decidiría por votación popular en octubre, hasta el momento no se ha hecho público el apodo con el que se conocerá a este vehículo. Sí se ha dado a conocer que tiene seis ruedas y está dotado de una cámara panorámica, radar y un espectrómetro de imágenes infrarrojas, entre otros equipos.
La nave espacial, a su vez, cuenta también con cámaras para grabar el alunizaje y las imágenes del terreno, y un espectrómetro de baja frecuencia. La Administración del Espacio de China ya ha publicado las primeras fotografías enviadas por la sonda durante el alunizaje.
La misión, además de analizar los datos de la superficie lunar, también incluirá otros experimentos científicos. Chang’e 4 lleva a bordo huevos de gusano de seda, semillas de patata y de flores para observar la germinación, crecimiento y respiración en las condiciones de baja gravedad en la superficie lunar.
Módulo chino comienza a recorrer lado oscuro de la Luna y envía primeras imágenes
Yutu-2, el robot de la sonda espacial Chang’e 4, se desprendió con éxito de su nave nodriza.
“Conejo de Jade-2” (Yutu-2 en chino) se desprendió de la sonda espacial china Ghang’e 4, que este jueves había sido la primera nave espacial en aterrizar en el denominado lado oscuro de la Luna.
El vehículo lunar comenzó su recorrido por la desconocida superficie lunar este viernes, según indicó la Administración Espacial Nacional de China (CNSA) la agencia del gigante asiático, que señaló que esta hazaña era “un gran paso para el pueblo chino”.
El módulo de exploración Yutu-2 circuló por la superficie lunar a las 14.22 hora GMT, unas 12 horas después del alunizaje de la sonda Chang’e-4, indicó la agencia.
La CNSA divulgó una foto tomada por la sonda en la que se ven dos rampas y el vehículo lunar partiendo, pero no precisó cuán lejos llegó el mismo.
Fotografía tomada por el Chang’e-4 que muestra el rover Yutu-2 en la cara oculta de la luna el 3 de enero de 2019. Los científicos chinos se muestran optimistas tras el éxito del primer alunizaje de la historia en la cara oculta de la Luna. Foto: EFE
Esta es la segunda vez que China envía un módulo para explorar la superficie lunar después del Yutu en 2013, que permaneció activo durante 31 meses.
La separación del vehículo de la sonda fue sin contratiempos, dijo Wu Weiren, miembro del equipo que desarrolló el proyecto.
“Aunque este fue un pequeño paso para el rover (vehículo todoterreno), creo que es un gran paso para el pueblo chino”, dijo en una entrevista difundida por el canal CCTV.
Ninguna sonda ni ningún módulo de exploración se había posado nunca antes en la superficie de la cara oculta de la Luna.
Uno de los mayores desafíos es lograr comunicarse con el robot lunar. Como la cara oculta de la Luna está orientada en sentido opuesto a la Tierra, no hay una “línea de visión” directa para transmitir señales, salvo que se instale un repetidor.
La foto del módulo fue enviada a través del satélite Queqiao, que fue lanzado a la órbita lunar en mayo para poder comunicar desde la Tierra con la sonda y el módulo.
El Chang’e-4 llevará a cabo estudios sobre radiofrecuencias bajas, el cultivo de tomates en otros planetas y los recursos minerales, entre otras cosas.C
Maqueta que muestra a Chnag’e 4 (derecha) y el rover Yutu.
La Cháng’é 4 en la cara oculta. Destacan las antenas del experimento de radioastronomía de baja frecuencia (Xinhua).
La primera imagen panorámica de la cara oculta de la Luna
La sonda ‘Chang’e 4’ envía imágenes nunca vistas y fotografía al robot que circulará por la superficie del satélite para estudiar sus características
La sonda china Chang’e-4 sigue enviando imágenes desde la cara oculta de la Luna. Este viernes, la agencia espacial china, la CNSA, publicó una panorámica de 360 grados elaborada a partir de fotografías tomadas por una cámara del módulo de aterrizaje. La misma agencia publicó un intercambio de fotos entre el robot explorador y el módulo de aterrizaje, que se retrataron la una a la otra. Según contaba la agencia de noticias china Xinhua, esas imágenes aparecieron en una gran pantalla del Centro de Control Aeroespacial de Beijing, mostrando la bandera nacional de China en ambas ante el panorama desolado lleno de cráteres en el lado lejano de la Luna.
La sonda Chang’e 4 grabó en vídeo su llegada a la Luna CNSA | ATLAS
Pese a que todavía tiene que llevar a cabo observaciones de radioastronomía o experimentos biológicos, China ha anunciado hoy mismo que la misión Chang’e-4, con la que se realizó el primer alunizaje suave en la cara oculta de la Luna, ha sido un completo éxito.
La sonda Chang’e-4 llegó a nuestro satélite el pasado 3 de enero. Tocó tierra en el sur de la Luna, dentro del cráter Von Karman en la Cuenca de Aitken en el Polo Sur. El robot explorador Yutu-2 comenzó a recorrer la cara oculta de la Luna ese mismo día, aunque después se puso en modo de hibernación para soportar la radiación solar que golpea con fuerza la Luna durante sus días, que duran 13 días terrestres y medio. En esos momentos, la temperatura supera los 100 grados centígrados. El jueves reanudó su trabajo.
Imagen de 360 grados tomada por la sonda china Chang’e 4 en la cara oculta de la Luna. CNSA
El principal objetivo de la sonda Chang’e 4 es analizar la composición del terreno y el relieve de la zona, lo que podría dar pistas sobre los orígenes y evolución del satélite. Esa cara lunar, invisible desde la Tierra, es muy distinta de la que conocemos. Si la cara vista muestra mares llanos de basalto y relativamente pocos cráteres, el otro lado está lleno de estos y su composición parece diferente. La misión china podría recabar datos sobre la evolución y la geología de esta área desconocida del satélite.
La misión, además de analizar los datos de la superficie lunar, también incluirá otros experimentos científicos. Chang’e 4 lleva a bordo huevos de gusano de seda, semillas de patata y de flores para observar la germinación, crecimiento y respiración en las condiciones de baja gravedad de la superficie lunar.
China consigue que brote la primera planta en La Luna
Una semilla de algodón brota en la Luna, a bordo de la sonda china Chang’e 4 / Foto: Efe
Una semilla de algodón, llevada a la Luna por la sonda china Chang’e 4, ha sido la primera en brotar en el satélite natural de la Tierra, según científicos de un miniexperimento de biosfera a bordo de la misión. Después de realizar el primer aterrizaje en la cara oculta del satélite, la misión Chang’e 4 de China se ha convertido también en pionera en el primer mini experimento de biosfera en la Luna.
La misión nació con el objetivo de realizar tareas de observación astronómica de radio de baja frecuencia, análisis de terreno y relieve, detección de composición mineral y estructura de la superficie lunar poco profunda, así como la medición de la radiación de neutrones y átomos naturales para estudiar el medio ambiente en esta zona del satélite. Para ello, transporta un pequeño vehículo que recorrerá el terreno para grabar, documentar y definir la geología extraterrestre. Pero de todas estas pruebas, quizá, la más intrigante es la biológica: a través de un artefacto mecanizado pretenden cultivar semillas vegetales que quedarán depositadas en un contenedor sellado, un experimento avalado por 28 universidades chinas y que podría abrir la veda al nacimiento de los primeros seres vivos en la Luna.
Las imágenes enviadas por la sonda, que se han difundido en cadenas chinas de televisión, mostraron que un brote de algodón había crecido bien, aunque no se encontraron otras plantas creciendo. Entre las semillas que transportaba la nave se encontraban algodón, colza, patata y arabidopsis, así como huevos de mosca de la fruta y algunas levaduras, para formar una minibiosfera simple, según un equipo liderado por científicos de la Universidad de Chongqing. Las plantas generarían oxígeno y alimento para que otros seres vivos “consuman”. La drosophila melanogasters, como consumidores, y la levadura, como descomponedores, generarían dióxido de carbono al consumir oxígeno para la fotosíntesis de las plantas. Además, la levadura puede descomponer los residuos de plantas y drosophila melanogasters y crecer, y también puede servir como alimento de drosophila melanogasters.
Con este círculo, se forma una mini biosfera compuesta por productores, consumidores y descomponedores. El desarrollo y la preparación del módulo biológico fueron realizados por el Equipo de Investigación de Biología Espacial en la Escuela de Ciencias de la Vida de la Universidad de Chongqing.
Coche en el espacio
Coche en el espacio
Tesla Roadster de Elon Musk
Lanzamiento
El coche fue lanzado el 6 de febrero de 2018 durante el primer lanzamiento del Falcon Heavy en una órbita elíptica alrededor del Sol.17 El primer segmento de la órbita es similar a un Órbita de transferencia de Hohmann a Marte. Aun así, debido a que el lanzamiento se realizó fuera de la ventana de lanzamiento (abril–mayo 2018) para Marte, el Roadster no encontrará Marte en su afelio. Incluso si el lanzamiento hubiera ocurrido en tiempo correcto, ni el Roadster ni la etapa superior del Falcon Heavy están diseñados para operar en espacio interplanetario, careciendo de propulsión, capacidad para maniobrar y comunicaciones necesarios para entrar en órbita a Marte. Según Musk, el coche puede quedar a la deriva por el espacio por un billón de años.
El coche inicialmente logró una órbita de aparcamiento de la Tierra, todavía unido a la segunda etapa del Falcon Heavy. Después de una fase costera de seis horas más larga de lo normal a través de los cinturones de Van Allen (un requerimiento de la Fuerza Aérea de los Estados Unidos para insertar satélites de inteligencia pesados en una órbita geoestacionaria), la segunda etapa fue re encendida para lograr velocidad de escape.1819201 El coche llevó tres cámaras, que transmitieron en vivo imágenes del coche.2122
Si bien los primeros automóviles en el espacio fueron los Lunar Roving Vehicle del Programa Apolo, el Roadster es el primer coche de consumo masivo en el espacio.23
El Tesla Roadster de Elon Musk es un automóvil privado que ha sido adaptado como simulador de masa para el vuelo inaugural del cohete Falcon Heavy. El vehículo es un Roadster de primera generación producido en 2009 por Tesla, un fabricante de automóviles eléctricos estadounidense co-fundado por el propio Musk.
El 1 de diciembre de 2017, Musk anunció vía Twitter que SpaceX, una empresa de la cual es el CEO y propietario, lanzaría el automóvil en el vuelo de inaugural de su nuevo lanzador de cargas pesadas, el Falcon Heavy, a principios de 2018. Tres semanas después, se publicaron imágenes del automóvil siendo montado en el adaptador de cargas del lanzador previo encapsulamiento por la cofia.
El coche se encuentra en una órbita elíptica alrededor del Sol que pasa por el cinturón de asteroides.1 El primer segmento de la órbita es similar a una Órbita de transferencia de Hohmann a Marte. Aun así, el coche no va a sobrevolar por Marte ni se introducirá en una órbita alrededor de él.234
La licencia para el lanzamiento fue emitida por el regulador del Gobierno federal de los Estados Unidos, la Oficina de Transporte Espacial Comercial, el 2 de febrero de 2018.5
Última imagen transmitida por el Tesla Roadster, se aprecia a Starman y la tierra
Objetivos
Los vuelos de prueba suelen llevar simuladores de masa como bloques de acero o de concreto. Esto parecía increíblemente aburrido. Y por supuesto, todo lo aburrido es terrible, especialmente las empresas, por lo que decidimos enviar algo inusual, algo que nos haga sentir emociones. La carga será un Tesla Roadster, que reproducirá Space Oddity, durante un viaje de mil millones de años en una órbita elíptica marciana.
Elon Musk anunciado la carga del vuelo inaugural del Falcon Heavy.6
El Roadster de Elon Musk, cuando todavía era usado personalmente, en las oficinas de SpaceX
Debido al riesgo que implica el lanzamiento de un nuevo cohete, Elon Musk declaró que pretendía lanzar la “cosa más tonta podemos imaginar” en el cohete nuevo, pero la carga exacta no era conocida hasta el anuncio del Roadster.78 Inicialmente, se creía que el anuncio era un broma, pero muchos empleados de SpaceX y el propio Musk confirmaron que dicha carga era cierta.9 El 22 de diciembre de 2017, Musk publicó fotos del vehículo antes del encapsulamiento. El automóvil se encuentra instalado en una posición inclinada por encima del adaptador de cargas para tener en cuenta la distribución de masa.10 El 5 de febrero de 2018, Musk publicó en su cuenta de Instagram imágenes del automóvil, donde se aprecia un muñeco apodado Starman (en homenaje a la canción de David Bowie) que lleva puesto un traje espacial de SpaceX.11 Una versión de miniatura de la carga también puede ser observado en el tablero del vehículo.12
Además del falso astronauta, el sistema de sonido a bordo el coche reprodujo la canción Space Oddity de David Bowie. En la guantera del coche hay una copia de la novela Guía del autoestopista galáctico, junto a toalla y un cartel que dice Don’t Panic, ambos son símbolos de la serie Guía del autoestopista galáctico.1314 Una copia de la serie de la Fundación de Isaac Asimov1516en un disco de almacenamiento de datos ópticos 5D fue incluida desde la Arch Mission Foundation
Falcon Heavy despega con el Tesla Roadster el 6 de febrero de 2018
El cohete, de 70 metros de alto y con capacidad para transportar más de 66 toneladas, despegó a las 15:45 hora local (20:45 GMT) de la plataforma LC-39A de dicho centro de la NASA, la misma de la que despegaron los cohetes de las misiones Apolo con destino a la Luna (1961-1972).
Órbita del coche
Vista de la cabina del coche, se aprecia la frase Don’t Panic, referencia a Guía del autoestopista galáctico
El Falcon Heavy dejó en órbita el Tesla Roadster de Elon Musk
Falcon Heavy logró poner en órbita el Tesla, tal como estaba planeado. Es cierto que el auto viajará más allá de lo previsto, tal como lo explicó Musk, pero esto no es un problema para el emprendedor.
El creador de Tesla pudo probar que el triple cohete funciona. Falcon Heavy permite transportar cargas más pesadas que cualquier otro cohete operativo en la actualidad y a un tercio del costo.
Es un hito importante dentro de la carrera espacial y un negocio redituable para Musk. Seguramente habrá que hacer ajustes en futuros lanzamientos pero no puede dejar de ser considerado un éxito.
La imagen de la trayectoria planificada para el Falcon Heavy que compartió Elon Musk con sus seguidores
La idea era que el vehículo llegara a una distancia de 400 millones de kilómetros en dirección a la órbita de Marte. Sin embargo, el auto irá más allá de lo esperado.
Según publicó Musk en su cuenta de Twitter, ahora la nave se dirige hacia el Cinturón de asteroides, una región del sistema solar que se encuentra entre las órbitas de Marte y Júpiter. Esto ocurrió porque uno de los cohetes se apartó de la trayectoria planeada.
El creador de Space X y Tesla publicó en Twitter que la carga se encuentra en el Cinturón de asteroides
El poderoso Falcon Heavy es una combinación de tres Falcon 9, el cohete que Space X utiliza para orbitar satélites y transportar elementos a la Estación Espacial Internacional. Cuenta con 27 motores y tiene 70 metros de alto.
Dos de los cohetes propulsores laterales del Falcon Heavy-que ya habían sido utilizados en otros lanzamientos- volvieron a Tierra después del despegue a Cabo Cañaveral, tal como estaba esperado.
El cohete central, en cambio, no aterrizó en la plataforma flotante que estaba preparada para este fin. Luego de dejar la carga en órbita, cayó a una distancia de 100 metros de ese objetivo, en el Océano Atlántico y ya no podrá ser reutilizado.
Esto no significa un fracaso para Musk. Antes de esta misión, el millonario aclaró que solo era una prueba y que pensaba que había grandes chances de que el Falcon Heavy completo explotara durante el despegue. Sin embargo esto no ocurrió.
En el asiento del piloto en el vehículo estará “Starman”, un muñeco con traje de astronauta, con una mano al volante. Al momento de despegar, le acompañará la canción “Space Oddity” de David Bowie.
https://cnnespanol.cnn.com/2018/02/10/tesla-elon-musk-espacio-cohete-falcon-heavy-spacex/
Mientras tanto, Starman sigue su viaje cósmico ajeno a las confabulaciones terrestres en una órbita elíptica alrededor del Sol. Lamentablemente, no podremos ver más fotos de su periplo, nítidas o no, porque las cámaras del coche solo tenían batería para 12 horas de vuelo.
¿Por qué la imagen del Tesla en el espacio parece un fake?
Si alguien te enseñara hace unas semanas la foto del descapotable de Elon Musk surcando el cosmos, probablemente pensarías que se trata de un montaje. No solo por lo surrealista de la estampa, sino porque las propiedades del espacio hacen que los contornos y colores se vean distintos que sobre la Tierra.
Al cohete Falcon Heavy de la empresa Space X se le considera el más potente del mundo después del mítico Saturno V de las misiones Apolo de la NASA. Pero la popularidad de la formidable nave, lanzada al espacio esta semana desde Cabo Cañaveral (en Florida), se vio pronto eclipsada por la singularidad de su carga: un Tesla Roadster descapotable de color rojo.
A Elon Musk, el visionario detrás de la compañía, se le ha ocurrido la brillante idea de enviar al cosmos su flamante coche eléctrico. Aunque el destino del vehículo, conducido por un muñeco apodado Starman y con David Bowie como banda sonora, era Marte, su propietario ha admitido que se ha pasado y que se dirige actualmente al cinturón de asteroides.
Como no podía ser de otra manera, la noticia y las fotos del descapotable con la Tierra de fondo publicadas por Space X han desencadenado todo un aluvión de desternillantes memes. Pero a las imágenes ni siquiera les hace falta un montaje tan elaborado para parecer “ridículas e imposibles”, como las califica el propio Musk. Han sido tomadas por las cámaras que viajan a bordo del vehículo, pero, si no conocieras su historia, probablemente pensarías que son producto de Photoshop.
Distorsión espacial
El máximo responsable de Space X ha atribuido la extraña apariencia de su descapotable cósmico a la influencia de su actual entorno. Dice que, en el espacio, los colores se ven raros porque “no hay oclusión atmosférica” y “todo parece demasiado nítido”.
Por muy esperpénticas que puedan ser sus ideas, Musk está en lo cierto. Pero solo en parte. Las tonalidades se perciben distintas fuera de la Tierra: ganan nitidez. Pero el efecto óptico no parece tener mucho que ver con oclusiones atmosféricas —un fenómeno meteorológico que relacionado con el choque de masas de aire frías y calientes—, sino que más bien se debe a las propiedades del espacio y de la capa gaseosa que recubre nuestro planeta.
Los múltiples medios por los que puede viajar la luz, ya sea el aire, el agua o el vacío, presentan diferentes índices de refracción que modifican la trayectoria de las ondas de distinta manera. Por eso, los rayos luminosos de colores no se ven igual en todas estas sustancias.
Además, cuando las ondas de luz atraviesan la atmósfera, encuentran en su camino abundantes partículas de polvo, hollín y humo y diminutas gotitas de agua. Incluso en la misma capa de aire pueden variar propiedades como la temperatura y la densidad; por eso en la cima del Everest es menos denso que al nivel del mar.
Todos estos factores pueden modificar la forma en que los colores se ven en la Tierra. Al chocar con partículas constantemente, la luz va cambiando de dirección, de manera que las imágenes que vemos parecen más borrosas, menos definidas. En el espacio, sin embargo, no hay nada que modifique la trayectoria de la luz o bloquee su paso. Es por eso que las imágenes tomadas por satélites y por el telescopio espacial Hubble se ven más nítidas que las de los observatorios terrestres.
Según el científico Rick Sachleben, de la Sociedad Estadounidense de Química, estas son las causas más probables que explican por qué las imágenes del Tesla parecen falsas. Lo que no sabemos, al menos de momento, es a qué se refería Musk con su explicación sobre la oclusión atmosférica.
El descapotable rojo de Elon Musk se dirige hacia la Tierra
Paula Dumas, 20 de noviembre de 2018 a las 16:53
El descapotable rojo de Elon Musk se dirige hacia la Tierra
El descapotable rojo de Elon Musk, con el muñeco ‘Starman’ al volante, ya vuelve hacia la Tierra. El Tesla, que fue lanzado en febrero al espacio a bordo de un gigantesco cohete Falcon, de la compañía SpaceX, en su órbita por el Sistema Solar ahora avanza de nuevo hacia nuestro planeta, según informa la web whereisroadster.com, que se nutre de los datos ofrecidos por al Laboratorio de Propulsión a Chorro (JLP) de la Nasa. Y se prevé que pase cerca de la Tierra, a tan solo 0,275 unidades astronómicas, el 30 de marzo de 2021.(Así ha sido el triste final del ‘coche espacial’ Tesla Roadster enviado al espacio exterior )
Ahora mismo, viaja a una velocidad de 14,08 km/s y ya ha recorrido una distancia equivalente a haber conducido por todas las carreteras del mundo 17,1 veces, según lavanguardia.(El SpaceX de Tesla Roadster incluirá 10 cohetes para su super aceleración )
Desde que zarpó al espacio, Starman, el muñeco situado en el asiento del piloto y llamado así en homenaje a David Bowie, ya ha escuchado ‘Space Oddity’ unas 77.587 veces en una oreja y ‘Is there Life on mars?’, 104.545 veces en la otra. El coche vagará por los confines del sistema solar durante los próximos mil años o hasta que la radiación solar lo desintegre por completo.
Cuerpo más pequeño orbitado
Cuerpo más pequeño orbitado
Recogida de muestras y traídas a la Tierra
OSIRIS-REx
Imagen artística de la sonda al momento de recolectar la muestra.
La OSIRIS-REx es una sonda espacial de la NASA cuyo objetivo es alcanzar el asteroide Bennu, recoger una muestra del material de su superficie y volver a la Tierra para que esta muestra sea analizada.1 Fue lanzada el 8 de septiembre de 2016 desde cabo Cañaveral.2
El nombre es el acrónimo de Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer.3
La sonda llegó al asteroide el 3 de diciembre de 20184, lo cartografiará y analizará durante varios meses y, aproximadamente en julio de 2020, empezará la recogida de muestras por medio de un brazo retráctil que alcanzará la superficie del asteroide.5 El brazo de la sonda tocará la superficie y eyectará un chorro de nitrógeno gaseoso para arrastrar porciones de regolito que serán capturadas por un filtro y guardadas dentro de la Cápsula de Retorno de Muestras. El cargamento de nitrógeno es suficiente como para realizar tres intentos en los cuales se pretende obtener un mínimo de 60 gramos y un máximo de 2 kilogramos de material del asteroide. El contacto entre la sonda y el asteroide durará apenas cinco segundos por intento. Después de obtener las muestras la sonda emprenderá el camino de vuelta a la Tierra en marzo de 2021 y llegará a nuestro planeta en septiembre de 2023, separando la cápsula de retorno de muestras para que aterrice mediante el accionamiento del paracaídas. La sonda posteriormente seguirá en una órbita heliocéntrica.16
La sonda posee tres cámaras. Una de ellas de largo alcance llamada PolyCam, obtendrá imágenes del asteroide desde una distancia de 2 millones de kilómetros, también imágenes de alta resolución del lugar del que sea obtenida la muestra.3
Reproducir contenido multimedia
Un cohete Atlas V despega en el Complejo de Lanzamiento Espacial 41 de la Fuerza Aérea en Cabo Cañaveral. La misión es enviar la sonda espacial OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, por sus siglas en inglés). Esta será la primera misión de Estados Unidos para coger muestras de un asteroide y obtener al menos 60 gramos de material de la superficie, para luego traerlas a la Tierra para su posterior estudio.
La segunda cámara, llamada MapCam, hará una cartografía de todo el asteroide con imágenes en color. Adicionalmente documentará fragmentos y rocas que estén en la órbita del asteroide.3
La tercera cámara, llamada SamCam, documentará el momento en que el brazo de la sonda realice la maniobra de obtención de material de la superficie.3
Además del análisis de la muestra, la sonda tiene el objetivo de estudiar el asteroide, obteniendo datos sobre el origen del sistema solar, y por otro lado tener mayores datos sobre asteroides que tienen posibilidad de estrellarse contra la Tierra para evitarlo o mitigar sus efectos.3
El coste de la sonda es de aproximadamente 800 millones de dólares (unos 675 millones de euros), y pertenece al programa New Frontiers de la NASA (la tercera sonda de este programa).6
Obtención de la muestra
Posición del asteriode y los planetas interiores en julio de 2020 cuando la sonda entre en contacto con el objetivo.
La maniobra de obtención de la muestra se realizará de la siguiente manera: la sonda describirá una órbita de acercamiento al asteroide, de forma que tenga la misma dirección que el movimiento de rotación de dicho cuerpo y realizando una cuarta órbita, momento en el que se acercará a la superficie. El brazo estará desplegado en todo momento, apuntando siempre en dirección al asteroide. En cuanto el brazo toque la superficie se producirá la obtención de la muestra y la sonda se alejará de manera inmediata en dirección casi vertical respecto al asteroide.7
Cuando se produzca el contacto, un resorte en el brazo amortiguará la inercia del golpe, posándose sobre la superficie la esponja que obtendrá la muestra. En ese momento se accionará el chorro de nitrógeno que arrastrará material del asteroide hasta los filtros. Las muestras tomadas abarcarán aproximadamente 26 cm2 de la superficie del asteroide.7
Cuando concluya la obtención, la sonda se alejará con un empuje de 0,7 m/seg y solo cuando esté a una distancia segura se enviarán los datos y se evaluará la maniobra, que será grabada en su totalidad por la cámara SAMCAM. Si se obtiene una cantidad menor de 60 g de material, se podrá planificar una nueva maniobra hasta un máximo de tres intentos en total.7
Datos técnicos
La sonda tiene una masa al lanzamiento de 2110 kg, de los cuales 1230 corresponde al combustible. El cuerpo de la sonda mide aproximadamente tres metros, sin embargo, con los paneles solares desplegados su envergadura total es mayor de seis metros. Dichos paneles son capaces de generar entre 1226 y 3000 vatios de potencia.6
La sonda cuenta con los siguientes instrumentos:
OLA: un altímetro láser para cartografiar el asteroide en tres dimensiones.8
OTES: un espectrómetro para realizar análisis químico mineral.9
OVIRS: un espectrómetro para identificar agua y compuestos orgánicos.10
REXIS: un espectrómetro de rayos X para hacer un mapeo general de los elementos en la superficie del asteroide.11
La nave OSIRIS-REx de la NASA despide 2018 batiendo récords
- El asteroide Bennu se va a convertir en el cuerpo más pequeño que se haya orbitado por una nave espacial
- Además, dicha órbita será la más cercana de un cuerpo planetario descrita por un artefacto fabricado por el ser humano
28.12.2018 | actualización 15:53 horas
Representación de la sonda OSIRIS-REx sobre el asteroide Bennu. NASA
La nave OSIRIS-REx de la NASA tiene prevista una inserción orbital alrededor del asteroide Bennu este 31 de diciembre que batirá sendos récords en la historia de las misiones espaciales.
Este primer paso fue uno de los cinco sobrevuelos de los polos y el ecuador de Bennu que OSIRIS-REx realizó durante su Estudio Preliminar del asteroide. Ya en su aproximación, la nave detectó agua en el asteroide, aunque su objetivo final será recoger muestras del suelo y traerlas a la Tierra para su estudio.
La sonda OSIRIS-REx de la NASA entró en la órbita del pequeño asteroide Bennu
La agencia espacial estadounidense dijo que la órbita marca “un salto para la humanidad” porque ninguna nave espacial ha “circulado tan cerca de un objeto espacial tan pequeño, uno con la gravedad apenas suficiente para mantener un vehículo en una órbita estable”
1 de enero de 2019
Una sonda de la NASA estableció un nuevo hito el lunes en exploración cósmica al entrar en órbita alrededor de un asteroide, Bennu, el objeto más pequeño en ser rodeado por una nave espacial.
La sonda, llamada OSIRIS-REx, es la primera misión estadounidense en ser diseñada para visitar un asteroide y devolver una muestra de su polvo a la Tierra.
La nave espacial no tripulada de 800 millones de dólares fue lanzada hace dos años desde Cabo Cañaveral, Florida, y llegó el 3 de diciembre a su destino, a unos 110 millones de kilómetros de distancia.
El lunes, después de estudiar detenidamente el asteroide durante varias semanas, la nave espacial disparó sus propulsores para ponerse en órbita alrededor de Bennu a las 2:43 pm (19H43 GMT).
El asteroide mide unos 500 metros de diámetro.
“Entrar en órbita alrededor de Bennu es un logro increíble que nuestro equipo ha estado planeando durante años”, aseguró Dante Lauretta, investigador principal de OSIRIS-REx en la Universidad de Arizona, en Tucson.
La NASA dijo que la órbita marca “un salto para la humanidad” porque ninguna nave espacial ha “circulado tan cerca de un objeto espacial tan pequeño, uno con la gravedad apenas suficiente para mantener un vehículo en una órbita estable”.
La nave espacial está orbitando a Bennu a una milla de su centro.
UN imagen de Bennu tomada por OSIRIS Rex el 2 de diciembre desde una distancia de 24 km. (NASA/Goddard/University of Arizona via REUTERS)
La nave espacial Rosetta de la Agencia Espacial Europea orbitó un cometa en mayo de 2016, pero a una distancia mayor de unas cuatro millas del centro del cometa 67P/Churyumov-Gerasimenko.
Bennu tiene una fuerza de gravedad de solo cinco millonésimas tan fuerte como la de la Tierra, dijo la NASA.
Cada órbita de OSIRIS-REx tomará 62 horas.
El plan es que OSIRIS-REx orbite Bennu hasta mediados de febrero, utilizando un conjunto de cinco instrumentos científicos para mapear el asteroide en alta resolución para ayudar a los científicos a decidir con precisión dónde realizar el muestreo.
Luego, en 2020, alcanzará con su brazo robótico y tocará el asteroide en una maniobra que Rich Kuhns, el gerente del programa OSIRIS-REx con Lockheed Martin Space Systems en Denver, describió como un “delicado high-five (choque de manos)”.
OSIRIS-REx, la nave “minera” de la NASA, ha llegado al asteroide Bennu: no es una roca cualquiera y nos traerá un pedacito
El estudio de los planetas es tan útil como interesante pero no sólo éstos pueden aportar información de gran valor científico. Como vecinos también tenemos un gran número de asteroides y ahora OSIRIS-REx ha llegado a Bennu, uno de éstos, pero no uno cualquiera.
La nave ha completado así un viaje de unos dos años desde que se lanzase el día 8 de septiembre de 2016. No se trata de una de esas sondas que morirá por la ciencia como Cassini, sino que su regreso es muy importante ya que nos ha de traer de vuelta una muestra de ese particular asteroide al que ya ha conocido de cerca.
Un viaje de ida y vuelta y un asteroide “especial”
Los asteroides son rocas de tamaño, forma y movimiento variable, sin atmósfera, cola o algún otro elemento propio de cometas o planetas. Pero pese a su aspecto yermo resultan ser un objetivo interesante para lo de siempre: conocernos mejor a nosotros mismos, o mejor dicho a nuestro origen, el del sistema solar y el de la Tierra.
¿Por qué entonces viajar hasta Bennu y no hasta cualquier otro? Porque aunque haya tantos asteroides muchos de ellos no se conocen bien a nivel de superficie y composición, y al final pocos, muy pocos, pasan los filtros que sólo Bennu logró pasar:
- Proximidad: Bemmu está relativamente cercano a la Tierra, lo cual en este caso era aún más importante al tratarse de una misión de ida y vuelta.
- Órbita: Bennu se mueve de manera circular y no orbita irregularmente como otros asteroides, lo cual sería más inseguro para la misión.
- Tamaño: cuanto más grande sea el asteroide, mejor, ya que los más pequeños rotan más deprisa y suelen proyectar materiales que podrían dañar a la sonda.
- Composición química: como decíamos antes el objetivo es conocer mejor la historia del sistema solar y la Tierra, y por este motivo la composición química reducía los candidatos a doce (a los que se les conoce dicha composición), y de ésos sólo cinco eran propicios para tomar muestras al ser ricos en carbono, lo cual es importante de cara a encontrar moléculas orgánicas. De éstos se eligió Bennu porque estaba más estudiado, de modo que se tenía más certeza de que su superficie fuese conveniente para aterrizar y recoger muestras.
Ahora se encuentra a unos 19 kilómetros de la superficie de Bennu para realizar una exploración preliminar del cuerpo celeste, aproximándose hasta unos 7 kilómetros, con lo que se podrá redefinir la masa, la tasa de giro y la forma del asteroide. Esto servirá para determinar los sitios potenciales para la toma de muestras: 60 gramos de regolitos (es decir, rocas y polvo sobre una superficie inalterada).
60 gramos de récord para la NASA
El principio y el fin de nuestros tiempos siguen siendo dos de los pedales de aceleración que sugieren nuevas misiones espaciales, como es el caso de ésta. La idea es no sólo intentar conocer mejor la formación de planetas, sino también poder determinar con mejor grado qué ocurriría si un asteroide impactase en la Tierra.
Por otro lado está la presencia de ciertos componentes y lo que ya planteamos hace unos meses con esa “fiebre del oro” que parece estar renaciendo más allá de la exoesfera. Los asteroides contienen componentes orgánicos, agua y metales entre otros, lo cual se mira con ojos con sed de exploración y desarrollo económico por parte de numerosas empresas.
Si todo va bajo lo previsto OSIRIS-REx orbitará Bennu el 31 de diciembre a unos 492 metros, con lo cual el asteroide pasará a ser el objeto más pequeño orbitado jamás por un vehículo de construcción humana. Y si finaliza la misión volviendo sano y salvo en septiembre de 2023, será la primera misión estadounidense en tomar muestras de un asteroide y devolverlas a la Tierra, así como recoger la muestra más grande desde la era Apollo.
Imagen | NASA/Goddard/Universidad de Arizona
OSIRIS-REx tomó esta imagen de Bennu cuando se encontraba a 80 km. (Crédito: NASA/Goddard/University of Arizona)
Serie de imágenes tomadas por la nave espacial OSIRIS-REx que muestran a Bennu en una rotación completa desde una distancia de 80 km. La cámara PolyCam de la nave obtuvo los 36 fotogramas de 2,2 milisegundos en un período de cuatro horas y 18 minutos. / NASA’s Goddard Space Flight Center/University of Arizona
Después de viajar por el espacio durante más de dos años y recorrer más de 2.000 millones de kilómetros, la nave espacial OSIRIS-Rex de la NASA ha llegado este lunes a su destino: el asteroide Bennu.
Ahora la nave pasará más un año estudiando el asteroide con cinco instrumentos (el sistema OCAMS de tres cámaras, el altímetro láser OLA y tres espectrómetros: OTES, OVIRS y REXIS) para estudiar y cartografiar este objeto, así como para seleccionar una ubicación segura y científicamente interesante (donde se detecte material orgánico, por ejemplo) para poder recoger una muestra.
En julio de 2020 la nave recogerá una muestra del asteroide para traerla a la Tierra en el año 2023.
La recogida de al menos 60 gramos de regolito (material de tierra y rocas) del asteroide está prevista para el 4 de julio (fiesta nacional en EE UU) de 2020, una operación delicada que durará tan solo 5 segundos. Si todo va bien, la nave tomará la muestra de Bennu y la traerá a la Tierra en 2023.
De momento OSIRIS-REx se sitúa a unos 19 kilómetros de la superficie del asteroide, pero cuando realice los sobrevuelos previstos alrededor de las regiones polares y ecuatoriales del objeto se acercará hasta los 7 kilómetros.
Este 31 de diciembre la nave comenzará a girar en torno a Bennu, momento en que este pequeño asteroide de 492 metros de años se convertirá en el objeto más pequeño que haya orbitado nunca una nave espacial.
Visión de la nave OSIRIS-REx según se acercaba a Bennu durante la fase final de su viaje. Desde el 17 de agosto hasta el 27 de noviembre, la cámara PolyCam lo fotografió casi diariamente mientras viajaba 2,2 millones de kilómetros hacia el asteroide. Las imágenes finales se obtuvieron a una distancia de unos 65 km. Durante este período, OSIRIS-REx completó cuatro maniobras que redujeron su velocidad desde aproximadamente 491 m/s a 0,04 m/s con respecto a Bennu, por lo que la velocidad de aproximación es más lenta al final del video. / NASA’s Goddard Space Flight Center/University of Arizona
Análisis de Bennu y más allá
Los principales objetivos científicos de la misión son confirmar las estimaciones de masa y velocidad de giro de Bennu, además de generar un modelo más preciso sobre su forma. Los datos también servirán para determinar los sitios potenciales para recolectar las muestras.
Pero más allá de estos resultados, la información que facilite OSIRIS-REx ayudará a los científicos a investigar cómo se formaron los planetas y comenzó la vida, así como para mejorar nuestra comprensión de los asteroides que podrían impactar contra la Tierra.
Los asteroides son restos de los bloques de construcción que formaron planetas como el nuestro y pudieron llevar los ingredientes para la vida. Bennu y otros cuerpos similares contienen recursos naturales como agua, compuestos orgánicos y metales. En el futuro, la exploración espacial y el desarrollo económico podrían llegar a depender de los asteroides para conseguir este tipo de material.
En julio de 2020 la nave OSIRIS-REx rozará durante cinco segundos el asteroide Bennu para tomar una muestra. / NASA’s Goddard Space Flight Center
LA NAVE OSIRIS-REX BATE DOS RÉCORDS EN NOCHEVIEJA
Pocas horas antes de que la nave New Horizons se acercara al cuerpo más lejano explorado hasta ahora, otra sonda de la NASA registraba durante la Nochevieja dos récords, a 110 millones de kilómetros de la Tierra. El 31 de diciembre, la nave OSIRIS-REx consiguió entrar en la órbita del asteroide Bennu (de unos 490 metros de diámetro), convirtiéndose en la nave que orbita el mundo más pequeño.
Al situarse a sólo 1,75 kilómetros de distancia del asteroide, se ha convertido también en la nave que más se acerca de forma controlada a un objeto celeste. El récord hasta ahora lo ostentaba la misión Rosetta, de la Agencia Espacial Europea (ESA), que en mayo de 2016 estuvo a siete kilómetros de la superficie del cometa 67P/Churyumov-Gerasimenko.
Pero la parte más emocionante de la misión de OSIRIS-REx está por llegar. Su objetivo es tomar muestras de este asteroide en 2020 y mandarlas de vuelta a la Tierra, donde se espera que lleguen en septiembre de 2023.
Varios artefactos en un asteroide
Varios artefactos en un asteroide
Hayabusa 2
http://www.hayabusa2.jaxa.jp/en/
Explorador de asteroides modelo Hayabusa 2.
Información general
Organización: JAXA
Estado: Misión en desarrollo
Fecha de lanzamiento: 3 de diciembre de 2014
Aplicación: Sonda de asteroide
Propulsión: Iónica
Tamaño: Estructura principal: 1.0mx 1.6mx 1.4m / Paleta: 6.0m
Masa: Aprox. 600kg
Cuerpo objetivo: Ryugu (tipo C, objeto cercano a la Tierra)
Orbita: Viaje de ida y vuelta entre la Tierra y un asteroide.
Llegada programada a destino: 2018
Regreso programado a la tierra: 2020
Duración de la estancia en el asteroide: alrededor de 18 meses
Principales instrumentos a bordo: Mecanismo de muestreo, cápsula de reentrada, rango láser (LIDAR, detección de luz y rango), equipo de misión científica (infrarrojo cercano e infrarrojo térmico), Impactor, Rover (MINERVA-II)
Fecha de lanzamiento: 3 de diciembre de 2014
Vehículo de lanzamiento: Vehículo de lanzamiento H-IIA No.26
Ubicación: Centro Espacial Tanegashima
Hayabusa 2 (はやぶさ2 halcón peregrino?) es una nave espacial robótica de la Agencia Japonesa de Exploración Aeroespacial con la misión de recoger muestras de material del asteroide (162173) Ryugu y traerlas a la Tierra para su análisis. El 27 de junio de 2018 la sonda llegó a Ryugu.1 El 21 de septiembre desplegó sus dos rovers de manera exitosa en la superficie del asteroide.23
Características de Asteroid Explorer “Hayabusa2”
Estableciendo tecnología de exploración del espacio profundo y nuevos desafíos.
Hayabusa2 utilizará nueva tecnología y confirmará aún más la tecnología de exploración de ida y vuelta en el espacio profundo al heredar y mejorar el conocimiento ya verificado establecido por Hayabusa para construir la base para la futura exploración del espacio profundo.
La configuración de Hayabusa2 es básicamente la misma que la de Hayabusa, pero modificaremos algunas partes mediante la introducción de nuevas tecnologías que evolucionaron después de la era de Hayabusa. Por ejemplo, la antena para Hayabusa tenía una forma parabólica, pero la de Hayabusa2 se aplanaría. Además, una nueva función, “dispositivo de colisión”, se considera que está a bordo para crear un cráter artificialmente. Se espera que un cráter artificial que puede crear el dispositivo sea pequeño con unos pocos metros de diámetro, pero aún así, al adquirir muestras de la superficie que está expuesta a una colisión, podemos obtener muestras nuevas que son menos resistentes a la intemperie. El espacio ambiente o el calor.
Hayabusa2 se lanzó el 3 de diciembre de 2014. Debería llegar al asteroide tipo C a mediados de 2018, permanecer allí durante un año y medio antes de abandonar el asteroide a fines de 2019 y regresar a la Tierra a fines de 2020.
Desarrollo de la misión
El lanzamiento tuvo lugar el 3 de diciembre de 2014 desde el Centro Espacial de Tanegashima mediante un cohete espacial H-IIA.4 El 3 de diciembre de 2015 sobrevoló la tierra, lo que, por medio de una asistencia gravitatoria, le permitió cambiar al plano orbital del asteroide. Sus motores iónicos estuvieron en funcionamiento permanente en los siguientes periodos: -entre marzo y mayo de 2016; -entre noviembre de 2016 y abril de 2017 -entre enero y junio de 2018. En todos esos periodos se gastó 24 kg de xenón. El 26 de febrero de 2018, por primera vez la sonda detectó el asteroide con su cámara. El 27 de de junio de 2018 la sonda finalizó la fase de acercamiento al asteroide, encontrándose entre 5 y 1 kilómetros del asteroide. El 21 de septiembre, la sonda se separó de sus dos módulos de aterrizaje a las 13:06 JST, su aterrizaje fue confirmado el 22 de septiembre.32 Este logro convirtió MINERVA-II1 en los primeros rovers en aterrizar en un asteroide.3
La misión en general seguirá las líneas de su predecesora Hayabusa, con la adición de un artefacto explosivo con el que crear un pequeño cráter para alcanzar capas más profundas del asteroide.6
Para aprender más sobre el origen y la evolución del sistema solar, es importante investigar los tipos típicos de asteroides, a saber, los asteroides de tipo S, C y D. Un asteroide de tipo C, que es un objetivo de Hayabusa2, es un cuerpo más primordial que Itokawa, que es un asteroide de tipo S, y se considera que contiene más minerales orgánicos o hidratados, aunque ambos tipos S y C tienen Características litológicas. Se cree que los minerales y el agua de mar que forman la Tierra, así como los materiales para la vida, están fuertemente conectados en la nebulosa solar primitiva en el sistema solar temprano, por lo que esperamos aclarar el origen de la vida analizando muestras adquiridas de un cuerpo celeste primordial como un asteroide de tipo C para estudiar la materia orgánica y el agua en el sistema solar y cómo coexisten mientras se afectan entre sí.
La misión. Dos robots se posan sobre un asteroide por primera vez en la historia
La misión japonesa Hayabusa 2 ha depositado dos pequeños rovers sobre la superficie del asteroide Ryugu. En los próximos meses, más aparatos se posarán y la nave extraerá incluso muestras de este objeto para llevarlas a la Tierra
La Agencia Espacial Japonesa (JAXA) ha logrado posar este sábado (22/09/2018) dos robots de exploración sobre la superficie del asteroide 162173 Ryugu, con la finalidad de estudiar la composición del objeto e investigar los orígenes del Sistema Solar. Esta maniobra forma parte de la misión de exploración Hayabusa 2, que significa «Halcón», en japonés. Esta se lanzó en 2014 y su principal objetivo es traer muestras del asteroide a la Tierra en el año 2020.
Dos pequeños robots con forma cilíndrica, de apenas 18 centímetros de ancho y siete de alto, llamados Minerva II-1A y Minerva II-1B, se posaron sobre la rugosa superficie de Ryugu, que en japonés es el nombre del palacio submarino del dios del mar, a 3.200 millones de kilómetros de la Tierra. Esta ha sido la primera vez en que se ha podido posar dos artefactos sobre un asteroide.
Fotografía tomada por el rover Minerva II-1B de la superficie del asteroide Ryugu – JAXA
Foto tomada por uno de los Rover nada más separarse de la sonda Hayabusa. Abajo a la derecha se aprecia la superficie del asteroide. Arriba una aberración cromática causada por el reflejo del sol en la lente.Photo: JAXA (Twitter)
Tras un vuelo rasante a solo 100 metros de la superficie del asteroide Ryugu, la sonda espacial Hayabusa 2 ha logrado desplegar con éxito los dos primeros rover sobre su superficie. Los Rover Minerva II1A y Minerva II1B ya están enviando las primeras y fascinantes imágenes del asteroide.
Los dos rover fueron liberados este sábado desde la sonda Hayabusa, un artefacto de 600 kilogramos, del tamaño de una nevera grande y provista de paneles solares de hasta seis metros de largo. Gracias a la gravedad del asteroide, un objeto de apenas un kilómetro de longitud, recorrieron con lentitud unos 55 metros hasta llegar a la tranquila superficie. Después rebotaron con suavidad.
«Cada uno de los rovers está operando con normalidad y ha comenzado a rastrear la superficie de Ryugu», informó la agencia JAXA en un comunicado.
La carga científica de los pequeños rovers es, evidentemente, escueta. Van equipados con células solares para obtener energía, con dos cámaras para observar de cerca a Ryugu y con sensores de temperatura.
Además, los dos Minerva tienen capacidad de moverse de forma autónoma gracias a un sistema que genera movimiento en su interior. Así, son capaces de moverse dando pequeños saltitos en la absoluta quietud de la superficie de Ryugu. Conviene no confundir este entorno con el que, por ejemplo, exploró la sonda Rosetta, en la explosiva superficie del cometa 67P/Churyumov Gerasimenko.
«Estoy muy orgulloso de que hayamos establecido un nuevo método para explorar pequeños objetos celestes», ha dicho para AFP Yuichi Tsuda, director del proyecto.
La JAXA ya trató de lograr este objetivo en 2005, cuando un rover lanzado por la Hayabusa 1 acabó perdido en el espacio después de errar su blanco, el asteroide 25143 Itokawa.
Un «portaaviones» espacial
La Hayabusa 2 es un pequeño «portaaviones» que transporta tres rovers de exploración más. Además de los Minerva II-1A y II-1B, transporta el Minerva II-2. Este tiene forma octogonal y es ligeramente más grande, con un diámetro de 15 centímetros y una altura de 16. También va equipado con dos cámaras y un termómetro y será capaz de detectar partículas de polvo flotantes con una luz LED ultravioleta. Además, también tiene capacidad de moverse rebotando.
Por último, la sonda transporta un rover diseñado por Francia y Alemania, y de nombre MASCOT («Mobile Asteroid Surface Scout»), mucho más grande y pesado que los otros. Este tiene unas dimensiones de 29.5 cm × 27.5 cm × 19.5 cm y tiene una masa de 9,6 kilogramos. Trasporta un espectrómetro, un magnetómetro, un radiómetro y una cámara para analizar la estructura, la composición y el comportamiento térmico de la superficie de Ryugu. Además, también es capaz de desplazarse. Por desgracia, MASCOT solo podrá operar durante unas 16 horas antes de que se gasten sus baterías.
Todas estas pruebas con rovers son importantes porque permiten hacer mediciones in situ, ya que, literalmente, tocan la superficie de Ryugu. Además, permiten probar sistemas de movimiento que podrían ser usados más adelante en misiones a asteroides y en entornos sin gravedad, como naves espaciales en viajes interplanetarios.
Traer muestras de un asteroide a la Tierra
Pero aparte de eso, Hayabusa 2 hará otras importantes pruebas. En octubre, disparará un impactador cinético, el SCI (de «Small Carry-on Impactor»), de 2,5 kilogramos, un proyectil de cobre cuya función es crear un cráter de unos dos metros de diámetro.
Así se logrará levantar una pequeña parte de la superficie del asteroide en busca de los materiales no expuestos al espacio. La sonda se alejará de la zona, y dejará detrás una cámara desplegable que filmará el choque. Dos semanas después, la sonda volverá para recoger muestras de los materiales levantados.
Está previsto que el año que viene la sonda se acerque a la superficie del asteroide y despliegue un pequeño recolector. Una bala disparada a alta velocidad liberá materiales que serán guardados por la sonda, para luego ser transportados a la Tierra.
En total, los científicos esperan que la Hayabusa 2 recoja tres muestras distintas del asteroide, tanto de la superficie como de la capa ligeramente inferior. Les basta con conseguir al menos 0,1 gramos de cada una.
Además de eso, la nave observará el asteroide desde la distancia con su arsenal de insrumentos: espectrómetros, sensores de temperatura y cámaras.
Vuelta del asteroide a la Tierra
Después, sus motores iónicos la llevarán de vuelta a las cercanías de la Tierra, lo que le permitirá liberar las muestras del asteroide Ryugu en unas cápsulas especiales. Está previsto que después de eso aún pueda sobrevolar algún otro objeto con el combustible que le quedará.
A pesar de la escasa publicidad que ha tenido esta misión, tanto desde la JAXA como desde los medios, lo cierto es que no se ha hecho nada comparable hasta ahora. La Hayabusa 2 sigue los pasos de la exitosa Hayabusa 1, que en 2010 logró enviar muestras del asteroide Itokawa a la Tierra. Ambas han sido las primeras naves en tocar físicamente un asteroide.
Lo más similar es lo logrado por Rosetta, que en 2014 intentó posar un aterrizador en el cometa 67P/Churyumov Gerasimenko. En un futuro muy próximo, la NASA espera recoger muestras del asteroide 101955 Bennu con la sonda OSIRIS-REx, que fue lanzada en 2016. Si tuviera éxito, los materiales no llegarían hasta el año 2023.
Aparte de la anécdota histórica, el estudio de los asteroides y sus propiedades es fundamental para comprender la historia de formación del Sistema Solar, y quizás incluso la aparición de moléculas que pudieron propiciar la aparición de vida. Además, existe otro motivo más prosaico: estudiar estos objetos podría servir más adelante para usar los asteroides como minas, o bien sencillamente, para aprender a desviarlos y evitar un impacto contra la Tierra de terribles consecuencias.
Aunque no está teniendo tanta repercusión como la misión Rosetta en la que la ESA logró posar su sonda Philae sobre la superficie del cometa 67P/Churyumov-Gerasimenko, la misión Hayabusa 2 no es menos difícil ni menos importante. Su objetivo no es simplemente posarse sobre un asteroide, sino tomar muestras del mismo y volver con ellas a la Tierra.
Aspecto de los rover Minerva IIIllustration: JAXA
De hecho, Minerva II1A y Minerva II1B tienen poco más que cámaras y un puñado de sensores. Su objetivo es explorar la superficie del asteroide, pero también estudiar el comportamiento de los vehículos en condiciones de microgravedad. La gravedad sobre la superficie de Ryugu es tan débil que usar ruedas no sería nada efectivo. En su lugar, los Minerva tienen unas patas a lo largo de toda su superficie que les permiten moverse cortas distancias. La agencia espacial japonesa (JAXA) ya ha probado el sistema con éxito.
La sombra de la sonda Hayabusa 2 sobre la superficie del asteroide grabada por la propia cámara de la sonda el pasado 21 de septiembre.Photo: JAXA (AP Images)
Imagen tomada por el rover Minerva II1B durante uno de sus saltos sobre la superficie del asteroide Ryugu.Photo: JAXA (Twitter)
La misión no acaba ahí ni mucho menos. En octubre, la sonda Hayabusa 2 liberará MASCOT, un lander más grande y dotado de sistemas para analizar la superficie y enviar datos a la sonda. En ese momento, Hayabusa 2 disparará un misil de dos kilos de cobre contra la superficie del asteroide. El objetivo de este proyectil es abrir un cráter lo bastante profundo como para exponer estratos de mineral del asteroide que han permanecido inalterados durante miles de años. Esta animación describe visualmente todo el proceso:
Si todo marcha según lo previsto, la sonda se acercará al asteroide y usará un brazo robot extensible para tomar varias muestras de suelo dentro y fuera del cráter. Después emprenderá con ellas el camino de regreso a la Tierra. Con ayuda de esas muestras, los científicos esperan resolver no pocas preguntas sobre cómo se formó nuestro Sistema Solar y hasta sobre cómo comenzó la vida en la Tierra. [Space.com/Guardian]
Secuencia de descenso para MinervaII 1. Imagen: JAXA
El descenso comenzó a las 05:10 GMT de esta pasada madrugada, hacia las 18:30 GMT de hoy la altura debería ser de unos 4.000 metros, a las 00:00 GMT la sonda Hayabusa-2 debería estar a tan sólo 2.000 metros y hacia las 04:00-04:30 GMT en la mañana del viernes 21 se procedería a la separación de Minerva II-1 a unos 60 metros de altura, comenzando en esos instantes el retorno de la sonda hacia su ‘Home Position’. Todas las horas son en la nave, siendo confirmadas 18 minutos más tarde en la Tierra.
Esta es la secuencia gráfica del descenso, en la cual tenemos un eje vertical con la altura y el horizontal con el tiempo. Lo más interesante es la línea azul con el descenso y ascenso de Hayabusa-2 una vez soltadas las sondas, así como los puntos A, B y C con la separación, el impacto y el lugar de reposo:
Operaciones de descenso. Imagen. JAXA
Sobre el sistema de Minerva decíamos lo siguiente:
MINERVA II. Tres pequeños ‘rovers’ de 1.5 kg de peso que descenderán a la superficie del asteroide para estudiarlo, realizando saltos para moverse y realizar sus investigaciones. Poseen paneles solares, cámaras y termómetros.
Minerva II-1 consiste en dos pequeños cilindros llamados Rover-1A y Rover-1B. Minerva II-2 es un cilindro algo mayor que ha sido nombrado como Rover 2
Situación de los rovers Minerva en la sonda. Imagen: JAXA Los 3 minirovers Minerva de la misión. Imagen: JAXA
Durante las últimas horas la agencia JAXA está informando en directo a través de su cuenta de Twitter @haya2e_jaxa y publicando las imágenes de la cámara de navegación que llegan a tierra en la galería de su web. Estos son algunos de los más destacados y que iremos ampliando durante las próximas horas, esta noche y mañana en este artículo:
Durante el 19 y la madrugada del 20:
- A las 00:00 GMT del 19 de septiembre comenzaban las operaciones de despliegue, desde las antenas de Usuda en Japón.
- A las 04:22 GMT del 20 la sonda estaba en la posición prevista (GATE 1) sin incidencias, a 20 km de altura
- A las 05:08 GMT comenzaba el descenso a una velocidad de 40 cm/s
La sonda Hayabusa 2 por fin ha tomado tierra en el asteroide Ryugu: otra minera espacial en busca de muestras y datos
22 Febrero 2019
La sonda Hayabusa 2 despegaba a finales de 2014 del Centro Espacial de Tanegashima, Japón, con dirección a Ryugu. El viaje hasta el asteroide ha durado casi cuatro años, llegando el pasado 27 de junio a su órbita y enviando ya dos pequeños artefactos al asteroide el 21 de septiembre, pero no fue hasta hoy 22 de febrero cuando la sonda logró aterrizar en el asteroide, tras retrasarse las maniobras que estaban previstas para octubre.
Ryugu fue descubierto en 1999 asignándosele el nombre en código 1999 JU3, pero posteriormente fue bautizado en honor al palacio submarino Ryūgū-jō de Ryūjin, el dios dragón del mar según una leyenda japonesa que explica que un pescador fue recompensado con una visita al palacio y trajo una caja con un secreto. Eso pasará con Hayabusa (“halcón peregrino” en japonés), trayéndose a la Tierra un tesoro en forma de muestras de Ryugu.
5,4 gramos del asteroide Ryugu en la Tierra: el gran éxito de Hayabusa 2
Por Daniel Marín, el 19 diciembre, 2020.
5,4 gramos no parece ser mucho, pero todo depende de la sustancia de la que estemos hablando, lógicamente. Si se trata de polvo de un asteroide cercano, su valor es simplemente incalculable, especialmente si tenemos en cuenta que la agencia espacial japonesa JAXA solo esperaba recoger 0,1 gramos del asteroide Ryugu. El pasado 5 de diciembre de 2020 a las 17:55 UTC la pequeña cápsula de la sonda japonesa Hayabusa 2 (はやぶさ2, «halcón peregrino» en japonés) aterrizó en Woomera (Australia) con muestras de Ryugu en su interior. En Woomera la cápsula se llevó a la instalación QLF (Quick Look Facility), creada ex profeso para llevar a cabo un primer análisis exterior y para recoger posibles gases que hubiera en el contenedor. Después de asegurar la cápsula, esta viajó el 7 de diciembre en avión hasta Tokio y el 8 de diciembre llegó a las instalaciones de la agencia espacial japonesa JAXA en Sagamihara, donde está situado el laboratorio habilitado para el análisis inicial de las muestras de este pequeño asteroide cercano. El 10 de diciembre se repitió el análisis para verificar si había alguna cantidad de gas en el recipiente y, como ya se había hecho en Australia, se recogió cierta cantidad minúscula de gas, la primera procedente de un asteroide. El espectrómetro de masas del laboratorio confirmó que la composición del gas es distinta a la de la atmósfera terrestre y, por tanto, que viene de Ryugu.
Este es el aspecto que tiene unos trocitos del asteroide Ryugu de cerca (JAXA).
Hay que recalcar que estos gases no proceden de una atmósfera, pues Ryugu es demasiado pequeño, sino de partículas del asteroide que pueden desprender partículas más pequeñas o volátiles tales como hielo de agua o hielo de dióxido de carbono. Por fin, el 14 de diciembre comenzó la inspección del contenedor de las muestras para ver su interior. Pero para entender cómo es este proceso hay que explicar primero cómo es el sistema de recogida de Hayabusa 2. La sonda japonesa, al igual que su hermana Hayabusa 1 —oficialmente, Hayabusa a secas— dispone de un largo apéndice en forma de «manguera», denominado SMP, destinado a entrar en contacto con la superficie del asteroide. En el momento del contacto con el suelo, la sonda disparó una bala de tántalo de 5 gramos a una velocidad de 300 m/s.
La sonda japonesa Hayabusa 2 trae a la Tierra muestras del asteroide Ryugu
Después de seis años y más de 5.200 millones de kilómetros, la misión espacial japonesa Hayabusa 2 aterrizó el pasado domingo en Australia con una carga de fragmentos del asteroide Ryugu, que pueden revelar secretos sobre la formación del universo y los orígenes de la vida en la Tierra, informó la Agencia de Exploración Aeroespacial de Japón (JAXA).
En las primeras horas del domingo, Hayabusa2 regresó a la Tierra y dejó caer una cápsula que contenía la preciosa muestra, que pesaba menos de 10 gramos, en el interior del sur de Australia. La cápsula, protegida por un escudo térmico, se convirtió brevemente en una bola de fuego y atravesó el cielo mientras regresaba a la atmósfera de la Tierra, antes de aterrizar en el área de Woomera. Los equipos de búsqueda encontraron la cápsula, de unos 40 centímetros de diámetro.
La sonda japonesa Hayabusa2 inició su viaje hacia un nuevo asteroide
7 de enero de 2021
La misión Hayabusa2 de la agencia espacial japonesa (JAXA) encendió motores para iniciar la navegación propulsada hacia nuevos asteroides. Hayabusa2 fue lanzado en 2014. Tras regresar del asteroide Ryugu y dejar caer en la Tierra una cápsula con muestras de esta roca espacial, la misión fue reconducida para una misión extendida.
Posteriormente, la ruta continuará hasta el pequeño asteroide KY26, que alcanzará en 2031. El 5 de enero, la nave activó tres de los motores de iones para iniciar su navegación propulsada, según la cuenta en Twitter de la misión.
Detección de uracilo en el asteroide Ryugu
Wednesday 22 March 2023
El pequeño asteroide cercano Ryugu es el tercer cuerpo celeste del que disponemos muestras de su superficie para analizar en detalle en los laboratorios terrestres (los otros dos son la Luna y el asteroide Itokawa). La cápsula de la sonda japonesa Hayabusa 2 aterrizó en Australia en diciembre de 2020 con 5,4 gramos de material extraterrestre procedente de Ryugu. Puede no parecer mucho, pero gracias a las modernas técnicas actuales se pueden sacar muchas conclusiones de una cantidad tan pequeña. El último de los resultados publicados confirma lo que ya sospechábamos: que muchos asteroides son ricos en materia orgánica compleja. Y es que un grupo de investigadores japoneses liderados por Yasuhiro Oba (Universidad de Hokkaido) ha descubierto uracilo y niacina (vitamina B3) en las muestras de Ryugu.
Como es sabido, el uracilo (C4H4N2O2) es una de las cuatro bases nitrogenada del ARN, por lo que estamos hablando de uno de los ingredientes más importantes de la vida. Antes de nada, conviene aclarar que ya se habían detectado compuestos similares en meteoritos, pero al haber estado en contacto con la superficie terrestre existía cierta controversia sobre si estábamos ante un caso de contaminación por sustancias de nuestro planeta. En el caso de las muestras de Ryugu, el resultado es concluyente y no deja lugar a dudas. Precisamente, Ryugu es un asteroide de tipo C, que son los que generan meteoritos ricos en compuestos del carbono clasificados como condritas carbonáceas cuando caen a la Tierra. Desde hace décadas se cree que los asteroides ricos en compuestos del carbono y los cometas fueron los responsables de llenar la Tierra primigenia de sustancias orgánicas complejas, favoreciendo la aparición de la vida. Este descubrimiento refuerza esta hipótesis.
El asteroide Ryugu. La flecha marca la primera zona de recogida de muestras (Tamatebako) vista en julio de 2018 (JAXA).
Para analizar las muestras de Ryugu, los investigadores contaron con dos conjuntos de muestras, denominados A0106 y C0107, de 38,4 y 37,5 miligramos, respectivamente (las letras A y C hacen referencia a las cámaras de muestras en las que se guardó el material de Ryugu; la cámara B no se llegó a usar porque solo se realizaron dos maniobras de captura). El conjunto A0106 había sido recogido durante el primer contacto de la sonda con el asteroide y el C0107 durante el segundo. No obstante, no se usó toda la cantidad de muestras en el análisis, sino solo unos 10 miligramos de cada conjunto. Primero sumergieron el material de Ryugu en agua caliente a 105 ºC durante 20 horas y luego en ácido clorhídrico. Finalmente, analizaron los posos resultantes en busca de moléculas orgánicas y bases nitrogenadas mediante cromatografía líquida y espectrometría de masas de alta resolución. En la muestra A0106 se encontró el uracilo con una concentración de 11 ± 6 ppb y en la C0107 con 32 ± 9 ppb. La vitamina B3 se detectó en mayores concentraciones. No se detectó ninguna otra base nitrogenada, pero no se excluye que no esté presente en las muestras y que se pueda descubrir más adelante.
La diferencia en las concentraciones del uracilo podría deberse a la distinta exposición a la luz ultravioleta, los rayos cósmicos y el viento solar de los dos conjuntos, pues el material C0107 ha estado a un metro de la superficie de Ryugu en los últimos millones de años, antes de ser expuesto por el proyectil de la sonda Hayabusa 2. Según el análisis del material recogido por Hayabusa 2, Ryugu está formado por la acumulación de fragmentos —es un asteroide pila de escombros— tras un impacto contra un asteroide mayor que nació durante el origen del sistema solar, hace 4560 millones de años, en el cinturón principal de asteroides (o más lejos). Hace 5 millones de años Ryugu migró a su órbita actual, cerca de la Tierra. Este estudio no es el primero que busca compuestos del carbono en las muestras de Ryugu, pues ya se habían publicado resultados de análisis que se habían saldado con la detección de numerosas sustancias orgánicas (algunos aminoácidos no relacionados con la vida terrestre, PAHs, ácidos carboxílicos, alquilaminas, etc.). Sin duda, tampoco será el último estudio que se lleve a cabo con las muestras de Ryugu. Ahora toca esperar al 24 de septiembre de 2023, que será el día en el que la cápsula de la sonda OSIRIS-REx de la NASA aterrice en Utah con más de 400 gramos de material recogido del asteroide Bennu, otro cuerpo celeste rico en sustancias orgánicas. ¿Cómo de parecido será a Ryugu?
Misión China a la Luna
Misión China a la Luna
Chang’e 3
Información general
Estado: Misión concluida
Aplicación: Sonda lunar
Organismo(s) responsable(s): Agencia Espacial China
Fecha de lanzamiento: 1 de diciembre de 2013, 17:30 UTC1
Especificaciones técnicas
Tipo de órbita: Lunar
Chang’e 3 (Chino simplificado: 嫦娥三号; chino tradicional: 嫦娥三號) es una misión de exploración lunar china, que incorpora un aterrizador y un rover lunar.1 El 14 de diciembre de 2013, a las 13:12 UTC, logró un alunizaje controlado, siendo la primera misión china en lograrlo, y el tercer país después de U.R.S.S. y EE.UU. El último alunizaje controlado había ocurrido 37 años atrás: el Luna 24, de la Unión Soviética.2 La nave toma su nombre de Chang’e, la diosa china de la luna, y es continuación de los orbitadores lunares Chang’e 1 y Chang’e 2, dentro del Programa Chino de Exploración Lunar.
Introducción
El primer orbitador lunar chino, Chang’e 1, fue lanzado desde el Centro de Lanzamiento de Satélites de Xichang el 24 de octubre de 20073 y entró en órbita lunar el 5 de noviembre.4
La sonda operó hasta el 1 de marzo de 2009, cuando se impactó intencionadamente en la superficie lunar.5 Los datos recopilados por Chang’e 1 fueron usados para crear un mapa de alta resolución en 3D de toda la superficie lunar, ayudando a la elección del lugar de aterrizaje de Chang’e 3.67
La sucesora de Chang’e 1, Chang’e 2, fue lanzada el 1 de octubre de 2010 para llevar a cabo investigación desde una órbita lunar a 100 km de altitud, en preparación para el aterrizaje suave de Chang’e 3 en 2013.8 Chang’e 2, aun siendo similar en diseño a Chang’e 1, estaba equipada con instrumentos mejorados con lo que se pudieron tomar imágenes de mayor resolución de la superficie lunar en preparación de la misión Chang’e 3.
Como sus predecesoras, la misión Chang’e 3 se planea como precursora de misiones de exploración robótica de la superficie lunar posteriores, incluyendo una misión de retorno de muestras en 2017.9 Siguiendo estas misiones automáticas, las autoridades chinas prevén realizar un aterrizaje tripulado en torno a 2025.10
Desarrollo de la misión
Rover
Artículo principal: Yutu (ver …
La misión Chang’e 3 incorpora un rover lunar, llamado Yutu (Conejo de Jade), diseñado para descolgarse del aterrizador y explorar la superficie lunar de manera independiente. El desarrollo del rover de seis ruedas comenzó en 2002 en el Shanghai Aerospace System Egineering Institute, donde un laboratorio especializado se ha preparado para replicar la superficie lunar.1112 El ensamblaje del rover, con sus 1,5 metros de alto y sus 120 kg de peso se completó en mayo de 2012. Con una capacidad de carga de aproximadamente 20 kg, el rover está diseñado para transmitir video en tiempo real, excavar y analizar muestras de polvo. Puede navegar por pendientes y tiene sensores automáticos para evitar que colisione con rocas. La energía le viene suministrada por un generador termoeléctrico de radioisótopos, que permite al rover operar durante las noches lunares.13 La duración nominal de la misión es de tres meses.14 La parte inferior del rover lleva un radar para medir la profundidad y composición del polvo lunar a lo largo de su ruta.15
El rover tuvo problemas en el repliegue de sus paneles solares en su preparación para la hibernación durante la noche lunar que dificultaron la reactivación posterior. Los medios de comunicación chinos, después de varios intentos fracasados de reactivación, dieron por concluida la misión de Yutu,16 aunque posteriormente se comunicó la posibilidad de ser recuperado para la misión cuando se tuvieron indicios de que volvía a tener actividad pese a la avería.17
Lander
Lugar de alunizaje en el Mare Imbrium.
En marzo de 2012 se dio a conocer que China había comenzado la fabricación del cuerpo y la carga del aterrizador del Chang’e 3, que llevará a cabo estudios de la superficie lunar y del espacio de manera independiente del rover.1 El aterrizador pesa 100 kilogramos y tiene siete instrumentos y cámaras. Además de sus tareas científicas, las cámaras también están tomando fotos de la tierra y otros cuerpos celestes. El aterrizador tiene capacidad para operar ininterrumpidamente durante tres meses.9
El aterrizador está equipado con un telescopio astronómico y una cámara de ultravioleta extremo. Es el primer observatorio astronómico basado en la Luna de la historia, y llevará a cabo observaciones continuas de importantes cuerpos celestes para estudiar sus variaciones. La cámara de ultravioleta extremo llevará a cabo un estudio de la capa iónica cercana a la Tierra, para investigar cómo afecta la actividad solar a dicha capa.9
Sitio de alunizaje
Lugar de los diferentes alunizajes.
Los datos de Chang’e 1 y 2 se usaron para seleccionar el lugar de alunizaje de Chang’e 3. El aterrizador tenía previsto alunizar en el Sinus Iridum (bahía de los arco iris), a una latitud de 44º norte.18 El Sinus Iridium es una llanura de lava basáltica que forma una extensión al noroeste del Mare Imbrium. Pero por motivos no aclarados alunizó unos kilómetros más al este, en el Mare Imbrium (44.12, -19.51).19
Con el alunizaje suave de Chang’e 3, finalizó un periodo de 37 años sin exploración de la superficie lunar, desde la llegada de la sonda Luna 24 de la Unión Soviética en 1976.2
Toponimia relacionada
Para conmemorar este hecho, la Unión Astronómica Internacional aprobó oficialmente el 5 de octubre de 2015 la inclusión de cuatro nuevos topónimos en la cartografía lunar:
- El lugar de aterrizaje de la sonda, denominado Guang Han Gong.20
- Tres pequeños cráteres situados junto al lugar de alunizaje de la Chang’e 3: Tai Wei, Tian Shi y Zi Wei.
Información buena, extensa y detallada en:
http://spaceflight101.com/change/change-3-mission-gallery/
El aterrizador de la misión Chang’e 3 aún transmite desde la Luna
Por @Wicho — 25 de Junio de 2018
Aunque la Administración Espacial Nacional China (CNSA) ya no le hace mucho caso porque está centrada en sus sucesoras el aterrizador de la misión Chang’e-3 aún sigue transmitiendo desde la Luna, cuatro años y medio después de haber aterrizado allí. De hecho le hace tan poco caso que la noticia de que sigue transmitiendo la han dado radioaficionados que han detectado de nuevo su señal.
A las 13:11 UTC del 14 de diciembre de 2013 Chang’e 3 se convertía en la primera misión en llegar a la superficie de nuestro satélite desde que la Luna 24 se posara allí el 19 de agosto de 1976. Chang’e 3 consistía en un aterrizador y en un rover bautizado como Yutu.
Yutu dejó de responder a mediados de 2016 tras haber recorrido tan sólo 114 metros sobre la superficie de la Luna, pues una avería lo dejó parado a principios de 2014. Pero aún sin moverse descubrió un nuevo tipo de roca y capas en la superficie de la Luna. Y nos envió las primeras fotos «frescas» desde la superficie de la Luna desde 1976.
El aterrizador obtiene su energía de un generador térmico de radioisótopos y de paneles solares, así que es posible que siga despertándose durante años después de cada noche lunar –esta que acaba de pasar es la número 57–. Pero de todos modos el único instrumento que quedaba en funcionamiento en 2017 era el telescopio de rayos ultravioleta.
En cualquier caso que el aterrizador siga aún vivo es una muy buena noticia para la CNSA, ya que la misión Chang’e 4, que tiene como objetivo aterrizar en el lado oculto de la Luna, usará el hardware de reserva que se había ensamblado para la misión Chang’e 3. Será la primera misión que aterrice allí.
La misión está encabezada por SASTIND (Administración Estatal de Ciencia, Tecnología e Industria para la Defensa Nacional); el contratista principal de la sonda es CAST (Academia China de Tecnología Espacial) de la Corporación de Ciencia y Tecnología Aeroespacial de China (CASC). A su vez, CAST contrató al Instituto de Ingeniería del Sistema Aeroespacial de Shanghai para diseñar y desarrollar la nave espacial. 1) 2)
Chang’e-3 es parte de la segunda fase del programa lunar de China, que incluye orbitar, aterrizar y regresar a la Tierra. Sigue el éxito de las misiones Chang’e-1 y Chang’e-2 en 2007 y 2010, respectivamente.
Figura 1: Representación artística de la nave espacial Chang’e-3 en la luna (crédito de la imagen: CNSA / CLEP)
Nave espacial de Lander:
La sonda lunar Chang’e 3 consta de dos módulos: el LLV (Lunar Soft-Landing Vehicle), simplemente llamado “Lander”, y el Lunar Surface Exploration Vehicle (Rover). La masa total de lanzamiento del módulo de aterrizaje y el rover es de aproximadamente 3800 kg. En general, el módulo de aterrizaje tiene una masa seca de 1200 kg y sus patas de aterrizaje crean un tramo de vehículo de 4,76 m. Cuando se encuentra en la superficie, el cuerpo del módulo de aterrizaje descansa a 0,83 m sobre el suelo. El módulo de aterrizaje incluye todo el equipo necesario para volar desde la Tierra a la Luna y realizar un aterrizaje suave en su superficie. Viajando a la luna como pasajero está el pequeño rover con una masa de ~ 120 kg. Tanto el lander como el rover están equipados con una carga útil científica.
Tanto el vehículo de aterrizaje Chang’e-3 como el vehículo de exploración transportan cargas útiles científicas que se utilizarán para estudiar la luna, otras galaxias y estrellas, así como el entorno espacial cercano a la Tierra. Se espera que el módulo de aterrizaje realice una misión científica de al menos un año, mientras que se espera que el rover esté operativo durante tres meses o más para explorar la superficie lunar.
Estos instrumentos son:
RTG (Generador termoeléctrico de radioisótopos): El LLV (Lunar Landing Vehicle) está equipado con un conjunto RTG para suministrar su energía durante el período de operación de un año. El módulo de aterrizaje Chang’e-3 utiliza una combinación de paneles solares y un GPHS-RTG (Fuente de calor de uso general-Generador termoeléctrico de radioisótopos) para cumplir con sus requisitos de energía. Dos paneles solares están instalados en el vehículo para desplegarse en vuelo y después del aterrizaje.
TCS (Subsistema de control térmico): el entorno de la superficie lunar es relativamente duro: los días y las noches tienen una duración de 14 días terrestres y las temperaturas de la superficie varían de –175 ° C durante la noche a más de 100 ° C en el sol. Chang’e 3 utiliza una combinación de sistemas de control térmico activo y pasivo. Las mantas de aislamiento multicapa cubren grandes porciones del vehículo para protegerlo del calentamiento solar excesivo y del enfriamiento cuando se exponen al vacío del espacio durante la noche (Ref. 2). El sistema de control térmico activo consiste en calentadores eléctricos resistivos que se accionan utilizando datos de termostato. La energía del calentador es suministrada por los paneles solares y las baterías durante el día lunar.
Subsistema de propulsión: Se han identificado varios requisitos para el sistema de propulsión del módulo de aterrizaje Chang’e-3. El sistema debe ser operado varias veces en la misión en diferentes entornos, incluida la órbita lunar y la mayor quema de aterrizaje. Para realizar un aterrizaje suave, el sistema de propulsión principal del vehículo debe tener capacidad de aceleración. Además, Chang’e-3 necesita un sistema de propulsión secundario junto con un sistema de control de actitud para pequeñas correcciones de trayectoria y control de actitud del vehículo. Para la maniobra de aterrizaje dinámico, el sistema de control de actitud debe ser de un diseño que permita una respuesta rápida a los comandos de actuación de actitud.
Sistema de aterrizaje: en la secuencia de aterrizaje, el módulo de aterrizaje Chang’e-3 se deja caer desde una altitud de 4 m sobre la superficie lunar, lo que requiere un sistema de aterrizaje amortiguador en el módulo de aterrizaje para crear un aterrizaje bastante suave. El sistema también tiene que soportar la versión móvil que se realiza después del aterrizaje. Se ha seleccionado un diseño de tipo “voladizo” para Chang’e-3. El sistema de aterrizaje utiliza cuatro patas de aterrizaje principales que están equipadas con almohadillas para evitar que se hundan en la superficie.
Sistema de navegación: Chang’e 3 realiza un aterrizaje totalmente autónomo en la superficie lunar sin recibir datos de navegación de la Tierra. Para encontrar con precisión su lugar de aterrizaje y realizar un aterrizaje suave en la superficie, el aterrizador está equipado con varios sistemas de navegación. El vehículo utiliza múltiples fuentes de información de navegación provistas a su computadora principal para deducir datos precisos de altitud y velocidad. Para el descenso final, el módulo de aterrizaje utiliza un GRA (Gamma-Ray Altimeter) que proporciona datos precisos de altitud al vehículo. Este sensor se utiliza para detectar el punto de corte del motor de 4 m sobre la superficie lunar.
Comunicaciones RF: Uso de la transmisión de datos en banda X. Se demostró un transpondedor de espacio profundo de banda X en miniatura en la misión Chang’e-2. El sistema también se utiliza para la misión Chang’e-3.
Foto del rover lunar en una prueba de campo (Ref. 1)
Alojamiento de rover: El rover Chang’e-3 está firmemente sujeto a la cubierta superior del módulo de aterrizaje. Uno de los desafíos del diseño del módulo de aterrizaje fue encontrar una manera de llevar el vehículo a la superficie desde la cubierta superior del módulo de aterrizaje, minimizando la masa total de la nave espacial.
Luego de aterrizar en la Luna, la conexión entre el módulo de aterrizaje y el vehículo de exploración se corta utilizando métodos no especificados. Dos rampas, colocadas en posición vertical en el panel lateral del módulo de aterrizaje, se despliegan en una posición horizontal para que el rover pueda rodar sobre ellas desde la cubierta superior.
Luego, la rampa se baja cuidadosamente con un sistema electromecánico para tocar la superficie y mantener un ángulo dentro de las especificaciones del sistema de movilidad del móvil, de modo que el vehículo pueda rodar la rampa y comenzar su propia misión de exploración de forma segura.
Figura: concepto de los artistas del chino Chang’e 3 lander y rover en la superficie lunar (crédito de la imagen: Instituto de Beijing de Ingeniería de Sistemas de Naves Espaciales)
Lanzamiento: La nave espacial Chang’e-3 se lanzó el 1 de diciembre de 2013 (17:30 UTC) en un vehículo Long March 3B (CZ-3B) desde XSLC (Centro de lanzamiento de satélites Xichang) en la provincia de Sichuan en China. 3) 4)
Figura: Perfil de crucero de la misión Chang’e-3 (crédito de imagen: Instituto de Ingeniería de Sistemas de Naves Espaciales de Beijing, Ref. 18)
Órbita: después de su trayectoria translunar, la nave espacial se colocará en una órbita lunar de 100 km x 100 km.
Después de separarse del módulo de servicio, el vehículo de aterrizaje lunar descenderá a una órbita elíptica de 100 km x 15 km inclinada a 45º. Al alcanzar los 15 km de perigeo, el vehículo encenderá sus propulsores variables para reducir su velocidad, de modo que descienda lentamente a 100 m por encima de la superficie de la luna. El vehículo flotará a esta altitud, moviéndose horizontalmente bajo su propia guía para evitar obstáculos, y luego descenderá lentamente a 4 m sobre el suelo, momento en el que su motor se apagará para caer libremente sobre la superficie lunar. El lugar de aterrizaje será en Sinus Iridum, a una latitud de 44º.
La ESA (Agencia Espacial Europea) ayudó con el rastreo adicional desde antes del aterrizaje hasta varias horas después del aterrizaje usando las estaciones New Norcia y Cebreros en Australia y España.
- 26 de diciembre de 2013: el vehículo lunar y el módulo de aterrizaje de la misión de la sonda lunar Chang’e-3 de China se “dormirán” durante la noche lunar, soportando temperaturas extremadamente bajas en la superficie lunar. Se espera que la noche lunar comience el 26 de diciembre y dure aproximadamente dos semanas. Durante su “reposo”, tanto el módulo de aterrizaje como el móvil deberán tolerar temperaturas de -180ºC. 12)
- El 25 de diciembre de 2013, el LRO (Lunar Reconnaissance Orbiter) de la NASA estaba en posición de adquirir la imagen (Figura 8), mostrando el módulo de aterrizaje y el rover “Jade Rabbit” de 120 kg en su ubicación cerca de la región Sinus Iridum de la Luna. El ancho de barrido de la imagen NAC (cámara de ángulo estrecho) es de 576 m; el norte esta arriba LRO estaba a unos 150 km del sitio de Chang’e-3 cuando se adquirió la imagen. 13)
Figura 8: Posiciones del vehículo de aterrizaje Chang’e-3 y Yutu rover detectados por el LROC de la LRO de la NASA el 25 de diciembre de 2013 (crédito de imagen: Universe Today, ASU, NASA)
- 22 de diciembre de 2013: el módulo de aterrizaje lunar Chang’e-3 de China obtuvo la primera vista panorámica de la misión del lugar de toma de contacto en Mare Imbrium. Los funcionarios espaciales chinos ahora han publicado las imágenes de superficie capturadas por la nave nodriza Chang’e-3 el 15 de diciembre, a través de un video de noticias sobre CCTV. 14)
Figura: Parte del primer panorama alrededor del sitio de aterrizaje de Chang’e-3 después de que el Yutu Rover de China llegó a la superficie de la Luna el 15 de diciembre de 2013 (crédito de la imagen: CNSA, CCTV)
- 20 de diciembre de 2013: las coordenadas de aterrizaje exactas de Chang’e-3 fueron 44.1260ºN y 19.5014ºW, ubicadas debajo de la cordillera de Montes Recti y aproximadamente 40 km al sur del cráter de 6 km de diámetro conocido como Laplace F. 15)
Figura: La infografía muestra el proceso del aterrizaje suave en la luna de la sonda lunar china Chang’e-3 el 14 de diciembre de 2013 (crédito de imagen: SASTIND, Xinhua, Zheng Yue)
- El 14 de diciembre de 2013 (20:35 UTC), el primer vehículo lunar de China, Yutu (Conejo de Jade), rodó sobre el suelo de la luna, aproximadamente 7 horas después de que la nave nodriza Chang’e-3 aterrizara sobre las llanuras llenas de lava. de la bahía de arco iris. 16) 17) 18) 19)
Figura: foto del rover Yutu tomada por el módulo de aterrizaje Chang’e-3 en la Luna el 15 de diciembre de 2013 (crédito de imagen: BACC, CAS)
Leyenda de la figura 11: las ruedas del rover dejaron huellas notables de neumáticos mientras avanzaba por el suelo lunar suelto. El módulo de aterrizaje lunar Chang’e-3 y el rover devolvieron retratos de la otra parte de la superficie de la luna, que también mostraba con orgullo la brillante bandera nacional china de color rojo que brillaba sobre el Conejo de Jade cuando se encuentra en la superficie de la Luna. Las imágenes en color se transmitieron en vivo al BACC (Centro de Control Aeroespacial de Beijing), donde el presidente chino Xi Jinping y el primer ministro Li Keqiang vieron la transmisión.
– A pesar de los anuncios previos a la misión sobre un aterrizaje planeado en la “Bahía de Arco Iris” (Sinus Iridum en la nomenclatura latina aprobada de la Luna), la nave espacial se estableció en la región norte del “Mar de las Lluvias” (Mare Imbrium) , el extremo oriental de su caja de aterrizaje designada. Ya sea por diseño o por accidente fortuito, este sitio es en realidad más interesante geológicamente que el destino original de la nave espacial. 20)
Figura: Foto de la sonda Chang’e-3 tomada por el rover Yutu en la luna el 15 de diciembre de 2013 (crédito de imagen: BACC, CAS)
- Chang’e-3 aterrizó en la luna el sábado 14 de diciembre de 2013 (13:11:18 UTC), transmitiendo fotogramas de video todo el camino hacia abajo. Esto convierte a China en la tercera nación del mundo en lograr un aterrizaje suave lunar. El aterrizaje, casi dos semanas después del despegue, fue el primero de su tipo desde la misión de la antigua Unión Soviética en 1976. El último aterrizaje lunar suave de la NASA se produjo en 1972, en la misión Apollo 17. 21) 22)
Figura: Foto de la superficie lunar adquirida el 14 de diciembre de 2013 durante el descenso del módulo de aterrizaje; la fotografía fue tomada por la cámara de a bordo de la sonda lunar y se mostró en la pantalla del BACC en Beijing (crédito de imagen: Xinhua) 23)
– La sonda aterrizó en una llanura de 400 km de ancho conocida como “Sinus Iridum”, o Bahía de los Arcoiris. Antes de aterrizar en la superficie lunar, la sonda se desaceleró de la periapsis (15 km sobre la superficie lunar), de una velocidad de 1,700 m / sy luego se mantuvo durante aproximadamente 20 segundos, utilizando sensores e imágenes 3D para identificar un área plana. Durante el descenso, la actitud de la sonda se controló mediante 28 pequeños propulsores.
– Los impulsores se desplegaron a unos 100 m por encima de la superficie lunar para guiar suavemente a la nave hacia su posición. El proceso de aterrizaje duró unos 12 minutos.
– Cuatro minutos después de aterrizar, el Chang’e-3 desplegó sus paneles solares para proporcionar energía al aterrizador y al rover.
– Chang’e-3 se basó en el autocontrol para las mediciones de descenso, rango y velocidad, encontrando el punto de aterrizaje adecuado y la caída libre.
- El 10 de diciembre de 2013, Chang’e-3 entró en una órbita más cercana a la luna. Siguiendo los comandos enviados desde BACC, la sonda descendió desde la órbita lunar circular de 100 km a una órbita elíptica con su punto más cercano (periapsis) a unos 15 km de la superficie lunar y la apoapsis a 100 km. 24)
- El 6 de diciembre de 2013, la sonda lunar Chang’-3 entró en la órbita lunar. Un ingeniero en el BACC (Centro de Control Aeroespacial de Beijing) ordenó a la sonda lunar Chang’e-3 que dispara sus propulsores de frenado durante 361 segundos, según la agencia de noticias Xinhua de China. La quema crítica del motor colocó a Chang’e-3 en su órbita circular deseada de 100 km de altura sobre la superficie de la luna. 25) 26)
- La misión Chang’e-3 experimentó un vuelo sin problemas hacia la luna, con la nave espacial entrando en una órbita lunar reportada a 210.3 km x 389109.2 km con una inclinación de 28.5º. Se requirieron tres correcciones orbitales: la primera tuvo lugar a las 07:50 UTC del 2 de diciembre, seguida de una segunda a las 08:20 UTC del 3 de diciembre. 27)
Complemento de sensor del módulo de aterrizaje: (MastCam, cámara de descenso, LUT, EUV)
Los sistemas de control de la carga útil en ambos, el módulo de aterrizaje Chang’e-3 y el Yutu rover, están construidos por el Centro de Tecnología e Ingeniería para la Utilización del Espacio de CAS. 28) 29)
MastCam:
La MastCam fue desarrollada por la IOE (Instituto de Óptica y Electrónica) de CAS (Academia China de Ciencias). Ubicada en la parte superior del mástil del módulo de aterrizaje, la MastCam se utilizará para la adquisición de fotografías ópticas del área de aterrizaje, para estudiar el terreno y las características geológicas de la zona de aterrizaje. La cámara también monitoreará el movimiento del móvil en la superficie lunar con una capacidad de imágenes de múltiples colores.
La cámara de descenso fue desarrollada por BISME (Instituto de Maquinaria y Electricidad Espacial de Beijing) de CAST (Academia China de Tecnología Espacial). Situada en la parte inferior del módulo de aterrizaje, la cámara de descenso realizará la adquisición de las fotografías ópticas del área de aterrizaje para estudiar el terreno y las características geológicas de la zona de aterrizaje en altitudes entre 4 y 2 km.
Figura: Foto de la cámara de descenso (Crédito de la imagen: CLEP, Ref. 2)
LUT (telescopio ultravioleta de base lunar):
LUT fue desarrollado por NAOC / CAS (Observatorio Nacional de Astronomía de China / Academia China de Ciencias). La LUT hará uso de la ausencia de una atmósfera y la rotación lenta de la luna para observar objetos celestes y áreas del cielo seleccionados en la región ultravioleta cercana. El telescopio se coloca en el lado -Y del módulo de aterrizaje. Sus principales subsistemas son el cuerpo y el bastidor del telescopio, la lente reflectora y el soporte del telescopio, y los sistemas de control y montaje del cable eléctrico. Esta será la primera observación astronómica realizada desde la superficie de otros objetos planetarios durante períodos prolongados. Puede funcionar entre -20 y + 40ºC.
Figura: Foto de los subsistemas LUT: cuerpo del telescopio (izquierda) y plataforma de montaje con cardán de dos ejes (crédito de la imagen: CLEP, Ref. 2)
EUV (Extreme Ultraviolet Imager):
El Instituto de Óptica de Changchun, llamado CIOMP (Mecánica y Física Finas) de CAS, desarrolló el generador de imágenes EUV. Ubicada en la parte superior del módulo de aterrizaje, la EUV proporcionará imágenes de la ionosfera de la Tierra en la región ultravioleta extrema y realizará investigaciones sobre el pronóstico del clima espacial y los estudios de la ionosfera. Puede rastrear la Tierra automáticamente, realizando un monitoreo de imágenes a largo plazo de la radiación ultravioleta extrema dispersa de la ionosfera de la Tierra. La longitud de onda operativa es de 30.4 nm (aproximadamente 1/20 de luz visible) y el FOV (Campo de visión) es de 15º (la región cubre aproximadamente 7.5 diámetros de la Tierra). La EUV puede operar entre -25 y + 75º C y tiene la capacidad de sobrevivir y operar en el entorno térmico altamente variable de la superficie lunar.
El objetivo de la cámara EUV es observar la plasmasfera de la Tierra. La plasmasfera se encuentra dentro de la magnetosfera de la Tierra y consiste en plasma de baja energía (baja temperatura) ubicado sobre la ionosfera. El límite exterior de la plasmasfera, la plasmapause, se caracteriza por una caída repentina en la densidad del plasma en el orden de una magnitud.
Figura: Foto de la cámara de imágenes EUV (crédito de imagen: CLEP, Ref. 2)
El cabezal de la cámara se instala en la cubierta superior del Chang’e-3 mediante un mecanismo de orientación de inclinación y giro. El instrumento utiliza un sistema óptico de membrana múltiple y un detector de fotones EUV como detector. El estudio de la radiación de 30,4 nm de la luna le permite a Chang’e-3 observar la plasmasfera completa, incluida la plasmopausia y las plumas a escala global para examinar su estructura y dinámica. Las imágenes proporcionadas por el generador de imágenes EUV se someten a un algoritmo para crear modelos tridimensionales de la plasmasfera de la Tierra.
Complemento de sensor del móvil (Yutu): (PanCam, GPR, VNIS, APXS)
PanCam:
PanCam fue desarrollado por el Instituto Xian de Óptica y Mecánica de Precisión (OPT) de CAS. Ubicado en el mástil superior de Yutu, el objetivo de las PanCams es adquirir imágenes en 3D de la superficie lunar para estudiar el terreno, las características y estructuras geológicas y los cráteres dentro de la región objetivo. También controlará el estado operativo del módulo de aterrizaje.
Figura: Foto de una PanCam (crédito de imagen: CLEP, Ref. 2)
GPR (Radar de penetración del suelo):
GPR fue desarrollado por el Instituto de Electrónica de CAS. El instrumento está montado en la parte inferior de Yutu. El objetivo del GPR es medir la profundidad del suelo lunar y la distribución estructural del suelo, el magma, los tubos de lava y las capas de roca debajo de la superficie. El GPR presenta dos canales: el canal I funciona a 60 MHz: para explorar las características geológicas de la sub-superficie hasta una resolución de nivel de metro con una profundidad máxima> 100 m; El canal II funciona a 500 MHz: para sondear la profundidad del suelo lunar con una resolución de más de 30 cm hasta una profundidad máxima de> 30 m. La determinación de la estructura de la sub-superficie a estas profundidades permite estudios de la historia geológica y térmica de la luna y evaluaciones de la cantidad de recursos potenciales para la futura exploración lunar.
Figura: Componentes GPR (de izquierda a derecha): transmisor de Canal I y Canal II, y antena de radar (crédito de la imagen: CLEP, Ref. 2)
VNIS (espectrómetro de imágenes VIS / NIR):
VNIS fue desarrollado por SITP / CAS (Instituto de Física Técnica de Shanghai). El objetivo de VNIS es realizar mediciones in situ de la composición y los recursos de la superficie lunar mediante imágenes y espectrometría en las longitudes de onda visibles e infrarrojas cercanas (rango espectral: 0,45-2,4 µm). Ubicada debajo de la plataforma superior del rover, emplea el concepto de espectrometría de luz y ultrasonido sintonizable impulsada por RF, utilizando generadores de ultrasonido de nuevo diseño.
Figura: Vista esquemática del diseño del filtro VNIS AOTF (crédito de la imagen: Analytic Journal, Brimrose)
VNIS es un FOV de 6º x 6º para el espectro visible y un FOV de 3º x 3º para la banda NIR. El instrumento alcanza una resolución espectral inferior a 8 nm para la banda de 450-950 nm, y inferior a 12 nm para la banda de 900-2400 nm, utilizando una frecuencia de RF de 40 a 180 MHz sintonizable continuamente.
Figura: Foto del conjunto VNIS (crédito de la imagen: CLEP, Ref. 2)
APXS (espectrómetro de rayos X de partículas alfa):
APXS fue desarrollado por IHEP (Instituto de Física de Altas Energías) de CAS. El objetivo es medir la composición y distribución de varios elementos en la superficie lunar mediante la observación de los rayos X dispersos del bombardeo de partículas alfa en las rocas. Ubicado en el brazo robótico del rover, APXS es capaz de dispersar partículas activas, determinación in situ de elementos de la superficie lunar, calibración en órbita y funciones de medición de distancia.
Figura: Componentes APXS (de izquierda a derecha): cabezal del sensor, RHU y objetivo de calibración (crédito de la imagen: CLEP, Ref. 2)
Mapa de la ruta de Yutu
Transporte privado a la ISS
Transporte privado a la ISS
SpaceX Dragon
Fotografía de la cápsula Dragon desde la Estación Espacial Internacional.
La SpaceX Dragon es una nave espacial reutilizable, desarrollada por la empresa privada estadounidense SpaceX, capaz de llevar carga a la órbita baja terrestre (LEO). La cápsula tiene la capacidad de acoplarse a los segmentos no rusos de la Estación Espacial Internacional (ISS) y actualmente tiene un contrato con la NASA para reemplazar las operaciones de reabastecimiento y transporte de tripulaciones que antes realizaba la flota de transbordadores.
El 22 de mayo de 2012, la cápsula fue lanzada desde Cabo Cañaveral con destino a la Estación Espacial Internacional, llevando suministros para la tripulación de astronautas. El 28 de octubre de 2012 amerizó en el océano Pacífico, completando exitosamente la primera misión privada de transporte a la ISS de la historia.1
Características generales
La Dragon es una cápsula que cuenta con una punta en forma de cono que es expulsada después del despegue y una bodega equipada con paneles solares. Mide 4,4 metros de alto y 3,66 metros de diámetro, aunque su envergadura llega a más de 16 metros con los paneles solares extendidos. Su capacidad máxima de carga es de 3310 kg, entre la bodega y la sección presurizada.2 Además, la cápsula está protegida por el escudo térmico más resistente del mundo, hecho con un material llamado PICA-X.3
Misiones
Space Exploration Technologies Corporation (SpaceX) es una empresa estadounidense de transporte aeroespacial fundada en 2002 por Elon Musk, quien es co-fundador de PayPal, y fundador de Tesla Motors, SolarCity, Hyperloop, The Boring Company y OpenAI.
El primer lanzamiento de un cohete Falcon 9 el 4 de junio de 2010 lanzó la Dragon Spacecraft Qualification Unit, una versión de pruebas de la cápsula Dragon.45
La NASA financió el lanzamiento de la COTS Demo Flight 1 el 8 de diciembre de 2010 desde Cabo Cañaveral, Florida. La cápsula se separó del cohete aproximadamente 10 minutos después del despegue, reentrando sobre el océano Pacífico.67 .8
El 22 de mayo de 2012, una segunda cápsula SpaceX Dragon, la COTS Demo Flight 2, fue lanzada desde Cabo Cañaveral con destino a la Estación Espacial Internacional (ISS), llevando suministros para la tripulación de astronautas.9 Al acoplarse exitosamente con la estación, SpaceX se convirtió en la primera empresa privada en la historia en completar una misión de este tipo.10 Horas después, el 26 de mayo, los astronautas comenzaron a descargar la cápsula, resaltando el alivio que suponía tener de ese momento en adelante un nuevo vehículo para ese tipo de misiones.11 El 28 de octubre de 2012, la cápsula amerizó exitosamente sobre el océano Pacífico, cargada en la vuelta con muestras médicas de la tripulación de la ISS.1
Especificaciones
Comparación de tamaño de las cápsulas Apolo (izquierda), Orión (centro) y Dragón (derecha)
DragonLab
Las siguientes especificaciones son publicadas por SpaceX para los vuelos no comerciales de NASA, no de ISS, de las cápsulas dragón renovadas, listadas como “DragonLab” en el manifiesto de SpaceX. Las especificaciones para la Carga Dragón contratada por la NASA no fueron incluidas en la hoja de datos de DragonLab 2009.
Buque a presión
10 m3 (350 pies cúbicos) interior presurizado, ambientalmente controlado, volumen de la carga útil.
Entorno a bordo: 10-46 ° C (50-115 ° F); Humedad relativa 25 ~ 75%; Presión de aire de 13,9 ~ 14,9 psia (958,4 ~ 1027 hPa).
Compartimiento del sensor no presurizado (carga útil recuperable)
0,1 m3 (3,5 pies cúbicos) de volumen de carga útil sin presión.
La trampilla del compartimiento del sensor se abre después de la inserción de la órbita para permitir el acceso total del sensor al ambiente del espacio exterior y se cierra antes de que la atmósfera de la Tierra vuelva a entrar.
Tronco sin presurización (no recuperable)
Volumen de carga útil de 14 m3 (490 pies cúbicos) en el tronco de 2,3 m (7 pies 7 pulg.), A popa del escudo térmico del recipiente a presión, con extensión opcional del tronco hasta 4,3 m (14 pies 1 pulg.) De longitud total M3 (1.200 pies cúbicos).
Soporta sensores y aberturas espaciales de hasta 3,5 m (11 pies 6 pulg.) de diámetro.
Sistemas de alimentación, comunicación y mando
Potencia: dos paneles solares con un promedio de 1.500 W, pico de 4.000 W, a 28 y 120 VDC.
Comunicaciones de la nave espacial: estándar comercial RS-422 y E / S de serie militar 1553, además de comunicaciones Ethernet para servicio de carga útil estándar direccionable por IP.
Comando de enlace ascendente: 300 kbps.
Telemetría / enlace descendente de datos: estándar de 300 Mbit/s, telemetría de banda S tolerante a fallos y transmisores de video.
Tolerancia a la radiación
Dragon utiliza un diseño “tolerante a la radiación” en el hardware y el software electrónicos que componen sus computadoras de vuelo. El sistema utiliza tres pares de computadoras, cada una comprobando constantemente las otras, para instanciar un diseño tolerante a fallos. En el caso de un fallo de la radiación o un error suave, uno de los pares realizará un reinicio suave. Incluyendo las seis computadoras que componen las computadoras de vuelo principales, Dragon emplea un total de 18 computadoras de triple-procesador.
Véase también
SpaceX: así luce la nueva nave espacial Crew Dragon que irá a la EEI
Elon Musk, fundador de la compañía SpaceX, se encargó de presentarla al mundo mediante su cuenta de Twitter. (Foto: @nova_road)
El fundador de la compañía SpaceX, Elon Musk, ha mostrado a través de las redes sociales una imagen de su nave espacial tripulada Crew Dragon, diseñada para llevar tripulantes a la Estación Espacial Internacional (EEI).
Junto a la instantánea, publicada este lunes en la cuenta de Twitter de Musk, se indica que la Crew Dragon se encuentra en el interior de una cámara anecoica, que absorbe el sonido y simula el ambiente del espacio, para el proceso de pruebas antes de ser enviada a la cámara de vacío de la NASA.
(La nave espacial Crew Dragon de SpaceX mostrada por Elon Musk. Foto: Twitter)
Crew Dragon es una nave espacial completamente autónoma que ha sido desarrollada para llevar hasta 7 astronautas a la EEI y a otros destinos. Está previsto que el primer lanzamiento se efectúe en el segundo semestre del 2018.
Humanoide en el espacio
Humanoide en el espacio
Tras innumerables retrasos y problemas, hoy ha comenzado la última misión del transbordador espacial Discovery (OV-103). La vieja nave ha despegado hoy día 24 de febrero de 2012, a las 21:53 UTC desde la rampa 39A del Centro Espacial Kennedy en su 39ª y última misión, la STS-133 (ULF-5).
El Discovery también lleva un su interior el Robonaut 2 (R2), la primera máquina humanoide en el espacio. El R2, de 150 kg, viaja en el PMM, pero será probado inicialmente dentro del módulo laboratorio Destiny. El objetivo principal de este robot será probar la utilidad de los robots en el entorno de trabajo de la ISS.
Casi 200 personas de 15 países han visitado la Estación Espacial Internacional, pero, hasta ahora, la órbita sólo contó con humanos como miembros de la tripulación.
R2 está más que listo, tanto que subirá antes que sus piernas, las cuales lo seguirán en un próximo lanzamiento.
https://danielmarin.naukas.com/2011/02/24/el-ultimo-vuelo-del-discovery-sts-133/
Robonauta 2, la última generación de los ayudantes robonautas para los astronautas lanzó hacia la Estación Espacial a bordo del trasbordador espacial Discovery, en la misión STS-133. Robonauta 2 es el primer robot humanoide en el espacio. A pesar de que su trabajo principal por ahora es enseñarles a los ingenieros cuán hábilmente se comportan los robots en el espacio, se espera que mediante mejoras y avances algún día el Robonauta 2 salga fuera de la estación para ayudar a efectuar reparaciones, a agregar complementos en la estación o a llevar a cabo labores científicas.
R2, cómo nombran al robot, lanzó dentro del Módulo Multipropósito Permanente Leonardo, que se abasteció con equipos y suministros para la estación y luego se instalará en forma permanente en el nodo Unity. Una vez que R2 desempaque -probablemente varios meses después de su llegada- en principio se operará dentro del laboratorio Destiny en las pruebas operativas. Pero, con el tiempo, tanto su territorio como sus aplicaciones podrían expandirse. No hay planes de que el R2 regrese a la Tierra.
Esperando para el despegue, R2 contempla el Edificio de Ensamblaje de Vehículos, en el Centro Espacial Kennedy. Crédito de la fotografía: Joe Bibby.
“Las piernas del robot no están listas aún”, dice Rob Ambrose, del Centro Espacial Johnson, de la NASA. “Todavía las estamos poniendo a prueba. Pero R2 tendrá mucho para hacer mientras espera por sus extremidades inferiores”.
“A la larga, este robot se convertirá en la mano derecha de la tripulación de la estación espacial”. (Ambrose dice que R2 no tiene género; no es ni masculino ni femenino.)
Gracias a sus piernas y a otras mejoras que se le realizarán, su futuro es muy prometedor. De hecho, el objetivo final para R2 es que ayude a los astronautas en las actividades extra-vehiculares (EVA, por su sigla en idioma inglés). Pero primero, como si fuera un estudiante de la escuela, el robot debe avanzar poco a poco a medida que se le añadan nuevos elementos (como las piernas) y adquiera nuevas habilidades.
“Para sus primeras sesiones de entrenamiento, R2 será colocado en un pedestal fijo para sus lecciones en un panel de tareas. El panel contiene interruptores, perillas y conectores como los que operan los astronautas, y la tripulación diseñará tareas para que R2 domine”.
Una vez que le añadan las piernas, el aprendiz será capaz de moverse dentro de la estación, limpiando los pasamanos, aspirando los filtros de aire y haciendo otras tareas de rutina para la tripulación.
“Al igual que la mayoría de nosotros aquí en la Tierra, los astronautas de la estación espacial pasan la mañana del sábado haciendo limpieza. Las piernas de R2 le devolverán a la tripulación las mañanas del sábado. Todo esto se trata de hacer un uso eficiente del tiempo de los astronautas. No tienen que perder el tiempo haciendo cosas que R2 puede hacer”.
Las piernas tienen dedos especiales que se incrustan en las paredes de la estación espacial de manera tal que R2 puede aprender a trepar sin usar sus manos. “Las manos deben estar libres para que pueda llevar materiales de limpieza y herramientas”, explica Ambrose. “Recuerden que los robots no tiene bolsillos para guardar cosas”.
Pero hay otro motivo para las lecciones destinadas a que el robot aprenda a trepar. R2 debe convertirse en un experto “hombre araña sin manos” antes de graduarse para su tarea más crítica: llevar a cabo las EVA.
“R2 primero practicará adentro; de este modo, si se cae, un astronauta lo puede levantar para que lo vuela a intentar. Si R2 da un mal paso afuera, podría terminar colgando de la soga, imposibilitado en el espacio exterior.”
Una vez que el robot logre trepar adecuadamente, una computadora actualizada con un software mejorado será enviada a la estación. La tripulación la intercambiará con la que ahora R2 tiene en su pecho. El equipo en tierra está también trabajando en la batería de R2. Por el momento, el humanoide tiene que ser conectado como si fuera una modesta tostadora de pan.
“Queremos darle a R2 cada vez más y más libertad, de manera tal que vayamos eliminando la necesidad de utilizar cuerdas y cables”.
Robonauta 2 escribe mensajes a través de Twitter en: twitter.com/AstroRobonaut.
Después de todas estas mejoras, el robot será capaz de montar lugares de trabajo para llevar a cabo las EVA. R2 incluso tiene “ojos” (dos cámaras de video que le proporcionan una visión tridimensional) para ver un lugar de trabajo externo antes de que la tripulación salga a realizar una tarea.
“Si la tripulación ve la necesidad de contar con algunas herramientas o de ‘ajustar con precisión’ la estación de trabajo, podrá dar indicaciones a R2 para que haga los cambios y que todo quede tal y como lo deseen. Es como si fuera una enfermera para un cirujano. La tripulación podrá entonces venir y llevar a cabo el trabajo rápidamente, y realizar múltiples tareas en un tiempo menor”.
Y en el caso de una emergencia, R2 podría ser el primero en prestar auxilio.
“Puede ir afuera rápidamente y revisar el problema. Los astronautas tienen que colocarse el traje y luego despresurizarse en la cámara de aire durante horas antes de poder salir”.
Mientras se está despresurizando, la tripulación puede visualizar el problema a través de los “ojos” de R2 y determinar la manera y las herramientas que necesitarán para resolver la emergencia.
“Además, R2 puede estar afuera trabajando tanto tiempo como sea necesario, mientras que los seres humanos solamente pueden permanecer allí por tiempo limitado”.
¿Qué otras aventuras le aguardan a R2?
“Hay muchas posibilidades para el futuro”, dice Ambrose. “Por ejemplo, podríamos colocarle ruedas de manera tal que R2 podría explorar un potencial lugar de aterrizaje en un planeta o en un asteroide o podría instalar un lugar de trabajo o un hábitat allí. ¡Algún día incluso se le podría colocar un sistema de propulsión a chorro a R2! Pero tenemos que gatear antes de poder volar”.
Más información
Créditos: R2 fue desarrollado conjuntamente por la NASA y la compañia General Motors.
Portal de Robonauta 2 en Internet –en el Centro Espacial Johnson.
La NASA tiene grandes planes para un robot humanoide –Ciencia@NASA
El primer robot antropomorfo a bordo de la Estación Espacial Internacional (ISS), el Robonauta 2 de la NASA, pasó con éxito las primeras pruebas de sus sistemas y de sus “ojos”, informa el blog oficial del robot en Twitter.
Durante la primera etapa de las pruebas, el astronauta de la NASA Michael Fossum puso en marcha al Robonauta 2 que después recibió los primeros comandos de la Tierra y abrió los “ojos”, es decir activó las cámaras. Lo primero que “vio” fueron los cables y los interruptores en la pared del módulo de la ISS.
“Quiero mirar alrededor”, dice el robot en su Twitter.
Durante la siguiente etapa de pruebas, prevista para el 1 de septiembre, el Robonauta 2 intentará hacer unos movimientos.
Robonauta 2 (R2), de 140 kilogramos, tiene la “cabeza”, el “cuerpo” y dos “manos” con “dedos” flexibles. Primero, trabajará en el módulo estadounidense Destiny, pero los especialistas esperan que con el tiempo pueda salir al espacio abierto para realizar tareas rutinarias o demasiado peligrosas junto con los astronautas.
El R2, transportado a la ISS el 26 de febrero por el transbordador espacial “Discovery”, tiene un “gemelo” en la Tierra, el robot R2A.
Características generales de Robonaut 2
El robonauta en cuestión, Robonaut-2, es un androide ciertamente antropomorfo con habilidades sorprendentes, es el primer robot que ejercerá funciones de técnico para reparar desperfectos en la Estación, como el Robonauta 1, es capaz de manejar un amplio espectro de instrumentos e interfaces, estas son algunas de sus caracteristicas:
- Mide casi dos metros de alto
- Pesa 136 kilos (300 libras)
- Vale unos $2,5 millones …
- Realizado con fibra de carbono niquelado y aluminio
- Brazos extensibles
- Manos con movilidad rotatoria y sus cinco dedos tienen capacidad para agarrar 2,5 kilos cada uno. Su cabeza es un casco dorado con un cristal ..
El diseño cuenta con cabeza, torso y dos brazos y puede usar las mismas herramientas y trabajar en los mismos entornos peligrosos que los astronautas. Actualmente hay cuatro robonautas, en desarrollo. Esto permite estudiar diferentes tipos de movilidades, métodos de control y aplicaciones en las que se pudan utilizar dichas maquinas; una de las novedades que se estan estudiando y que forman parte de un reciente proyecto de investigación es aquel en el que se le enseñan procedimientos médicos básicos a este robot para que pueda ejercer de médico en futuras misiones espaciales. Robonaut 2 está aprendiendo medicina para actuar de medico o enfermero de su tripulación.
R-2, de momento, es sólo medio astronauta, o medio robot: una cabeza, con un torso, dos brazos y dos manos, con un peso total de unos 150 kilos. El plan es llevarlo al espacio en el transbordador Discovery. El robot es un desarrollo tecnológico de la NASA y General Motors que puede utilizarse no sólo en el entorno espacial sino también en la Tierra, para múltiples tareas industriales. “Es un ejemplo de una futura generación de robots espaciales y terrestres, no para sustituir a los humanos sino para acompañarlos y realizar trabajos clave de apoyo”, ha dicho John Olson, director del Departamento de Integración de Sistemas de Exploración. “El potencial combinado de humanos y robots es una demostración perfecta de que dos y dos pueden sumar mucho más que cuatro”.
El plan inmediato para R-2 es realizar, dentro de la ISS, pruebas en condiciones de microgravedad y radiación para probar su funcionamiento en el espacio, explica la NASA. Las operaciones permitirán, además, ensayar el trabajo del robot codo con codo con los astronautas. A medida que los ensayos avancen, los astronautas de la base orbital recibirán software actualizado del humanoide que le permitirá ir realizando.
De momento, el Robonauta 2 está pasando el entrenamiento debido previo a su vuelo espacial, con pruebas de vibración y radiación incluidas. Será el primer astronauta mecánico con forma más o menos humana en la ISS.
La NASA Y Chevrolet crean el ‘Robonauta 2’
El robot está diseñado para ayudar a los astronautas además de crear coches y espacios de trabajo más seguros.
La colaboración entre la NASA y el fabricante de coches GM/Chevrolet ha creado ‘Robonauta 2’, más conocido como R2, que se ha diseñado para ayudar a los astronautas de la Estación Espacial Internacional con tareas cotidianas, al tiempo que ayuda a Chevrolet a desarrollar sofisticadas tecnologías de control, sensores y visión pensadas para crear coches y lugares de trabajo más seguros.
«Nos pellizcamos todos los días que dedicamos a esto y tenemos la sensación de que vivimos en un momento asombroso en el que estamos cambiando el mundo con los robots de una forma más natural. La tecnología robótica de vanguardia es muy prometedora, y no sólo para GM/Chevrolet y la NASA. El programa R2 nos ofrece la posibilidad de desarrollar una amplia gama de aplicaciones prácticas para la tecnología», señala Marty Linn, Ingeniero Jefe de Robótica de GM/Chevrolet.
El programa R2 también es pionero en la investigación del futuro diseño de miembros protésicos y exoesqueletos para militares heridos del mundo entero o personas con movilidad limitada, posiblemente empleando sensores avanzados similares a los utilizados en los sistemas de aparcamiento marcha atrás. Los ingenieros también están buscando formas de ayudar a los trabajadores de cadenas de montaje que tienen que levantar grandes pesos.
El despegue
Cuando el transbordador Endeavour despegó de Cabo Cañaveral el pasado viernes; llevaba a bordo un paquete vital para R2 —que convive con los astronautas en la ISS desde febrero de este año— que le ayudará a iniciar su programa de experimentos en gravedad cero en el espacio.
El robot, que viajó a la ISS en la misión STS133 del transbordador espacial Discovery, ha sido desembalado y empezará a funcionar en las próximas semanas. Realizará un conjunto de tareas especialmente diseñado —relacionado con cables, conectores, enchufes y otros objetos menos rígidos, como bolsas y prendas que agarrar— para que los ingenieros puedan calibrar y perfeccionar los sistemas de sensores y control.
Finalmente comenzaron las tareas de ensamble y activación de R2. Este compañero robot de la tripulación de la ISS realizará tareas de alto riesgo para los astronautas durante su estadía en el espacio.
El robot astronauta de la NASA y General Motors finalmente comenzó a interactuar con sus compañeros en la Estación Espacial Internacional. Luego de casi un año de llegado y seis meses de estar inactivo, un regaño por parte del presidente Barack Obama a la tripulación por no haberlo desempacado y retrasos varios en el despegue del transbordador que lo llevaría a la ISS, Robonaut2 se presentó oficialmente y estrechó la mano del comandante Dan Burbank.
R2 (como se lo conoce amistosamente) estuvo sometido a diversas pruebas de rendimiento, en especial, las relacionadas con su funcionamiento en un ambiente con atmósfera cero y los primeros ejercicios relacionados con calibración de sus cámaras. Luego del firme apretón de manos con el comandante, R2 saludó con un “Hello World” en lenguaje de signos.
El objetivo es que de aquí en adelante R2 se ocupe de tareas que podrían ser riesgosas para sus compañeros humanos, pero no deja de ser auspicioso que ya pueda participar de trabajos en la ISS a pesar de que aún no tiene piernas.
Sus piernas estarían llegando en 2013 con lo que se completaría la configuración de este primer robonauta en el espacio. Siempre y cuando R2 no esté tuiteando desde su cuenta personal, facilitará el trabajo de sus compañeros así como también podrá mostrar que tan probable sea que en el futuro, robots como él puedan viajar más allá de los límites de la resistencia humana.
Link: Robonaut performs first human-robot handshake in space (The Verge)
El ‘robonauta’ de la EEI ya puede caminar
Publicado: 22 abr 2014 09:03 GMT
Robonaut 2, el primer robot astronauta de la Estación Espacial Internacional, ya cuenta con un par de piernas que le dotarán de una mayor autonomía.
El robot, apodado R2, lleva ya tres años trabajando a bordo de la EEI. Las piernas de R2, que hasta ahora se componía únicamente de un torso, llegaron a la estación espacial el pasado Domingo de Resurrección a bordo de Dragón, la nave creada por SpaceX.
Gracias a sus extremidades inferiores, R2 podrá ayudar a los tripulantes de la EEI en sus actividades rutinarias, permtiendo que se concentren en las tareas más importantes.
Gracias a sus piernas, que miden 1,2 metros cada una, R2 tendrá la altura total de unos 2 metros y medio. Las nuevas extremidades “se ven un poco raras”, comenta Robert Ambrose, del Centro Espacial Johnson de la NASA, ya que tienen 7 junturas y además constan de dispositivos, incluso cámaras, en los pies. “Imagínense unas patas de mono que tengan ojos”, comenta Ambrose. “Yo, personalmente, espero que mis piernas nunca se doblen en tales ángulos, pero R2 no tiene problema con ello”, añadió.
Las piernas del ‘robonauta’ han costado al menos 14 millones de dólares, 8 de los cuales se destinaron a su fabricación y el resto a ensayos y preparación del envío.
R2 no es el único robot ‘humanoide’ en la EEI. Desde el otoño del año pasado allí se encuentra el robot japonés Kirobo, que puede hablar con los astronautas y por medio del cual los científicos japoneses estudian la comunicación entre los humanos y los robots. Por el momento Kirobo habla solo en japonés.
Por primera vez el robonauta R2 estrecha la mano de un astronauta en la ISS
16 Febrero 2012
La Dragon CRS-14 vuelve a la Tierra
La nave de carga Dragon CRS-14 regresó a la Tierra el 5 de mayo de 2018, varios días más tarde de lo previsto debido a la mala meteorología. Amerizó sin problemas en el océano Pacífico, frente a la costa californiana, a las 19:00 UTC, concluyendo así su misión de 31 días unida a la estación espacial internacional.
Los astronautas del complejo orbital habían supervisado su separación, a las13:23 UTC y controlada desde tierra, desde el brazo robótico Canadarm-2. Cargada con resultados de experimentos, la cápsula fue recuperada y situada a bordo de un barco para su transporte a Long Beach, donde sus contenidos serían extraídos y devueltos a la NASA.
La nave retornó a casa casi 2 toneladas de resultados y muestras experimentales. También se hallaba a bordo el robot Robonauta-2, cuyos recientes problemas recomendaron su envío a la Tierra para su reparación. Podría volver a ser lanzado dentro de un año. La Dragon había despegado el 2 de abril con suministros para la estación internacional. La próxima (CRS-15), despegará, si todo va bien, el 28 de junio.
Vela solar
Vela solar
IKAROS
Representación artística de la vela solar IKAROS.
IKAROS es una sonda espacial experimental, impulsada parcialmente mediante una vela solar. Fue lanzada por la agencia espacial japonesa JAXA el 20 de mayo de 2010 junto a la sonda PLANET-C. El destino de ambas sondas es el planeta Venus. IKAROS es la primera sonda interplanetaria que se impulsa con una vela solar.1
El nombre “IKAROS” pretende ser un acrónimo de “Kite-Accelerated Interplanetary spacecraft by Radiation from the Sun”,2 cuya traducción aproximada podría ser “Nave-Vela Interplanetaria Acelerada por la Radiación del Sol”.3 Aunque también hace referencia a Ícaro, el personaje mitológico que intentó volar hasta el Sol.
Para verificar el correcto despliegue de la vela solar, la sonda contaba con dos pequeñas subsondas llamdas DCAM1 y DCAM2 que cuentan con una cámara, utilizadas para fotografiar el despliegue de las velas y que se compruebe si lo hicieron correctamente.4
Características
La sonda, construida por Mitsubishi Heavy Industries Ltd.,5 está impulsada por una vela cuadrada de 20 m de lado, que incorpora unas células solares para generar la energía necesaria para los equipos.2
La vela tiene 20 m de lado, y un espesor de 32.5 micras.5 Su diseño, denominado “thin-film solar”, por su capacidad para generar energía eléctrica además de captar impulso,5 pretende sustituir a los paneles solares espaciales en el futuro. Las velas se desplegarán por fuerza centrífuga, aprovechando la rotación de la nave, mediante la liberación de unos pesos en los extremos de las láminas.3
La sonda ha costado 1.500 millones de yenes6 (unos 13 millones de €)
Misión
Su lanzamiento se produjo el 20 de mayo de 2010, desde el Complejo de lanzamiento Yoshinobu del Centro Espacial de Tanegashima, mediante un cohete H-IIA.7
La sonda viajó a Venus, siendo la primera sonda impulsada parcialmente mediante esta tecnología.3 Se pretende que esta prueba permita demostrar la viabilidad de un motor híbrido, que combine el impulso de la vela solar con el motor de iones, generados mediante la energía captada por finos paneles solares insertados en la propia vela.3
El 8 de diciembre de 2010, IKAROS pasó a 80.000 km de Venus.891011
Apariciones en otros medios
La sonda hizo un cameo en un episodio del anime Sora no Otoshimono en el ending 6 de la segunda temporada, encontrándose irónicamente con otro personaje basado en el ser mitológico Ícaro.
Un modelo a escala 1:64 de la nave espacial IKAROS.
SATCAT no. 36577
Website global.jaxa.jp/projects/sat/ikaros
Mission duration ~0.5 years, elapsed: 8 years, 6 months and 19 days
Spacecraft properties
Launch mass 315 kg (694 lb)
Dimensions Solar sail: 14 m × 14 m (46 ft × 46 ft) (area: 196 m2 (2,110 sq ft))[5]
Start of mission
Launch date 21:58:22, 20 May 2010 (UTC)
Rocket H-IIA 202
Launch site Tanegashima, LA-Y
End of mission
Last contact 23 April 2015
Orbital parameters
Reference system Heliocentric orbit
Flyby of Venus
Closest approach 8 December 2010
Distance 80,800 kilometers (50,200 mi)
Diagrama esquemático de la vela IKAROS:
(cuadrado azul en una línea) Masa de la punta 0.5 kg (1.1 lb), 1 de 4.
(Rectángulo naranja) Dispositivo de cristal líquido, 1 de 80.
(cuadrado azul) Membrana de 7.5 μm (0.00030 pulg.) de espesor, 20 metros (66 pies) en diagonal.
(rectángulo negro) Células solares de 25 μm (0.00098 in) de espesor.
(líneas amarillas y azules) Tethers.
(disco azul) Cuerpo principal.
(puntos amarillos) Instrumentos.
IKAROS funciona
La sonda japonesa IKAROS (Small Power Solar Sail Demonstrator) sigue viento solar en popa a toda vela, aunque no es el flujo de partículas cargadas procedente del Sol lo que impulsa a la nave, sino la presión de radiación. El caso es que la JAXA ha confirmado el impulso generado por la luz en la vela. Cierto es que estamos hablando de una fuerza casi despreciable, de sólo 1,12 mN, pero no olvidemos que actúa continuamente sobre la nave, lo que permitirá realizar maniobras de elevada Delta V.
Una magnífica noticia para la JAXA, que ahora deberá utilizar los paneles de cristal líquido de la vela para maniobrar la sonda jugando con el par de fuerzas que se crea al cambiar la reflectividad de la superficie. La sonda IKAROS (イカロス) es la primera vela solar interplanetaria de la historia.
Gráfica que relaciona el porcentaje de luz solar reflejada por la vela (eje X) con la eficiencia de la misma según la sección aparente de la vela. Los datos corresponden a partir del 9 de junio. El cuadro rosa corresponde a la predicción antes de la misión (JAXA).
IKAROS en el espacio interplanetario rumbo a Venus (JAXA).
Cómo maniobrar en el espacio con la presión de radiación de la luz (JAXA).
Detalles de la vela solar, incluyendo los paneles solares flexibles y el control de actitud por LCD (JAXA).
IKAROS desplegada
Ahora sí. Después de varios días de incertidumbre y cierta opacidad informativa, la agencia espacial japonesa JAXA confirma el despliegue exitoso de la vela solar IKAROS (イカロス). La maniobra de despliegue comenzó el pasado día tres de junio y sufrió algunos retrasos debidos a ciertas complicaciones técnicas que aún no están del todo claras. Ayer día diez se completó la operación con la sonda situada a 7,7 millones de kilómetros de la Tierra en una órbita con rumbo a Venus. IKAROS fue lanzada el pasado 21 de mayo junto con la sonda Akatsuki.
Para desplegar la vela, la nave giró primero a cinco revoluciones por minuto para que se pudiesen separar cuatro contrapesos de 0,5 kg cada uno encargados de “tirar” de la lámina. Debido a la conservación del momento angular, la rotación de la sonda se fue frenando con el despliegue hasta alcanzar las 2 rpm, momento en el que entraron en acción los impulsores de la nave para asegurar un giro de 25 rpm. En las fases finales de la operación, la velocidad de la sonda alcanzó las 5-6 rpm, momento en el cual tuvo lugar el despliegue total de la vela.
A partir de ahora, comienza la fase más importante de la misión -de seis meses de duración- en la que se verificará el funcionamiento de los paneles solares flexibles de la vela y el ingenioso sistema de control de actitud mediante LCD. Gracias a este mecanismo, al oscurecer las pantallas de cristal líquido se podrá modificar el empuje proporcionado por la presión de radiación de la luz solar en los extremos de la membrana, generando un par de fuerzas que permita maniobrar la vela.
Debemos recordar que, pese a su nombre, la vela solar no basa su funcionamiento en la acción del viento solar, sino en la presión de la luz. Cambiando el ángulo de la vela respecto a la dirección de avance en su órbita, IKAROS puede cambiar sus parámetros orbitales sin necesidad de usar propulsión química.
IKAROS se convierte así en la primera vela solar interplanetaria y en la pionera de una nueva generación de sondas que podría revolucionar el estudio del Sistema Solar interior. ¡Felicidades, JAXA!
Método de despliegue de la vela IKAROS (JAXA).
Comienzo del despliegue visto por una de las cámaras a bordo de IKAROS (arriba). Campo de visión de la cámara (abajo) (JAXA).
Despliegue finalizado (JAXA).
Datos técnicos de IKAROS (JAXA).
Historia
Representación de la NanoSail-D, desplegada con éxito por la NASA en enero de 2011.
El efecto de la presión solar fue señalado por vez primera en el siglo XVII por el astrónomo Johannes Kepler, al observar que la cola de los cometas siempre apuntaba en la dirección opuesta al Sol, deduciendo que éste debía generar algún tipo de fuerza de repulsión.7 Tal fuerza fue calculada en 1873 por James C. Maxwell3 en su teoría del electromagnetismo, según la cual, la luz debía ejercer una presión sobre los objetos. Esta predicción fue confirmada experimentalmente en 1899 por Piotr Lébedev.8
Fue el propio Kepler el primero en sugerir la idea de diseñar naves espaciales para aprovechar esta energía,3 pero hubo que esperar hasta el siglo XX para que la comunidad científica retomase el concepto de vela solar. Los primeros en hacerlo fueron soviéticos,9 concretamente el físico ruso Konstantín Tsiolkovski, y en especial el ingeniero lituano Friedrich Zander, que ya en 1924 estudió la posibilidad de realizar viajes interplanetarios mediante velas solares.9 El concepto se fue refinando gradualmente durante las siguientes décadas, y en 1951 se publicó el primer artículo técnico sobre velas solares: “Clipper Ships of Space” (veleros del espacio), firmado bajo seudónimo por el ingeniero aeronáutico Carl A. Wiley.9 Transcurrirían todavía 7 años más hasta que un trabajo sobre velas solares apareciese en una revista científica, lo que sucedió finalmente en 1958 en la revista “Jet Propulsion”. El artículo fue escrito por el Dr. Richard Gamin, consultor del Departamento de Defensa de los Estados Unidos.9 A mediados de los años 60 la NASA empezó a investigar en el campo de las velas solares,9 y desde entonces el avance tecnológico y la aparición de materiales ultraligeros como el PET de orientación biaxial (boPET) han reavivado el interés por esta tecnología.
En 1960 la presión solar demostró por primera vez su influencia real sobre los objetos en el espacio “jugando al fútbol”3 con el satélite Echo 1: un gran globo metalizado de gran área y poco peso al que empujó hasta destrozar su fina tela, dispersando los restos por el espacio.10
En 1974, el objetivo de la sonda Mariner 10 corría peligro por la falta de propelente. Como medida desesperada, se decidió direccionar adecuadamente los paneles solares para que sean utilizados a manera de vela solar, lo que proporcionaría el empuje necesario para reemplazar algunas de las maniobras que requerirían gasto adicional de propelente.11 De esta manera, aunque en forma accidental, se utilizó por primera vez la presión de la luz (en las cercanías del sol) a manera de vela solar, lo que en este caso produjo que se salvara la continuidad de los objetivos de la misión.11 Después de 30 años de esta experiencia, para la sonda MESSENGER se planificó utilizar la presión de la luz solar como empuje para el frenado y posterior captura de Mercurio, de forma que pudiese entrar en órbita. Se realizaron esas maniobras según lo planificado, utilizando los paneles solares a manera de vela solar.12 Sin este apoyo, además de las asistencias gravitatorias, se hubiese necesitado una cantidad muchísimo mayor de propelente, lo que hubiese subido el costo más allá del presupuesto.12
Lanzamientos orbitales
Despliegue
El 4 de febrero de 1993, la Agencia Espacial Rusa consiguió desplegar con éxito desde la estación MIR el Znamya 2, un reflector de boPET aluminizado de 20 metros de anchura. No obstante, el experimento sólo consistió en probar el despliegue, y no la propulsión, por lo que el reflector, incapaz de controlar su dirección, se quemó en la atmósfera. Un segundo ensayo posterior, denominado Znamaya 2.5, finalizó en fracaso, y en 1999 la agencia rusa abandonó el programa.3
Más recientemente, el 9 de agosto de 2004 la Agencia Japonesa de Exploración Aeroespacial desplegó con éxito dos prototipos de vela solar desde un cohete: una vela con forma de trébol a 122 km de altura, y una desplegada en abanico a 169 km. Ambas velas utilizaron una lámina de 7,5 micras de espesor. Al igual que en el caso ruso, el experimento fue sólo un ensayo de despliegue, y no una prueba de propulsión.2
El 21 de febrero de 2006, la JAXA lanzó en un cohete Mu-5, juntamente con el satélite ASTRO-F, una vela solar de 15 metros de diámetro llamada SSSat 1 (Solarsail Subpayload Satellite) o SPP, que sólo se desplegó parcialmente.16 El 22 de septiembre de 2006, de nuevo la JAXA lanzó, juntamente con el satélite SOLAR-B, una vela solar gemela de la anterior, la SSSat 2, con los mismos resultados negativos.16 Posteriormente, el 20 de mayo de 2010,17 lanzó juntamente con el satélite PLANET-C una nueva vela, de 20 m de diámetro,18 19 llamada IKAROS, que se desplegó correctamente.
En enero de 2011 la NASA consiguió por primera vez desplegar con éxito una vela solar en órbita con el segundo minisatélite NanoSail-D,20 también denominado “NanoSail-D2”.
Debe estar conectado para enviar un comentario.