Este Mundo, a veces insólito

Calendario
enero 2025
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

Astronautica

Esta es con mucho, la más antigua y mayor afición, y a la que más tiempo le he dedicado, pero a la hora de incluir temas, sería tan extensa como inacabable, por lo que sólo se incluyen temas puntuales, escuetos y a ser posible aclaratorios y didácticos.

Aterrizaje en Venus

Aterrizaje en Venus

Venera 8

Венера-8, Venera 8

Nave espacial Venera 8

Organización: Lavochkin/Roscosmos

Contratistas: Lavochkin

Tipo de misión: Módulo de descenso

Sobrevuelo de: Venus, Tierra

Lanzamiento: 27 de marzo de 1972, a las 04:15:01 UTC

Cosmódromo Baikonur emplazamiento 31/6

Cohete: Molniya-M / MVL

Duración: Viaje: 117 días

Aterrizaje: 50 minutos

NSSDC ID: 1972-021A

Masa

Lanzamiento: 1,184 kilogramos

Aterrizaje: 495 kilogramos

Inclinación: 51.7°

Apogeo: 246 kilómetros

Perigeo: 194 kilómetros

Web: https://www.laspace.ru/projects/planets/Venera-8/

Venera 8 (ruso: Венера-8 que significa Venus 8) fue una sonda en el programa soviético de Venera para la exploración de Venus y fue la primera sonda espacial robótica en realizar un aterrizaje exitoso en la superficie de Venus.

Sello de Venera 8

La nave espacial Venera 8 comprendía una sonda de bus y sonda de aterrizaje. La sonda de aterrizaje era un recipiente a presión esférico con una masa de 495 kg de diseño similar a la sonda Venera 7. Tenía un caparazón superior que se arrojaría a la entrada atmosférica para desplegar el paracaídas de 2,5 metros cuadrados y exponer los instrumentos. La sonda funciona con batería. Su instrumentación incluía sensores de temperatura, presión y luz, así como un altímetro, anemómetro, espectrómetro de rayos gamma, analizador de gases y transmisores de radio. El bús contenía un detector de rayos cósmicos, un detector de viento solar y un espectrómetro ultravioleta.

Venera 8 era una sonda atmosférica y un módulo de aterrizaje de Venus. Su instrumentación incluía sensores de temperatura, presión y luz, así como un altímetro, un espectrómetro de rayos gamma, un analizador de gases y transmisores de radio. La nave espacial tardó 117 días en llegar a Venus con una corrección a mitad de camino el 6 de abril de 1972, separándose del bús (que contenía un detector de rayos cósmicos, un detector de viento solar y un espectrómetro ultravioleta) y entrando a la atmósfera el 22 de julio de 1972 a las 08: 37 UT. Se utilizó un sistema de refrigeración conectado al autobús para preenfriar el interior de la cápsula de descenso antes de la entrada en la atmósfera con el fin de prolongar su vida en la superficie. La velocidad de descenso se redujo de 41.696 km / ha aproximadamente 900 km/h mediante aerofrenado. El paracaídas de 2,5 metros de diámetro se abrió a una altitud de 60 km.

Descenso

Venera 8 transmitió datos durante el descenso. Se observó una fuerte disminución en la iluminación a una altitud de 35 a 30 km y una velocidad del viento inferior a 1 m/s medida a menos de 10 km. Venera 8 aterrizó a las 09:32 UT en lo que ahora se llama la Región Vasilisa, dentro de un radio de 150 km de 10.70°S 335.25°E, a la luz del Sol, a unos 500 km del terminador de la mañana. La masa del módulo de aterrizaje fue de 495 kg.

Módulo

El módulo de aterrizaje continuó enviando datos durante 50 minutos y 11 segundos después del aterrizaje antes de fallar debido a las duras condiciones de la superficie. La sonda confirmó los datos anteriores sobre la alta temperatura y presión de la superficie de Venus (470 grados Celsius, 90 atmósferas) devueltos por Venera 7, y también midió el nivel de luz como adecuado para la fotografía de superficie, encontrando que es similar a la cantidad de luz en la Tierra en un día nublado con visibilidad aproximada de 1 km.

Las mediciones del fotómetro de Venera 8 mostraron por primera vez que las nubes de Venus terminan a gran altura, y la atmósfera era relativamente clara desde allí hasta la superficie. El espectrómetro de rayos gamma a bordo midió la relación uranio/torio/potasio de la roca de superficie, indicando que era similar al granito.

Experimentos de carga

Venera 8 se lanzó el 27 de marzo de 1972 a las 04:15:01 UT. La nave espacial tardó 117 días en llegar a Venus con una corrección a mitad de camino el 6 de abril de 1972. Antes de llegar a Venus, el interior de la sonda se enfrió a -15 grados C. Se separó del autobús el 22 de julio de 1972 a las 07:44 UT e ingresó al ambiente a las 08:37 UT. La velocidad de descenso se redujo de 11 km / s en la entrada a aproximadamente 250 metros / s a ​​67 km de altitud por aerofrenado. El paracaídas se abrió en modo reefed a una altitud de 60 km, y se utilizó un sistema de refrigeración para enfriar los componentes del interior. Venera 8 transmitió datos durante el descenso desde el encendido del instrumento a 50 km. A 30 km de altitud, el paracaídas se abrió por completo. Se observó una disminución en la iluminación a una altitud de 35 a 30 km y una velocidad del viento inferior a 1 km / s medida a menos de 10 km. Venera 8 aterrizó a las 09:32 UT a 10 grados sur, 335 grados este, a unos 500 km del terminador de la mañana en el lado diurno. Continuó enviando datos durante 63 minutos después del aterrizaje antes de fallar debido a las duras condiciones de la superficie.

Primera misión en habitar una estación espacial

Primera misión espacial tripulada en habitar una estación espacial

Soyuz 11

 Sello de la URSS de 1971 homenajeando los cosmonautas Gueorgui Dobrovolski (izquierda), Vladislav Vólkov (centro) y Viktor Patsayev (derecha).

Datos de la misión

Nombre: Soyuz 11

Cohete lanzador: Soyuz (11A511)

Nombre en clave: Янтарь (Yantar – “Ámbar“)

Tripulantes: Vladislav Volkov, Gueorgui Dobrovolski, Viktor Patsayev

Lanzamiento: 6 de junio de 1971: 07:55 UTC
Baikonur LC1: 45°55′00″N 63°20′00″E

Aterrizaje: 30 de junio de 1971:02:16:52 UTC: 51°21′41.6″N 59°33′44.2″E

Duración: 23 d 18 h 21 min 43 s

La Soyuz 11 fue la primera misión espacial tripulada en habitar una estación espacial (la Salyut 1). La nave se lanzó el 6 de junio de 1971 y regresó a tierra el 29 de ese mismo mes, rompiendo además un nuevo récord de permanencia en el espacio. Sin embargo la tripulación, compuesta por Vladislav Vólkov, Gueorgui Dobrovolski y Viktor Patsayev, murió en su regreso a la Tierra. La causa del accidente fue un escape de aire en la cápsula, lo cual produjo la muerte de los cosmonautas por asfixia ya que carecían de trajes espaciales. El accidente produjo un retraso de dos años en programa espacial tripulado soviético, obligó a rediseñar la nave Soyuz y abandonar prematuramente la Salyut 1.

Objetivo de la misión

El objetivo de la Soyuz 11 era culminar la misión que su predecesora, la Soyuz 10, no había podido finalizar con éxito. La Soyuz 10 logró acoplarse a la primera estación espacial de la historia (la Salyut 1) el 23 de abril de 1971, pero dicho acoplamiento no salió bien y los cosmonautas no pudieron penetrar en la estación.

Debido al fracaso parcial de la Soyuz 10 se tuvo que rediseñar el sistema de acoplamiento. Se estimó que se había infraestimado en casi un 100 % la fuerza que debía soportar una de las piezas metálicas (empezaba a doblarse al aplicarle una fuerza equivalente a 130 kg, mientras que durante el acoplamiento se alcanzaban los 160 a 200 kg). La pieza fue reforzada y se confió en que esta vez todo saldría bien.

Elección de la tripulación

La tripulación seleccionada para la misión estaba compuesta por Alexei Leonov, Valeri Nikolayevich Kubasov y Pyotr Ivanovich Kolodin. Sin embargo, el 3 de junio de 1971, en las pruebas médicas finales previas al lanzamiento, se detectó en una radiografía de Kubasov una mancha en un pulmón. Los doctores, temiendo que se tratara de tuberculosis, le prohibieron volar. Según las reglas soviéticas, al descartar un cosmonauta se descartaba la tripulación entera, por lo que se decidió recurrir a la tripulación de reserva, compuesta por Vladislav Vólkov, Gueorgui Dobrovolski y Víktor Patsayev.

Estancia en la Salyut 1

La estancia en la Salyut 1 se vio salpicada por diversos incidentes, entre los que destacan la avería del telescopio principal (debido a que no se abrió la tapa), un incendio el 16 de junio de 1971 que estuvo a punto de provocar una evacuación de emergencia y fuertes fricciones entre dos de los tripulantes: Dobrovolskiy (comandante, novato) y Volkov (veterano). Estos incidentes motivaron el regreso anticipado de la tripulación (la duración inicialmente prevista de la misión era de 30 días).

Tripulación de la Soyuz 11: abajo izda., Georgi Dobrovolsky; arriba izda., Víktor Patsáyev; dcha., Vladislav Vólkov.

El acoplamiento con la estación se produjo el 7 de junio en modo automático. La tripulación encendió el sistema de regeneración de aire y cambió un par de ventiladores. Sin embargo, debido a un desagradable olor a humo, se aconsejó a los cosmonautas que durmieran la primera noche a bordo de la Soyuz. El 8 de junio el aire de la estación se encontraba perfectamente, por lo que los cosmonautas procedieron a habitarla, realizaron una maniobra orbital y orientaron los paneles hacia el Sol. La prensa mundial se hizo eco del nuevo triunfo de la astronáutica soviética: la primera estación espacial tripulada. Sin embargo, los cosmonautas no siguieron el programa de entrenamiento para paliar los efectos de la ingravidez en el cuerpo. El día 9 de junio se contacta por televisión con los tripulantes y se les recuerda la necesidad de realizar los ejercicios. Debido a que todo parece ir bien se ratifica la decisión de hacerles volver el 30 de junio, mientras que la Soyuz 12 partirá hacia la estación el 20 de julio de 1971.

No hubo incidencias en los días siguientes, en los que los cosmonautas cumplieron los planes previstos, entre los que figura probar el “globo” de la estación para probar la precisión del predictor del punto de aterrizaje. Sin embargo el 16 de junio a las 13:00 la tripulación informa de la presencia de humo en la estación. La situación es tan desesperada que se llega a pensar en evacuar la Salyut 1, pero los cosmonautas apagan el generador principal de oxígeno, conectan el secundario y cambian los filtros de oxígeno. Tras seis horas, la situación parece haber vuelto a la normalidad, aunque los cosmonautas se quejan de que los trajes para entrenamiento les producen mucho cansancio.

El día 17 se evalúa la situación. El primer cosmonauta en levantarse es el comandante, Volkov, que informa a tierra de la situación. Volkov, aunque afirma que “la tripulación entera decide las cosas juntos” se adjudica todas las acciones. Aunque Vasily Mishin considera que es la tarea del comandante tomar las decisiones, Nikolai Petrovich Kamanin y el equipo de seguimiento creen que es demasiado independiente y que no reconoce sus errores. No se encuentra la causa del incendio pero, como medida preventiva, se decide apagar todo el equipo científico. Este se encenderá después, de uno en uno, para intentar encontrar el origen del humo.

El día 18 se evalúan las posibilidades de que la tripulación observe desde la estación el lanzamiento del cohete N-1, previsto para el 22 de junio. Aunque la misión sigue teniendo como fecha prevista de regreso el 30 de junio, los problemas técnicos han impedido a la tripulación seguir con el programa de entrenamiento y los médicos abogan por un regreso más temprano.

El 20 de junio se evalúa el estado físico de los cosmonautas y se advierte que su capacidad pulmonar ha disminuido en un 33 % y los trajes Penguin de entrenamiento no funcionan bien. Aunque hay quienes creen que pueden aguantar mucho más tiempo en órbita, Kamanin estima que deben volver antes del 30 de junio. Finalmente, el 21 de junio las altas esferas deciden que regresen entre el 27 y el 30 de junio.

El 25 de junio los cosmonautas baten el récord de permanencia en el espacio. Del 26 en adelante su principal misión será acondicionar la Salyut 1 para las semanas que le esperan sin tripulación y preparar su propio retorno a tierra. El 27 se recibe la noticia de que el cohete N-1 ha vuelto a fallar. Finalmente el día 29, con la estación perfectamente “apagada”, la tripulación se prepara para desacoplar la Soyuz 11 de la Salyut 1.

Fallecimiento de la tripulación

Decisión de no llevar trajes espaciales

La carrera espacial se inició con una serie de deslumbrantes éxitos para la Unión Soviética. No obstante, para poder mantener esa racha triunfal, las autoridades soviéticas incurrieron en una serie de riesgos. Entre ellos figuró que, para poder acomodar más tripulantes en las naves, éstos no llevaran trajes espaciales. La medida se adoptó por primera vez en la Vosjod 1 y se repetiría en el programa Soyuz.

No todo el mundo estuvo de acuerdo con la medida, que fue criticada por:

  • Leonid Vasilyevich Smirnov (jefe de la Comisión de Industrial Militar)
  • Ilya Lavrov (diseñador del sistema de control ambiental) quien argumentó que al menos la tripulación debía estar dotada con máscaras de oxígeno como las utilizadas en aviación, lo que les hubiera dado un margen de 2 a 3 minutos.
  • Nikolai Kamanin (jefe del cuerpo de cosmonautas soviético).

Sin embargo, se impuso la opinión de los demás líderes del programa soviético como Serguéi Koroliov o Vasily Mishin, que aseguraron que no habría problemas debido a que en ningún vuelo de las Vostok o las Vosjod se había producido pérdidas de presión. Ante las críticas de Kamanin y los propios cosmonautas Mishin llegó a decir que “¡No quiero cobardes en mis naves!“.

Partida de la Salyut 1

El 29 de junio de 1971 los cosmonautas se introdujeron en la Soyuz 11 y se prepararon para volver a tierra. Sin embargo, al cerrar la escotilla de la Soyuz, Volkov indicó que el cierre no era hermético porque así lo advertía un sensor. Desde tierra se aconsejó a la tripulación repetir la operación, pero esta solo lo consigue tras numerosos intentos y cerrando la escotilla con todas sus fuerzas. Tras esto, la luz de aviso se apagó y los cosmonautas comprobaron que la esclusa era hermética.

Finalmente, a las 21:35 la Soyuz 11 se separa de la Salyut 1. Los cosmonautas, aprovechando que les sobra combustible, detienen la separación y proceden a tomar dos rondas de fotografías de la estación (a 10-15 y 30-40 metros).

Fotografía de la estación Salyut 1 tomada por Víktor Patsáyev desde la Soyuz 11. Fuente: Roscosmos.

Tras volar alrededor de la estación para la toma de fotografías y efectuar tres revoluciones alrededor de la Tierra para conseguir la posición en el espacio que les permitiera luego aterrizar en el lugar planeado, la tripulación encendió el sistema de desorbitación ya entrados en el 30 de junio. Poco después, Dobrovolsky se despedía con un “hasta la vista” y radiaba que estaba iniciando el procedimiento de aterrizaje. Aquello fue lo último que se oyó de la tripulación. Algo más tarde, las comunicaciones se interrumpieron abruptamente y sin razón aparente.

Accidente

En algunas fuentes, como el libro de James Oberg Red Star In Orbit, se afirma que el accidente se produjo debido a que la escotilla de la Soyuz 11 no cerró bien durante el desacoplamiento con la Salyut 1. Sin embargo el propio James Oberg cambió su versión de los hechos y en 1997 mantenía la misma tesis que el resto de los investigadores: el accidente se atribuye a la apertura de una válvula de menos de 1 mm de diámetro. Dicha válvula existía para permitir el equilibrado de presión con el exterior y no debía abrirse hasta que no se encontrara a unos 4 km de altura sobre la superficie terrestre.

La apertura de la válvula se produjo durante la maniobra de separación entre el módulo de servicio y el módulo de descenso de la Soyuz. El sistema consistía en dos válvulas independientes de 1 mm de diámetro que se activaban mediante un mecanismo pirotécnico, por lo que se consideraba imposible que accidentalmente se abrieran ambas a la vez. No obstante, ambas se abrieron con solo 6 centésimas de segundo de diferencia. Según James Oberg es posible que el sistema pirotécnico que abría las válvulas hubiera actuado ya pero el gas no saliera debido a que el módulo de servicio le bloqueara el paso. Otra versión que da él mismo es que el mecanismo pirotécnico que separaba el módulo de servicio del módulo de mando activara accidentalmente su homólogo.

En el momento de separación de ambos módulos tanto la nave como la tripulación se encontraban en perfecto estado. Dentro de la Soyuz, la presión era de 915 hPa y los cosmonautas parecían estar más tranquilos que la media, puesto que el pulso promedio durante la maniobra de salida de órbita es de 120 pulsaciones por minuto, mientras que Dobrovolsky estaba en 80, Patsayev en 100 y Volkov en 120.

La tripulación se percató de la fuga con inmediatez gracias al sonido que generaba, lo que quedó registrado en sus electrocardiogramas: en apenas unos segundos el pulso de Dobrovolsky había subido a 114 ppm y el de Volkov a 180. Para localizar la fuente de sonido apagaron las radios y probablemente la encontraron y, percatándose que se trataba de una fuga de aire, debieron intentar cerrar la válvula, ubicada bajo el asiento del comandante. Existía un procedimiento de emergencia consistente en que el comandante taponara el agujero con un dedo, pero se contemplaba solo para el caso de que la Soyuz aterrizara en agua y amenazara con inundarse.

La localización de la fuga hizo imposible cortarla en poco tiempo: aunque en las especificaciones se requería que la entrada de agua fuera cortada en 20 segundos, en los entrenamientos los cosmonautas tardaban de 30 a 40. Eso explica perfectamente por qué el accidente fue mortal, ya que se estima que 20 segundos después de haberse iniciado la fuga la presión había caído tanto que la tripulación debía estar inconsciente. A los 50 segundos después de haberse iniciado el escape de aire, el pulso de Patsayev había caído a 42 ppm. A los 110 s los corazones de los tres cosmonautas se habían detenido. La presión en ese momento se había estabilizado en 50 hPa.

Sin embargo, la Soyuz prosiguió su maniobra de regreso a tierra con normalidad, con la sola excepción de que el escape de gas le produjo un lento movimiento de rotación.

En tierra el control de misión no supo nada de esto ya que no tenía comunicación con la nave (la separación del módulo orbital del módulo de descenso se produjo fuera del alcance de las estaciones de seguimiento soviéticas). Sin embargo, dos minutos después entró en el radio de acción y permaneció durante tres minutos antes de que la reentrada volviera a hacer imposibles las comunicaciones.

Una vez la nave entró en el radio de acción de las estaciones, control de la misión intentó comunicarse con la tripulación; al constatar que los cosmonautas no respondían creyó que había una avería en el sistema de comunicaciones. Este error es comprensible, ya que desde la separación del módulo orbital la Soyuz carecía de medios para transmitir telemetría y, por lo tanto, en tierra nada sabían de la fuga de aire. La nave aterrizó correctamente a las 2:16:52 UTC (las 6:16 hora local: había amanecido más de una hora antes). Los equipos de rescate recibieron la desagradable sorpresa una vez la cápsula estaba en tierra y la tripulación seguía sin dar señales de vida. Se intentó la reanimación de los tripulantes, pero fue imposible (llevaban media hora muertos).

Se intentó reproducir el accidente en tierra, pero no fue posible hacer que las válvulas se abrieran simultáneamente. No obstante, las autopsias y los datos recogidos por el sistema grabador de datos Mir (que permitía recoger los datos del vuelo aunque estos no se pudieran retransmitir) resultaron suficientes para determinar las causas del mismo.

Consecuencias

Reducción de la tripulación

El accidente obligó a hacer que todos los tripulantes de las Soyuz llevaran trajes espaciales durante el despegue y aterrizaje como medida de precaución. Estos trajes fueron diseñados por Gay Severin y recibieron el nombre de Sokol. Aunque ligeros, aumentaban el espacio necesario para los tripulantes. Además, para asegurar que los trajes funcionaran y que la cabina pudiera mantener la presión en caso de fuga, hubo que instalar una unidad de control, por lo que se disminuyó aún más el espacio disponible. Esto redujo la capacidad de la nave de tres cosmonautas a dos.

Para recuperar su anterior tripulación máxima hubo que rediseñar la nave para hacerla más amplia; el nuevo modelo, llamado Soyuz-T, comenzó a volar en 1980.

Abandono de la Salyut 1

Se tenía previsto que una nueva Soyuz, la número 12, partiera hacia la Salyut 1 en el mes de julio. No obstante, la Soyuz 12 no partiría al espacio hasta septiembre de 1973, más de dos años después. Debido al retraso la Salyut 1 no pudo recibir más tripulaciones y, tras ir más allá de su vida útil prevista (tres meses), se ordenó su reentrada controlada.

Destitución de Kamanin

Se culpó a Kamanin por no haber adiestrado a los cosmonautas para afrontar una emergencia así y fue retirado del servicio. Kamanin consideró que la decisión era profundamente injusta, puesto que:

  • Él había sido de los pocos que se había opuesto a la ausencia de escafandras en las Soyuz.
  • Una vez la válvula se abrió no había forma posible de que los cosmonautas se salvaran. Sus rivales argumentaron que los cosmonautas habrían podido taponar la fuga con el dedo, del mismo modo que estaba previsto en caso de que la cápsula aterrizara en el mar y se empezara a inundar. Sin embargo Kamanin consideró esta sugerencia muy poco realista ya que no había suficiente tiempo y, en el improbable caso de que lograran taponarla, el cosmonauta hubiera tenido que aguantar en esa posición durante la reentrada, donde se alcanzan aceleraciones de 4-5 Gs.
  • Su posición ya estaba en cuestión en mayo, antes del accidente.

Honores postmortem

Las autoridades soviéticas reconocieron públicamente la naturaleza del accidente. Los cosmonautas fueron enterrados con todos los honores en el Kremlin.

Además fueron nombrados diversos objetos en su honor:

Esquema de una nave Soyuz para su acoplamiento con una estación tipo Salyut 1. Fuente: NASA.

Los equipos de rescate tratando de reanimar a la tripulación de la Soyuz 11.

 

Tras esta breve visita la Salyut 1 continuó en orbita terrestre un mes y medio, hasta que el 6 de Junio de 1971 se lanzó la Soyuz 11, con los cosmonautas Dobrovolsky, Volkov y Patsáiev. Después de las maniobras de aproximación con piloto automático, la tripulación realizó el atraque final desde una distancia de 100 metros. La operación de atraque automático unió eléctrica e hidráulicamente la nave, y tras igualar las presiones y abrir las escotillas, los cosmonautas penetraron en la estación. La unidad de atraque era nueva en lo esencial, no solo permitía un “ajuste” más firme de las naves tras el atraque, sino que además la estanqueidad era más perfecta. La unidad de atraque conducía a un corto cilindro de unos 2 metros de diámetro. Seguía otro cilindro de unos 2.9 metros, del que pasaban a otra sección de 4.15 metros de diámetro. En una sección de 2.2 metros de diámetro en la parte trasera, se alojaban los motores, alimentado por depósitos de propulsores de forma semiesférica o cónica. La longitud total de la estación, con un trasbordador acoplado era de unos 20 metros. El peso total  sobrepasaba las 25 toneladas.

A bordo de Salyut 1 había un observatorio astronómico, con dos telescopios y un espectrógrafo, obteniéndose espectrogramas de la estrella alfa de Lira. También se realizaron experimentos sobre el crecimiento a bordo de plantas, para saber si podrían emplearse para proporcionar oxígeno y alimento, además de resistir amplios períodos de ingravidez a bordo de las futuras estaciones espaciales.

Arriba la Soyuz 11, abajo, la estacién espacial Salyut 1, la primera de su clase.

La estancia en la Salyut 1 se vio salpicada por diversos incidentes, entre los que destacan la avería del telescopio principal (debido a que no se abrió la tapa), un incendio el 16 de junio que estuvo a punto de provocar una evacuación de emergencia y fuertes fricciones entre dos de los tripulantes: Dobrovolskiy (comandante, novato) y Volkov (veterano). Estos incidentes motivaron el regreso anticipado de la tripulación (la duración inicialmente prevista de la misión era de 30 días).

El acoplamiento con la estación se produjo el 7 de junio en modo automático. La tripulación encendió el sistema de regeneración de aire y cambió un par de ventiladores. Sin embargo, debido a un desagradable olor a humo, se aconsejó a los cosmonautas que durmieran la primera noche a bordo de la Soyuz. El 8 de junio el aire de la estación se encontraba perfectamente, por lo que los cosmonautas procedieron a habitarla, realizaron una maniobra orbital y orientaron los paneles hacia el Sol. La prensa mundial se hizo eco del nuevo triunfo de la astronáutica soviética: la primera estación espacial tripulada. Sin embargo, los cosmonautas no siguieron el programa de entrenamiento para paliar los efectos de la ingravidez en el cuerpo. El día 9 se contacta por televisión con los tripulantes y se les recuerda la necesidad de realizar los ejercicios.

Aterrizaje en Marte

Mars 3

Mars 3 (Марс 3)

 

Otros nombres del orbitador: 1971-049A, mars 3 Orbiter, 05252

Otros nombres del lander: 1971-049F

Fecha de lanzamiento: 28 de mayo de 1971

Hora de lanzamiento: 15:26:30 GMT

Masa seca en órbita: 2265 kg Orbitador // 358 kg Aterrizador

La sonda Mars 3 (también llamada Marsnik 3 o Marte 3) era una nave idéntica a la Mars 2, cada una con un módulo orbital y un módulo de descenso acoplado, desarrolladas en el marco del programa Mars de sondas soviéticas para la exploración de Marte. El principal objetivo del orbitador Mars 3 era la obtención de imágenes de la superficie marciana y de las nubes, determinar la temperatura, estudiar la topografía, composición y propiedades físicas de la superficie, así como medir las propiedades de la atmósfera, medir el viento solar y los campos magnéticos marciano e interplanetario. También actuaría como repetidor hacia la Tierra de las señales enviadas por el módulo aterrizador.

El principal objetivo científico del módulo de descenso Mars 3 era realizar un aterrizaje suave en Marte, devolver fotografías de la superficie y enviar datos de las condiciones meteorológicas, así como de la composición atmosférica y de las propiedades mecánicas y químicas del suelo. La sonda Mars 3 fue la primera que realizó un aterrizaje suave en la superficie de Marte.

Las naves

Entre los dos módulos tenían una masa total de 4.650 kilogramos en el momento del lanzamiento incluyendo el combustible. La altura de la nave era de 4,1 metros y llegaba hasta los 5,9 metros de envergadura con los dos paneles solares desplegados, mientras que el diámetro de la base era de dos metros. De la masa total, 3.440 kilogramos pertenecían al orbitador cargado de combustible y 1.210 kg eran del módulo de descenso también con el combustible cargado.

El sistema de propulsión estaba situado en la parte inferior del cuerpo cilíndrico de la nave que era el principal elemento de la sonda. Estaba formado por un tanque de combustible cilíndrico dividido en compartimentos para alojar el combustible y el oxidante. El motor estaba colocado en un soporte en la parte baja del tanque y el módulo de descenso estaba situado en la parte superior del bus del orbitador. Los dos paneles solares se extendían en los laterales del cilindro y una antena parabólica de 2,5 metros situada en el lateral junto a los radiadores servía para las comunicaciones en alta ganancia.

La telemetría era transmitida por la nave a 928,4 MHz. Los instrumentos y los sistemas de navegación estaban situados en la parte baja de la sonda y la antena para las comunicaciones con el aterrizador estaba anclada a los paneles solares. Además la nave llevaba tres antenas direccionales de baja potencia que se situaban cerca de la antena parabólica.

Instrumentación del orbitador

Los experimentos científicos se encontraban en su mayoría en compartimentos herméticamente sellados. La sonda mars 3 portaba:

– Un radiómetro infrarrojo de 1 kg de peso que trabaja entre las 8 y 40 micras para determinar la temperatura de la superficie marciana.

– Un fotómetro para realizar análisis espectrales por absorción de las concentraciones del vapor de agua atmosférico en la línea de las 1,38 micras.

– Un fotómetro infrarrojo.

– Un fotómetro ultravioleta para detectar el argón, oxígeno e hidrógeno atómico.

– Un sensor Lyman-alfa para detectar hidrógeno en la atmósfera superior.

– Un fotómetro de rango visible que estudiaba seis franjas estrechas entre las 0,35 y 0,70 micras.

– Un radiotelescopio y un radiómetro para determinar la reflectividad de la superficie y la atmósfera en el visible (0,3 a 0,6 micras) y la radio-reflectividad de la superficie en el rango de los 3,4 cm, así como la permeabilidad dieléctrica para determinar la temperatura de la superficie a 50 centímetros de profundidad.

– Un espectrómetro infrarrojo para medir la banda de absorción del dióxido de carbono en la banda de las 2,06 micras, para tener una estimación de la abundancia.

Además la sonda llevaba una cámara con una longitud focal de 350 milímetros para el ángulo estrecho y de 52 milímetros para el ángulo ancho, ambas en el mismo eje y con varios filtros de luz en rojo, verde, azul y ultravioleta. El sistema de imágenes devolvía fotografías escaneadas de 1000 x 1000 píxeles con una resolución entre los 10 y los 100 metros, obtenidas en un laboratorio de imagen que llevaba la sonda.

Se llevaron a cabo experimentos de radio-ocultación cuando las transmisiones de radio atravesaban la atmósfera, obteniendo nueva información sobre su estructura al observar la refracción de la señal. Durante el vuelo hasta Marte se realizaron medidas de los rayos cósmicos galácticos y de la radiación solar. Ocho sensores independientes de plasma electrostático estaban a bordo para determinar la velocidad, temperatura y composición del viento solar en el rango entre los 30 y los 10.000 eV. Un magnetómetro de tres ejes que servía para medir los campos magnéticos interplanetarios y marciano, estaba colocado en un brazo extensible situado en un panel solar.

Este orbitador llevaba además un experimento francés que no llevaba la sonda Marsnik 2. Se llamaba Spectrum-1 y servía para medir la radiación solar a longitudes de onda métricas, en conjunción con receptores en la Tierra para estudiar las causas de las erupciones solares. La antena del Spectrum-1 estaba montada en uno de los paneles solares.

La misión

La sonda mars 3 fue lanzada hacia Marte impulsada por la última etapa del cohete lanzador llamada Tyazheliy Sputnik (71-049C). Se realizó una maniobra de corrección de la trayectoria el día 8 de junio. El módulo orbital soltó el módulo de descenso (71-049F) unas 4 horas y 35 minutos antes de llegar a Marte el día 2 de diciembre de 1971 a las 09:14 GMT (MSD 34809, 11 Libra 192 Dariano).

El módulo de descenso entró en la atmósfera marciana a una velocidad de 5,7 kilómetros por segundo. Usando el frenado aerodinámico, los paracaídas y los retrocohetes, la sonda de descenso logró un aterrizaje suave a 45ºS y 158ºO y comenzó sus operaciones. Sin embargo, tras 20 segundos de trabajo los instrumentos se pararon por razones desconocidas, quizás como resultado de la masiva tormenta de polvo que estaba teniendo lugar en el momento del aterrizaje.

Mientras tanto el orbitador había sufrido una pérdida parcial de combustible y no tuvo el suficiente como para colocarse en la órbita planeada de 25 horas. El motor realizó un encendido que quedó truncado y colocó a la mars 3 en una órbita de 12 días y 19 horas de duración, con una inclinación de 48.9º.

Los orbitadores Marsnik 2 y mars 3 enviaron grandes cantidades de datos a nuestro planeta entre diciembre de 1971 y marzo de 1972, aunque las transmisiones continuaron hasta el mes de agosto. Se anunció que ambas sondas finalizaron sus operaciones el 22 de agosto de 1972, tras completar la sonda Marsnik 2 un total de 362 órbitas a Marte y un total de 20 órbitas la sonda mars 3. En total realizaron 60 fotografías.

Las imágenes obtenidas junto con los datos revelaron montañas de 22 kilómetros de altura, la presencia de oxígeno e hidrógeno atómico en la atmósfera superior, temperaturas en la superficie entre los -110°C y los +13 °C, presiones superficiales de entre 5,5 y 6 milibares, concentraciones de vapor de agua 5000 veces inferiores a las de la Tierra. También se detectó que la ionosfera marciana comenzaba entre los 80 y 110 kilómetros de altura y que se hallaban presentes granos de las tormentas de polvo hasta los 7 kilómetros de altura. Los datos permitieron la realización de mapas de relieve de la superficie, así como valiosa información sobre la gravedad y campos magnéticos de Marte.

Módulo de descenso

Modelo de la sonda de descenso.

Modelo de la sonda de descenso en el NPO Lavochkin Museum.

El módulo de descenso de la Mars 3 estaba situado en la parte del orbitador contraria al sistema de propulsión. Tenía forma de esfera de 1,2 metros de diámetro y un escudo de frenado de 2,9 metros de diámetro con forma cónica. El sistema de descenso lo formaban un conjunto de paracaídas y los retrocohetes. Cargado de combustible este módulo tenía un peso total de 1.210 kg, de los que la cápsula esférica tenía 358 kilogramos.

Un sistema de control automático consistente en pequeños motores de gas y contenedores presurizados de nitrógeno servían para controlar la orientación. Cuatro pequeños cohetes estaban colocados alrededor del cono para controlar el cabeceo y el balanceo durante el descenso. El paracaídas principal y el auxiliar, el motor para el aterrizaje y el altímetro radar estaban colocados en la parte superior del módulo. Se colocaron bloques de espuma aislante como protección para absorber el choque contra el suelo. La cápsula de aterrizaje tenía cuatro pétalos triangulares que se abrían tras el aterrizaje, para equilibrar la nave y dejar al descubierto los instrumentos.

Instrumentación del lander

El aterrizador llevaba como instrumentación científica:

– Dos cámaras de televisión que permitían obtener unas vistas de 360º de la superficie.

– Un espectrómetro de masas para estudiar la composición atmosférica.

– Sensores de temperatura, presión, composición y velocidad del viento

– Dispositivos para medir las propiedades mecánicas y químicas del suelo.

– Una pala mecánica para buscar compuestos orgánicos y signos de vida.

Cuatro antenas colocadas en la parte superior proporcionaban las comunicaciones con el orbitador a través de los sistemas de radio. La nave portaba baterías eléctricas que fueron cargadas por el orbitador justo antes de la separación. El control de la temperatura era mantenido usando aislantes térmicos y radiadores. La cápsula de aterrizaje fue esterilizada antes del lanzamiento para evitar la contaminación del ambiente marciano.

El rover

El aterrizador mars 3 portaba un pequeño robot con capacidad de moverse llamado PROP-M. El robot tenía una masa de 4,5 kilogramos y estaba unido al aterrizador por un cable para mantener las comunicaciones. El rover estaba diseñado para ‘andar’ usando un par de esquís que le permitían desplazarse hasta unos 15 metros, la longitud del cable. El rover portaba un penetrómetro dinámico y un medidor de radiación. El robot tenía forma de caja con una pequeña protuberancia en el centro. A cada lado de la caja se encontraban los esquíes, que elevaban ligeramente el robot sobre la superficie. Delante de la caja se encontraba una barra de detección de obstáculos. El rover debía desplegarse tras el aterrizaje, siendo portado por un brazo robótico que lo colocaría delante de las cámaras de televisión. Tras moverse un poco, debía realizar un análisis del suelo cada 1,5 metros. Las huellas dejadas en la superficie además servirían para conocer las características del terreno.

Desarrollo de la misión

El módulo de descenso se separó del orbitador el 2 de diciembre de 1971 a las 09:14 GMT. Quince minutos más tarde el motor de descenso fue encendido para colocar hacia delante el escudo de aerofrenado. A las 13:47 GMT el módulo entró en la atmósfera marciana a 5,7 km/s y con un ángulo menor de 10º. El paracaídas de frenado se desplegó correctamente y fue seguido por el paracaídas principal que frenó la nave hasta lograr una velocidad menor que la del sonido. Entonces el escudo térmico fue expulsado y se puso en marcha el radar de altimetría. A una altura de entre 20 y 30 metros y con una velocidad de entre 60 y 110 m/s se desconectó el paracaídas principal y se encendieron unos pequeños cohetes laterales que lo alejaron de la zona. Simultáneamente se encendieron los retrocohetes para frenar al máximo. Todo el proceso duró unos 3 minutos.

Mars 3 tocó la superficie a unos 20,7 m/s aproximadamente a 45ºS y 158ºO, en el cráter Ptolomeo (o Ptolemaeus), a las 13:50:35 GMT. Los absorbedores del choque dentro de la cápsula fueron diseñados para evitar el daño a los instrumentos. Los cuatro pétalos de la cubierta se abrieron y la sonda comenzó a transmitir datos hacia el orbitador Mars 3 a las 13:52:05 GMT, unos 90 segundos tras el aterrizaje.

Unos 20 segundos después, a las 13:52:25, la transmisión cesó por completo por causas desconocidas y no se recibieron más señales desde la superficie marciana. Se desconoce si los fallos estaban en el aterrizador o en el sistema repetidor del orbitador. En ese escaso tiempo se pudo lograr una panorámica parcial de una imagen que no mostraba detalles y con una iluminación muy baja de unos 50 lux. La causa del fallo podría estar relacionada con la poderosa tormenta de arena que tenía lugar en el momento del aterrizaje que podría haber inducido una descarga eléctrica, dañando el sistema de comunicaciones y lo que también explicaría la poca iluminación de la imagen.

Nave M-71P. 1- motor de frenado TKDU; 2- antenas del magnetómetro; 3- módulo de instrumentos; 4- sistema de orientación; 5- antena del experimento francés STEREO; 6- antena de alta ganancia; 7- vehículo de aterrizaje; 8- radiadores; 9- panel solar; 10- toberas de los motores de actitud; 11- toberas de los motores de estabilización; 12- tanques del sistema de propulsión; 13- sistemas electro-ópticos del sistema de navegación; 14- antena de baja ganancia; 15- mecanismo electro-óptico de navegación. (NPO Lávochkin).

Los restos se localizaron en 2012, información en:

https://danielmarin.naukas.com/2013/04/11/encontrada-la-sonda-sovietica-mars-3/

Objeto humano en Marte

Mars 2

Organización:  Unión Soviética

Tipo de misión: Aterrizaje

Satélite de: Marte

Lanzamiento: 19 de mayo de 1971

NSSDC ID: 1971-045A (Marsnik 2 Orbiter, 05234)

Masa: 2265 kg Orbitador // 358 kg Aterrizador

La sonda Mars 2 (también llamada Marsnik 2 o Marte 2) (en ruso: Марс-2) fue una sonda espacial lanzada por la Unión Soviética en 1971 hacia el planeta Marte. Los principales objetivos del orbitador Marsnik 2 eran los mismos que los de la Mars 3. Era idéntica a la Mars 3, cada una con un módulo orbital y un módulo de descenso acoplado.

El principal objetivo científico del módulo de descenso Marsnik 2 era realizar un aterrizaje suave en Marte. La secuencia de descenso del aterrizador falló y la nave impactó contra la superficie.

Las naves

Entre los dos módulos sumaban una masa total de 4.650 kg en el momento del lanzamiento, incluyendo el combustible. La altura de la nave era de 4,1 m y llegaba hasta los 5,9 m de envergadura con los dos paneles solares desplegados, mientras que el diámetro de la base era de 2 m. De la masa total, 3440 kg pertenecían al orbitador cargado de combustible y 1210 kg eran del módulo de descenso también con el combustible cargado.

El sistema de propulsión estaba situado en la parte inferior del cuerpo cilíndrico de la nave que era el principal elemento de la sonda. Estaba formado por un tanque de combustible cilíndrico dividido en compartimentos para alojar el combustible y el oxidante. El motor estaba colocado en un soporte en la parte baja del tanque y el módulo de descenso estaba situado en la parte superior del bus del orbitador. Los dos paneles solares se extendían en los laterales del cilindro y una antena parabólica de 2,5 m situada en el lateral junto a los radiadores servía para las comunicaciones en alta ganancia.

La telemetría era transmitida por la nave a 928,4 MHz. Los instrumentos y los sistemas de navegación estaban situados en la parte baja de la sonda y la antena para las comunicaciones con el aterrizador estaba anclada a los paneles solares. Además la nave llevaba tres antenas direccionales de baja potencia que se situaban cerca de la antena parabólica.

Desarrollo de la misión

La sonda “Marte 2” (o Marsnik 2) fue lanzada hacia Marte impulsada por la última etapa del cohete lanzador llamada Tyazheliy Sputnik (71-045C). Se realizaron dos maniobras de corrección de la trayectoria los días 17 de junio y 20 de noviembre. El módulo orbital soltó el módulo de descenso unas 4.30 h antes de llegar a Marte el 27 de noviembre de 1971.

La nave entró en la atmósfera marciana a una velocidad de 6 km/s y en un ángulo más acentuado de lo previsto. La secuencia de descenso quedó alterada, provocando un fallo en el sistema de descenso que hizo que los paracaídas no se desplegaran, por lo que el aterrizador se estrelló contra el suelo marciano a 4º Norte y 47º Oeste, en la zona oeste de Hellas Planitia. Aunque de forma accidentada, el módulo de aterrizaje Marsnik 2 fue el primer objeto fabricado por el ser humano en alcanzar la superficie marciana.

A hombros de gigantes. Ciencia y tecnología: https://www.facebook.com/ahombrosdegiga/

La exploración espacial de Marte comenzó en el contexto de la carrera espacial entre Estados Unidos y la Unión Soviética a la que dio lugar la Guerra Fría entre estos dos países

El Programa Mars (del ruso Марс, también llamado a veces Marte o Marsnik) fue una serie de sondas enviadas por la Unión Soviética a Marte a partir de 1960, algunas lanzadas inicialmente bajo los nombres genéricos Kosmos, Korabl o Sputnik y renombradas posteriormente en función de su éxito o fracaso.

La Mars 1 lanzada el 1 de noviembre de 1962, sería una sonda automática interplanetaria, la primera del programa soviético de sondas a Marte.

Volaría a una distancia de 11.000 km del planeta y tomaría fotos de la superficie y mandaría información sobre la radiación cósmica, impactos de micrometeoritos, sobre el campo magnético de Marte, radiación en el ambiente, estructura de la atmósfera, y posibles componentes orgánicos presentes.

Se mantuvieron 61 transmisiones de radio con intervalos cada 2 días. El 21 de marzo de 1963 cuando la nave se encontraba a 106.760.000 km de la Tierra cesó la comunicación, debido a fallos de la antena de transmisión.

En los años 1964-1965, la Unión Soviética lanzó a Marte las sondas Zond 2 y Zond 3. Posteriormente, en 1988, lanzaría con participación europea las sondas Fobos 1 y 2, la última aproximación de la URSS a Marte hasta su disolución en 1991.

Años después de la conclusión del programa Mars en 1973, la Rusia post-soviética lanza la Mars 96 (a veces llamada Mars 8), el 16 de noviembre de 1996, destruida en el despegue.

El principal objetivo del orbitador Mars 2 era la obtención de imágenes de la superficie marciana y de las nubes, determinar la temperatura, estudiar la topografía, composición y propiedades físicas de la superficie, así como medir las propiedades de la atmósfera, medir el viento solar y los campos magnéticos marciano e interplanetario. También actuaría como repetidor hacia la Tierra de las señales enviadas por el módulo aterrizador.

El principal objetivo científico del módulo de descenso de la Mars 2 era realizar un aterrizaje suave en Marte, devolver fotografías de la superficie y enviar datos de las condiciones meteorológicas, así como de la composición atmosférica y de las propiedades mecánicas y químicas del suelo

Muy poco después, el 2 de diciembre de 1971, la sonda soviética Mars 3, lanzada el 28 de mayo de 1971, se convertía en el primer artefacto humano en alcanzar Marte de forma satisfactoria, al descender de forma controlada sobre el planeta, y el primero capaz de enviar datos desde su superficie, incluida la primera fotografía tomada desde el planeta rojo.

Ranas

Ranas

Dos ranas toro fueron lanzadas en una misión de ida en el satélite orbital Frog Otolith, el 9 de noviembre de 1970, para tratar de entender el proceso motriz degenerativo causado por la ingravidez, (la palabra otolitos se refiere a un mecanismo del oído interno para el control de equilibrio). Los investigadores fueron capaces de recoger los datos neurofisiológicos que querían, pero la nave no fue recuperada.

https://www.google.es/search?source=hp&ei=zu1AW_qtK8zikgXp3ZKIDQ&q=sat%C3%A9lite+orbital+Frog+Otolith&oq=sat%C3%A9lite+orbital+Frog+Otolith&gs_l=psy-ab.3..33i22i29i30k1.1755.1755.0.2387.2.1.0.0.0.0.120.120.0j1.1.0….0…1c.1.64.psy-ab..1.1.120.0…0.shVKaNooGCI

De la web anterior, más información en ella.

Orbiting Frog Otolith

Orbiting Frog Otolith / OFO 1

La nave espacial Orbiting Frog Otolith (OFO)

Tipo de misión: Biociencia

Operador: NASA

ID COSPAR: 1970-094A

SATCAT no.: 04690

Duración de la misión: 6 días

Misión: OFO-A

Fecha: 9-15 de noviembre de 1970 (no recuperado)

Objetivos de investigación de ciencias de la vida: Estudiar el efecto de la microgravedad en el órgano vestibular

Investigaciones de Ciencias de la Vida: Neurociencia (OFO-1.1, 1.2, 1.3)

Organismos estudiados: Rana catesbeiana (rana toro)

Hardware de vuelo: Paquete de experimento de rana Otolith (FOEP); Sistema de soporte de vida FOEP (LSS)

Cohete: Scout B S174C

Sitio de lanzamiento: Wallops LA-3A

Configuración LV:Scout B S178C

Propiedades de naves espaciales

Fabricante: Centro de investigación de Ames

Lanzamiento de masa: 132.9 kilogramos (293 lb)

Dimensiones: 1.68 × 0.76 m (5.5 × 2.5 pies)

Una rana toro (Rana catesbeiana), la especie que viajó en el vuelo OFO-A

Parámetros orbitales

Sistema de referencia: Geocéntrico

Régimen: Tierra baja

Excentricidad: 0.02009

Perigeo: 300 kilómetros (190 millas)

Apogeo: 574 kilómetros (357 mi)

Inclinación: 37.3981º

Período: 93.3 minutos

RAAN: 223.1857º

Argumento del perigeo: 136.8142º

Lanzamiento de la cápsula Orbiting Frog Otolith (OFO)

Un cohete Scout B, como este, lanzó el OFO.

El Orbiting Frog Otolith (OFO) fue un programa espacial de la NASA que envió dos ranas toro a la órbita el 9 de noviembre de 1970 para el estudio de la ingravidez. El nombre, derivado a través del uso común, era una descripción funcional del experimento biológico llevado a cabo por el satélite. Otolith se refirió al mecanismo de equilibrio del oído interno de la rana.

El Programa Orbiting Frog Otolith fue parte del programa de investigación de la Oficina de Investigación Avanzada y Tecnología (OART) de la NASA. Uno de los objetivos de OART era estudiar la función del sistema vestibular en el espacio y en la Tierra. El experimento fue diseñado para estudiar la adaptabilidad de los otolitos a la ingravidez sostenida, para proporcionar información para el vuelo espacial tripulado. El otolito es una estructura en el oído interno que está asociada con el control del equilibrio: aceleración con respecto a la gravedad como su entrada sensorial primaria.

El experimento Frog Otolith (FOE) fue desarrollado por Torquato Gualtierotti de la Universidad de Milán, Italia, cuando fue asignado al Centro de Investigación Ames como investigador asociado residente patrocinado por la Academia Nacional de Ciencias.[citación necesitada] Originalmente planeado en 1966 para ser incluido en una misión temprana de Apolo, el experimento se aplazó cuando esa misión se canceló. A fines de 1967, se autorizó la órbita de la FOE cuando se podía diseñar una nave espacial de apoyo. El proyecto, que forma parte del programa de Sistemas de Factor Humano de la NASA, fue oficialmente designado como “OFO” en 1968. Luego de una serie de retrasos, OFO fue lanzado a órbita el 9 de noviembre de 1970.

Después de la exitosa misión OFO-A en 1970, el interés en la investigación continuó. Un proyecto llamado Investigación de función vestibular se inició en 1975 para realizar un experimento vestibular en una nave espacial en órbita terrestre. Este proyecto de vuelo finalmente se suspendió, pero se realizaron varios estudios en el terreno. La investigación ha dado lugar a varias ramificaciones muy útiles, incluida la instalación de investigación vestibular en tierra ubicada en ARC.[citación necesitada]

OFO no debe confundirse con siglas similares que describen la serie de naves espaciales del Observatorio de órbitas, como el Observatorio Geofísico Orbital (OGO), el Observatorio Solar en órbita (OSO) y el Observatorio Astronómico Orbital (OAO).

La nave espacial OFO

Diagrama del vehículo de lanzamiento Scout B

El experimento OFO fue diseñado originalmente para volar dentro del Programa de Aplicaciones Apollo, que se estableció para hacer un uso óptimo del hardware utilizado en las misiones lunares Apolo. Sin embargo, debido a que los bajos niveles de aceleración necesarios para el experimento no podían mantenerse fácilmente en una nave espacial Apollo tripulada, un satélite no tripulado se eligió más tarde como un vehículo más adecuado. El diseño del satélite eliminó las exposiciones a niveles de aceleración superiores a 10-3 g (10 mm/s²). Esto significaba que los especímenes experimentales podrían experimentar un estado casi sin peso.

La nave espacial tenía un diámetro de aproximadamente 30 pulgadas (760 mm) y una longitud de 47 pulgadas (1.190 mm). [cita requerida] La sección inferior octogonal de la nave espacial albergaba el aparato electrónico. La sección superior, que contenía el paquete del experimento, tenía la forma de un cono truncado. Un escudo de calor que cubre esta sección superior protegió el experimento durante el reingreso a la atmósfera de la Tierra. Un ensamblaje de giro del yo-yo estaba ubicado alrededor de la circunferencia de la nave espacial. Cuatro barreras, dobladas contra el costado de la nave espacial, estaban ubicadas radialmente alrededor del satélite. Después de que la nave espacial se separó del vehículo de lanzamiento, el subsistema yo-yo despin ralentizó la rotación de la nave espacial. Los cuatro brazos fueron liberados para extenderse desde el costado de la nave espacial. La extensión de los brazos aumentó el momento de inercia de la nave espacial, permitiendo que el nivel de aceleración permanezca por debajo de 10-3 g.[citación necesitada]

Orbiting Frog Otolith-A

Dos ranas toro americanas (Rana catesbeiana) se usaron como sujetos experimentales en el experimento de vuelo. La rana toro fue elegida para el estudio porque su laberinto del oído interno es muy similar al de los humanos. Dado que es un anfibio, la cirugía de verificación previa podría realizarse sobre el agua, pero podría mantenerse en agua durante el vuelo. El medio acuoso sirvió para amortiguar la vibración y la aceleración del lanzamiento, y para facilitar el intercambio de gases con los organismos.

Ambas ranas de vuelo tenían electrodos de electrocardiograma (ECG) implantados en sus cavidades torácicas y microelectrodos implantados en sus nervios vestibulares. Las ranas fueron demotorizadas cortando los nervios de sus extremidades para evitar que se desalojen sus electrodos implantados y para reducir sus tasas metabólicas.[1] Con esta actividad metabólica disminuida, las ranas podrían sobrevivir con buena salud sin ser alimentadas durante un mes. La inmersión en agua permitió que las ranas respiraran a través de su piel. El medio de agua también ayudó a alejar el dióxido de carbono y el calor de los animales.

Hardware

La unidad de hardware de vuelo, el FOEP, era un recipiente hermético a presión que contenía una centrífuga llena de agua que albergaba a las dos ranas. La centrífuga era una estructura cilíndrica que rotaba las cabezas de las ranas a intervalos programados.[citación necesitada] El FOEP también contuvo un sistema de soporte de vida que podría mantener un ambiente regulado para las ranas. Este sistema consistía en dos circuitos cerrados, uno que contenía líquido y el otro contenía gas. La interfaz entre los dos bucles era una goma de silicona selectivamente permeable que actuaba como un pulmón artificial. El oxígeno pasaba a través de la membrana del lado del gas al lado líquido, y el dióxido de carbono del lado líquido al lado del gas. Las ranas estaban sumergidas en el circuito de líquido. Una bomba hizo circular oxígeno a través del bucle que contenía gas. El dióxido de carbono que entraba en el circuito de gas se eliminó mediante un absorbente y el oxígeno purificado volvió a la bomba para su recirculación. Un evaporador de agua y un calentador eléctrico mantuvieron la temperatura del agua a aproximadamente 60 ° F (15 ° C). Un sistema amplificador en el FOEP aumentó la salida de voltaje de los microelectrodos implantados en los animales al nivel requerido por el aparato de telemetría.

Operaciones

Un dibujo de cómo una rana toro equipada con electrodos se iba a sentar dentro de la centrífuga del paquete de experimentos de rana otolito.

La preparación quirúrgica de las ranas de vuelo se completó unas 12 horas antes del lanzamiento, y los animales se sellaron dentro del FOEP. También se preparó un FOEP de respaldo con muestras similares. El vuelo FOEP se instaló en el satélite unas tres horas antes del lanzamiento.

La centrífuga se activó lo antes posible una vez que el satélite estaba en órbita y se estabilizó a 10-3 g (10 mm/s²). La centrífuga aplicó estímulos de gravedad en ciclos. Cada ciclo duró aproximadamente 8 minutos, y consistió en lo siguiente: un período de 1 minuto sin aceleración, un período de 8 segundos cuando comenzó lentamente la rotación, 14 segundos de constante 0,6 g (6 m/s²), un período de 8 segundos cuando la rotación se detuvo lentamente, y un período de 6 minutos cuando se pudieron medir los efectos de la rotación.[cita requerida] Los ciclos se realizaron cada 30 minutos durante las 3 horas iniciales en órbita, y con menor frecuencia durante el resto del vuelo.

El experimento OFO continuó hasta el séptimo día en órbita, momento en el que falló la batería incorporada. La recuperación de la nave espacial OFO y el hardware FOEP no eran necesarios.

Resultados

El experimento fue exitoso. Los índices de electrocardiografía (ECG) mostraron que las ranas de vuelo gozan de buena salud durante todo el vuelo. Las grabaciones vestibulares se realizaron como se esperaba. Dos fallas de funcionamiento del equipo ocurrieron durante el vuelo: la presión en el recipiente aumentó a 11 libras por pulgada cuadrada (76 kPa), y la temperatura disminuyó a 55 ° F (13 ° C) durante nueve horas. Sin embargo, los experimentos de control realizados sobre el terreno mostraron que estas disfunciones tuvieron poco efecto sobre el resultado del experimento de vuelo.

Varios cambios de respuesta vestibular se observaron durante el período inicial en ingravidez.[cita requerida] Todos los cambios observados volvieron a la normalidad durante las últimas 10 a 20 horas del vuelo, lo que sugiere una aclimatación.[citación necesitada]

Paquete de experimento de rana Otolith (FOEP)

Orbiting Frog Otolith (OFO) con barreras. Los auges aumentaron el momento de inercia.

Paquete de experimento de rana Otolith

El paquete de experimentos de rana Otolith (FOEP) contiene todos los aparatos necesarios para asegurar la supervivencia de dos ranas. Las muestras se alojan en una centrífuga autocontenida llena de agua que suministra la aceleración de prueba durante la órbita. Las ranas están desmotivadas para evitar el desplazamiento de los electrodos implantados y para reducir su tasa metabólica.

Sistema de soporte vital (LSS): el LSS mantiene un entorno regulado dentro del FOEP para asegurar la supervivencia y el funcionamiento normal de dos ranas demotorizadas. El mamparo inferior de la estructura del conjunto interno proporciona espacio de montaje para todos los equipos de soporte de vida.

Las dimensiones del paquete eran de 18 pulgadas (457 mm) de diámetro × 18 de largo, pesaba 91 lb (41 kg) cuando se cargaban. La adquisición de datos consistió en ECG, temperatura corporal y actividad vestibular. También había una unidad de prueba FOEP basada en tierra que el FOEP podría conectarse a prueba de vuelo para la ventilación y la verificación de las condiciones ambientales antes de la carga en la nave espacial.

Recipiente

La carcasa exterior del FOEP es un cartucho hermético a presión de 18 1/16 pulgadas (458.8 mm) de diámetro y 18½ pulgadas (470 mm) de largo. El cierre inferior y la tapa superior extraíble están ambos ligeramente abovedados para evitar la implosión si se producen inversiones de presión. La estructura del conjunto interno está sujeta a un anillo de soporte aproximadamente a 6 pulgadas del fondo del recipiente y consiste en mamparos superiores e inferiores unidos por un cilindro. Los recortes en el cilindro permiten el acceso a la centrífuga, que alberga las ranas. Cerca de la parte superior del recipiente hay dos receptáculos de alimentación eléctrica para la fuente de alimentación y la línea de datos.

Centrífuga

La centrífuga es un cilindro hueco de 6 pulgadas de diámetro y 13.5 pulgadas de largo con ambas tapas en su lugar. El cilindro está montado perpendicular al bote y apoyado por cojinetes de bolas alojados en los mamparos superior e inferior. El eje de rotación de la centrífuga está formado por ejes ubicados centralmente en el plano vertical en ángulo recto con respecto al cilindro, sostenidos por los cojinetes de bolas. Las tapas finas con cúpulas poco profundas están atornilladas a cada extremo de la centrífuga con juntas de goma intermedias para evitar fugas. En el centro de cada tapa hay un accesorio que permite que las muestras de ranas estén completamente equipadas y montadas directamente en las tapas de los extremos antes de insertarlas en la centrífuga e sumergirlas. El agua sirve de amortiguador para las altas aceleraciones y vibraciones del lanzamiento y como medio para el intercambio de gases a través de la piel de las ranas. La centrífuga se bloquea en su posición y no se libera hasta que la órbita de la nave espacial esté completamente estabilizada. El motor que impulsa la centrífuga está montado en el mamparo superior. Los amplificadores de señal y un acelerómetro están montados en la centrífuga.

Electrodo de flotabilidad neutra

El microelectrodo consiste en una sonda de alambre de tungsteno de 50 μm de diámetro, afilada eléctricamente hasta un punto de menos de 1 μm de diámetro y completamente aislada de la punta. Una burbuja de aire atrapada en el tubo de polietileno que contiene la sonda agrega flotabilidad y hace que el electrodo tenga la misma densidad que el nervio en el que se implanta, lo que permite que los dos se muevan juntos. Una sección de parafina se usa para conectar el electrodo a un mango que se usa solo durante el proceso de implantación y luego se retira. Los impulsos nerviosos detectados por los microelectrodos se alimentan a un preamplificador conectado directamente a la mandíbula de la rana, y pasan a un amplificador de datos posteriores para la telemetría de la nave espacial.

Sistema de soporte de vida (LSS)

Sistema de soporte vital (LSS)

El sistema de soporte de vida (LSS) del paquete de experimento de rana Otolith (FOEP) mantiene un entorno regulado dentro del FOEP para asegurar la supervivencia y el funcionamiento normal de las muestras experimentales. El LSS está diseñado para cumplir con los requisitos fisiológicos de dos ranas demotorizadas que pesan 350 g (12 oz) cada una. Las ranas se desmotivan cortando los nervios de las extremidades, lo que reduce su tasa metabólica. En esta condición, las ranas no requieren respiración artificial y pueden mantenerse sanas sin alimentarse, durante un mes. Después de instalarse en la centrífuga, las ranas se sumergen completamente en agua, que sirve como medio para el intercambio de oxígeno y dióxido de carbono y el calor a través de la piel de la rana.

El LSS consiste principalmente en dos circuitos cerrados: uno que contiene líquido y el otro que contiene gas. El mamparo inferior de la estructura del conjunto interior proporciona espacio de montaje para todos los equipos LSS. El sistema de suministro de oxígeno opera a través de estos bucles e incluye una botella de oxígeno con capacidad de 4,5 cm³, un regulador y reductor de presión, un pulmón artificial, un absorbedor de CO 2 y suministro de agua. El control limitado sobre la temperatura del ambiente de las ranas está disponible por medio de un evaporador / calentador de agua.

Pulmón artificial

La interfaz entre los bucles se produce en una membrana selectivamente permeable de caucho de silicona que separa el líquido y el gas. Esta membrana, llamada pulmón, pasa oxígeno desde el circuito de gas al ciclo de líquido y el CO2 desde el circuito de líquido al circuito de gas.

Lazo líquido

Las ranas, alojadas en la centrífuga, están en el circuito de líquido. Pasando del pulmón a las ranas, el circuito contiene agua y oxígeno disuelto; pasando de las ranas al pulmón, contiene agua y CO 2 libre. Una doble capa de espuma de poliuretano que recubre el interior de la centrífuga evita que la materia residual de las ranas ensucie el sistema de circulación del agua. El agua circula por el circuito de líquido con una pequeña bomba y debe pasar a través del filtro antes de salir de la centrífuga.

Bucle de gas

El circuito de gas consiste en un circuito en el mamparo inferior a través del cual circula una bomba pequeña. La bomba suministra oxígeno puro al pulmón, donde parte del mismo pasa al circuito de líquido, mientras que el resto se mezcla con el CO 2 proveniente del circuito de líquido. Desde el pulmón, la mezcla de oxígeno-CO 2 se pasa a través de un lecho de Baralyme que absorbe el CO 2 . El oxígeno puro es devuelto desde el Baralyme a la bomba y recirculado. El suministro de oxígeno se repone con el gas del pequeño tanque de oxígeno.

Evaporador / calentador

Aumentado por el entorno térmico de la nave espacial, el evaporador de agua y el calentador eléctrico de 8 vatios mantendrán la temperatura del agua a 60 ± 5 ° F (15.5 ± 3 ° C). El suministro de agua para el evaporador está contenido en una vejiga de caucho sostenida por un anillo en el recipiente inmediatamente arriba del domo inferior. Cuando la temperatura del agua excede los 60 ° F nominales, un comando de tierra acciona un circuito de temporización que opera una válvula. Como resultado de la presión ambiental dentro del bote, se fuerza el agua desde la vejiga a través de la válvula y hacia el evaporador. Las cargas de calor internas se transfieren a través de un intercambiador de calor al evaporador y se disipan al evaporar el agua.

Sonda regresa a la Tierra con material Lunar

Luna 16

Coordenadas: 0°40′48″S 56°18′0″E

Luna 16

Información general

Organización: Unión Soviética

Contratos principalesV: GSMZ Lavochkin

Satélite de: La Luna

Ingreso en órbita: 17 de septiembre 1970

Fecha de lanzamiento: 12 de septiembre 1970 13:25:53 UTC

Vehículo de lanzamiento: Proton 8K82K + Blok D

Sitio de lanzamiento: Cosmódromo de Baikonur

Reingreso: 24 de septiembre 1970 05:25 UTC

Vida útil: 12 días

Aplicación: Retorno de muestras lunares

Masa: 5.600 kg (12.000 libras)

NSSDC ID: 1970-072A

 

Elementos orbitales

Semieje mayor: 6,488.8 km (4,032.0 km)

Excentricidad: 0

Inclinación: 70°

Período orbital: 119 minutos

Apoastro: 111 kilómetros (69 millas)

Periastro: 111 kilómetros (69 millas)

Órbitas diarias: ~36

 

Equipamiento

Instrumentos principales

Sistema de imagen fotográfica estéreo, brazo de distancia para la toma de muestras, detector de radiación

El Luna 16 (Ye-8-5 series) fue una misión espacial no tripulada perteneciente al programa Luna de la Unión Soviética, siendo la primera sonda robótica que aterrizó en la Luna y regresó con muestras de suelo lunar a la Tierra.1​ Esta representó la primera misión lunar de retorno de muestras de la Unión Soviética, y fue la tercera misión lunar de retorno de muestras en general, después de las misiones del Apollo 11 y Apollo 12.

La nave espacial consistía en dos etapas adjuntas: una etapa de ascenso, montada en la parte superior de una etapa de descenso. La etapa de descenso era un cuerpo cilíndrico con cuatro patas de aterrizaje que sobresalían del fuselaje, depósitos de combustible, un radar de aterrizaje y un complejo motor de descenso dual.

Un motor principal de descenso se utilizó para frenar la nave hasta llegar a un punto que fue determinado por el ordenador de a bordo sobre la base de la altitud y la velocidad de corte. Después del corte se utilizó un banco de chorros de empuje más pequeños para el aterrizaje final. La etapa de descenso también actuó como plataforma de lanzamiento para la fase de ascenso.

Por su parte, la etapa de ascenso era un cilindro más pequeño con una punta redondeada. Llevaba un contenedor cilíndrico de muestras de suelo sellado herméticamente dentro de una cápsula de reentrada.

La etapa de descenso de la nave estaba equipada con una cámara de televisión, monitores de radiación y temperatura, equipos de telecomunicaciones, y un brazo extensible con un equipo de perforación para la toma de una muestra del suelo lunar.

Luna 16

Aterrizador lunar de la misión Luna 16.

La estación automática Luna 16 fue lanzada hacia la Luna desde una órbita preliminar de la Tierra y después de una corrección a medio curso el 13 de septiembre, entró el 17 de septiembre de 1970 en una trayectoria circular (situándose a 111 kilómetros de altura y con una inclinación de 70° respecto al plano de la órbita lunar).

La gravedad de la Luna fue estudiada desde esta órbita. Después de dos ajustes orbitales que se realizaron el 18 de septiembre y el 19 de septiembre, el ápside se redujo a 15,1 kilómetros, así como se alteró la inclinación de la nave en preparación para el alunizaje. A las 05:12 UT el 20 de septiembre, el motor principal de frenado fue encendido, iniciando el descenso hacia la superficie lunar. Seis minutos después, a las 05:18 UT, la nave aterrizó con suavidad en la zona de destino, a 0°41′ de latitud sur y 56°18′ de longitud este, en la zona noreste del Mar de la fertilidad a unos 100 kilómetros al este del cráter Webb. Este fue el primer alunizaje realizado de noche, ya que el sol se había puesto unas 60 horas antes. El motor principal de sustentación fue apagado a una altura de 20 m, y los jets de aterrizaje fueron apagados a 2 m de altura con una velocidad inferior a 2.4 m/s, produciéndose a continuación una caída libre vertical. La masa de la nave espacial en aterrizar fue de 1.880 kilogramos. Menos de una hora después del alunizaje, a las 06:03 UT, un taladro automático penetró la superficie lunar para recoger una muestra de suelo. Después de la perforación durante 7 minutos, el taladro se detuvo al alcanzar los 35 centímetros de profundidad y luego retiró la muestra y la levantó en un arco a la parte superior de la nave espacial, depositando el material lunar en una pequeña cápsula esférica montada en el bus principal de la nave. La columna de regolito en el tubo de perforación se transfirió a continuación al recipiente de muestra de suelo.

Finalmente, después de 26 horas y 25 minutos en la superficie lunar (a las 07:43 UT el 21 de septiembre), la etapa superior de la nave despegó de la Luna. La etapa más baja del Luna 16 permaneció en la superficie lunar y continuó la transmisión de la temperatura lunar y datos de radiación. Tres días después, el 24 de septiembre, después de una travesía de subida directa sin correcciones sobre la marcha, la cápsula, con sus 101 gramos de suelo lunar, volvió a entrar en la atmósfera terrestre a una velocidad de 11 kilómetros por segundo. La cápsula tomó tierra con un paracaídas unos 80 kilómetros al sureste de la ciudad de Jezkazgan en Kazajstán a las 05:25 UT el 24 de septiembre de 1970. El análisis del material de basalto oscuro indica una estrecha semejanza con el suelo recuperado por la misión Apolo 12.

Según el Observatorio de Bochum en Alemania, la nave espacial envió imágenes de televisión nítidas y de buena calidad. El Luna 16 fue un éxito histórico para los soviéticos en su programa de exploración del espacio profundo, siendo esta misión la primera recuperación totalmente automática de muestras de suelo de la superficie de un cuerpo extraterrestre.

Legado

Misión lunar Muestras recibidas Año
Luna 16 101 g 1970
Luna 20 55 g 1972
Luna 24 170 g 1976

Tres pequeñas muestras de suelo (0,2 gramos) del Luna 16 fueron vendidas en una subasta en Sotheby por 442.500 dólares en 1993.2​ Las muestras son el único material de retorno lunar en manos privadas durante el siglo XX.2​ Otras muestras de la luna poseídas por manos privadas son meteoritos lunares de diversa calidad y autenticidad, y otras rocas lunares extraviadas del programa Apolo, posibles cuestiones jurídicas aparte.

Una serie de 10 sellos postales se emitieron en 1970 para conmemorar el vuelo de la sonda lunar Luna 16 y representa las principales etapas del programa: aterrizaje suave en la Luna, el lanzamiento de la cápsula de retorno de muestras del suelo lunar, y el paracaídas de aterrizaje asistido en la Tierra.

Enlaces externos

Venera 7 (Aterrizaje en Venus)

Venera 7

Sobrevuelo de: Venus

Diagrama de Venera

Operador: Lavochkin

ID COSPAR: 1970-060A

SATCAT no.: 4489

Duración de la misión

Viaje: 120 días

Lander: 23 minutos

Propiedades de naves espaciales

Astronave: 4V-1 No. 630

Fabricante: Lavochkin

Lanzamiento de masa: 1,180 kilogramos (2,600 lb)

Masa de aterrizaje: 500 kilogramos (1,100 lb)

Inicio de la misión

Fecha de lanzamiento: 17 de agosto de 1970, 05:38:22 UTC

Cohete: Molniya 8K78M

Sitio de lanzamiento: Baikonur 31/6

Fin de la misión

Último contacto: 15 de diciembre de 1970, 06:00 UTC

Parámetros orbitales

Sistema de referencia: Heliocéntrico

Perihelio: 0.69 AU

Afelio: 1.01 AU

Inclinación: 2.0 °

Período: 287 días

Fecha de aterrizaje: 15 de diciembre de 1970, 05:37:10 UTC

Lugar de aterrizaje: 5 ° S 351 ° E

La sonda Venera 7 (en ruso, Венера-7) del programa espacial soviético Venera se convirtió en la primera nave espacial en enviar datos desde la superficie de otro planeta.

En 1970, la sonda hizo el primer aterrizaje controlado (pero con impacto) en la superficie del planeta Venus.

Otras sondas se habían estrellado en la Luna (1959, Lunik 2) y en Venus (1966, Venera 3) tras enviar datos durante su caída.

Entró en la atmósfera de Venus el 15 de diciembre de 1970 y aterrizó en la superficie del planeta a las 05:34:10 UTC del mismo día.

7NSSDCA/COSPAR ID: 1970-060ª

Descripción

Venera 7 fue una de las dos naves espaciales idénticas lanzadas a Venus durante la oportunidad de agosto de 1970. La otra misión (Cosmos 359) no pudo abandonar la órbita de la Tierra. Los objetivos de las misiones eran devolver datos de la atmósfera de Venus, hacer un aterrizaje en la superficie y continuar devolviendo datos después del aterrizaje. Venera 7 fue la primera nave espacial en devolver datos después de aterrizar en otro planeta.

Nave espacial y subsistemas

La nave espacial era muy similar en diseño a Venera 5 y 6, con un bus que sostenía una sonda de aterrizaje esférica. La sonda fue diseñada para resistir presiones y temperaturas más altas, así como también el impacto del aterrizaje, mediante el uso de una sola carcasa esférica sin costuras, soldaduras o agujeros. Se usó titanio en la construcción del recipiente a presión, y se recubrió con material amortiguador. El resultado fue una sonda más masiva, 490 kg. Se utilizó un paracaídas aún más pequeño (2,5 metros cuadrados) para desacelerar el descenso. El módulo de aterrizaje contenía un termómetro de resistencia y un barómetro aneroide. El bús tenía un detector de viento solar y un detector de rayos cósmicos.

Perfil de la misión

Venera 7 se lanzó el 17 de agosto de 1970 a las 05:38:22 UT en una órbita terrestre de estacionamiento y luego desde un Sputnik Tyazheliy hacia Venus. Se realizaron dos correcciones a mitad de camino, el 2 de octubre y el 17 de noviembre. La sonda de aterrizaje se dejó enfriar a -8 ° C antes de la entrada atmosférica. La sonda Venera 7 se separó del bús y entró en la atmósfera nocturna de Venus el 15 de diciembre de 1970 a las 04:58:44 UT. Después del frenado aerodinámico, se quemó la escotilla superior y se desplegó el sistema de paracaídas a una altitud de aproximadamente 60 km. La antena de la cápsula se extendió y comenzaron las señales de retorno. Seis minutos después, el paracaídas se rompió y luego se colapsó, dejando que la sonda cayera hacia la superficie durante otros 29 minutos. La sonda impactó en la superficie de Venus a las 05:34:10 UT a aproximadamente 17 metros / seg y las señales se debilitaron, alcanzaron su potencia máxima durante aproximadamente un segundo y luego cesaron aparentemente. El análisis posterior de las señales de radio registradas reveló que la sonda había sobrevivido al impacto y continuó transmitiendo una señal débil durante otros 23 minutos. Se cree que la nave espacial pudo haber rebotado al impactar y descansar en su costado, por lo que la antena no apuntaba hacia la Tierra. El sensor de presión había fallado durante el descenso, pero el sensor de temperatura mostró una lectura constante de 475 C en la superficie, y una presión de 92 bar con un viento de 2.5 metros / seg se extrapoló de otras mediciones. El punto de aterrizaje fue 5 grados S, 351 grados E.

La sonda transmitió información a la Tierra durante 53 minutos, que incluyeron 20 minutos desde la superficie. Se encontró que la temperatura en la superficie de Venus era de 475 ° C (887 ° F) ° ± 20 ° C[2][5] Usando la temperatura y los modelos de la atmósfera, se calculó una presión de 9 megapascales ± 1.5 MPa.[6] Desde el alto rápido de la nave espacial (de caer a estacionario dentro de 0.2 segundos) fue posible concluir que la nave había golpeado una superficie sólida con niveles bajos de polvo [6]

La sonda proporcionó información sobre la superficie de Venus, que no se podía ver a través de un velo de atmósfera espesa. La nave espacial definitivamente confirmó que los humanos no pueden sobrevivir en la superficie de Venus, y excluyó la posibilidad de que haya agua líquida en Venus.

Cápsula de la Venera 7, la primera en sobrevivir en la superficie de Venus. Fue diseñada para soportar 150 atmósferas y 540º C.

Apolo 12 – Encuentro en otro cuerpo celeste

Apolo 12

Archivo de: https://www.ecured.cu/Apolo_12

Datos de la misión

Misión: Apolo 12

Nave Espacial: módulo de mando: Yankee Clipper; módulo lunar: Intrepid

Lanzadera: cohete Saturno V

Número de tripulantes: tres

Rampa de lanzamiento: base militar de la NASA en Cabo Cañaveral, estado de Florida, Estados Unidos

Despegue: 14 de noviembre de 1969 a las 16:22:00 UTC

Alunizaje: 19 de noviembre de 1969 a las 06:54:35 UTC

Cantidad de muestras:34.35 kg

Amerizaje: 24 de noviembre de 1969 a las 20:58:24 UTC

Duración: 10 días 4 h 36 min 24 s

Número de órbitas lunares: 45

Tiempo en órbitas lunares: 88 h 58 min 11.52 s

Apogeo:189.8 km

Perigeo:185.0 km

Apoluna: 257.1 km

Periluna:115.9 km

Período: 88.16 min

Inclinación orbital: 32.54°

 

Foto de la tripulación

Astronautas del Apolo 12

Apolo 12 fue la sexta misión tripulada del programa Apolo de la NASA estadounidense, y la segunda que alunizó. Lanzado unos meses después del Apolo 11 (el primer aterrizaje tripulado en la Luna), el Apolo 12 alunizó en el Océano de las Tormentas el 19 de noviembre de 1969, muy cerca de la sonda estadounidense Surveyor 3, que se había posado en la Luna el 20 de abril de 1967, y los astronautas trajeron algunas piezas de esta sonda de vuelta a la Tierra para su estudio, entre ellas la cámara fotográfica.

Misión

El lanzamiento tuvo lugar desde el Complejo de Lanzamiento 39A en el Centro Espacial Kennedy en Florida. La nave espacial fue impulsada hacia el espacio mediante un cohete Saturno 5. Después de confirmar que no hubo daños por la caída de varios rayos durante el lanzamiento, la tripulación procedió a la misión como estaba previsto. La evaluación posterior al vuelo de la misión era que todos los objetivos de la misión se habían completado con éxito.

Despegaron desde Cabo Cañaveral (estado de Florida) el 14 de noviembre de 1969, a las 16:22:00 UTC.

Sitio de aterrizaje

  • 3.01239 S (3° 0’ 44.60″ S).
  • 23.42157 O (23° 25’ 17.65″ W).

El módulo lunar Apolo 12 hizo un aterrizaje de precisión en la superficie lunar el 19 de noviembre de 1969, en Oceanus Procellarum. El punto de toma de contacto fue a 3° 0’ 44.60″ de latitud sur, y 23° 25’ 17.65″ de longitud oeste, en el noroeste del borde del cráter Surveyor sólo 600 metros del punto de destino, la nave Surveyor III, que aterrizó el 20 de abril de 1967. El aterrizaje de precisión fue de gran importancia para el futuro programa de exploración porque los puntos de aterrizaje en terreno áspero de gran interés científico podrían ser marcados.

Alunizaron en el Océano de las Tormentas el 19 de noviembre a las 06:54:35 UTC.

Operaciones de superficie

El primer día, el comandante Conrad salió de la nave a las 11:44:22 UTC, y Alan Bean salió a las 12:13:50 UTC. Efectuaron numerosos experimentos científicos durante tres horas. Por un descuido de Alan Bean con la rudimentaria cámara de televisión de la época al enfocarla directamente al sol y resultar dañada, se poseen muy pocas imágenes de video de la misión Apolo 12 sobre la superficie de la Luna. Reingresaron al módulo lunar a las 15:14:18 UTC.

El segundo y último día, el comandante Conrad salió de la nave a las 03:59:00 UTC, y Alan Bean salió a las 04:06:00 UTC. A las 07:30:00 UTC Bean reingresó al módulo lunar, y a las 07:42:00 UTC reingresó el comandante Conrad.

La misión Apolo 12 fue la primera oportunidad para estudiar la Luna extensamente dentro de un radio de 0,5 kilómetros del lugar de aterrizaje. Las actividades de la Superficie Lunar se realizaron esencialmente tal como estaba previsto en los plazos asignados. Tres horas después del aterrizaje, los dos astronautas comenzaron los preparativos para la salida y la primera travesía de la superficie lunar. Durante los dos períodos de actividad extravehicular, con una duración total de 7,5 horas, los astronautas se les asignaban tareas muy específicas para completar. Entre estos se encontraban a recoger muestras lunares, para desplegar varios experimentos, y para examinar y fotografiar la superficie lunar.

Experimentos de ciencia

Además de sus estudios geológicos, la tripulación del Apolo 12 realizó varios experimentos en la superficie lunar. Los resultados de algunos de estos experimentos se comunicó por radio a la Tierra ya sea por la tripulación o devuelto a la Tierra para análisis de laboratorio.

Muestras lunares

Cuando se ve a través de un telescopio, el sitio de aterrizaje del Apolo 12 tiene menos cráteres y un color ligeramente más rojo que el sitio de alunizaje del Apolo 11. Se pensaba que estas características indican que las rocas en el lugar de alunizaje del Apolo 12 eran más jóvenes y diferentes en la composición química de las rocas en el lugar de alunizaje del Apolo 11. Apolo 12 recogió 34.35 kg de muestras, incluyendo 45 muestras de rocas lunares de tipo “suelo”, y varios tubos centrales que incluyen material de hasta 40 cm por debajo de la superficie lunar. Este material confirmó las expectativas previas a las misiones y también planteó nuevas preguntas.

Fotografías

El Apolo 12 representó la segunda oportunidad de la humanidad para observar directamente los fenómenos en la superficie lunar. Las fotografías tanto orbitales como de la superficie no solo sirvieron para documentar el segundo aterrizaje lunar y las actividades extravehiculares de los astronautas, sino también para identificar las áreas científicas y los experimentos para el estudio en futuras misiones.

Tripulación

Tripulación de reserva

  • David R. Scott.
  • Alfred M. Worden.
  • James B. Irwin.

Apolo 12

Imágenes del lugar donde aterrizó el Apolo 12, donde se ve las huellas de las pisadas de los astronautas. A la izquierda pueden verse los paquetes de instrumentos ALSEP, que fueron instalados para obtener información de la geología lunar y del entorno, y cuyos cables reflejan mucha luz.

Créditos: Apollo 12, NASA (Image scanned by Kipp Teague)

El 20 de abril de 1967, la sonda robótica de la NASA Surveyor 3 (“Topógrafo”, en inglés) alunizóen la pared interior de un pequeño cráter lunar en el Océano de las Tormentas. Más de 2½ años después, el 19 de noviembre de 1969, el módulo lunar Intrepid (“Intrépido”, en inglés), piloteado por los astronautas Pete Conrad y Alan Bean, de la Apolo 12, sobrevoló y alunizó cerca de ahíen lo que fue la segunda visita de seres humanos a la superficie lunar. El Intrépido se posó a unos 180 metros de distancia y los astronautas caminando en la luna fueron capaces de llegar fácilmente hasta el Surveyory examinar el explorador remoto que les había precedido. Se aprecia el Intrépido al fondo en esta llamativa foto de alta resolucióndel Surveyor 3. La pata extrema izquierda del Surveyor aparece enterrada mientras que su pata frontal ha hecho dos impresiones claras en el polvoriento suelo lunar– claras indicaciones de que el Surveyor se deslizó y rebotó al alunizar. Usando cortadoras de pernos, los astronautas removieron la cámara de TV del Surveyor (con forma de cilindro a la derecha del elevado mástil de paneles solares) y su cuchara muestreadora (en el brazo extendido hacia la derecha), trayéndolos de regreso a la Tierra para su estudio.

Más información en:

https://es.wikipedia.org/wiki/Apolo_12

https://danielmarin.naukas.com/2009/11/19/40-anos-del-apolo-12/

Primer hombre en la Luna

Apolo 11

Insignia de la misión

 

Datos de la misión

Misión: Apolo 11

Nombre de los módulos:

Módulo de mando: Columbia

Módulo lunar: Eagle

Número de tripulantes: 3

Masa: MC: 30 320 kg; ML: 16 448 kg

Lanzamiento: 16 de julio de 1969; 13:32:00 UTC

Alunizaje: 20 de julio de 1969; 20:17:40 UTC
Mar de la Tranquilidad: 0°40′27″N 23°28′23″E

Tiempo de actividad extravehicular: 2 h 31 min 40 s

Tiempo en la superficie de la Luna: 21 h 36 min 20 s

Cantidad de muestras: 21,55 kg

Amerizaje: 24 de julio de 1969; 16:50:35 UTC; 13°19′N 169°9′O

Duración de la misión; 195 h 18 min 35 s

Datos de las órbitas

Tiempo en órbitas lunares; 59 h 30 min 25,79 s

Armstrong, Collins y Aldrin

Apolo 11 fue una misión espacial tripulada de Estados Unidos cuyo objetivo fue lograr que un ser humano caminara en la superficie de la Luna. La misión se envió al espacio el 16 de julio de 1969, llegó a la superficie de la Luna el 20 de julio de ese mismo año y al día siguiente logró que dos astronautas (Armstrong y Aldrin) caminaran sobre la superficie lunar. El Apolo 11 fue impulsado por un cohete Saturno V desde la plataforma LC 39A y lanzado a las 13:32 UTC del complejo de cabo Kennedy, en Florida (EE. UU.). Oficialmente se conoció a la misión como AS-506. La misión está considerada como uno de los momentos más significativos de la historia de la Humanidad y la Tecnología.

La tripulación del Apolo 11 estaba compuesta por el comandante de la misión Neil A. Armstrong, de 38 años; Edwin E. Aldrin Jr., de 39 años y piloto del LEM, apodado Buzz; y Michael Collins, de 38 años y piloto del módulo de mando. La denominación de las naves, privilegio del comandante, fue Eagle para el módulo lunar y Columbia para el módulo de mando.

El comandante Neil Armstrong fue el primer ser humano que pisó la superficie del satélite terrestre el 21 de julio de 1969 a las 2:56 (hora internacional UTC) al sur del Mar de la Tranquilidad (Mare Tranquillitatis), seis horas y media después de haber alunizado. Este hito histórico se retransmitió a todo el planeta desde las instalaciones del Observatorio Parkes (Australia). Inicialmente el paseo lunar iba a ser retransmitido a partir de la señal que llegase a la estación de seguimiento de Goldstone (California, Estados Unidos), perteneciente a la Red del Espacio Profundo, pero ante la mala recepción de la señal se optó por utilizar la señal de la estación Honeysuckle Creek, cercana a Camberra (Australia).1​ Ésta retransmitió los primeros minutos del paseo lunar, tras los cuales la señal del observatorio Parkes fue utilizada de nuevo durante el resto del paseo lunar.2​ Las instalaciones del MDSCC en Robledo de Chavela (Madrid, España) también pertenecientes a la Red del Espacio Profundo, sirvieron de apoyo durante todo el viaje de ida y vuelta.34

El 24 de julio, los tres astronautas lograron un perfecto amerizaje en aguas del Océano Pacífico, poniendo fin a la misión.

Despegue del Apolo 11

El 13 de junio, tres semanas antes del lanzamiento, comienza la carga de queroseno tipo RP-1 en la primera etapa del Saturno V, un trabajo que termina seis días después. El 15 de julio, ocho horas antes de la hora prevista para el lanzamiento y para evitar pérdidas por evaporación, se procede al bombeo de oxígeno líquido (LOX) e hidrógeno líquido (LH2) en los tanques de las tres etapas del cohete. Estos últimos propelentes son almacenados a altas presiones y a bajas temperaturas, por lo que se los denomina genéricamente criogénicos.

El Saturno V despega.

El 16 de julio, los astronautas Neil Armstrong, Edwin Aldrin y Michael Collins, son trasladados hasta la nave para proceder a su posterior lanzamiento. Mientras tanto, el ordenador del Complejo 39 realiza las últimas comprobaciones y supervisa que todos los sistemas funcionan. El director de vuelo, Gene Kranz, verifica las recomendaciones del ordenador y consulta a los miembros de su equipo. Entonces comienza la secuencia de ignición.

Los cohetes Saturno V constaban de varias fases que se iban desprendiendo de la nave una vez consumían su combustible. Esto es lo que ocurrió durante el despegue del Apolo 11:

Cuando los cinco motores F-1 de la primera etapa se encienden, los sistemas de refrigeración se encargan de arrojar varias toneladas de agua sobre la estructura metálica del cohete para protegerla del calor. Con la enorme vibración se desprende la escarcha que recubre el cohete, producida por el efecto de las bajísimas temperaturas a las que se mantienen los propergoles dentro de los tanques.

Cuando el Saturno V alcanza el 95 % de su empuje total, los cuatro ganchos que retienen el cohete saltan hacia atrás; con una ligera sacudida el cohete se despega de la plataforma y comienza a elevarse, mientras los cinco últimos brazos de la plataforma se desplazan hacia un lado para no entorpecer el lanzamiento del cohete. Para entonces los motores F-1 ya consumen quince toneladas de combustible por segundo.

El astronauta Charles Duke actúa como controlador de vuelo (CAPCOM) del Apolo 11 en el Lyndon B. Johnson Space Center en Houston, Texas, EE. UU.

A las 10:32 de la mañana en cabo Cañaveral el Saturno V abandona la rampa de lanzamiento.

Durante la misión la tripulación establecerá contacto verbal con el centro de control en Houston, ya que una vez que el Saturno V despega, cabo Cañaveral traspasa el control a Houston.

Ciento sesenta segundos después, los motores de cebado de la segunda etapa se ponen en marcha ya que los cinco potentes F-1 de la primera etapa han agotado su combustible y se desprenden del cohete, iniciándose la segunda etapa que consta de cinco motores J-2, cuya tarea es que el Saturno V siga ganando altura cada vez a mayor velocidad.

También se produjo la separación de la torre de escape de emergencia situada junto con la cubierta protectora del módulo de mando, ya que el Saturno V no presentaba problemas técnicos y podía continuar con su salida del campo gravitatorio terrestre.

Nueve minutos después del lanzamiento, los cinco motores J-2 de la segunda etapa se separan del resto de la nave. Después las turbo bombas de la tercera etapa envían combustible a su único motor, el mecanismo de ignición se dispara y el cohete vuelve a acelerar. Doscientos segundos después el motor se apaga y los astronautas comienzan a notar la ausencia de gravedad. El Apolo 11 está en órbita.

De la Tierra a la Luna

El módulo lunar desacoplado del Columbia.

El módulo de mando y el módulo lunar permanecen unidos todavía a la tercera etapa denominada S-IV B. Según las normas de las misiones lunares, las naves Apolo deben permanecer 3 horas en una órbita llamada órbita de aparcamiento a 215 km de altura. La tripulación emplea este tiempo en estibar los equipos, calibrar instrumentos y seguir las lecturas de navegación para comprobar que la trayectoria que siguen es la correcta.

En el control de misión verifican la localización de la nave, dan instrucciones a los astronautas y reciben los datos de quince estaciones de rastreo repartidas por todo el planeta, que han de estar perfectamente coordinadas.

Una vez que el Apolo 11 completa la segunda órbita a la Tierra y los astronautas terminan de realizar sus tareas, Houston da la orden para ponerlo rumbo a la Luna. Después de orientarse de forma precisa, la tercera etapa pone en marcha su motor con las sesenta toneladas de combustible que aún permanecen en los tanques. El cohete acelera gradualmente hasta alcanzar los 45 000 km/h. Esta maniobra recibe el nombre de inyección trans-lunar, y por su dificultad es el segundo punto crítico de la misión.

Cuando se agota el combustible de la tercera etapa, comienza otra parte crítica de la misión. El módulo lunar permanece oculto bajo un carenado troncocónico entre la tercera etapa y el módulo de servicio. Hay que iniciar la maniobra de transposición y colocar al LEM delante del módulo de mando. El carenado que protege al LEM se fragmenta en cuatro paneles usando pequeños detonadores explosivos similares a los que se usan para separar las sucesivas etapas agotadas. El LEM se separa del S-IV B y tras una complicada maniobra que ejecuta la tripulación utilizando los propulsores de posición quedan los dos vehículos ensamblados. Esta maniobra dura alrededor de una hora. Después se desprende la tercera etapa y se prosigue con la misión.

El planeta Tierra visto desde el Apolo 11

El Apolo 11 realizará durante tres días la supervisión de los aparatos de navegación, correcciones de medio rumbo y comprobaciones de los diversos instrumentos. Durante dos días, el Apolo 11 va perdiendo velocidad regularmente debido a la atracción de la Tierra, y cuando llega a la gravisfera lunar, situada a las cinco sextas partes del recorrido entre la Tierra y la Luna, el vehículo, que avanza a una velocidad de 3700 km/h, comienza de nuevo a acelerar hasta los 9000 km/h, atraído por la gravedad lunar. El Apolo 11 se encamina a esta velocidad hacia la Luna en una trayectoria denominada trayectoria de regreso libre, la cual permite a la nave pasar orbitando por detrás de la Luna y volver a la Tierra sin que sea necesario efectuar un encendido de motor.

El cuarto punto crítico de la misión es la ejecución de una maniobra conocida como inserción en órbita lunar o LOI. La trayectoria de regreso libre es útil cuando hay problemas al efectuar la LOI. Esta maniobra se realiza en la cara oculta de la Luna cuando no hay comunicación posible con Houston y consiste en un encendido de motor para efectuar una frenada y colocarse así en órbita lunar.

Desde tres inyectores distintos, comienzan a salir tres productos químicos distintos para mezclarse en la cámara de combustión e iniciar el frenado denominado frenado hipergólico. Estos tres productos, (hidracina, dimetilhidrazina y tetróxido de nitrógeno), se llaman hipergólicos por su tendencia a detonar siempre que se mezclan. A diferencia de los combustibles sólidos, los criogénicos o el keroseno, que necesitan una chispa o fuente de calor para iniciar su ignición, el combustible hipergólico lo hace espontáneamente al mezclarse los productos entre sí, sin necesidad de energía de activación. Este combustible es empleado por el Apolo 11 para todas sus maniobras una vez ha desechado la tercera etapa que utiliza combustible criogénico (LOX y LH2).

El motor funciona durante cuatro minutos y medio, y luego se apaga automáticamente. El comandante Neil Armstrong verifica en el panel de control del módulo de mando la lectura de Delta-v que se refiere al cambio de velocidad y observa que el frenado hipergólico ha situado al Apolo 11 a una velocidad correcta para abandonar la trayectoria de regreso libre y situarse en órbita lunar. También comprueba las lecturas del pericintio; esto es, el máximo acercamiento a la superficie lunar, y el apocintio, que es el máximo alejamiento. Las lecturas indicaban que el Apolo 11 orbitaba la Luna con un pericintio de 110 km y un apocintio de 313 km. En un par de revoluciones ajustarán la órbita hasta convertirla en una circunferencia casi perfecta. Poco más de media hora después de desaparecer por el hemisferio oculto del satélite, las comunicaciones con Houston se restablecen y la tripulación confirma que el Apolo 11 se encuentra orbitando la Luna.

«El Águila ha alunizado»

El Eagle se acerca al Columbia.

El comandante Neil Armstrong y el piloto del LEM Buzz Aldrin pasan del módulo de mando al LEM. Completada la decimotercera órbita lunar y cuando están en la cara oculta con las comunicaciones con Houston interrumpidas, Mike Collins, piloto del Columbia, acciona el mecanismo de desconexión y el Eagle comienza a separarse de su compañero de viaje. Con unos cuantos disparos de los propulsores de posición, el Columbia se retira, permitiendo al Eagle realizar la complicada maniobra de descenso hacia la superficie lunar. Esta maniobra comienza con un encendido de quince segundos con el motor trabajando al 10 %, seguido de quince segundos más al 40 %. Con este encendido consiguen abandonar la órbita de la Luna e iniciar una lenta caída hacia la superficie.

El LEM sigue ahora una trayectoria de Hohmann casi perfecta y en unos cuantos minutos llegan a la vertical del lugar previsto para el alunizaje. A quince kilómetros de la superficie, control de misión indica que todo está listo para la maniobra de descenso final o PDI, consistente en activar por segunda vez el motor del LEM.

Todos los sistemas funcionan con normalidad. Neil Armstrong dispara una corta ráfaga de impulsos con los propulsores de posición para realizar un proceso que se repite en todos los encendidos hipergólicos. Los propulsores de posición son accionados para empujar el combustible hipergólico al fondo del depósito y así eliminar burbujas o bolsas de aire en un proceso llamado merma. Tres segundos después el motor principal del LEM entra en ignición y este funciona al 10% durante veintiséis segundos mientras el sistema de control automático estabiliza correctamente la nave. Después el motor del LEM despliega toda su potencia.

Alunizaje del Apolo 11 en la Luna

El ordenador trabaja ahora según su programa 63 que es el modo totalmente automático. Siete minutos después de iniciada la secuencia de descenso y a una altura aproximada de seis kilómetros de la superficie, Neil Armstrong introduce en el ordenador el programa número 64. Con este programa, el empuje del motor desciende hasta un 57 % y el LEM se sitúa en posición horizontal respecto a la superficie de la Luna. El sitio exacto de alunizaje se encuentra a menos de veinte kilómetros al Oeste. Aproximadamente en esos momentos, el oficial de guiado comunica al director de vuelo que el LEM viaja a más velocidad de la programada. Este hecho podía causar el aborto del alunizaje pero el director de vuelo decide seguir con los procedimientos de alunizaje.

Debido a esto el LEM sobrepasa el lugar donde debería haber alunizado. Al parecer, el ordenador les está conduciendo hacia un gran cráter con rocas esparcidas a su alrededor que causarían serios daños al módulo si el alunizaje se produjese en esa zona. Armstrong desconecta el programa 64 e introduce el 66. Este programa de control semiautomático controla el empuje del motor pero deja en manos de la tripulación el movimiento de traslación lateral del LEM. El comandante desliza el módulo lunar en horizontal por la superficie buscando un lugar adecuado para el alunizaje mientras Aldrin le va leyendo los datos del radar y el ordenador. El LEM pierde altura gradualmente. A menos de dos metros de la superficie, una de las tres varillas sensoras que cuelgan de las patas del LEM, toca el suelo.

El Eagle recorre el último metro en una suave caída gracias a la débil gravedad lunar. El terreno ha resistido bien el peso del aparato y todos los sistemas funcionan.

Houston…aquí base Tranquilidad, el Águila ha alunizado

En Houston son las 15:17 del 20 de julio de 1969 (las 20:17:39 UTC5​). El Eagle está posado sobre la superficie del satélite. En el momento del contacto el motor de descenso posee solo unos 30 segundos de combustible restante, alunizando a 38 m de un cráter de 24 m de diámetro y varios de profundidad.

Un gran salto

Neil Armstrong desciende a la superficie lunar para convertirse en el primer ser humano en lograrlo

Al sur del Mare Tranquilitatis y a unos noventa kilómetros al este de dos cráteres casi gemelos denominados Ritter y Sabine, concretamente en las coordenadas 0º40’27” Norte y 23º28’23” Este; es donde se halla en estos momentos la base lunar, denominada Tranquillitatis Statio, consistente en el LEM y su tripulación. Realizadas las comprobaciones pertinentes, Armstrong solicita permiso para efectuar los preparativos de la primera actividad extravehicular o EVA. Houston lo autoriza.

Grabación de la famosa frase que pronunció Armstrong al pisar la luna por primera vez: «It’s one small step for [a] man, one giant leap for mankind» (Un pequeño paso para un hombre,un gran salto para la humanidad).

La única posibilidad de peligro para la misión era la sonda automática soviética Luna 15, que, lanzada el 13 de julio, había estado en órbita lunar de 100 por 129 km y 25º de inclinación y corría riesgo de interferir en la órbita del Apolo, que era de 112 por 314 km y posteriormente de 99,4 por 121 km y 78º de inclinación. La misión de esta sonda era el alunizaje suave y recogida de muestras que luego enviaría de forma automática a la Tierra.

Seis horas y media después del alunizaje, los astronautas están preparados para salir del LEM. El primero en hacerlo es Armstrong, quien mientras desciende por las escaleras activa la cámara de televisión que retransmitirá imágenes a todo el mundo. Una vez hecho esto, describe a Houston lo que ve, y al pisar el suelo a las 2:56 del 21 de julio de 1969 (hora internacional UTC), dice la famosa frase: “Un pequeño paso para un hombre, un gran salto para la Humanidad”.

Aldrin saluda la bandera

Huella del astronauta Buzz Aldrin.

El reloj de Houston señala las 22:56. En un primer momento por seguridad los astronautas iban unidos a un cordón enganchado al LEM. Al ver que no corrían ningún peligro se deshicieron de él. Armstrong toma fotografías del paisaje aledaño y más tarde toma muestras del suelo lunar. Entretanto Buzz Aldrin se prepara para salir del LEM de la misma manera que su comandante, el segundo de a bordo baja por la escala, contempla a su alrededor y a continuación intercambian:

Armstrong: Una vista magnífica ahí fuera.

Aldrin: Magnífica desolación.

Los astronautas se percatan de la baja gravedad y comienzan a realizar las tareas que les han encomendado, instalar los aparatos del ALSEP, descubrir una placa con una inscripción que conmemora la efeméride, después el comandante instala una cámara de televisión sobre un trípode a veinte metros del LEM. Mientras tanto Aldrin instala un detector de partículas nucleares emitidas por el Sol, esto es una especie de cinta metalizada sobre la que incide el viento solar que posteriormente deberán trasladar al LEM para poder analizarla en la Tierra al término de la misión. Más tarde ambos despliegan una bandera estadounidense, no sin cierta dificultad para clavarla en el suelo selenita e inician una conversación telefónica con el presidente de los Estados Unidos Richard Nixon:

Hola Neil y “Buzz”’, les estoy hablando por teléfono desde el Despacho Oval de la Casa Blanca y seguramente ésta sea la llamada telefónica más importante jamás hecha, porque gracias a lo que han conseguido, desde ahora el cielo forma parte del mundo de los hombres y como nos hablan desde el Mar de la Tranquilidad, ello nos recuerda que tenemos que duplicar los esfuerzos para traer la paz y la tranquilidad a la Tierra. En este momento único en la historia del mundo, todos los pueblos de la Tierra forman uno solo. Lo que han hecho los enorgullece y rezamos para que vuelvan sanos y salvos a la Tierra.

Armstrong contesta al presidente:

Gracias, señor presidente, para nosotros es un honor y un privilegio estar aquí. Representamos no solo a los Estados Unidos, sino también a los hombres de paz de todos los países. Es una visión de futuro. Es un honor para nosotros participar en esta misión hoy.

El astronauta Buzz Aldrin en la superficie lunar con el módulo lunar (LM) Eagle durante la actividad extravehicular del Apolo 11 (EVA)

Fotografía de Buzz Aldrin por Neil Amstrong tomada con una cámara de 70 mm.

Por último instalan a pocos metros del LEM un sismómetro para conocer la actividad sísmica de la Luna y un retrorreflector de rayos láser para medir con precisión la distancia que hay hasta nuestro satélite.

Mientras esto sucede, Michael Collins sigue en órbita en el módulo de mando y servicio con un ángulo muy rasante. Cada paso en órbita, de un horizonte a otro, sólo dura seis minutos y medio pero desde semejante altura no es capaz de ver a sus compañeros. Cada dos horas ve cómo cambia la Luna y también observa cómo orbita debajo de su cápsula la sonda soviética Luna 15 en dos ocasiones.

La EVA dura más de 2 horas, durante las cuales los astronautas realizan importantes experimentos científicos: instalan un ALSEP con varios experimentos, una bandera estadounidense de 100 por 52 cm, dejan un disco con los mensajes y saludos de varias naciones del mundo, las medallas recibidas de las familias de Yuri Gagarin y Vladímir Komarov, las insignias del Apolo en recuerdo de Virgil Grissom, Edward White y Roger Chaffee, fallecidos en el incendio de la nave Apolo 1, sellan con un tampón el primer ejemplar del nuevo sello de correos de 10 centavos y recogen 22 kg de rocas lunares.

Los aparatos que han llevado son: un reflector láser con más de 100 prismas de cristal destinado a efectuar mediciones desde nuestro planeta de la distancia Tierra-Luna, un sismómetro para registrar terremotos lunares y la caída de meteoritos, así como una pantalla de aluminio de 15 por 3 dm destinada a recoger partículas del viento solar.

El primero en regresar al módulo lunar es Aldrin, al que sigue Armstrong. Después los dos astronautas duermen durante 4:20 h.

Después de 13 horas se produce el despegue. El motor de la etapa de ascenso entra en ignición abandonando su sección inferior en la superficie, y se dirige hacia el Columbia

A las 19:34 del 21 de julio, el módulo de ascenso se eleva desde la Luna hacia su cita con C.S.M. Siete minutos después del despegue, el Eagle entra en órbita lunar a cien kilómetros de altura y a quinientos kilómetros del Columbia. Lentamente y utilizando los propulsores de posición, se van acercando ambos vehículos hasta que tres horas y media después vuelan en formación. El comandante efectúa la maniobra final con el Eagle y gira para encararse con el Columbia. Se acerca hasta que los garfios de atraque actúan y ambos módulos quedan acoplados. El módulo de ascenso es abandonado, cayendo sobre la superficie lunar.

Regreso a casa

La cápsula en el Pacífico.

El transbordo de las muestras y la desconexión de parte de los sistemas del módulo Eagle, ocupa a la tripulación durante dos horas, y cuando se sitúan en sus puestos, se preparan para abandonar al Eagle en la órbita de la luna. A las 6:35 del 22 de julio encienden los motores del módulo iniciando el regreso a la Tierra. Es la maniobra denominada inyección trans-tierra, que consiste en un encendido hipergólico de dos minutos y medio y que sitúa al Columbia en una trayectoria de caída hacia la Tierra que concluirá en sesenta horas.

Durante el viaje de regreso se realizan leves correcciones de rumbo.

Houston les informa de que hay posibilidades de temporal en la zona prevista para el amerizaje y redirigen al Apolo 11 a una zona con tiempo estable, concretamente a 1500 km al sudoeste de las islas Hawái, donde serán recogidos en el océano Pacífico por los tripulantes del portaaviones USS Hornet, un veterano de la Segunda Guerra Mundial, tras efectuar 30 órbitas a la Luna.

Los astronautas, en cuarentena, reciben la visita del presidente Richard Nixon

Los equipos de recuperación se preparan para recoger a la tripulación del Apolo 11. A unos kilómetros por encima, el módulo de mando con la tripulación en él, se ha separado del módulo de servicio y se preparan para la reentrada. En esta parte de la misión no hacen falta motores de frenado puesto que es el rozamiento el que se encarga de disminuir la velocidad de la cápsula desde los 40 000 km/h iniciales a unos pocos cientos, de modo que puedan abrirse los paracaídas sin riesgo de rotura. Hay que tener en cuenta que la reentrada es un proceso en el que la inmensa energía cinética de la cápsula se disipa en forma de calor haciendo que esta alcance una elevadísima temperatura.

Por efecto de esta elevada temperatura, se forma una pantalla de aire ionizado que interrumpe totalmente las comunicaciones con la nave. Ésta se precipita como un meteoro sobre la atmósfera terrestre alcanzando temperaturas de 3000 °C.

Unos minutos después de la pérdida de comunicaciones, se reciben en Houston las primeras señales procedentes de la nave. A ocho kilómetros se abren los dos primeros paracaídas para estabilizar el descenso. A tres kilómetros, estos son reemplazados por tres paracaídas piloto y los tres paracaídas principales de veinticinco metros de diámetro. Por fin consiguen amerizar a las 18:50 del 24 de julio, exactamente ocho días, tres horas, 18 minutos y 35 segundos después de que el Saturno V abandonara la rampa del Complejo 39.

Esta misión fue un rotundo éxito para el gobierno estadounidense comandado por el presidente Richard Nixon, y un homenaje a su inductor, el presidente John F. Kennedy que no pudo disfrutar del mismo tras ser asesinado en 1963.

Cronología de la misión Apolo XI

  • 00:00:00- despegue desde la plataforma del complejo 39 del polígono de lanzamiento de cabo Cañaveral.
  • 00:02:41- separación del tramo S1C y encendido por control remoto del tramo S2.
  • 00:03:17- separación de la torre de salvamento.
  • 00:09:15- separación del tramo S2 y encendido por control remoto del motor S4-B. 1ª decisión Go/No go
  • 00:11:53- parada del motor del tramo S4B y puesta en órbita de espera.
  • 02:44:14- inicio del vuelo propulsado a la Luna. Encendido durante 307 s del motor del tramo S4B.
  • 02:49:26- inicio del vuelo no propulsado en dirección a la Luna.
  • 03:14:46- separación del tramo S4B.
  • 03:25:00- inicio de la maniobra de extracción del L.E.M. del tramo S4B.
  • 04:39:45- fin de la maniobra de extracción del L.E.M.
  • 26:50:26- corrección de trayectoria; funcionamiento durante 3 s del motor del S.M. del Apolo.
  • 75:54:28- puesta en órbita lunar elíptica. Encendido durante 357 s del motor del S.M.
  • 80:09:30- puesta en órbita circumpolar. Encendido durante 17 s del motor del S.M.
  • 100:15:00- desacoplamiento del módulo lunar del complejo Apolo.
  • 101:38:48- inicio del descenso a la Luna. Encendido durante 29 s del motor de ajuste del L.E.M.
  • 102:35:11- descenso hacia la Luna. Entra en funcionamiento el motor del tramo de descenso del L.E.M.
  • 102:47:03- alunizaje en el Mar de la Tranquilidad a 0º42’50″N-23º42’28″E e inicio de las actividades E.V.A.
  • 124:23:21- despegue de la Luna. Entra en funcionamiento el motor del módulo de ascenso del L.E.M.
  • 124:30:44- inicio de la orbitación circular del L.E.M.
  • 128:00:00- maniobra de ensamblaje a 110 km entre el módulo de ascenso del L.E.M. y el complejo Apolo.
  • 131:53:00- separación del L.E.M. del Apolo. Funcionamiento del motor del Apolo durante 71 s
  • 135:24:34- inicio del vuelo a la Tierra. Funcionamiento durante 151 s del motor del S.M.
  • 150:27:00- corrección de la trayectoria. Funcionamiento durante 10 s de los cohetes de maniobra.
  • 195:03:27- consecución del nivel de repenetración en 120 km de altitud.
  • 195:03:45- interrupción de las radiocomunicaciones por el recalentamiento producido por la fricción.
  • 195:06:51- restablecimiento del contacto radio.
  • 195:11:39- apertura de los paracaídas de estabilización.
  • 195:12:17- apertura de los paracaídas principales.
  • 195:19:06- amerizaje en el Océano Pacífico y recogida de la tripulación por un portaaviones de apoyo.
  • 195:19:07- inicio de la cuarentena.
  • 1155:19:07- fin de la cuarentena.6

Placa conmemorativa

Placa conmemorativa.

Esta placa está colocada en una de las patas de la fase de aterrizaje del módulo lunar que todavía permanece allí. Está firmada por la tripulación del Apolo 11 (Neil Armstrong, Buzz Aldrin, Michael Collins) y por el entonces presidente de los Estados Unidos, Richard Nixon.

En inglés:

Here Men From The Planet Earth First Set Foot Upon the Moon, July 1969 A.D. We Came in Peace For All Mankind. – President of the United States of America – Richard Nixon

En español:

Aquí, unos hombres procedentes del planeta Tierra pisaron por primera vez la Luna en julio de 1969 d.C. Vinimos en paz, en nombre de toda la humanidad. – Presidente de Estados Unidos de América – Richard Nixon

Impacto social

600 millones de personas en todo el planeta presenciaron el alunizaje del Apolo 11 y en los meses consecutivos el impacto político, mediático y social fue enorme.7​ La tripulación del Apolo 11 estuvo sometida a una apretada agenda de recepciones, desfiles, entrevistas y protocolo de Estado.

Galería de imágenes

Desfile en Manhattan, Nueva York, de los astronautas en agosto de 1969.

Certificado de la NASA firmado por el comandante del Apolo 11: “la insignia scout mundial fue portada a la superficie de la Luna”.

Acoplamiento de naves, intercambio de astronautas

Soyuz 4 y Soyuz 5

Primer pilotaje acoplado en el espacio, intercambio de astronautas

En 1969, dos naves espaciales construidas por los soviéticos se reunieron en el espacio, atracaron entre sí y formaron lo que se denominó “la primera estación espacial del mundo” con una tripulación de cuatro personas a bordo. El permaneció atracado durante cuatro horas y media, tres órbitas de la Tierra. Durante ese tiempo, el espacio de dos cosmonautas caminó ‘de Soyuz 4 a Soyuz 5, convirtiéndose en los primeros astronautas en regresar a la Tierra en una nave espacial diferente de aquella en la que entraron en el espacio. No fue sino hasta 1978 que esto se repitió, cuando la tripulación Soyuz 27 regresó a la Tierra desde Salyut 6 a bordo del Soyuz 26.

La maniobra de atraque Soyuz 4 / Soyuz 5 se había practicado dos veces, en 1967 y 1968. En cada ocasión, un par de naves Soyuz se acoplaron bajo control totalmente automático. En octubre de 1967, fue el turno de Cosmos 186 y Cosmos 188, y en la primavera de 1968, Cosmos 212 y Cosmos 213 repitieron el ejercicio. Más tarde en el mismo año, Soyuz 2 y Soyuz 3 se acercaron pero no completaron el acoplamiento.

Estas misiones siguieron a la muerte en abril de 1967 del cosmonauta Vladimir Komarov, quien orbitó la Tierra en una Soyuz mal preparada. Los tecnólogos soviéticos necesitaban continuar con el desarrollo de Soyuz, pero al mismo tiempo, no habían sido calificados para las operaciones de la tripulación a raíz de Soyuz 1, de ahí los vuelos del Cosmos.

A fines de 1968, Georgi Beregovoi había pilotado Soyuz 3 a una cita con Soyuz 2 (que no tenía tripulación) en un check-out final de Soyuz antes de reanudar un programa completo de misiones. Un intento de atraque no fue posible cuando Beregovoi se acercó a Soyuz 2 en una orientación incorrecta.

Gran parte del texto en las siguientes secciones es el publicado por la agencia de prensa Novosti en el momento de la misión y fue traducido por Novosti de la versión original en ruso.

Soyuz 4 Mission Statistics

Lanzado: 1969 14 de enero, 07:30 UTC desde el cosmódromo de Baikonur

Vehículo de lanzamiento: Soyuz 7K-OK

Lanzadera: Baikonur 31/6

Número de tripulantes: 1 (3 en el regreso)

Duración de la misión: 2,97 días

Número de órbitas: 48

Masa: 6625 kilogramos

Orbit Perigee: 205 km

Órbita Apogee: 223 km

Periodo orbital: 88.7 minutos

Inclinación orbital: 51.7 grados

Aterrizado: 1969 17 de enero, 06:51 UTC

Soyuz 5 Mission Statistics

 

Lanzado: 1969 15 de enero, 07:05 UTC del cosmódromo de Baikonur

Vehículo de lanzamiento: Soyuz

Masa: 6585 kilogramos

Orbit Perigee: 210 km

Órbita Apogee: 233 km

Periodo orbital: 88.9 minutos

Inclinación orbital: 51.7 grados

Modelo de la Soyuz 4 y la Soyuz 5 después de realizar el primer acoplamiento de dos naves espaciales tripuladas el 16 de enero de 1969

Soyuz 4 fue una misión tripulada de una nave Soyuz 7K-OK lanzada el 14 de enero de 1969 desde el cosmódromo de Baikonur tras un retraso de un día, con el cosmonauta Vladímir Shatálov a bordo. Al final de la misión, y tras haberse acoplado con la Soyuz 5, la Soyuz 4 regresó con tres cosmonautas a tierra. Durante el primer intento descubrió, justo antes del lanzamiento, que el encendido de la cámara de televisión del interior de la nave cortaba las comunicaciones por radio y que la plataforma giroscópica de la Soyuz no funcionaba correctamente. Se decidió la reparación de la plataforma giroscópica, lo que llevó tres horas, pero el retraso implicaba que la reentrada, al final de la misión, se haría de noche sobre territorio soviético, lo cual fue considerado demasiado inseguro, procediéndose a la cancelación del lanzamiento ese día. Al día siguiente, 14 de enero, todos los sistemas funcionaron perfectamente, incluyendo la plataforma giroscópica y el sistema de televisión y radio.

La misión de Soyuz 4 se acopló con la Soyuz 5 (lanzada con tres cosmonautas a bordo) y luego se realizó el primer intercambio de tripulación en órbita de la historia. La transferencia de tripulación se realizó desde la Soyuz 5 a la Soyuz 4. También se realizaron diversos experimentos biológicos y tecnológicos.

Soyuz 4 y 5 tripulantes (desde la izquierda) Alexei Yeliseyev, Yevgeni Khrunov, Vladimir Shatalov y Boris Volynov. Crédito de la foto: Joachim Becker / SpaceFacts.de

La Soyuz 4 reentró el 17 de enero de 1969 y fue recuperada sin problemas.

Tripulación

Durante el lanzamiento:

En el aterrizaje:

Tripulación de respaldo

Tripulación de reserva

Caminata espacial

  • Yeliseyev and Khrunov – EVA 1
  • EVA 1 comienzo: Enero 16, 1969, 12:43:00 UTC
  • EVA 1 fin: Enero 16 13:15 UTC
  • Duración: 37 minutos

Puntos destacados

Las naves espaciales Soyuz 4 y 5 atracaron el 16 de enero, la primera vez que dos naves espaciales tripuladas atracaron (el Apolo 9 haría lo mismo en marzo del mismo año). Las dos embarcaciones solo tenían una sonda primitiva (Soyuz 4) y un ensamblaje de acoplamiento drogue (Soyuz 5). Todavía no se había desarrollado un túnel de conexión para el mecanismo de acoplamiento, lo que impedía una simple transferencia interna entre la nave. Esto requirió que los dos cosmonautas transfirieran a la caminata espacial de un vehículo a otro. A bordo de Soyuz 5, Yevgueni Jrunov y Aleksei Yeliseyev comenzaron inmediatamente a prepararse para su actividad extravehicular (EVA). Boris Volynov, que permanecería a bordo de Soyuz 5, los filmó vistiendo sus trajes espaciales Yastreb.

En su 35ª revolución de la Tierra, los dos cosmonautas salieron de la nave espacial para la segunda caminata espacial soviética. Una de las líneas de Khrunov se enredó y accidentalmente cerró el vaso del ventilador de su traje. Esto distrajo a Yeliseyev que no configuró la cámara de película en el módulo orbital antes de salir de la nave espacial. Como tal, no hay película del EVA histórico, solo una transmisión de vídeo de baja calidad.

Una hora más tarde, los dos fueron recibidos por Shatálov después de la represurización del módulo orbital Soyuz 4, que también actuó como una cámara estanca. Soyuz 4 y 5 se separaron después de 4 horas y 35 minutos atracados juntos. Soyuz 4 reingresó a la atmósfera y aterrizó a 100 kilómetros al suroeste de Karaganda el 17 de enero de 1969.

La misión demostró que era posible llevar a cabo las actividades que serían necesarias en un aterrizaje lunar soviético. El plan soviético exigía que un cosmonauta en solitario aterrizara en la luna, regresara a la órbita lunar y luego realizara un paseo espacial desde la nave de aterrizaje hasta la nave espacial en órbita después de atracar. Esto se debió a que no había un túnel interno entre las dos embarcaciones como sí se dispuso entre la nave Apolo CSM y el Módulo Lunar según el diseño de los estadounidenses.

La tripulación debía encontrarse con Leonid Brézhnev durante una fastuosa ceremonia en el Kremlin, pero esto fue evitado por un intento de asesinato del líder soviético. Un hombre disparó ocho veces sobre la caravana de vehículos pero apuntó al automóvil que contenía a Georgi Beregovoi, Alexei Leonov, Andrian Nikolayev y Valentina Tereshkova. Salieron ilesos, pero el coche de Brezhnev se vio obligado a dirigirse a un lugar distinto del que era esperado por las tripulaciones de los Soyuz 4/5.

Detalles de la EVA

La misión de atraque tenía objetivos de EVA similares a los planeados para el Apolo 9. Soyuz 4 se lanzó primero, y fue el vehículo activo en el acoplamiento con Soyuz 5. La agencia de noticias TASS declaró que: “se produjo un acoplamiento mecánico mutuo de las dos naves, y sus circuitos eléctricos quedaron conectados. Por lo tanto, la primera estación cósmica experimental del mundo con cuatro compartimentos para la tripulación se ensambló y comenzó a funcionar”. La misión ensayó elementos del plan de misión lunar tripulada de los soviéticos. La televisión de Moscú llevó en vivo los preparativos de EVA de los cosmonautas. Khrunov y Yeliseyev se pusieron sus trajes Yastreb (“halcón”) en el módulo orbital Soyuz 5 con la ayuda del comandante Boris Volynov.

El diseño del traje Yastreb comenzó en 1965, poco después de la difícil EVA de Alexei Leonov, quien actuó como consultor para el proceso de diseño, que se completó en 1966. La fabricación y prueba del traje se produjo en 1967, pero el fatal accidente del Soyuz 1 en abril de ese año y las dificultades de acoplamiento en la misión conjunta Soyuz 2-Soyuz 3 retrasaron su uso en el espacio hasta Soyuz 4-Soyuz 5.

Para evitar que el traje se hinchara, el Yastreb presentaba un sistema de articulación de poleas y cables. Anillos anchos de metal alrededor de la parte superior de la pieza inferior de lona de nailon gris sirvieron como anclajes para el sistema de articulación de la parte superior del cuerpo. El Yastreb tenía un sistema de soporte de vida regenerativo en una caja rectangular de metal blanco colocada en el pecho y el abdomen para facilitar el movimiento a través de las escotillas Soyuz.

Volynov revisó los sistemas de comunicaciones y soporte de vida de Khrunov y Yeliseyev antes de volver al módulo de descenso, sellar la escotilla y despresurizar el módulo orbital. Khrunov salió primero, pasando al módulo orbital Soyuz 4 mientras la nave espacial atracada estaba fuera de contacto por radio con la Unión Soviética sobre Sudamérica. Yeliseyev pasó de un módulo a otro mientras la nave espacial estaba sobre la Unión Soviética. Cerraron la escotilla del módulo orbital Soyuz 4 detrás de ellos, a continuación el Comandante de la Soyuz 4, Vladímir Shatálov, cerró el módulo orbital y entró para ayudar a Khrunov y a Yeliseyev a salir de sus trajes. Los caminantes espaciales entregaron periódicos, cartas y telegramas impresos después de que Shatálov despegó para contribuir a probar que la transferencia se llevó a cabo.

Atraque de Soyuz-4 y Soyuz-5. Fuente: moluch.ru

Concepto del artista de la transferencia de EVA de los cosmonautas Yevgeni Khrunov y Alexei Yeliseyev de Soyuz 5 a Soyuz 4 en enero de 1969. Crédito de la imagen: Orbiter-Forum

Desde su primer vuelo piloto en abril de 1967, Soyuz ha demostrado ser el caballo de batalla de los programas espaciales humanos soviéticos y rusos. Uno de sus objetivos originales era realizar encuentros y atraque en órbita, como lo demostró la misión conjunta Soyuz 4/5. Crédito de la foto: Roscosmos

Soyuz 4 comienza su ascenso hacia el cielo, llevando un cosmonauta único, Vladimir Shatalov. Crédito de la foto: Joachim Becker / SpaceFacts.de

Yevgeni Khrunov (izquierda) y Alexei Yeliseyev revisan sus trajes espaciales Yastreb (“Halcón”) durante un ejercicio simulado de EVA. Crédito de la foto: Joachim Becker / SpaceFacts.de

La recuperación de Soyuz 4, con los tripulantes Vladimir Shatalov, Yevgeni Khrunov y Alexei Yeliseyev, marcó el primer aterrizaje seguro de la misión conjunta… y atrajo a los controladores de misión a la falsa suposición de que el propio descenso de Soyuz 5, un día después, sería una caminata en el parque. El destino, sin embargo, tenía otra carta para jugar. Crédito de la foto: Joachim Becker / SpaceFacts.de

La odisea del descenso

Por Ben Evans, el 4 de enero de 2014

Cuatro horas y 35 minutos después del atraque, las dos naves espaciales se separaron y Volynov disparó sus propulsores para alejarse. A la mañana siguiente, Shatalov inició la reentrada y él, Yeliseyev y Khrunov descendieron a través de una ventisca invernal y golpearon la nevosa estepa kazaja a las 9:53 a.m., al suroeste de la ciudad minera de Karaganda. Shatalov, cuya actuación durante el encuentro y el acoplamiento se describió más tarde como ejemplar, se convirtió en el primer cosmonauta en mantener un comentario continuo durante la caída balística a la Tierra, utilizando una antena VHF incrustada en la escotilla del módulo de descenso.

A pesar de todas las dudas sobre la validez de los reclamos de la “estación espacial”, Soyuz 4/5 se convirtió en el primer vuelo tripulado para intercambiar tripulantes en órbita. En el momento del aterrizaje, Shatalov había pasado un poco menos de tres días en el espacio, mientras Yeliseyev y Khrunov concluían misiones de casi 48 horas cada una. A pesar de aterrizar en una ventisca, con 24-30 pulgadas de nieve en el suelo y temperaturas de -37 ° C, los tres hombres estaban a salvo y fueron recogidos en helicóptero en cuestión de minutos. Sin embargo, los peligros de su aterrizaje palidecerían en comparación con el trauma sufrido por Boris Volynov durante su regreso a la Tierra temprano al día siguiente.

De hecho, tan desgarradora era la historia del regreso de Volynov -y tan cerca estaba de su desacuerdo con la muerte- que pasarían casi tres décadas antes de que Occidente supiera nada al respecto. Incluso los más cercanos al programa espacial soviético, incluido el diseñador jefe Vasili Mishin, fueron tomados totalmente en cuenta cuando se presentó la perspectiva de un desastre de reentrada de proporciones parecidas a las de Columbia. La euforia que rodeaba el aterrizaje seguro de Soyuz 4 había dado paso a una sensación errónea de que el regreso de Volynov a la Tierra sería un paseo por el parque. Poco después de que Mishin llegara a la sala de control de Eupatoria, en Crimea, alrededor de las 8 a. M. Del 18 de enero de 1969, aparentemente todavía con resaca de las festividades de la noche anterior, él y todos los demás se encontraron cara a cara con una dura realidad: que el vuelo espacial de ninguna manera rutina.

La principal preocupación de la mañana fueron las condiciones anticiclónicas en el sitio de aterrizaje, junto con temperaturas frías que rondan los -35 ° C. El plan requería que Volynov orientara manualmente a Soyuz 5 para retroceder y realizara su aterrizaje a las 9:30 a.m. hora de Moscú. Después de ensayar los pasos para este procedimiento durante su órbita final, informó que no podía hacerlo dentro de los nueve minutos asignados. Sin embargo, le dijeron que lo intentara. También se proporcionaron comandos para un segundo retrofire automático, en caso de que fallara el esfuerzo manual. El tiempo de retrofire previsto llegó a las 8:48 a.m., pero, ocho minutos más tarde, Volynov informó que no había podido completar la orientación de forma manual y que los controladores estaban preparados para enlazar los comandos para una grabación automática en la siguiente órbita. Parecería que las condiciones climáticas en el terreno también contribuyeron a la demora.

La reentrada finalmente se puso en marcha muy por encima del Golfo de Guinea a las 10:26 a.m., pero, escribieron Rex Hall y Dave Shayler en su libro Soyuz: A Universal Spacecraft, pronto se hizo alarmantemente claro “que la nave espacial… estaba cayendo violentamente. “Habiendo perdido a Vladimir Komarov durante un fallido regreso a la Tierra dos años antes, era obvio para el personal de Eupatoria que otro cosmonauta podría muy pronto ser víctima de los peligros del vuelo espacial. Lo que no se sabía en ese momento, sin embargo, era que a medida que comenzaba el reingreso, el módulo de instrumentos de la Soyuz 5 todavía estaba conectado de forma segura a su módulo de descenso.

Para Volynov, las implicaciones de esto fueron potencialmente catastróficas.

En circunstancias normales, seis segundos después de la retroadaptación, una serie de pirotecnia debería haber separado los dos, permitiendo que el módulo de descenso en forma de campana adopte su orientación de reingreso correcta, con la base fuertemente protegida orientada en la dirección de desplazamiento para proteger a Volynov de la peor parte del calor de fricción a 5.000 ° C. Por esta razón, la base estaba recubierta con un material de ablación de seis pulgadas de espesor, la mitad de la cual fue diseñada para carbonizarse, fundirse y desprenderse durante la reentrada, protegiendo el módulo de descenso del flujo de calor. Desafortunadamente, la media hora final de Soyuz 5 estaba lejos de ser normal.

Con el módulo de instrumentos todavía en su lugar, se cubrió el escudo térmico de la base, incapaz de cumplir su propósito, y, lo que es peor, la nave espacial combinada se vio obligada a adoptar la orientación más estable aerodinámicamente con el “domo” del módulo de descenso pesado y su delgada escotilla está orientada hacia la dirección de desplazamiento y está a punto de sentir toda la fuerza de un reingreso hipersónico abrasador. A diferencia de la base, la parte superior del módulo de descenso estaba cubierta con solo una pulgada de ablador. Dado que se predijo que el calor de la reentrada se dispersaría al menos tres veces desde la base, una reentrada en esta actitud probablemente terminaría en una catástrofe.

A las 10:32 am, el analista de radio de Estocolmo Sven Grahn y su colega Chris Wood, con sede en Fiji, notaron que las señales de comunicaciones de onda corta de Soyuz 5 se habían detenido abruptamente; un instante “normalmente se supone que es el momento de la separación del módulo del instrumento, y con toda probabilidad fue el momento en que se dispararon los piros de separación”. En su sitio web, http://www.svengrahn.pp.se, Grahn señaló que las conexiones eléctricas se habían separado entre los módulos orbital e instrumental… pero no sus conexiones mecánicas. A bordo del Soyuz 5, Volynov escuchó el fuego de la pirotecnia, pero se quedó atónito cuando miró por la ventana para ver los paneles solares y las antenas de látigo del módulo del instrumento aún conectado. Según Grahn, el cosmonauta informó lo que vio “a través de un canal de radio codificado” a los controladores de tierra. Esto probablemente se hizo en onda corta, ya que estaba fuera del rango de VHF con la Unión Soviética en ese momento.

Cuando se dieron cuenta de lo que había pasado, o más exactamente, de lo que no había sucedido, varios controladores de vuelo enterraron sus rostros en sus manos. Un oficial se quitó la gorra, dejó caer tres rublos en ella y la pasó a lo largo de la línea; en cuestión de minutos, se había llenado de monedas para la joven familia de Volynov. El cosmonauta estaba cayendo en picado de regreso a la Tierra, con la nariz en primer lugar, con la parte menos protegida de su nave expuesta a la mayor tensión térmica. Además, estuvo expuesto a fuerzas G en exceso de nueve veces su carga terrestre normal. Contra tan abrumadoras probabilidades, parecía que el destino de Boris Volynov estaba sellado.

No fue sino hasta 1996, casi tres décadas después del evento, que finalmente pudo hablar públicamente sobre lo que sucedió durante esa terrorífica media hora final. En lugar de ser empujado hacia su sofá, como era de esperar en una reentrada normal, con base en la base, Volynov fue “tirado” contra sus arneses. Sin embargo, logró repetir “sin pánico, sin pánico” una y otra vez. En lo que supuso que serían los minutos finales de su vida, continuó informando su estado en una grabadora de voz a bordo e incluso arrancó las últimas páginas de su cuaderno de citas, metiéndolas en sus bolsillos, con la vana esperanza de que de alguna manera podría escapar a la incineración.

Desde su sillón, solo podía mirar impotente cómo las lenguas de fuego lamían las ventanas del módulo de descenso y barrían la cabaña. La delgada escotilla, directamente delante de sus ojos, visiblemente abultada hacia adentro bajo el tremendo calor y presión. Todo el propulsor de peróxido de hidrógeno de Soyuz 5 se había gastado poco después del inicio de la reentrada, cuando los sistemas automatizados lucharon infructuosamente para orientar el módulo de descenso. Poco a poco, el intenso calor, un calor que Volynov, vestido solo con una ligera prenda de vuelo en lugar de un traje presurizado, podía sentir físicamente, comenzó a derretir las juntas que sellaban la escotilla y la cabina comenzó a llenarse de vapores nocivos. Escuchó claramente un rugido cuando los tanques de propulsor en el módulo del instrumento explotaron, junto con un sonido de trituración prolongado e inquietante a medida que las tensiones de la desaceleración pasaban factura a la configuración inusual.

“A pesar de todo”, escribió Asif Siddiqi en Challenge to Apollo , “hubo momentos terroríficos. Una vez, hubo un fuerte aplauso, lo que indica que los tanques de propulsante … se habían reventado con tanta fuerza que la escotilla de la tripulación fue forzada hacia adentro y luego hacia arriba como el fondo de una lata … “

Por fin, afortunadamente, los puntales que sostenían el módulo del instrumento se cortaron, y los dos módulos se separaron y el centro de masa del módulo de descenso provocó que asumiera una orientación de base. Cayó violentamente mientras caía balístico. El descenso terminó a las 11:08 a.m. con un touchdown cerca de Orenburg, a cientos de millas fuera del objetivo, en las nevadas montañas Urales.

A pesar de haber soportado y sobrevivido a una de las entradas más aterradoras del programa espacial, la experiencia del cosmonauta no había terminado. El daño causado por el calor y la caída de las líneas del paracaídas de Soyuz 5 se enredaron y, como resultado, sus toldos se inflaron solo parcialmente. Además, uno de los cohetes de aterrizaje suave de combustible sólido en la base del módulo no pudo disparar, lo que provocó un aterrizaje particularmente duro, tan duro, de hecho, que Volynov fue arrancado de su sillón y arrojado a través de la cabina, rompiéndose varios dientes. Como el ruido y la vibración de la última media hora fueron reemplazados por el silencio absoluto, la quietud y el frío amargo de una tarde de invierno en los Urales, pudo reflexionar sobre la suerte que tenía de estar vivo.

La temperatura exterior estaba cerca de los -40 ° C, y las superficies metálicas sobrecalentadas de la nave espacial ahora silbaban en la nieve. Volynov sabía que estaba lejos de su lugar de aterrizaje planeado y tendría que esperar varias horas para rescatarlo. Por otro lado, pasar horas en Soyuz 5 en condiciones bajo cero significaría una muerte segura. Salió a la calle y, escupiendo sangre y dientes en la nieve, se dirigió hacia una distante columna de humo hasta llegar a la casa de un campesino, donde se refugió, sabiendo que el grupo de rescate encontraría la nave espacial, y luego sigue las “huellas” de sus huellas de botas y sangre.

A través de la boca llena de dientes rotos, el traumatizado Volynov solo tenía cuatro palabras para ellos: “¿Se me pone gris el pelo?”

Esto es parte de una serie de artículos de historia, que aparecerán cada fin de semana, salvo las principales noticias. El artículo de la próxima semana se centrará en STS-61C, el vuelo “Misión Imposible” del transbordador espacial Columbia, unas semanas antes de la tragedia del Challenger… una misión que estuvo cerca del desastre.