Aficiones-Temas
En estas páginas se muestran, aquellas aficiones y curiosidades (que a lo largo de mi vida) he encontrado interesantes. Ahora que tengo tiempo las quiero compartir.
Evidentemente habrá errores y omisiones, involuntarias, que espero corregir y actualizar con vuestra ayuda, por lo que será bienvenido cualquier comentario al efecto.
En ningún caso se ha pretendido ser exhaustivo.
Toda la información se ha sacado de libros, revistas y de la red, y principalmente se han utilizado los datos al efecto de Wikipedia.
Gracias por vuestra atención.
GALEX
Galaxy Evolution Explorer (GALEX, Explorador de la Evolución Galáctica) fue un observatorio espacial de la NASA lanzado el 28 de abril de 2003 a bordo de un cohete Pegasus y dedicado a observar galaxias en longitudes de onda ultravioleta. La misión fue dirigida desde el Instituto de Tecnología de California.
El objetivo de GALEX fue estudiar la evolución y cambios que se producen en las galaxias, así como los procesos de formación estelar en las primeras etapas del Universo, hasta hace unos 10.000 millones de años.
GALEX, que pesa unos 280 kg, fue situado en una órbita de unos 690 km de altura, con una inclinación orbital de 29 grados. Utiliza un único telescopio de tipo Richey-Chretien y 50 cm de apertura que dirige la luz hacia dos detectores de 65 mm de diámetro, uno para observar en el ultravioleta cercano (sensible a longitudes de onda de entre 175 y 280 nanómetros) y el otro para el ultravioleta lejano (entre 135 y 175 nanómetros). El observatorio sólo toma datos científicos cuando se encuentra en el lado nocturno de su órbita (cuando está a la sombra de la Tierra). La duración nominal de la misión era de 29 meses, periodo tras el cual la duración de la misión fue extendida.
El observatorio envió los datos en banda X y la telemetría en banda S a las estaciones terrestres situadas en Hawaii y Dongara (Australia).
El 28 de junio de 2013 la NASA anunció la conclusión de la misión del GALEX tras 10 años de operación.
Especificaciones
- Masa total: 280 kg
- Órbita: circular a 690 km de altura, 29 grados de inclinación orbital.
- Alimentación: paneles solares con una salida máxima de 290 vatios.
- Control de posición: estabilizado en los tres ejes mediante dos sistemas de giroscopios y cuatro volantes de inercia.
Finalmente la NASA ha decidido poner fin a la misión, tal y como se puede leer en NASA Decommissions Its Galaxy Hunter Spacecraft.
Durante este tiempo GALEX, el Explorador de la Evolución Galáctica, ha descubierto cosas como anillos de estrellas nuevas alrededor de viejas galaxias muertas, ha ayudado a confirmar lo que es la energía oscura, por citar algunos ejemplos, y ha permitido localizar galaxias durante su paso desde su juventud a su madurez que no se habían visto nunca antes.
En total ha observado varios cientos de millones de galaxias a través de unos 10.000 millones de años; una peculiaridad de su modo de funcionamiento era que sólo realizaba sus observaciones cuando estaba a la sombra de la Tierra, donde era de noche.
En GALEX – Image Gallery hay unas cuantas imágenes de las que ha generado, aunque los científicos aún tardarán años en acabar de analizar todos los datos conseguidos por este telescopio.
La nave en si se calcula que aun seguirá en órbita otros 65 años antes de caer a la atmósfera.
Las observaciones de GALEX están diciendo a los científicos cómo las galaxias, las estructuras básicas de nuestro Universo, evolucionan y cambian. Además, las observaciones de GALEX están investigando las causas de la formación de estrellas durante un período en que la mayor parte de las estrellas y los elementos que vemos hoy tuvo sus orígenes.
Dirigido por el Instituto de Tecnología de California, GALEX está llevando a cabo varios estudios del cielo, primera en su tipo, incluyendo un galáctico adicional (más allá de nuestra galaxia) ultravioleta de todo el cielo. Durante su misión GALEX se producirá el primer mapa completo de un Universo de galaxias en construcción, que nos acerca a la comprensión de cómo se formaron las galaxias como nuestra Vía Láctea.
GALEX también es la identificación de los objetos celestes para su posterior estudio de las misiones en curso y futuras y los datos de GALEX ahora se llena un gran archivo, sin precedentes a disposición de toda la comunidad astronómica y para el público en general.
Los científicos les gustaría entender cuando se formaron las estrellas que vemos hoy en día y los elementos químicos que componen la Vía Láctea. Con sus observaciones ultravioletas, GALEX está llenando en una de las piezas clave de este rompecabezas.
31 de Mayo de 2005 13:37 ET
MINNEAPOLIS, MN – Un telescopio diseñado para estudiar las galaxias se está acelerando estallidos estelares dramáticos de forma gratuita. También ve el asteroide de vez en cuando, vía satélite, y un surtido de desechos espaciales.
El Galaxy Evolution Explorer (GALEX) telescopio espacial ultravioleta se puso en marcha en 2003 para investigar cómo evolucionan las galaxias. La radiación ultravioleta (UV) la banda de ondas se pensaba que era una región más bien moderada del espectro electromagnético.
“[GALEX] está descubriendo que el cielo ultravioleta no es tan tranquilo”, dijo Barry Welsh, de la Universidad de California, Berkeley, en una conferencia de prensa en la reunión de la Sociedad Astronómica Americana en la actualidad.
Welsh presentó algunos de los eventos de 84 “locales” que el telescopio ha sido testigo por casualidad, incluyendo las llamaradas, explosiones y rayas de movimiento rápido.
“Todos estos objetos son un bono para los astrónomos, ya que las observaciones provienen libre cuando el telescopio está dirigido a las galaxias distantes”, dijo Welsh.
El telescopio tiene un amplio ángulo de visión – grados y medio de diámetro, que es aproximadamente tres lunas llenas de ancho. Con tanto del cielo siendo observados, el satélite no puede dejar coge fenómenos astrofísicos adicionales.
Entre estos eventos al azar son “nudistas cósmicos” – que pueden ser causadas por asteroides, satélites o restos flotantes espacio generado por los humanos pasar con velocidad delante del telescopio.
“Los científicos generalmente tiran todas estas cosas, porque la suciedad encima de sus datos”, dijo Welsh.
Pero a diferencia de las cámaras habituales en otros telescopios, GALEX tiene contadores de fotones, que registran la hora de llegada y la dirección de los paquetes individuales de luz. Streakers y otros indeseables se separan fácilmente de los datos específicos.
Walsh mostró varias películas en el tiempo transcurrido desde el recuento de fotones de GALEX. Una mostraba cinco piezas de espacio de los escombros voladores en la formación sobre el telescopio. Otro fue del Kallisto asteroide conocido.
Científicamente más interesantes fueron las observaciones de estrellas distantes que iluminaron a causa de un brote. Estas enormes erupciones en la superficie de una estrella pueden durar un par de minutos y por lo general causar aumento de 100 veces en la potencia de UV de la estrella.
Alrededor de una vez cada dos meses, GALEX ha detectado un brote de apagarse. Un evento, que tuvo lugar el 24 de abril de 2004, fue el mayor brote jamás registrado en la luz UV. El GJ 3685A estrella de repente se convirtió en 10.000 veces más brillante – casi la sobrecarga del telescopio.
Esta llamarada, que duró 20 minutos, fue de aproximadamente un millón de veces más energía que las llamaradas de nuestro sol. El GJ 3685A estrella, que está a 45 años luz de nosotros, es una vieja, pequeña estrella – llamada enana roja. Estas estrellas – a veces se refiere como “las estrellas de bengala – pueden entrar en erupción tan a menudo como cada pocas horas.
El satélite registra la evolución de las bengalas con una resolución temporal de 5 centésimas de segundo. Al igual que varios de los otros bengalas en el conjunto de datos de GALEX, el evento GJ 3685A era en realidad dos bengalas – uno tras poco después de la otra.
Walsh y sus colegas están recopilando estas bengalas GALEX fortuitas para estudios futuros.
La NASA elimina del servicio su nave espacial cazadora de galaxias
La NASA ha apagado su explorador de evolución galáctica (Galaxy Evolution Explorer – GALEX) después de una década de operaciones en la que se utilizó la visión ultravioleta del telescopio espacial para estudiar cientos de millones de galaxias a través de 10.000 millones de años de tiempo cósmico.
“GALEX es un logro sorprendente”, dijo Jeff Hayes, ejecutivo del programa GALEX de la NASA en Washington. “Esta pequeña misión exploradora ha realizado mapas y estudiado galaxias en la luz ultravioleta que no podemos ver con nuestros propios ojos, a través de gran parte del firmamento”.
Arriba aparece una imagen de GALEX de la galaxia NGC 4736 en luz ultravioleta. Esta galaxia está ubicada a 17 millones de años luz en la constelación Canes Venatici.
La nave espacial permanecerá en órbita durante al menos 65 años, luego caerá a la Tierra y se quemará al volver a entrar en la atmósfera. GALEX cumplió con sus objetivos principales y la misión se ha extendido tres veces antes de ser cancelada.
Entre lo más destacado de la década de exploraciones del firmamento de la misión se incluye:
- Descubrimiento de una gigantesca cola similar a un cometa detrás de una estrella veloz llamada Mira;
- Captura de un agujero negro “con las manos en la masa” en el momento en que absorbía una estrella;
- Hallazgo de gigantes anillos de estrellas nuevas alrededor de galaxias viejas y muertas;
- Confirmación independiente de la naturaleza de la energía oscura; y
- Descubrimiento de un eslabón perdido en la evolución de las galaxias, la transición de jóvenes a viejas de las galaxias adolescentes.
Espada Vikinga Ulfbehrt
Una espada Ulfberht se muestra en la Museo Nacional Germánico de Nuremberg, Alemania. (Martin Kraft / Wikimedia Commons)
Cuando los arqueólogos encontraron la espada vikinga Ulfbert, que data de entre el 800 y el 1000 d. C., se quedaron atónitos. No podían entender cómo la tecnología para hacer esta espada hubiera estado disponible antes de la Revolución Industrial que ocurrió unos 800 años después.
Su contenido de carbono es tres veces más alto que el de otras espadas de su tiempo, y las impurezas fueron eliminadas hasta un grado tal que el mineral de hierro debe haber sido calentado a por lo menos 3.000 grados Fahrenheit.
Con gran esfuerzo y precisión, el herrero moderno Richard Furrer de Wisconsin, forjó una espada de la calidad de Ulfberht usando la tecnología que habría estado disponible en la Edad Media. Dijo que era la cosa más complicada que jamás había hecho, y usó métodos que no se sabe que hayan sido utilizados por la gente de esa época.
Misteriosa espada vikinga fabricada con tecnología del futuro
El documental de NOVA y National Geographic, titulado “Secretos de la Espada Vikinga” emitido por primera vez en 2012 dio un vistazo sobre la composición metalúrgica de la enigmática espada. Se encontraron alrededor de 170 espadas datadas entre el año 800 dC a 1000 dC, pero la tecnología que les habría forjado es de la revolución industrial de los años 1800 y 1900. Los investigadores dicen que para forjar el hierro del que están hechas las espadas, necesitan calentar el mineral alrededor de 3.000 grados (F). A continuación, se licua y se eliminan las impurezas. Se mezcla entonces con carbono para reforzar el hierro. Sin embargo las tecnologías medievales, que es lo que los vikingos habrían estado utilizando, no habrían sido capaces de calentar ningún metal o sustancia a tan alta temperatura. En aquellos días, las impurezas se habrían eliminado martilleando el hierro.
En el proceso de forjar hierro, el mineral debe ser calentado a 3.000 grados Fahrenheit para licuarlo, permitiendo al herrero eliminar las impurezas (llamadas “escoria”). El carbón también se mezcla para hacer que el hierro frágil sea más fuerte.
La tecnología medieval no permitía que el hierro se calentara a una temperatura tan alta, así la escoria se eliminaba golpeando el metal, un método mucho menos eficaz.
El Ulfberht, sin embargo, casi no tiene escoria y tiene un contenido de carbono tres veces mayor que el de otros metales del mismo período. Se hizo de un metal llamado “acero del crisol“.
Se pensaba que los hornos inventados durante la revolución industrial fueron las primeras herramientas para calentar el hierro a este grado.
El herrero moderno Richard Furrer de Wisconsin habló en NOVA sobre las dificultades de hacer un arma de este tipo. Furrer se describe en el documental cómo él es una de las pocas personas en el planeta que tiene las habilidades para tratar de reproducir el Ulfberht. La diferencia en pureza se ve por la consistencia del acero Ulfberht, casi libre de escoria. (Screenshot/NOVA/National Geograph)
“Para hacerlo bien, es la cosa más complicada, pero sé cómo hacerla” dijo.
Comentó sobre cómo el fabricante de Ulfberht se habría considerado como poseedor de poderes mágicos. “Ser capaz de hacer un arma de la suciedad es una cosa bastante potente” dijo. Pero hacer un arma que se podría doblar sin romperse, mantenerse tan fuerte y que pesa tan poco se consideraría como sobrenatural.
Furrer pasó días de trabajo continuo y meticuloso para forjar una espada similar y usó tecnología medieval, aunque de una manera nunca antes sospechada. El defecto o error más diminuto podría haber convertido la espada en una pieza de chatarra. Al final pareció declarar su éxito con más alivio que alegría.
Es posible que el material y los conocimientos técnicos procedieran del Oriente Medio. La ruta de comercio del Volga entre los establecimientos Vikingo y el Oriente Medio se abrió al mismo tiempo que los primer Ulfberhts aparecieron y se cerró cuando los últimos Ulfberhts se produjeron.
La espada misteriosa a la que nos referimos fue realizada por los Vikingos y grabada con la palabra Ulfberht. La espada se forjó de tal manera que parece que ha sido hecha por tecnologías que no estaban disponibles hasta 800 años después de la era Vikinga, de ahí el misterio que la envuelve. Alan Williams, de la Colección Wallace en Londres ha estudiado las espadas y opina que son unas espadas únicas en su categoría, y cree que el fabricante es único. Eran extremadamente raras y valiosas, habría formado parte del arsenal de la élite Vikinga.
En contradicción con esto, Ulfberht casi no contiene impurezas y tiene tres veces la cantidad de carbono que cualquier otro metal que se sepa que existiera en su momento. El metal de las espadas está hecho de lo que se conoce como acero de crisol. Robert Lehmann, un químico en el Instituto de Química Inorgánica de la Universidad de Hannover, estudió una de las espadas Ulfberht que se encontrado en 2012 en un montón de grava excavada en el río Weser, que fluye a través de Baja Sajonia en el noroeste de Alemania. La hoja de esta espada tiene un alto contenido de manganeso, lo que indicó a Lehmann que no venía de Oriente. La guarda estaba hecha de hierro con un alto contenido de arsénico, lo que sugiere un depósito de Europa. Delimitó la posible fabricación a un sitio en la región de Taunus, al norte de Frankfurt, Alemania. Aunque se conocen algunos monasterios de la región Taunus que podrían haber producido armas en esa época, el nombre de Ulfberht no se ha encontrado en sus registros.
Los Hornos que podrían haber calentar los metales y las sustancias que conforman las espadas a temperaturas extremadamente altas no se inventaron hasta la revolución industrial, que es cuando también se desarrollaron las herramientas para poder calentar el hierro a estas temperaturas. Se consultaron herreros actuales y llegaron a la conclusión que para hacer una espada como la Ulfberht el proceso sería muy difícil y complejo. Por las características especiales que confiere la forma de hacer la espada posiblemente en aquella época se le habría podido otorgar la distinción de “espadas mágicas” ya que la forma en la que están forjadas permite que la hoja de curve, que esté siempre en buenas condiciones de filo y que sean muy ligeras.
Los investigadores encargaron a herreros actuales una recreación de Ulfberht utilizando tecnología medieval. Tras muchos días de trabajo finalmente se pudo producir un metal similar. Los investigadores creen que es posible que el conocimiento para hacer este tipo de espadas se originara en Medio Oriente y que las rutas comerciales con Europa habrían podido difundir el conocimiento y las tecnologías. Cuando esas rutas comerciales se cerraron, debido a la falta de uso, Ulfberht también dejó de fabricarse.
Grandes historias de una herramienta que nos ha acompañado desde siempre y que no deja de sorprendernos. Tecnología oriental en el mundo Vikingo… y pensamos que ya lo sabemos todo.
Generalmente las armas vikingas se han catalogado —de forma errónea— como algo autóctono. Tendemos a decir ‘espadas vikingas’ o ‘yelmos vikingos’ o ‘escudos vikingos’ y, sin embargo, esto no es del todo cierto. Si bien algunas de ellas que sí habrían sido algo intrínsecamente vikingo, muchas son, en realidad, del periodo anterior a la Era Vikinga —la Era de Vendel (550-794)—; y éstas fueron, a su vez, importaciones y asimilaciones. Desde tiempos del Imperio romano y sus ‘Estados sucesores’ los pueblos del norte importaron armamento de forma habitual: la mitad de las armas halladas en yacimientos de la Germania libre fechadas entre los siglos III y V son de fabricación romana. Y no solo del Imperio Romano, los pueblos del norte también importaron armamento del Imperio Franco, tal y como recoge la Gesta Karoli Magni.
Tal debió ser el interés de estas sociedades por las armas extranjeras, que a lo largo de la historia hasta se les llegó a prohibió su venta:
- La legislación romana prohibía vender armas al Barbaricum. Legislación que se mantuvo en Bizancio.
- En el año 803 Carlomagno prohíbe la venta de bruniae (cotas de malla) y de baugae (brazales) fuera del reino.
- En el año 864 Carlos el Calvo decreta pena de muerte para aquellos que vendan armas a los vikingos.
Si ya entramos en detalle, dentro de las armas utilizadas por los escandinavos durante la Era Vikinga, la espada era apreciada por encima del resto; no sólo era la más cara y la que podía estar más elaborada y ricamente decorada —con adornos de metales como la plata e incrustaciones de piedras preciosas—, sino que era también la que mayor maestría técnica requería al guerrero que la portaba y blandía.
Parece ser que el trabajo de los espaderos francos era especialmente apreciado por los hombres del norte. ¿Por qué importaban los vikingos sus espadas? Puesto que la calidad del metal franco, comparado con el nórdico, era muy superior. Y ello justificaba su precio. Y, precisamente por su elevado coste, no todos los guerreros vikingos pudieron permitirse una, quedando reservada para aquellos más ricos y pudientes. Una espada durante el reinado de Carlomagno, por ejemplo, costaba tres sueldos. Cinco durante el de Carlos el Calvo. Y según las sagas nórdicas, una espada podía llegar a costar 16 vacas lecheras. Generalmente era un arma que pasaba de generación en generación, como herencia.
Herederas de la spatha romana —y esta del gladius— las espadas que utilizaron los escandinavos durante el periodo que comprende la Era Vikinga estaban elaboradas con la técnica que tiene por nombre pattern welding[i] (soldadura de diseño), que combinaba piezas de metal de distinta composición: las espadas se fabricaban a partir de barras de acero retorcidas —generalmente tres— y soldadas mediante forja a martillazos, hasta formar una hoja que tenía una pigmentación característica en forma de hondas o espigas y que componía el núcleo central de la hoja. A esta se le añadían dos filos de alto contenido en carbono que se forjaban, afilaban y pulían. La tira central de la hoja también se trabajaba en ambas caras, para crear andaduras longitudinales poco profundas —llamadas vaceos— que hacían más ligera la hoja sin reducir su efectividad.
El resultado era una hoja elástica de doble filo, fina y flexible, pero dura y resistente que medía entre 70 y 100 centímetros, siendo lo habitual unos 90. La empuñadura podía ser de metal, aunque habitualmente era de algún tipo de material orgánico como la madera, el cuero o el asta y, probablemente, se recubría con tela o cuero. En la mayoría de ocasiones los vikingos importaban las hojas y les añadían sus empuñaduras y pomos, tan característicos, que podían ser de distintos tipos; en forma de pirámide, lobulados o estilo sombrero de tres picos, entre otros, y solían ser también de algún tipo de material orgánico como los ya mencionados y, a veces, de hierro. La espada se guardaba en una vaina de madera que podía tener también un forro de tela o lana —la grasa natural de la lana ayudaba a evitar que la hoja se oxidase—, y esta, a su vez, se protegía con una funda de cuero. El extremo terminaba con una contera de metal, que podía estar decorada, y cuya función era la de proteger la punta de la espada. Se llevaban normalmente colgadas de una correa al hombro derecho o en el cinturón o tahalí a la altura de la cadera.
Inscripción +VLFBEHT+ en la hoja de una espada del siglo IX (Germanisches Nationalmuseum FG 2187).
Hacia finales del siglo VIII comenzaron a circular por Europa unas nuevas espadas de una calidad excepcional con la inscripción Ulfberht en la hoja, en la mayoría de casos con una cruz griega antes y después del nombre: +Vlfberht+. Por estas fechas surgió en la zona de Renania Central una nueva técnica que producía hojas muy duras y flexibles, de una acero sin apenas impurezas o escoria, con un inusual alto contenido de carbono[ii], lo que las hacía más fuertes, más flexibles y menos frágiles que las que hemos visto hasta ahora. Estas hojas se obtenían mediante la técnica de fundición en crisoles, también llamado acero crucible o de crisol, algo que hasta el momento no era posible debido a la elevada temperatura de fusión que necesitaba el hierro. Temperaturas mucho más altas de las que la mayoría de los herreros europeos eran capaces de conseguir en sus forjas.
¿Y quién era Ulfberht? Durante mucho tiempo se pensó que era el nombre de una familia propietaria de una herrería en la zona de Renania. Una hipótesis que ha sido rechazada recientemente ya que las firmas con cruz griega eran típicas de abades, obispos y monasterios. Esto no nos debe sonar extraño, ya que en aquella época era habitual que las grandes abadías y sedes episcopales fabricasen armas.
La firma de Ulfberht estaba grabada de modo que si su propietario blandía la espada con la mano derecha, su oponente podía leerlo.
Estas espadas tuvieron un enorme impacto geográfico: tan sólo en Noruega se han hallado 44 ejemplares, y otros 166 han sido hallados en yacimientos de 23 países de Europa, entre ellos uno en España. Eran de las mejores producciones armeras de la época y tuvieron tanto éxito, y llegaron a ser tan famosas y codiciadas, que hasta fueron ‘pirateadas’ por otros herreros a lo largo y ancho de Europa Occidental: surgieron imitadores que también marcaron su nombre en la hoja. Otras inscripciones que se han encontrado han sido Inglerii, Cerolt, Ulen, Pulfbrii, Centrlit. Sin embargo, la calidad de estas espadas ‘de imitación’ era muy inferior. Y no solo la calidad era menor; las inscripciones de las imitaciones en ocasiones están mal escritas, las letras están hacia abajo u otras peculiaridades. Estudios recientes sobre las espadas con inscripción Ulfberht han revelado que unas fueron forjadas a partir de lingotes de acero de crisol —las ‘verdaderas’— y otras poseen una calidad muy inferior, con mucho menos contenido de carbono. Las imitaciones han sido generalmente exhumadas en tumbas, mientras que las verdaderas han sido mayoritariamente halladas en lechos de ríos, a causa de pérdidas fortuitas o casuales, lo que implica que su propietario no se desprendía de ellas tan fácilmente. Y es que, como ya hemos dicho, las espadas eran, probablemente, el arma más apreciada y codiciada de los vikingos.
[i] Técnica utilizada durante los siglos III y IX.
[ii] Las espadas forjadas mediante pattern welding entre el 0,4 y el 0,5% de carbono, mientras que las espadas Ulfberht, un 0,75%.
SAMPEX
Solar Anomalous and Magnetospheric Particle Explorer
Representación artística de SAMPEX
Organización: NASA
Satélite de: Tierra
Fecha de lanzamiento: 3 de julio de 1992
Vehículo de lanzamiento: Scout
Sitio de lanzamiento: Vandenberg
Aplicación: Observatorio espacial
Masa: 158 kg
Inclinación: 81,6 grados
Período orbital: 93,6 minutos
Apoastro: 490 km
Periastro: 423,7 km
- Perigeo: 520 km
- Apogeo: 670 km
- Inclinación orbital: 82 grados
- Longitud: 1,5 m
- Diámetro máximo: 0,86 m
Instrumentos principales
HILT (Heavy Ion Large Area Proportional Counter Telescope)
LEICA (Low Energy Ion Composition Analyzer)
MAST (Mass Spectrometer Telescope)
PET (Proton/Electron Telescope)
Solar Anomalous and Magnetospheric Particle Explorer (SAMPEX) es un satélite artificial de la NASA lanzado el 3 de julio de 1992 y diseñado para estudiar la energía, composición y carga de cuatro tipos diferentes de partículas provenientes de más allá de la Tierra:
- Rayos cósmicos galácticos (originados en supernovas dentro de la Vía Láctea)
- Rayos cósmicos anómalos (producidos en el gas interestelar que rodea al sistema solar)
- Partículas energéticas solares
- Electrones magnetosféricos (partículas del viento solar atrapadas por el campo magnético terrestre)
SAMPEX es la primera misión del programa Small Explorer de la NASA. Sus observaciones van dirigidas a proporcionar nuevos datos sobre la abundancia cósmica de elementos y sus isótopos, la composición del gas interestelar local, la composición solar y los mecanismos responsables del calentamiento de la atmósfera solar, y la transferencia de energía mediante electrones a las capas altas de la atmósfera terrestre.
Sistemas
El satélite mantiene su posición gracias a sus sensores solares y estelares y a un magnetómetro. La alimentación eléctrica la proporcionaban dos paneles solares desplegables constituidos por células solares de arseniuro de galio, produciendo un total de 102 vatios de potencia media. Para los momentos de eclipse el satélite lleva un par de baterías de níquel–cadmio con una capacidad de 9 amperios-hora. El control térmico se produce de manera pasiva. Las comunicaciones tienen lugar a través de dos antenas omnidireccionales alimentadas por transpondedores de 5 vatios que transmitían en banda S.
Instrumentos
- HILT (Heavy Ion Large Area Proportional Counter Telescope): mide la energía de los iones pesados en el rango de 8 a 220 MeV/nucleón para el oxígeno.
- LEICA (Low Energy Ion Composition Analyzer): mide iones magnetosféricos y solares en el rango de 0,5 a 5 MeV
- MAST (Mass Spectrometer Telescope): mide la composición isotópica de elementos desde el litio al níquel en el rango de 10 MeV a varios cientos de MeV.
- PET (Proton/Electron Telescope): complementa a MAST midiendo el espectro de energía y la composición relativa de protones en el rango de 18 a 250 MeV y de núcleos de helio en el de 18 to 350 MeV/núcleo. También mide el espectro energético de las erupciones solares y de electrones de entre 0,4 a 30 MeV.
Referencias
Wade, Mark (2008). SAMPEX en Encyclopedia Astronautica «SAMPEX» (en inglés). Consultado el 10 de enero de 2009.
Enlaces externos
SAMPEX es el primero de SMEX’es (pequeños exploradores). SAMPEX se puso en marcha en julio de 1992 del Campo de Pruebas Occidental (Lompoc, CA) a 1.419 UT, el 3 de julio de 1992. Las órbitas SAMPEX a una altitud de 520 por 670 kilometros y 82 grados de inclinación y lleva cuatro instrumentos a bordo. Medidas SAMPEX electrones energéticos, así como la composición de iones de poblaciones de partículas de ~ 0,4 MeV / nucleón a cientos de MeV / nucleón de un satélite orientado cenit en una órbita casi polar. La carga útil combina algunos de los sensores de partículas más sensible jamás lanzado al espacio.
La misión SAMPEX terminó el 30 de junio de 2004.
Estudios SAMPEX la energía, los estados composición y carga de partículas de explosiones de supernovas en las partes distantes de la galaxia, desde el corazón de las erupciones solares, y desde las profundidades del espacio interestelar cercano. También vigila de cerca las poblaciones de partículas magnetosféricos que hunden vez en cuando en la atmósfera media de la Tierra, por lo tanto ionizantes gases neutros y alterando la química de la atmósfera. Una parte clave de SAMPEX es utilizar el campo magnético de la tierra como un componente esencial de la estrategia de medición. campo de la Tierra se utiliza como un espectrómetro magnético gigante para separar diferentes energías y cargar estados de partículas como SAMPEX ejecuta su órbita casi polar.
Casi cinco años después de su lanzamiento en el mínimo actual del ciclo solar, SAMPEX ha llevado a cabo una amplia gama de observaciones y descubrimientos relativos solar, heliosférica, y las partículas energéticas magnetosféricos visto desde su punto de vista único en una órbita casi polar terrestre baja. Puesto que casi todos los procesos que estamos estudiando son impulsados o fuertemente influenciados por el ciclo de actividad solar, tenemos la oportunidad de caracterizar completamente la dependencia ciclo solar de una amplia gama de procesos fundamentales para los objetivos de la Oficina de la NASA de Sun- de Ciencia Espacial Las conexiones de tierra (SEC) temáticos. Durante los próximos años como las rampas de la actividad solar hasta su máximo de 11 años, las investigaciones SAMPEX harán lo siguiente:
encuestar a la aceleración de los electrones relativistas, medir su impacto en la atmósfera superior, y determinar su influencia en la química atmosférica, no sólo para las condiciones de mínimo solar, sino también para los períodos activos solares mucho más complejas
- obtener muestras de material solar a partir de bengalas docenas, en comparación con el puñado observado durante la fase descendente del ciclo solar
- medir la composición isotópica componente anómalo, atrapando toda la vida, y la casi desaparición del máximo solar
- servir como un enlace único en la cadena de observatorios puestos en marcha por la NASA y sus socios internacionales para estudiar el clima espacial durante el próximo máximo solar.
La mayor parte de estas investigaciones sólo se puede llevar a cabo usando SAMPEX de órbita única y detectores altamente sensibles, y no se puede lograr con otras operaciones o investigaciones spacecraft. SAMPEX previstas se cuenta una gran variedad de preguntas. Hemos llevado a cabo e informar a la comunidad científica los hallazgos principales que abordan las partículas solares, anómalos, y magnetosféricos que da nombre a la misión.
Desde ciclo de actividad del Sol tiene una profunda influencia sobre la mayor parte de conexión Sol-Tierra de la NASA (SEC) preguntas, es esencial para llevar a cabo observaciones durante ambos períodos activos tranquilas y solares si se quiere lograr una comprensión científica de los procesos.
Esta figura muestra el número de manchas solares y plazos de naves espaciales. Esta flota de naves espaciales ofrece una oportunidad única para observar la máxima actividad solar con una capacidad sin precedentes. SAMPEX es un elemento crucial en esta imagen, que abarca la última etapa del flujo de energía-impulso del sol en la atmósfera y la magnetosfera de la Tierra, una parte vital del tema de la Conexión Sol-Tierra y el LWS (Viviendo con una Estrella) programa.
UVC
UVC
Far Ultraviolet Camera/Spectrograph
23/04/1972
Far Ultraviolet Camera Spectrograph model on display.
La cámara ultravioleta lejano / espectrógrafo (UVC) fue uno de los experimentos desplegados en la superficie lunar por los astronautas del Apolo 16. Se componía de un telescopio y cámara que obtiene imágenes astronómicas y espectros en la región ultravioleta lejano del espectro electromagnético.
Instrumentos
La cámara ultravioleta lejano / espectrógrafo fue montada en un trípode, f / 1,0, 75 mm cámara Schmidt electronographic un peso de 22 kg. Tenía un campo de 20 ° de vista en el modo de imagen y 0.5×20 ° de campo en el modo espectrográfico. [1] Los datos espectroscópicos fueron proporcionados 300-1350 Ångström, con 30 Å de resolución, y las imágenes se proporcionan en dos rangos de bandas de paso, 1050-1260 y 1200-1550 Å Å. [2] Había dos placas correctores hechas de fluoruro de litio (LIF) o fluoruro de calcio (CaF2), que podrían ser seleccionados para diferentes bandas de UV. [1] La cámara contenía un fotocátodo yoduro de cesio (CSI) y utiliza un cartucho de película [2], que fue recuperado y devuelto a la tierra para su procesamiento.
John Young que saluda y saltando sobre la superficie lunar. La cámara UV lejano / espectrógrafo se puede ver en el fondo, bajo la sombra del módulo lunar. John Young saluting and jumping on the lunar surface. The Far UV Camera/Spectrograph can be seen in the background, under the shadow of the lunar module.
El experimento fue colocado en la región de tierras altas de Descartes superficie lunar donde Apolo 16 astronautas John Young y Charles Duke aterrizaron en abril de 1972. Para mantenerlo fresco y eliminar el brillo solar, que se colocó en la sombra del módulo lunar. Fue dirigido manualmente por los astronautas, que se re-orientar el telescopio a blancos durante toda la estancia lunar. [1]
Objetivos del experimento
Los objetivos de la cámara ultravioleta lejano / espectrógrafo se extendieron a través de varias disciplinas de la astronomía. estudios de la Tierra se hicieron mediante el estudio de la composición de la atmósfera superior de la Tierra y la estructura, la ionosfera, la geocorona, día y noche, la luminiscencia atmosférica, y las auroras. Heliophysics estudios fueron hechos por la obtención de espectros e imagenes del viento solar, la nube del arco solar y otras nubes de gas en el sistema solar. Observaciones astronómicas por obtener evidencia directa del hidrógeno intergaláctico, y los espectros de los cúmulos de galaxias distantes y dentro de la Vía Láctea. Los estudios lunares se llevaron a cabo mediante la detección de gases en la atmósfera lunar, y la búsqueda de posibles gases volcánicos. También hubo consideraciones para evaluar la superficie lunar como un sitio para futuros observatorios astronómicos. [1]
Resultados
Esta es una imagen de la Tierra en luz ultravioleta, tomada desde la superficie de la Luna. El lado diurno refleja una gran cantidad de luz ultravioleta del Sol, pero el lado nocturno muestra bandas de emisión UV de la aurora causada por las partículas cargadas. [3] This is a picture of Earth in ultraviolet light, taken from the surface of the Moon. The day-side reflects a lot of UV light from the Sun, but the night-side shows bands of UV emission from the aurora caused by charged particles.[3]
El cartucho de película se retiró durante la tercera y última actividad extravehicular, [4] y regresó a la tierra. El resto del paquete de instrumentos fue dejado en la superficie lunar. Se obtuvieron un total de 178 fotogramas de la película de 11 [5] objetivos diferentes, incluyendo:. atmósfera de la Tierra superior y aurora, varios grupos de nebulosas y estrellas, y la Gran Nube de Magallanes [6]
Diseñador
El investigador principal y jefe de máquinas de la cámara ultravioleta lejano / espectrógrafo fue el Dr. Robert George Carruthers, que estaba trabajando en el Laboratorio de Investigación Naval de los Estados Unidos. [7] En 1969, el Dr. Carruthers se le dio una patente para “convertidor de imagen para la detección de la radiación electromagnética, especialmente en Short Longitudes de onda”. Por esta y su futura labor, recibió la Medalla Nacional de Tecnología 2012 y la Innovación. [8]
Segundo telescopio
Imagen en falso color del cometa Kohoutek fotografiado con la cámara electrografía del ultravioleta lejano durante una caminata espacial Skylab el 25 de diciembre de 1973. False color image of Comet Kohoutek photographed with the far-ultraviolet electrographic camera during a Skylab spacewalk on December 25, 1973.
Un segundo telescopio repuesto se modificó ligeramente y posteriormente trasladado en Skylab 4. Se le dio una lata de aluminio (Al) y el fluoruro de magnesio (MgF2) espejo en vez de renio. Fue montado en el Apolo Telescopio Monte de Skylab para el uso en órbita. [1] Entre las muchas imágenes y espectros que tomó, fue utilizado para estudiar la emisión ultravioleta del cometa Kohoutek. [9]
La cámara ultravioleta lejano / espectrógrafo se realizó en el Apolo 16. Se utilizó un telescopio de 3 pulgadas para obtener imágenes y espectros a longitudes de onda entre 500 y 1600 Angstroms; (Luz visible corresponde a longitudes de onda de 4000-7000 Angstroms). Emisión a estas longitudes de onda proviene principalmente de estrellas muy calientes de clases espectral O, B, y A, con temperaturas superficiales de 10.000 a 50.000 ° ° K. Por comparación, la temperatura en la superficie visible del Sol es de aproximadamente 5800 ° K o 11000 ° F. Estrellas tan débiles como magnitud 11 o 100 veces más débil que puede ser visto por el ojo humano, se registraron. Los resultados se registraron en un cartucho de película y regresaron a la Tierra para su análisis. Se obtuvieron un total de 178 fotogramas de la película. El telescopio fue reorientado periódicamente por los astronautas con el fin de estudiar diversas partes del cielo. Entre los objetos estudiados fueron la atmósfera de la Tierra superior y aurora, varios grupos de nebulosas y estrellas, y la Gran Nube de Magallanes, que es una galaxia satélite de la Vía Láctea. Una versión de copia de seguridad de este experimento fue posteriormente trasladado en el vuelo final Skylab y se utilizó para estudiar emisión ultravioleta del cometa Kohoutek y otros objetos.
La huella de la serpiente
La huella de la serpiente.
El enigma de la Banda de agujeros en Perú
Estos enigmáticos pozos del Valle de Pisco, en Perú, son uno de los misterios menos difundidos y permanecen casi desconocidos para la mayoría de los investigadores.
Se trata de un hallazgo realmente impresionante: una serie de agujeros excavados en un duro, reseco y pedregoso suelo, de aproximadamente 60 cm. de diámetro y 2 metros de profundidad cada uno, ordenados en columnas de 9 a 12, formando una banda que llega a alcanzar los 24 metros de ancho y que se extiende a través de casi dos kilómetros desde la base de una montaña subiendo lateralmente sobre el rocoso terreno de Cajamarquilla, muy cerca de Lima, en Perú.
Su presencia permanece inexplicable, y los pocos arqueólogos que intentaron estudiarlo desarrollaron primero diversas teorías delirantes (tumbas verticales, trincheras defensivas de algún ejército, lugares para almacenar granos) a las que luego debieron renunciar por no tener ni pies ni cabeza. Al igual que el Tridente de Paracas, no se sabe absolutamente nada de esta construcción: ni su antigüedad, ni su razón, ni su origen.
Sin embargo existe una extraordinaria coincidencia: agujeros muy similares han sido detectados en la región de Cydonia en…. Marte!!
La primera difusión pública de este misterio estuvo a cargo del famoso escritor Erich Von Däniken, en su libro “Viaje a Kiribati”. Allí nos narra que en 1978 uno de las personas que se encontraba participando del 5º Congreso Internacional de la AAS, (Ancient Astronaut Society), puso literalmente en sus manos dos fotografías aéreas extraídas de un viejo número (databa de 1930) de la revista de National Geographic.
Un área hasta entonces no determinada del Perú, estas viejas fotografías aéreas mostraban miles y miles de agujeros “como los que dejaría en una masa de harina la tabla de hacer fideos”(Von Daniken dixit), un gigantesco “sendero perforado” tallado sobre la roca, y que se perdía en el horizonte.
Däniken localizó el lugar luego de febriles investigaciones en las proximidades de la pequeña ciudad de Humay, en el Valle de Pisco, a unos 180 km, de las famosas figuras de Nazca.
Los aborígenes la llamaban desde tiempos inmemoriales “La avenida misteriosa de las picaduras de viruela”.
Luego de la difusión que diera Von Daniken a este extraño lugar, nunca más se lo volvió a mencionar seriamente como objeto de estudio hasta la reciente difusión de la Serie “Alienígenas Ancestrales ” emitida por el canal Televisivo History Channel, en la cual se incorporaron imágenes satelitales y filmaciones aéreas de la misteriosa zona.
Inmediatamente después de la Primera Guerra Mundial, comenzó a desarrollarse rápidamente el uso de la Fotografía Aérea.
En Estados Unidos, el principal rol en este desarrollo para fines geográficos, técnicos y arqueológicos, lo desempeñó la American Geographical Society publicando las primeras fotografías obtenidas por este método en 1917.
Luego de publicar varios volúmenes con este tipo de trabajos, en 1931 esta entidad envía la Expedición Shipee-Johnson al Perú para utilizar esta técnica fotográfica por primera vez en Sudamérica para localizar y documentar ruinas arqueológicas (ya en 1929 Charles Linerburg había hecho algunas tomas de ruinas mayas en México, pero no en plan sistemático de fotografiar sitios de interés arqueológico).
La “huella de la serpiente”, también conocida como la “avenida de las picaduras de viruela”. Estamos ante otro misterio: alrededor de cinco mil orificios circulares (algunos hablan de más de diez mil), con proyección cónica y una profundidad media de entre noventa y cien centímetros. Filas de hoyos idénticos, muy bien alineados y que trepan por cerros y colinas, a lo largo de kilómetros. La mayor concentración se encuentra sobre la margen izquierda del camino de Castrovirreina, y a poco más de un kilómetro del distrito de Humay. Pueden contemplarse desde el aire en una meseta que discurre entre colinas bajas. Fueron descubiertos en 1931 por la expedición Shippe-Hokhson, de la National Geography. ¿Qué representan? ¿Por qué los excavaron? Nadie lo sabe con certeza.
Imagen satelital a poco menos de 1.5 Km de altura, donde se observa una
parte de la “Huella de la Serpiente” (señalada con flechas rojas).
CHIPSat
CHIPSat (Impresión artística, courtesy NASA)
Organización: NASA
Space Sciences Laboratory, Berkeley
Contratista: SpaceDev, Inc.
Misión tipo: Astronomy
Lanzamiento: January 12, 2003 on Delta II 7320-10
Lugar de lanzamiento: Vandenberg AFB SLC-2W, California
Termino misión: April 11, 2008
Massa: 64 kg (total), 40 kg (bus)
Webpage: chips.ssl.berkeley.edu
Elementos orbitales:
Semi-eje mayor: 6,955.88 kilometres (4,322.18 mi)
Excentricitdad: 0.0013
Inclinación: 94.01 degrees
Periodo orbital: 96.23 minutes
Right ascension of the ascending node: 11.86 degrees
Argumento del perigeeo: 19.70 degrees
Instrumentos
Spectrometro: A nebular spectrograph (9 to 26 nm)[1]
CHIPSat (Cosmic Hot Interstellar Plasma Spectrometer) es un microsatélite de la NASA dedicado a la espectroscopia del fondo difuso del ultravioleta en rango entre 90 a 260 angstroms. Pertenece a la clase de misiones UNEX (University Explorer), patrocinadas por la NASA y fue lanzado desde la base de Vandenberg en un cohete Delta.
CHIPSat tiene una masa de 40 kg, consume 60 vatios de potencia y está estabilizado en los tres ejes. Fue fabricado por SpaceDev para la Universidad de California, Berkeley, bajo un contrato de la NASA. El coste de construcción del satélite se redujo utilizando partes disponibles comercialmente.
Fue el primer satélite en usar el protocolo TCP/IP en toda la cadena de comunicaciones hasta el control tierra.
- Masa total: 85 kg
- Perigeo: 585 km
- Apogeo: 601 km
- Inclinación orbital: 94,01 grados
- Periodo: 96,39 min
La Cósmica Interestelar caliente Espectrómetro de Plasma (CHIPS) es una misión de la Universidad-Class Explorer (UNEX), financiado por la NASA. Se llevará a cabo todo el cielo de la espectroscopia del fondo difuso en longitudes de onda el 90 a la 260 A con una resolución máxima de / 150 (aproximadamente 0,5 eV). CHIPS datos ayudarán a los científicos a determinar la temperatura de los electrones, las condiciones de ionización, y mecanismos de enfriamiento del plasma millones de grados creído para llenar la burbuja interestelar local. Se espera que la mayoría de la luminosidad a partir de plasma millones de grados difusa a surgir en la banda de CHIPS explorado mal, la fabricación de chips de datos de importancia en una amplia variedad de entornos y Galactic astrofísicas extragalácticos.
El instrumento CHIPS se realiza en el espacio a bordo del Chipsat, una nave espacial dedicada construida por SpaceDev, Inc., y puso en marcha de la segunda etapa de un cohete Boeing Delta II. Un exitoso lanzamiento se produjo a las 16:45 hora del Pacífico el domingo 12 de enero, 2003.
Estudiará las características espectrales clave del plasma interestelar caliente local, que requiere un espectrógrafo de la nebulosa con una resolución de pico / de ~ 100 o superior y una mejor sensibilidad de 20 LU (fotones cm-2 s-1 SR- 1). Si la temperatura del plasma está cerca de 106 K, los distintos modelos de enfriamiento puede ser distinguida y la luminosidad plasma bien caracterizados por un instrumento con un paso de banda de aproximadamente 160 a 260 Å. A temperaturas ligeramente superiores, líneas de emisión en longitudes de onda más cortas se vuelven importantes. Una extensión de longitudes de onda más cortas también proporciona solapamiento con la banda de rayos X de berilio, que se extiende desde aproximadamente 115 a 185 Å. CHIPS se extiende por el 90 – 260 Å gama. Si se exceden estos límites no es práctico, debido a las longitudes de onda más cortas requieren ángulos paste menos profundas, mientras que las longitudes de onda más largas son muy absorbidos por el medio interestelar local neutral y se verán abrumados por la emisión plasmasférico brillante en 304 Å.
Figura 1: Un diseño de 3-D del espectrógrafo CHIPS. El exterior del marco del alambre representa el volumen disponible dentro Chipsat.
La disposición general CHIPS se muestra arriba. La luz entra en el espectrógrafo a través de la serie de nueve ranuras de entrada que se muestran en la parte inferior derecha. Dentro de seis de las ranuras, pequeños espejos planos pickoff dirigir el haz y coaligan los campos de visión (en una dimensión) con los tres canales centrales. Cada hendidura ilumina una sola rejilla de difracción. Cada rejilla es cilíndrica, por lo que la luz se enfoca solamente en el plano de dispersión. Los nueve rejillas dispersan sus espectros en un plano detector común, plana. Filtros de capa fina cerca de la parte frontal del detector de atenuar la luz difusa fuera de banda. la luz de orden cero no impacta en el detector y puede ser confundido por separado. A diferencia de un espectrógrafo clásica Rowland, que ofrece un rendimiento deficiente y requiere un detector muy inclinada en geometrías pastoreo incidencia, variamos la separación de las ranuras para proporcionar control de la aberración y para aplanar la superficie focal (Harada-91). Los instrumentos EUVE y ORFEUS usan tales retículas de líneas espaciadas variables con gran éxito.
Cada uno de los canales de rejilla / nueve de hendidura tiene una velocidad de alrededor de f / 10. Las rejillas están alineadas en una dimensión en el cielo, lo que lleva a un campo total de visión de cerca de 5 ° × 26,7 °. La orientación girada de los canales fuera del eje presenta un ligero desajuste entre la superficie focal ideal y el plano detector común en los extremos de la banda de paso. La curva de resolución incluso para el canal central es bastante estrecho pico, sin embargo, por lo que la pérdida marginal causada por la multiplicidad de canales es pequeña. CHIPS ofrece ninguna resolución angular significativo dentro de su campo de visión. de imágenes de origen puntual no es necesario en longitudes de onda CHIPS, debido a que el flujo integrado de fuentes puntuales estelares es muy por debajo del nivel de flujo difuso esperado. El continuo que va desde 43 Hz, la enana blanca más brillante del cielo, es menor que el detector de fondo. La flama de la estrella conocida AU Mic en estallido (Katsova-97) produce líneas correspondientes.
La misión CHIPS tendrá una duración de un año. En sus primeros seis meses, CHIPS hará un mapa de todo el cielo a una profundidad de alrededor de 40.000 segundos por elemento de resolución (Resel). Cada Resel es de 5 ° × 26,7 °; se requieren aproximadamente 316 resels para cubrir todo el cielo. Este mapa debe proporcionar una alta S / N detecciones de las líneas de emisión fuertes. Entonces podemos pasar los segundos seis meses haciendo observaciones profundas de las regiones de especial interés o la cartografía de la emisión en regiones seleccionadas a mayor resolución espacial (orientación del campo 5 ° × 26,7 ° de vista perpendicular a la dirección inicial de la encuesta). Alternativamente, puede ser más deseable que repetir el procedimiento de asignación de cielo, doblando el tiempo de integración en cada Resel.
Chipsat es una caja de tres ejes, estabilizando la nave espacial, con una matriz de paneles solares más o menos ortogonales a la campo de visión del espectrógrafo. En base a los cálculos actuales para la provisión de energía, tenemos la intención de los paneles solares que permanecen casi totalmente iluminados en el lado iluminado de la órbita, lo que limita el campo de visión de un círculo máximo (aproximadamente) perpendicular a la línea de tierra-sol. Durante la noche orbital, el campo de la vista espectacular es sin restricciones. Tenemos previsto dos pointings inerciales por órbita, con breves cambios de cerca del mediodía y la medianoche orbital. La eficiencia de las observaciones en general debe ser alto, ya que cada serie requiere sólo alrededor de un minuto, y no más de ~ 20% del tiempo se gastará en la Anomalía del Atlántico Sur, donde las altas tasas de fondo pueden comprometer los datos.
Comprender el nacimiento de estrellas y la estructura de GalaxiesInterstellar MediumThe ISM, literalmente, contiene las semillas de futuras estrellas, y todas las estrellas que vemos una vez que se formaron a cabo el mismo tipo de gas difuso y polvo. Cuando el gas en el ISM se enfría y se contrae, las matas gas forma que pueden convertirse en estrellas y planetas. De hecho, este es probablemente cómo se formó nuestro sistema solar. Uno de los mayores misterios de la astrofísica es el proceso que convierte estos gases y polvos muy difusos, calientes y fríos en el ISM en estrellas. Esta fotografía (derecha) tomaron 5 marzo de 1999 por el telescopio espacial Hubble capta las diversas etapas de la vida de la estrella ciclo. Para la parte superior izquierda del centro es la supergigante azul llamada Sher evolucionado 25. Cerca del centro está un racimo estelar dominado por estrellas jóvenes y calientes. Las nubes oscuras en la parte superior derecha son llamados glóbulos de Bok, que son probablemente en una etapa más temprana de la formación de estrellas. Las nubes de color oro se ionizan el gas de hidrógeno en el ISM.
CHIPsat Lanzado desde Vanderberg Airforce Base, CA
CHIPsat, shown separating from the second stage.
Chipsat en el laboratorio. Los rectángulos negros son células solares, y las aberturas para el estudio de la ISM son justo por debajo del disco en front.University de California, Berkeley
Los miembros del equipo cerraron el satélite Cosmic caliente interestelar Espectrómetro de Plasma (chipsat), única clase universitaria Explorador de naves espaciales de la NASA, el 11 de abril. Marcos Hurwitz, investigador principal de la misión, dijo que los científicos volvieron al satélite fuera debido a la falta de fondos.
“Por lo general, las misiones solo hacía cada vez extendidos, pero que ahora están llegando al final de los rendimientos decrecientes en algunos de estos pequeños satélites”, dijo Patrick Crouse, jefe de proyecto de operaciones de la misión ciencia espacial en el Goddard Space Flight Center, en una declaración preparada. Chipsat marca la tercera vez que la NASA ha retirado el tapón en un satélite que funciona desde el pasado otoño
Chipsat pasó los últimos 10 años en una batalla incierta. NASA financió en primer lugar la misión en 1998, sin embargo, se enfrentó el satélite diversos obstáculos de transporte antes de su lanzamiento en el año 2003. El gobierno de Estados Unidos negó el viaje en cohete ruso planeado debido a una política que prohíbe el lanzamiento de satélites financiados por el gobierno de los vehículos extranjeros, y el plan del satélite B (un asiento en un GPS) fracasó en 1999. Se llegó finalmente a la órbita de la Tierra en un cohete Delta cuatro años más tarde.
Una vez en el espacio, el satélite no detecta las emisiones EUV Hurwitz esperaba encontrar. Más tarde se llegó a la conclusión de que el medio interestelar local brilla 30 veces más débil en EUV de lo esperado. Los resultados de Chipsat sugieren, ya sea que el gas interestelar es una temperatura diferente que se pensaba, o que los astrónomos todavía tienen que averiguar exactamente lo que comprende la materia entre las estrellas.
El intento de hacer buen uso de los equipos de trabajo y los fondos sobrantes del equipo, señaló SSL chipsat al Sol para estudiar las emisiones solares en el UVE. Ellos observaron la radiación de la cromosfera y la corona del Sol, así como los procesos químicos provocados por la radiación UVE solar en la atmósfera superior de la Tierra.
La NASA ya tiene satélites que estudian las emisiones UV del sol, sin embargo, y en última instancia, la agencia negó dos propuestas nuevas SSL para llevar a cabo un análisis más detallado de los datos. Así terminó la contribución de chipsat a nuestro conocimiento de la distribución de la temperatura atmosférica del Sol.
Chipsat no está del todo muerto: SSL y la NASA puede despertar el satélite hasta si alguna vez hay que usarla. Por ahora, sin embargo, la Agencia ha llegado a la conclusión de que la producción de la misión no es digna de su coste.
“Es triste y liberador,” dice Hurwitz, que ha pasado a la enseñanza de la física de alta escuela. “Ha sido una suerte que el proyecto ha ido en el tiempo que tiene, y ha sido muy bueno”.
Chipsat es la primera misión de la NASA para utilizar las operaciones de satélites de extremo a extremo con TCP / IP y FTP (File Transfer Protocol). Este concepto ha sido analizado y demostrado por el equipo de la NASA a través de OMNI UoSAT-12. Sin embargo, Chipsat es la primera nave espacial para poner en práctica el concepto de TCP / IP como el único medio de comunicación por RF comunicaciones. El satélite está en la banda-S. El transceptor se compone de un transmisor y receptor separados que se combinan a través de un diplexor altamente selectivo y se dividió en dos (RHCP).
El TCP / IP y UDP / IP (Protocolo de Datagrama de Usuario / Protocolo de Internet) conjunto de protocolos se utilizan para comunicar todos los datos entre la S / C y el usuario suelo directamente. Los datos se reciben, archivada y monitoreado en MCC (Centro de Control de Misión) en SpaceDev, y luego enviado a SOC (Science Operation Center) en la UCB / SSL a través de Internet.
El protocolo UDP / IP (User Datagram Protocol) es seleccionado para el monitoreo en tiempo real y en tiempo real al mando (se desacopla ambas direcciones) y presenta mucho menos sobrecarga. La configuración permite la recepción de paquetes de ingeniería y de estado (telemetría) en caso de que el enlace ascendente no está funcionando. Por el contrario, los permisos de configuración también para el comando “en los ciegos”, de enlace ascendente de paquetes UDP en el caso de la telemetría no está funcionando.
Nota: El servicio UDP de los permisos de protocolo TCP / IP para enviar paquetes discretos de información denominado “datagramas” que no están garantizados para llegar allí y pueden llegar fuera de orden en función de su enrutamiento a través del sistema de propiedad intelectual. No es necesaria una comunicación de dos vías en esta configuración porque los datos se transmiten. Por lo tanto, si se necesita una garantía de que al menos algunos paquetes de conseguir a través de, incluso si una dirección del enlace de comunicación falla, entonces UDP puede ser utilizado. – TCP con ofertas de asegurarse de que todos los paquetes llegan y se encuentran en el orden correcto. TCP implica una conexión de dos vías y un mayor nivel de sobrecarga de comunicaciones para asegurar que todos los paquetes llegan y se encuentran en el orden correcto.
La nave espacial se aprovecha de las capacidades innatas y herramientas comunes de Internet para gestionar la sincronización de tiempo entre el suelo y la nave espacial. Estos incluyen NTP (Network Time Protocol) en los routers de datos SpaceDev TCP / IP situadas en las estaciones terrestres y SNTP (Simple Network Time Protocol) que se ejecutan en el sistema operativo nave espacial. El software que se ejecuta en la nave espacial solicita periódicamente una actualización de tiempo desde la estación de tierra, y después de una exitosa eco SNTP, el reloj de la nave espacial está alineado a UTC (estimado en más de 100 milisegundos).
- La misión Chipsat fue retirado el 11 de abril de 2008 – después de 5 años de operaciones exitosas. La razón de su retiro era simplemente que la NASA no proporcionó un presupuesto para continuar las operaciones de bajo costo de la misión. 10) 11) 12)
- A mediados de enero de 2005, Chipsat estaba operando durante dos años en órbita. 13)
- Durante los primeros seis meses de la misión, la nave espacial Chipsat ha sido capaz de realizar por sus requisitos de diseño. Sin embargo, se han producido varias anomalías (tanto esperadas e inesperadas). Desde el inicio de la recogida de datos científicos, el ciclo de trabajo neto para la adquisición de datos de la ciencia es de ~ 95%. – Debido a la utilización de productos electrónicos comerciales no resistentes a la radiación, se espera que una serie de acontecimientos VER (un solo evento Efecto).
- A lo largo del período inicial, se llevaron a cabo operaciones de la misión del centro de operaciones de la misión en SpaceDev Inc., con sólo los comandos de instrumentos originados en Berkeley. El funcionamiento del satélite desde la instalación SpaceDev fue crucial, ya que permitió a los ingenieros de la nave espacial más experimentados y con conocimientos para participar en la toma de decisiones del día a día (a veces de momento a momento). A medida que las operaciones en su conjunto se convirtieron en rutina, sin embargo, se hizo ventajosa que confiar en el personal de operaciones de la misión y la infraestructura desarrollados principalmente para los HESSI y RÁPIDO misiones ya existentes en Berkeley. Las operaciones fueron la transición a Berkeley a finales de mayo de 2003, con SpaceDev seguir participando en reuniones periódicas y como se requiere para resolver las anomalías (Ref. 14).
- Tres anomalías se han producido hasta la fecha en relación con las ruedas de reacción de a bordo. Chipsat es la segunda misión con cuatro microwheels (la primera misión es FedSat); como el ordenador de vuelo, el diseño de la rueda emplea principalmente piezas comerciales. Una de las ruedas incurrió en un error de comunicación; como resultado, la rueda de repuesto está siendo utilizada para el control de ACS activa.
- La nave espacial fue encendida el 20 de enero de 2003. Pedido y puesta en marcha del sistema de control de actitud y espectrógrafo se produjeron durante las siguientes semanas. La puerta del detector se abrió el 26 de enero del 2 de febrero, los seis de la rendija de entrada cubiertas se habían abierto a sus posiciones “horizontal” (el primero de distensión después de las posiciones cerradas empleadas durante la puesta en marcha) o 1 mm. Observaciones astrofísicas intensificaron a principios de febrero, ya que las actividades de puesta en marcha de la herida hacia abajo. 14)
Figure 8: Photo of the CHIPS spectrometer (image credit: UCB/SSL)
El TDC (tiempo al convertidor Digital) es responsable de procesar eventos de fotón válido [conversión pulsos analógicas de los amplificadores de RF detector digital (x, y) coordenadas y amplitudes de la carga] y rechazar eventos subliminal o incompletas.
Además del programa STEDI (Student Explorer Demonstration Initiative), una iniciativa de la NASA y de la USRA (Universities Space Research Association) iniciada en 1984 para propiciar que los estudiantes universitarios pudieran participar en misiones espaciales científicas, la agencia estadounidense puso en marcha otro programa llamado UnEX (University-Class Explorer), que permitiría la propuesta por parte de las universidades de misiones espaciales científicas de bajo coste (no más de 13 millones de dólares). Dirigido por el Goddard Space Flight Center, estaría pues protagonizado por los satélites Explorer de más bajo coste. El objetivo era proporcionar frecuentes oportunidades de vuelo para experimentos muy concretos presentados por las universidades.
El primer satélite de la serie UnEX sería el CHIPSat (Cosmic Hot Interstellar Plasma Spectrometer Satellite), que como su nombre indica implicaría el envío al espacio de un espectrómetro dedicado a estudiar el plasma caliente interestelar. Otra misión en el programa, el IMEX (Inner Magnetosphere Explorer), fue cancelada al excederse demasiado en sus presupuestos.
Así pues, hasta la fecha (2015) sólo el CHIPSat ha volado a la órbita terrestre en el marco del programa UnEX, y no parece que vaya a hacerlo ningún vehículo más. Financiado por la NASA, fue construido por la empresa SpaceDev, que proporcionó la plataforma BD-II, y por el Space Sciences Laboratory, de la University of California, en Berkeley, que preparó el espectroscopio ultravioleta CHIPS. El vehículo sería pequeño, de apenas 65 Kg de peso, y viajaría como carga secundaria junto al satélite principal ICESAT, a bordo de un cohete Delta-II.
A pesar de su sencillez y su aspecto compacto (del tamaño de una maleta), el CHIPSat estaría diseñado para orientarse estabilizado en sus tres ejes, dispondría de un panel solar integrado y podría operar durante al menos 18 meses. Llevando a bordo un único instrumento científico, la misión pudo ponerse en marcha a un precio muy bajo en comparación con otras contemporáneas más ambiciosas.
Figure 9: Cutaway view of the spectrometer configuration (image credit: UCB/SSL)
Fue finalmente lanzado el 13 de enero de 2003, a bordo de un cohete Delta-7320-10C, junto al citado ICESAT. Este último se separó primero, y luego lo hizo el CHIPSat, 83 minutos después del despegue. Un cuarto de hora más tarde, fue contactado por la estación situada en la universidad de California, en Berkeley, confirmando su perfecto funcionamiento en su órbita de 594 por 586 Km, inclinada 94 grados respecto al ecuador.
Durante los primeros seis meses, el vehículo mapeó todo el cielo con una profundidad de unos 40.000 segundos por elemento de resolución (se establecieron 316 elementos para cubrir todo el cielo). El medio año siguiente se dedicaría a efectuar observaciones de regiones de especial interés o a mapear la emisión ultravioleta de aquellas seleccionadas a una mayor resolución espacial. Finalmente, el CHIPSat funcionó durante cinco años, de manera que pudo ampliar enormemente su cosecha de resultados. Envió, por ejemplo, un estudio espectroscópico completo de todo el cielo (fondo difuso) en las longitudes de onda de 90 to 260 Å. Con ello los científicos obtendrían información sobre la temperatura de los electrones, la ionización y los mecanismos de enfriamiento del plasma contenido en la burbuja interestelar local, a 1 millón de grados de temperatura.
Finalizada su tarea, el CHIPSat fue desconectado en abril de 2008.
BOOMERanG
El ‘BOOMERanG experimento (acrónimo de B alloon bservaciones O O F M illimetric Y xtragalactic R adiation un d G eophysics) es un experimento que mide la radiación cósmica de fondo de una porción del espacio, utilizando tres vuelo sub-orbital de una globo de gran altitud. Fue el primer experimento puede proporcionar una imagen de alta definición de la anisotropía de la temperatura de la radiación cósmica de fondo. A través de un telescopio hizo volar a una altitud de 42 km alrededor de él era posible reducir la ‘ absorción de microondas (producido por la radiación de fondo) en la parte de’ la atmósfera de la Tierra.
El primer vuelo de prueba tuvo lugar en los cielos de ‘América del Norte en 1997. El próximo de dos de los vuelos en globo son parte de 1998 y en 2003 por la base antártica permanente McMurdo. El balón atrás alrededor del polo sur mediante el vórtice polar, volviendo al punto de partida después de dos semanas. El telescopio se nombra para este efecto (efecto boomerang).
La elevada altitud del globo en preparación para el lanzamiento
Instrumentación
El experimento utilizó las bolómetros[1] para la detección de la radiación de fondo; estos instrumentos se mantuvieron a una temperatura de 0,27 K (-272,88 ° C). De acuerdo con la ley de Debye los materiales, a esta temperatura, tienen una capacidad térmica muy baja; el horno de microondas procedente de la radiación de fondo que causa un aumento de temperatura fuerte, proporcional a la intensidad de ‘onda. Estos cambios de temperatura son detectados por los termómetros de alta resolución.
Un espejo de 1,2 m[2] se centra entonces el microondas en un plano focal consta de 16 sensores. Este tipo de sensores, que funcionan a 145 G Hz , 245 G Hz y 345 G Hz se combinan en un área de 8 píxeles. De esta manera el telescopio fue capaz de analizar una pequeña porción de espacio para un tiempo y por lo tanto se ve obligado a girar para analizar toda la zona en el análisis.
Resultados
Anisotropía de la radiación de fondo detectada por BOOMERanG
Junto con otros experimentos como Saskatoon, QMAP, MAXIMA, el boomerang datos del experimento de 1997 y 1998 eran útiles para calcular la distancia del diámetro angular de la superficie de la última dispersión con una alta precisión. Estos datos, combinados con otros datos acerca de la constante de Hubble, dio como resultado final que la geometría del universo es plana.[3] [4] Este hallazgo apoya la existencia de’ energía oscura. El vuelo de 2003 BOOMERanG de los datos dio como resultado una señal con una alta relación señal-ruido, útil para la cartografía de la temperatura de la anisotropía de la radiación de fondo y para la medición de la polarización de la radiación.
El proyecto BOOMERANG registra el universo tempranero
Flotando en la estratósfera sobre la Antártica a finales de 1998, el telescopio BOOMERANG, a bordo de un globo, observó el universo a longitudes de onda milimétricas. Las estructuras granulosas que el mismo detectó se aprecian en esta imagen, que es la más detallada del universo en su infancia (quizás tan solo unos 300,000 años) que se ha obtenido hasta hoy. La imagen en color falso muestra las tenues fluctuaciones de la temperatura del plasma caliente que llenaba el universo antes de que la expansión enfriara la materia para producir las conocidas estrellas y galaxias. El tamaño de las fluctuaciones mostradas en esta imagen por el BOOMERANG ha convencido a muchos cosmólogos de que el universo contiene justo la cantidad de materia y energía para ser plano, que es una de las poderosas predicciones de la popular teoría inflacionaria, la cual describe los momentos primordiales del Big Bang. Un universo plano se expandirá para siempre y dos rayos de luz que en su inicio fueron paralelos nunca se apartarán o se intersecarán. Pero no todo está resuelto, pues los resultados del proyecto BOOMERANG no muestran claramente detalles que permitan confirmar las cantidades sospechadas de materia oscura ni la constante cosmológica.
La radiación cósmica de fondo superpuesta sobre el monte Erebus a la misma escala.
El telescopio Boomerang revela la estructura del Universo primitivo
El proyecto BOOMERANG (Balloon Observations of Millimetric Extragalactic Radiation and Geophysics) ha obtenido un mapa detallado de la radiación cósmica de fondo (cosmic microwave background CMB) mediante un radiotelescopio de dos toneladas de peso elevado en globo sobre la base McMurdo en la Antártida.
El mapa de microondas cubre unos 1.800 grados de superficie del cielo. La Luna se ha representado a la misma escala abajo a la derecha. Muestra el Universo hace unos 14.000 millones de años, cuando se enfrió por debajo de los 2700º C y pasó de estar constituido por un plasma opaco a la luz a ser perfectamente transparente. La escala de color distingue variaciones de temperatura en el plasma primordial de tan sólo 0.0001º C. Aunque insignificantes, estas pequeñas variaciones son las que luego dieron lugar a los supercúmulos de galaxias.
Comparando el mapa obtenido (arriba) con distintos modelos cosmológicos simulados se comprueba que el que se ajusta mejor a las observaciones es el que propone que la geometría del Universo es plana (abajo, centro). Para entendernos: decir que el Universo es plano equivale a decir que la geometría elemental que aprendimos en la escuela es válida para distancias cosmológicas, es decir, que dos rayos de luz paralelos lo son indefinidamente. Las zonas calientes y frías observadas miden aproximadamente un grado de diámetro.
Si el espacio estuviese curvado, las imágenes aparecerían distorsionadas:
- En un universo cerrado las líneas paralelas tienden a converger, y las estructuras observadas se verían ampliadas (abajo, izquierda)
- En un universo abierto las líneas paralelas tienden a diverger, y las estructuras observadas serían menores de 1 grado (abajo, derecha)
Los datos obtenidos por Boomerang (en azul) se han superpuesto a los que ofrecen los estudios de explosiones supernova de tipo S1a (amarillo). En el gráfico se relacionan la densidad media de la materia (Omegam, en horizontal), que tiende a frenar la expansión del Universo, y la energía oscura del vacío (Omega, en el eje vertical), que tiende a acelerar la expansión. Si ambas observaciones son correctas, el Universo es cosmológicamente plano, empezó con una gran explosión (Big Bang) y no volverá a concentrarse.
Los 36 miembros del equipo investigador del proyecto BOOMERANG pertenecen a 16 universidades y organizaciones de Canada, Italia, el Reino Unido y los Estados Unidos, con el apoyo de:
- NSF, Department of Energy’s National Energy Research Scientific Computing Center y la NASA en Estados Unidos
- Italian Space Agency, Italian Antarctic Research Programme, Universidad de Roma La Sapienza en Italia, y
- Particle Physics and Astronomy Research Council en el Reino Unido.
BOOMERANG (Balloon Observations of Millimetric Extragalactic Radiation and Geophysics)
Institución responsable: University of Rome, la Sapienza / California Institute of Technology
Investigador principal: Prof. Paolo de Bernardis / Dr. Andrew Lange
Este instrumento es el fruto de un largo esfuerzo de cooperación Italo-Norteamericana. Ha sido diseñado para tener la resolución angular y sensitividad necesarias para medir el espectro angular de anisotropia en el fondo cósmico de microondas en escalas de subgrado, una región donde puede obtenerse una gran información cosmológica.
El telescopio esta compuesto por un espejo paraboloide desfasado de 1.3 m que alimenta a otro par de espejos elipsoidales a muy baja temperatura que a su vez retransmiten el foco primario en un conjunto de “feed horns”. A su vez, estos concentran la radiación entrante en detectores bolométricos refrigerados por helio hasta 0.3 grados Kelvin.
El sistema de apuntamiento consta de un par de ruedas de vuelo que contrarrestan el giro natural del globo estabilizando el telescopio. La frecuencia de rotación se ajusta por la información suministrada por los giróscopos, un magnetómetro y otros sensores. El telescopio es plenamente apuntable en azimuth, y puede inclinarse de 35 a 55 grados de elevación. Una cámara especial de seguimiento estelar permite, por ultimo, la reconstrucción precisa del apuntamiento luego del vuelo.
Detalles del globo y su operación
Sitio de lanzamiento: Williams Field, Estación McMurdo, Antartida Hora lanzamiento: 4:48 utc
Lanzamiento y operación del globo a cargo de: National Scientific Balloon Facility (NSBF)
Globo: Globo de Larga Duracion Raven 29X – 1.000.000 m3 – SF3-29.47-.8/.8/.8-NA
Nº de serie del globo: W29.47-2X-59
Nº de vuelo: 516N
Campaña: Sin Datos
Peso carga útil: 3650 lbs
Peso Total: 4753 lbs
El globo fue lanzado desde Williams Field, por método dinámico con asistencia de un vehiculo lanzador el 6 de enero de 2003.
A pesar de que hubo un incremento repentino de la velocidad de los vientos justo antes de liberar el balón, ni este ni la carga científica sufrieron daños durante el despegue.
Luego de una fase inicial de ascenso, el globo alcanzó la altura de flotación de 130.000 pies comenzando un derrotero en sentido antihorario, alrededor del continente antártico. El recorrido efectuado puede apreciarse en detalle haciendo click en la imagen de la izquierda.
Si bien los primeros días el vuelo se desarrollo normalmente, el 11 de enero el globo comenzó a experimentar un descenso de su altitud de vuelo, por causas desconocidas (pudo deberse a que este quedara atrapado en un sistema de aire muy frío, o que se haya producido alguna fuga) de manera que todo el lastre remanente fue eyectado para ganar altitud nuevamente. No obstante, el descenso gradual se volvería a producir por lo cual se decidió terminar el vuelo el día 17 de Enero enviando a las inmediaciones del globo un avión LC-130, pero una intempestiva operación de búsqueda y rescate para tratar de salvar la vida de la tripulación de un helicóptero caído, paralizó toda la actividad de vuelo de la base, impidiéndolo. Asimismo, otras demoras relacionadas con el mal clima hicieron que se decidiera terminar el vuelo vía satélite para evitar que el globo se internara en zonas remotas de la meseta antártica.
El fin del vuelo se concretó pues, en la noche del 21 de enero y al día siguiente la góndola fue localizada. Seis días más tarde un equipo de rescate aterrizó junto a la góndola, extrayendo el contenedor presurizado que contenía los datos científicos obtenidos.
Este fue el segundo vuelo de larga duración que se realizó en la Antártida con BOOMERANG. Importantes datos científicos fueron obtenidos de él.
Difícil rescate en la Antártica
(Publicado en Revista Creces, Marzo 2004)
Se trata de un rescate en una remota montaña ubicada cerca del polo sur, donde los vientos soplan fuerte y las temperaturas son muy bajas, sólo comparables a las del planeta Marte. Sin embargo, ello fue posible para una peligrosa misión de rescate, que se llevó a cabo un año después.
Se trataba de un valioso telescopio, denominado “Boomerang”, que fue construido para volar sobre la Antártica, colgado de un globo gigante, cuyo objetivo era medir las microondas cósmicas que llenan el espacio. Ellas representan a los ecos del Bíg Bang, que aún se detectan en el espacio, y de las cuales los cosmólogos estiman que pueden lograr valiosas informaciones acerca de la estructura del espacio-tiempo. Pero desgraciadamente el vuelo no terminó bien.
En Enero del 2003 el telescopio se elevó adherido al gran globo “Boomerang”, pero no regresó. Fue perdiendo altura, y sacado de su curso, fue a caer sobre la nieve, en una montaña de 3.000 metros de altura.
Podía ser asequible por avión, pero era muy riesgoso. Incluso en el verano, la temperatura a esa altitud alcanza a los -50ºC. Con esa temperatura, si el motor del avión se detenía, no iba a poder partir de nuevo. Es así como unos pocos días después, pudo llegar al lugar, un equipo de rescate por tierra, recuperando la información gravada en las cintas, y pensaron que el telescopio iba a tener que quedar allí para siempre. Pero en Enero del 2004, un nuevo equipo volvió al lugar y pudo rescatar el telescopio por piezas y traerlo de nuevo a su hogar. Los expertos piensan que en los próximos meses estará otra vez volando, para volver a detectar las microondas cósmicas que tantos secretos pueden revelar.
Estructuras en Oriente medio
Desconcertante estructuras Arabia Saudí
Miles Desconocida antiguas Estructuras vista desde el espacio: Desconcertante arqueología aérea en el Oriente Medio
MessageToEagle.com – Miles de estructuras antiguas enormes de piedra son claramente visibles desde el aire.
Su edad se estima en miles de años y su objetivo sigue siendo desconocido. Estas formas desconcertantes de ruedas, y las líneas rectas, se extienden todo el camino desde Siria a Arabia Saudita.
Algunos llaman a esta área propia versión de Oriente Medio de las Líneas de Nazca. Sólo recientemente, con la ayuda de imágenes de satélite que los arqueólogos han sido capaces de explorar esta región con más detalle.
Península Arábiga: Las líneas oscuras son los restos de muros de piedra apenas visible en el suelo.
Desde el lanzamiento de Google Earth en 2005, los arqueólogos han empezado a utilizar las imágenes de satélite públicamente, sobre todo desde su incorporación gradual, a partir de 2007, de imágenes de alta resolución. Como resultado, durante algunos países árabes-Jordan, Siria y el Líbano en particular, la resolución de las imágenes disponibles es ahora generalmente lo suficientemente alto como para realizar estudios arqueológicos fiables y generales.
En la región Harrat Khaybar de Arabia Saudita, sin embargo, “cometas” asumen completamente diferentes formas-sobre todo el “bolsillo cuadrado” y “flecha de púas”, y los muros de muchos de ellos mostrar las líneas de la regla recta, que plantean nuevos interrogantes para los arqueólogos.
Marcas misteriosas en los campos volcánicos de Arabia han desconcertado a los científicos durante mucho tiempo
Las 400 marcas impares, algunas de cientos de metros de largo, vienen en formas que se asemejan a conos, triángulos, cerraduras, cometas, círculos e incluso puertas.
Fueron descubiertos por primera vez por exploradores occidentales en la década de 1920 y han desconcertado a los expertos durante casi 100 años.
El miembro de la tribu beduina local se refiere a las formas como “Las obras de los viejos”, pero ahora se cree que los cazadores las utilizaron para ayudar a atrapar y matar a sus presas.
El profesor David Kennedy, de la Universidad de Australia Occidental, recibió un permiso especial para sobrevolar las marcas, que solo se pueden ver correctamente desde el cielo.
“Desde 500 pies, puedes ver los detalles vitales de las estructuras que son invisibles en la imagen borrosa en Google Earth”, reveló.
“Una vez que sales a las zonas desérticas, donde no esperarías encontrar mucho, están completamente llenas de sitios arqueológicos”.
Las imágenes de satélite ya han comenzado a responder algunas preguntas Crédito: Google Earth
Y según el Dr. Kennedy, las estructuras son cualquier cosa menos aleatorias, informa el New York Times.
En la región de Al-Hayit, formas de ojo de cerradura y de suspensión varían en tamaño desde unos pocos metros a decenas de metros, y que a menudo se encuentran dispuestos a lo largo “vías” que son invisibles para los constructores de carreteras modernas.
El sitio de Shuway-mas al sur de Hayil, Arabia Saudita, que ni siquiera se menciona en la edición 1998 de la Cambridge Historia ilustrada del arte prehistórico es el hogar de uno de las cuatro mejores colecciones de arte antiguo de la roca en el mundo. Aquí encontramos, numerosos cometas antiguos de piedra, montículos, y las colas.
¿Quién ha creado estas estructuras y con qué propósito?
Algunos de estos muros de piedra, muchos conocidos desde hace tiempo a los arqueólogos dentro de Arabia Saudita, han sido recientemente visible desde cualquier ordenador del mundo. Las franjas de imágenes de alta resolución revelan pruebas sorprendentemente bien conservada de la actividad humana generalizada en el pasado distante.
En la década de 1920 cuando los pilotos de la Real Fuerza Aérea británica sobrevoló el norte Harrat Harrah, que fueron golpeados por los números y variedad de restos arqueológicos visibles en ese rugoso, paisaje poco poblada.
No había ninguna construcción de alta tecnología o incluso en movimiento para ayudar a las empresas en la construcción de estos muros que hace que estos logros todo lo que mucho más impresionante.
En Jordania, hay estructuras similares visibles para el aire. Los beduinos dicen las estructuras y las paredes son “las obras de los viejos”.
Una vez más, sin las compañías móviles o herramientas sofisticadas, cómo se construyen estas estructuras y se instaló en el lugar es bastante extraordinario.
Se pueden encontrar en todo Oriente Medio, desde Siria pasando por Jordania hasta Arabia Saudita y Yemen. Desde el suelo son muy difíciles de identificar. Usando una técnica llamada de luminiscencia estimulada ópticamente (OSL), los arqueólogos han conseguido fechar dos ruedas situadas en Wadi Wisad, en el Desierto Negro de Jordania. Una de ellas se remonta a 8.500 años, una época prehistórica en la que el clima de la zona era más húmedo. La otra arrojaría la misma datación, pero habría sido remodelada más recientemente, hace unos 5.500 años.
Estructuras tipo puerta en Arabia Saudí
En cuanto a su uso los investigadores afirman que pueden haber servido para diferentes cosas. En algunas la presencia de montículos sugiere una asociación funeraria. En el caso de las del Oasis Azraq parece clara la función astronómica. Lo que está comprobado es que las de Arabia Saudí y Yemen son diferentes de las halladas más al norte. En Arabia aparecen hasta 332 estructuras con forma de puerta, una forma que no se encuentra en ningún otro lugar, y que consiste en dos cortas paredes gruesas formadas por piedras conectadas por otras más estrechas. Según los arqueólogos se asemejan a puertas de barrotes. La más larga tiene unos 500 metros. Según David Kennedy, de la Universidad de Australia Occidental, que co-dirige el proyecto, todavía no está clara la función de estas puertas.
En Arabia Saudita los investigadores han descubierto “ruedas” (si se puede llamar así) con patrones que son muy diferentes de lo que se ve en Jordania. Esta rueda particular tiene un diseño de ojo de buey. Tres estructuras triangulares son vistos apuntando a la misma. Pilas de la roca se puede ver que se extiende desde los triángulos en el centro de la diana. La fecha y la función de este sitio es desconocida. (Imagen cortesía de Google Earth)
Triángulos en el desierto
Tres triángulos se puede ver en esta imagen de satélite. Muchas estructuras triangulares se han descubierto en Arabia Saudita por un equipo con la aérea Archivo Fotográfico de Arqueología en el Medio Oriente (APAAME). Los científicos no saben a qué distancia de la fecha estructura ni saben cuál es su propósito puede haber sido. (Foto cortesía de Google Earth)
Otra puerta se encuentra al costado del volcán Jabal al-Abyad. (Imagen cortesía de Google Earth)
INTEGRAL
Organización: ESA / NASA / Roscosmos
Fecha de lanzamiento: 17 de octubre de 2002
Aplicación: Observatorio espacial
Equipo: SPI (Spectrometer on Integral)
IBIS (Imager on Board the Integral Satellite)
JEM-X (Joint European X-ray Monitor)
OMC (Optical Monitoring Camera)
Tipo de órbita: Elíptica
Período orbital: 72 horas
INTEGRAL (de International Gamma Ray Astrophysics Laboratory) es un observatorio orbital de rayos gamma, la radiación electromagnética más energética. Se destaca por ser el primer observatorio que puede captar simultáneamente un objeto en rayos gamma, rayos x y visible, lo que ayuda a detectar las fuentes de rayos gamma. La misión INTEGRAL ha sido desarrollada por la ESA en colaboración con la NASA y la Agencia Espacial Federal Rusa.
Este observatorio espacial fue lanzado usando un cohete Protón ruso, desde el cosmódromo de Baikonur el 17 de octubre de 2002. Tiene una órbita excéntrica que lo lleva a dar una vuelta a la Tierra aproximadamente cada 72 horas.
Los principales objetivos científicos de la misión INTEGRAL son:
- La observación de las poderosas explosiones de rayos gamma, que se cree son debidas al colapso de objetos compactos como estrellas de neutrones o agujeros negros, o bien por la existencia de hipernovas.
- Estudiar estas hipernovas, para determinar la composición química del interior de las estrellas y ayudar a esclarecer el proceso de nucleosíntesis estelar.
- Estudiar las estrellas de neutrones formadas tras las hipernovas, uno de los objetos más densos del universo.
- Estudiar los agujeros negros gigantes que se cree se encuentran en el centro de las galaxias.
Para ello, cuenta con los siguientes instrumentos:
- SPI (Spectrometer on Integral)
- IBIS (Imager on Board the Integral Satellite)
- JEM-X (Joint European X-ray Monitor)
- OMC (Optical Monitoring Camera)
Parte de la nave lleva el mismo diseño que el observatorio de rayos X XMM-Newton, lo que ha permitido abaratar costes. INTEGRAL es el observatorio de rayos gamma más avanzado y preciso del momento, así como el mayor peso puesto en órbita por la ESA, unas cuatro toneladas.
El Integral (International Gamma-Ray Astrophysics Laboratory), el observatorio de rayos gamma, fabricado por contrato de la ESA, explora el espectro de estos rayos en el Universo para averiguar qué procesos tuvieron lugar en las fases tempranas de gestación del Cosmos, cómo se formaron los elementos químicos y de dónde proceden las increíblemente cortas emisiones de rayos gamma.
Además, el Integral investiga estallidos de alta energía y verifica la existencia de agujeros negros como complemento de las mediciones del XMM, el telescopio de rayos X. El satélite está integrado por dos componentes principales: el módulo de servicio y el módulo de carga útil con cuatro instrumentos científicos. Airbus Defence and Space suministra el sistema anticoincidencia (ACS), que protege el espectrómetro de interferencias producidas por protones de alta energía.
INTEGRAL: 4 años observando el Universo en rayos gamma
Publicado por Administrador CBE el 27 octubre, 2006
Miguel Mas-Hesse
CSIC-CAB
El pasado 17 de octubre se cumplieron 4 años del lanzamiento del observatorio espacial INTEGRAL (International Gamma Ray Astrophysical Observatory). INTEGRAL está equipado con dos potentes telescopios de rayos gamma: SPI, optimizado para obtener espectros de alta resolución, e IBIS, diseñado para conseguir imágenes en rayos gamma con una calidad sin precedentes. Dos monitores complementan la misión: un monitor de rayos X duros (JEM-X) y una cámara óptica (OMC). Este conjunto de instrumentos, que están co-alineados y funcionan de manera simultánea, confieren a INTEGRAL una enorme potencia observacional. Más detalles de la misión pueden encontrarse en la página del INTEGRAL Science Operations Centre
Nuestro grupo es responsable de la cámara óptica OMC. Este instrumento fue diseñado en España, por científicos e ingenieros del LAEFF y del INTA, coordinados en un primer momento por Álvaro Giménez, y posteriormente y hasta la actualidad por mí. Gracias a OMC es posible obtener por primera vez las curvas de luz en el óptico al mismo tiempo que se observa la emisión de altas energías. El interés de esta simultaneidad radica en el alto grado de variabilidad que muestran los objetos emisores de rayos gamma: pueden variar su luminosidad en un factor 10 en cuestión de horas. El estudio de la correlación entre las variaciones observadas en el óptico, en rayos X y en rayos gamma es una potente herramienta para descifrar la estructura de estos objetos y sus propiedades físicas. Más información y datos de OMC pueden obtenerse en la página de INTEGRAL en el LAEFF.
¿Qué hemos aprendido con INTEGRAL en estos 4 años? Sobre todo, ahora conocemos mucho mejor la distribución y las propiedades de los objetos emisores de altas energías. La mayoría de ellos son agujeros negros, por lo general miembros de un sistema binario. La materia que la estrella compañera expulsa, ya sea por medio de vientos estelares, o través del punto de Lagrange cuando llena su lóbulo de Roche en las últimas fases de su vida, es acretada en espiral hacia la superficie del agujero negro. El potentísimo campo gravitatorio en las inmediaciones de un agujero negro, así como las destructoras fuerzas de marea, hacen que el material se caliente a temperaturas de varios millones de grados, emitiendo principalmente en rayos X y gamma. El proceso de acreción no es continuo, ya que la materia es absorbida en forma de pequeñas nubes o grumos. La caída de una de estas nubes de gas hasta las regiones más internas genera estallidos muy luminosos y de corta duración, que conocemos con el nombre inglés de “outbursts”. INTEGRAL ha estudiado la emisión de numerosos de estos agujeros negros en sistemas binarios, y ha detectado varios de estos “outbursts”. Su resolución espectral le ha permitido identificar cómo varían las propiedades de la misión antes, durante y después de estos estallidos.
Además del estudio de fuentes compactas, INTEGRAL ha realizado numerosas observaciones del gas difuso. El resultado más sorprendente ha sido sin duda la identificación en el centro de nuestra Galaxia de la emisión de 511 keV que se produce cuando un electrón y un positrón se encuentran y aniquilan. INTEGRAL ha podido obtener un detallado mapa de la región esferoidal en el centro de nuestra Galaxia donde se produce este fenómeno. El análisis de las propiedades de esta emisión ha mostrado que en esa región se producen grandes cantidades de antimateria, de forma continua, y con unas características que no somos aún capaces de explicar. Esperamos lograrlo dentro de unos años, cuando las observaciones sean más precisas gracias al aumento de tiempo de integración (hay que destacar que los astrofísicos de rayos gamma detectan éstos uno a uno, y que es necesario mucho tiempo de integración para tener una estadística suficientemente amplia).
El pasado mes de enero se realizaron las observaciones más sorprendentes con INTEGRAL: El observatorio se apuntó hacia el fondo cósmico, y se esperó a que la Tierra pasara por el campo de visión para estudiar la sombra que producía. De esta manera, utilizando la Tierra como una gigantesca pantalla, fue posible medir la intensidad y propiedades espectrales de la radiación cósmica de fondo entre 20 y 100 keV. Se piensa que esta radiación está originada en miriadas de galaxias activas, alimentadas cada una de ellas por enormes agujeros negros centrales, formados en las primeras etapas de evolución de las galaxias. Estas galaxias están tan lejanas que no podemos resolverlas aún con telescopios de rayos gamma, ni siquiera con INTEGRAL.
Esperamos que INTEGRAL continúe funcionando durante muchos años y que nos permita conocer a fondo el fascinante Universo de las Altas Energías.
El telescopio Integral vigilando el centro galáctico
22 enero 2007
El observatorio de rayos gamma de la ESA, Integral, ha observado el centro de nuestra galaxia en un momento de rara calma. Curiosamente, durante esta observación de Integral algunas de las fuentes más energéticas en torno al agujero negro que ocupa el centro de nuestra galaxia estaban temporalmente ‘en silencio’.
Se trata de un acontecimiento poco usual que está permitiendo a los astrónomos ir en busca de objetos aún más débiles. Puede que incluso les permita llegar a atisbar la materia mientras desaparece en el agujero negro masivo en el centro de nuestra galaxia.
El centro galáctico es una de las regiones más dinámicas de nuestra galaxia. Se cree que está ‘habitado’ por un agujero negro gigante, llamado Sagitario A*. Desde el principio de la misión Integral, este observatorio de rayos gamma de la ESA ha hecho posible que los astrónomos no pierdan de vista el centro galáctico y sus constantes cambios.
Integral ha descubierto muchas nuevas fuentes de radiación de alta energía en las inmediaciones del centro galáctico. Desde Febrero de 2005 Integral empezó a vigilar de forma constante el centro de la galaxia y su entorno inmediato, el llamado ‘bulbo’ galáctico.
Erik Kuulkers, del Centro de Operaciones Científicas de Integral, en el Centro Europeo de Astronomía Espacial (ESAC) de la ESA, en Madrid, dirige el programa de segumiento del centro galáctico. Ahora Integral ha puesto sus ‘ojos’ de última tecnología en unas 80 fuentes de alta energía en el bulbo galáctico. “La mayoría de estas fuentes son estrellas binarias de rayos X [que emiten intensamente en rayos X], dice Kuulkers.
Los sistemas binarios de rayos x están integrados por dos estrellas en órbita una en torno a la otra. Una de las dos es relativamente normal; la otra es una estrella colapsada, como una enana blanca, una estrella de neutrones o incluso un agujero negro. Si las estrellas están lo bastante próximas entre sí, el tirón gravitatorio de la estrella colapsada puede extraer material gaseoso de la estrella normal. A medida que este gas se aproxima a la estrella colapsada, orbitándola, también se calienta a más de un millón de grados centígrados, y eso hace que emita en rayos x y gamma. La cantidad de gas que cae de una estrella a otra determina el brillo de la emisión en rayos X y gamma.
Integral, artist’s impression
17 octubre 2012
El observatorio espacial Integral de la ESA cumple diez años en órbita hoy, 17 de octubre. Para celebrarlo, os presentamos esta galería que recopila las representaciones artísticas de los principales descubrimientos de esta misión europea.
Integral, acrónimo inglés de ‘Laboratorio Internacional de Astrofísica de Rayos Gamma’, transporta dos telescopios de rayos gamma, un monitor de rayos X y una cámara óptica. Los cuatro instrumentos apuntan simultáneamente a la misma región del firmamento para realizar observaciones complementarias de fuentes de alta energía.
Integral estudia con frecuencia las explosiones de rayos gamma, el canto del cisne de las estrellas masivas que han consumido todo su combustible y explotan dando lugar a una dramática supernova que salpica a nuestro Sistema Solar de radiación de alta energía.
Este satélite también ha descubierto fenómenos mucho más sutiles, como las binarias de rayos X. Estos sistemas están formados por una estrella de neutrones – el núcleo apagado de una estrella que explotó como una supernova – que se alimenta de materia que arranca de la estrella que la acompaña.
WMAP
La Wilkinson Microwave Anisotropy Probe (WMAP) es una sonda de la NASA cuya misión es estudiar el cielo y medir las diferencias de temperatura que se observan en la radiación de fondo de microondas, un remanente del Big Bang. Fue lanzada por un cohete Delta II el 30 de junio de 2001 desde Cabo Cañaveral, Florida, Estados Unidos.
El objetivo de la misión WMAP es comprobar las teorías sobre el origen y evolución del universo. Es la sucesora del COBE y entra dentro del programa de exploradores de clase media de la NASA.
WMAP fue nombrada así en honor a David Todd Wilkinson, miembro del equipo científico de la misión y pionero en el estudio de la radiación de fondo. Los objetivos científicos de la misión son que la temperatura del fondo cósmico de microondas debe ser medida con una altísima resolución y sensibilidad. Debido a esto, la prioridad en el diseño fue la de evitar errores sistémicos en la toma de datos.
La sonda WMAP usa radiómetros diferenciales de microondas que miden las diferencias de temperatura entre dos puntos cualesquiera del cielo. WMAP se encuentra en órbita en torno al punto Lagrangiano L2, situado a unos 1.5 millones de kilómetros de la tierra.
Nombres MAPA
Explorador 80
Tipo de misión CMBR astronomía
Operador NASA
ID COSPAR 2001-027A
SatCat № 26859
Sitio web mapa .gsfc .nasa .gov
Duración de la misión 9 años, 1 mes, 19 días
Masa de lanzamiento 835 kg (1,841 lb) [1]
Masa seca 763 kg (1.682 lb)
Dimensiones 3,6 mx 5,1 m (12 pies x 17 pies)
Poder 419 W
Inicio de la misión
Fecha de lanzamiento 19:46:46 30 de junio de 2001 [2]
Cohete Delta II 7425-10
Sitio de lanzamiento Cabo Cañaveral SLC-17
Fin de la misión
Disposición Pasivado
Desactivado 28 de de octubre de del 2010
Parámetros orbitales
Sistema de referencia L 2 puntos
Régimen lissajous
Telescopio principal
Tipo gregoriano
Diámetro 1,4 m x 1,6 m (4,6 pies x 5,2 pies)
Las longitudes de onda 23 GHz a 94 GHz
Instrumentos
K-banda (23 GHz) 52.8- minutos de arco de haz
La banda Ka (33 GHz) haz de 39,6 minutos de arco
Q-banda (41 GHz) 30.6 minutos de arco-haz
V-banda (61 GHz) haz de 21 minutos de arco
W-banda (94 GHz) haz de 13.2 minutos de arco
Diagrama del WMAP.
Este punto de observación (situado en la línea que une al sol con la tierra) proporciona a la sonda un ambiente excepcionalmente estable, ya que puede apuntar en cualquier dirección al espacio profundo, sin verse afectada por la presencia de la estrella madre. Además, desde el punto L2 observa el cielo entero cada seis meses. Para evitar las interferencias provenientes de nuestra propia galaxia, WMAP usa cinco bandas de frecuencia separadas, desde los 22 GHz a los 90 GHz.
El 11 de febrero de 2003, el grupo de relaciones públicas de la NASA convocó una rueda de prensa para comunicar la edad y composición del universo sobre la base de datos de la sonda WMAP. En dicha rueda de prensa se desveló la imagen más intrincada del universo primigenio tomada hasta hoy, en espera de los resultados del Planck. Según la NASA, esta imagen “contiene tal nivel de detalle que se puede considerar uno de los resultados científicos más importantes de los últimos años”. Hay que tener en cuenta que si bien esta imagen no es la de mayor resolución tomada sobre el fondo cósmico de microondas, es la mejor imagen que tenemos de la radiación de fondo de todo el cielo.
Los datos de tres años del WMAP fueron publicados al mediodía del 17 de marzo de 2006. Estos datos incluyen las medidas de la temperatura y de la polarización de los CMB, que proporcionan una confirmación más fuerte del modelo estándar Lambda-CDM.
Descubrimientos realizados con el WMAP
Imagen del WMAP del fondo cósmico de microondas.
Línea de tiempo de la gran explosión.
WMAP está obteniendo medidas de muchos parámetros cosmológicos con una precisión mucho mayor que la que teníamos hasta ahora. De acuerdo con los modelos actuales del universo, los datos del WMAP muestran que:
- La edad del universo es de 13.700 ± 200 millones de años.
- El universo está compuesto de un 4% de materia ordinaria, 23% de materia oscura y de un 73% de la misteriosa energía oscura.
- Los modelos cosmológicos inflacionarios se verifican con las observaciones, aunque hay una anomalía inexplicada a grandes escalas angulares.
- La Constante de Hubble es 71 ± 4 km/s/Mpc
- Los datos del WMAP confirman, con sólo un 0,5% de margen de error, que la forma del universo es plana.1
- Los panoramas cosmológicos de la inflación cósmica están en un acuerdo mejor con los datos de tres años, aunque todavía hay una anomalía inexplicada en la medida angular más grande del momento cuadrupolo.
Fecha de lanzamiento: 30 de junio de 2001
Programa (s): Astrofísica exploradores, exploradores
La misión WMAP se dirigió a las preguntas fundamentales de la cosmología: ¿Cuál es la geometría del Universo? ¿Cómo estructuras, tales como galaxias y cúmulos de galaxias, que vemos en el cielo de hoy se producen? ¿Qué edad tiene el Universo, y cuáles son sus componentes?
El detallada, todo el cielo la imagen de la infancia del universo creado a partir de siete años de datos de WMAP. La imagen revela las fluctuaciones de temperatura 13.7 millones de años de (que se muestran como las diferencias de color) que se corresponden con las semillas que crecieron para convertirse en las galaxias.
Crédito: NASA / WMAP Science Team
Las respuestas a estas preguntas se encuentran en el fondo cósmico de microondas (CMB), la radiación de fondo remanente sobrante de la Gran Explosión, que es notablemente uniforme en todo el cielo, a una temperatura efectiva de 2,7 grados Kelvin. El CMB, sin problemas, ya que es, sin embargo, contiene pequeñas fluctuaciones en la temperatura, en el nivel de una parte en 100.000. A partir de estas fluctuaciones crecieron las estructuras en el Universo que vemos hoy en día, y con una cuidadosa medición de las propiedades de estas fluctuaciones, se puede aprender mucho sobre la historia y el contenido del Universo.
WMAP usa radiómetros de microondas diferencial que midieron las diferencias de temperatura entre dos puntos en el cielo. WMAP observa el cielo desde una órbita alrededor del punto L2 Sol-Tierra Lagrange, 1,5 millones de kilómetros de la Tierra. Este punto de vista ofrece un entorno excepcionalmente estable para la observación desde el observatorio siempre puede apuntar lejos del Sol, la Tierra y la Luna, manteniendo una vista despejada hacia el espacio profundo. WMAP escanea el cielo de una manera tal como para cubrir ~ 30% del cielo cada día y como el punto L2 sigue a la Tierra alrededor del Sol WMAP observa el cielo lleno cada seis meses. Para facilitar el rechazo de las señales de primer plano de nuestra propia galaxia, WMAP usa cinco bandas de frecuencia separadas 22-90 GHz.
Ilustración de los receptores de WMAP
La Wilkinson Microwave Anisotropy Probe (WMAP) fue renombrada en honor al fallecido Dr. David Wilkinson, de la Universidad de Princeton, un miembro del equipo científico y pionero en el estudio de la radiación cósmica de fondo.
WMAP fue dado de baja en octubre de 2010, después de 9 años de vuelo. Durante estos 9 años, WMAP ayudado a cambiar la forma en que vemos nuestro Universo.
- WMAP descubrió que hoy nuestro universo se compone de un 72% la energía oscura, 23% de materia oscura y sólo el 4,6% de átomos.
- WMAP encontró la edad del Universo es de 13,75 ± 0,13 mil millones de años. Conocido dentro del 1%.
- WMAP descubrió que el Universo era muy diferente cuando se fue de 380.000 años de antigüedad. En ese momento estaba dominado por la materia oscura (63%), los fotones (15%), Átomos (12%), y los neutrinos (10%). La energía oscura no existía en cantidades medibles en ese momento.
- WMAP encontró que la primera generación de estrellas para luz en el Universo encendió a 200 millones de años después del Big Bang.
- WMAP encontró nueva evidencia de que un mar de neutrinos cósmicos impregna el Universo.
- WMAP encontró evidencia clara de las primeras estrellas tardaron más de quinientos millones de años para crear una niebla cósmica.
- WMAP tensó nuevas restricciones sobre la explosión de expansión en la primera billonésima de Universo de un segundo (llamado inflación).
- WMAP proporcionó la primera detección directa de helio pre-estelar, proporcionando una prueba importante de la predicción del Big Bang.
- WMAP ayudó a restringir la geometría del Universo. Nuevos datos indican que debe ser plana para mejor que 1%. El modelo más simple, un universo plano con una constante cosmológica, ajusta los datos muy bien. v
- los datos de WMAP coloca restricciones en el número de especies de neutrinos parecido a entre 3 y 5, con 4 como el número más probable. El modelo estándar de la física de partículas tiene 3 especies de neutrinos.
Como WMAP ha mejorado mucho conocimiento acerca de la CMB allá de lo que aprendió la misión COBE, la reciente misión Planck de la ESA-llevado ha mejorado el legado dejado por la misión WMAP. La misión Planck mide el CMB con una mayor precisión y resolución angular en comparación con WMAP. Un objetivo clave de la misión Planck fue medir la polarización del CMB debido a la radiación gravitatoria del período de la inflación en el universo primordial.
El Premio Gruber de Cosmología 2012 fue otorgado a Charles L. Bennet y el equipo de la sonda Wilkinson Microwave anisotropía (WMAP) por sus exquisitos ‘mediciones de las anisotropías en la radiación fósil del Big Bang, — el fondo cósmico de microondas. Estas medidas han ayudado a obtener restricciones rigurosas sobre el origen, el contenido, la edad y la geometría del Universo, la transformación de nuestro paradigma actual de la formación de la estructura de apelar escenario en la ciencia exacta”.
Mediciones y descubrimientos
Un año de publicación de los datos
El 11 de febrero de 2003, la NASA publicó valor de los datos de WMAP del Primer año. Se presentaron las últimas edad calculada y composición del universo temprano. Además, se presentó una imagen del universo primitivo, que “contiene detalles tan impresionantes, que puede ser uno de los resultados científicos más importantes de los últimos años”. Los datos recientemente publicados superan las mediciones anteriores CMB. [5]
Con base en el modelo Lambda-CDM, el equipo de WMAP produjo parámetros cosmológicos de resultados del primer año del WMAP. Tres conjuntos se dan a continuación; el primer y segundo conjuntos son datos de WMAP; la diferencia es la adición de índices espectrales, las predicciones de algunos modelos de inflación. El tercer conjunto de datos combina las limitaciones de WMAP con los de otros experimentos de CMB ( ACBAR y CBI ), y las limitaciones de los Redshift Survey 2dF Galaxy y forestales Lyman alfa mediciones. Observe que hay degeneraciones entre los parámetros, la más significativa es entre y ; los errores son dados en la confianza de 68%. [21]
Cinco años de publicación de los datos
Los datos de WMAP a cinco años fueron puestos en libertad el 28 de febrero de 2008. Los datos incluyen nuevas pruebas para el fondo cósmico de neutrinos, evidencia de que tomó más de la mitad de mil millones de años para que las primeras estrellas de reionizar el universo, y las nuevas restricciones sobre la inflación cósmica. [24]
Contenido de materia / energía en el universo actual y en el momento de la disociación de fotones en el recombinación época 380.000 años después del Big Bang.
La mejora en los resultados se dieron a ambos con un extra de 2 años de mediciones (el conjunto de datos se ejecuta entre la medianoche el 10 de agosto de 2001 hasta la medianoche del 9 de agosto, 2006), así como el uso de técnicas de procesamiento de datos mejoradas y una mejor caracterización de la instrumento, en particular de las formas de haz. También hacen uso de los 33 GHz observaciones para la estimación de parámetros cosmológicos; previamente se habían utilizado sólo los canales 41 GHz y 61 GHz. Por último, la mejora de las máscaras se utilizan para eliminar los primeros planos. [8]
Las mejoras en los espectros estaban en el pico acústico tercero, y los espectros de polarización. [8]
Las mediciones ponen restricciones sobre el contenido del universo en el momento que el CMB se emitió; en el momento del 10% del universo se compone de neutrinos, el 12% de los átomos, el 15% de los fotones y un 63% de materia oscura. La contribución de la energía oscura en el momento era insignificante. [24] También se limitó el contenido del universo actual; 4,6% átomos, 23% de materia oscura y la energía oscura 72%. [8]
Los datos de WMAP de cinco años se combinó con las mediciones de supernovas de tipo Ia (SNE) y oscilaciones acústicas Baryon (BAO). [8]
La forma elíptica de la skymap WMAP es el resultado de una proyección Mollweide. [25]
Se siguieron publicando datos de su vida efectiva, en años posteriores.
Seguimiento de las misiones y las mediciones futuras
trayectoria y la órbita de la WMAP.
La línea de tiempo original para WMAP se dio dos años de observaciones; éstos fueron completados por las extensiones de septiembre de 2003. Misión se les concedió en 2002, 2004, 2006, y 2008 dando la nave espacial con un total de 9 años de observación, que terminó de agosto de 2010 [18] y en octubre de 2010, la nave espacial fue trasladado a un “cementerio heliocéntrica “orbitar [12] fuera L2, en la que gira alrededor del sol 14 veces cada 15 años.[cita requerida]
La nave espacial Planck, lanzado el 14 de mayo de 2009, también mide el CMB y tiene como objetivo perfeccionar las mediciones realizadas por el WMAP, tanto en intensidad total y la polarización. Varios instrumentos terrestres y globos también han hecho contribuciones CMB, y otros están siendo construidos para hacerlo. Muchos están dirigidos a la búsqueda de la polarización en modo B se espera de los modelos más simples de la inflación, incluyendo Ebex, Araña, BICEP2, Keck, TRANQUILA, CLASE, SPTpol y otros.
El 21 de marzo de 2013, el equipo de investigación dirigido por el Europeo tras la sonda Planck cosmología liberado de todo el cielo de la misión mapa de la radiación cósmica de fondo. [31] [32] El mapa sugiere que el universo es un poco mayor de lo pensado. Según el mapa, sutiles fluctuaciones en la temperatura se estamparán en el cielo profundo cuando el cosmos tenía cerca de 370.000 años. La huella refleja ondas que surgieron tan pronto, en la existencia del universo, como el primer nonillionth (10 -30) de un segundo. Al parecer, estas ondulaciones dieron lugar a la presente vasta red cósmica de los cúmulos de galaxias y la materia oscura . Sobre la base de los datos de 2013, el universo contiene 4,9% materia ordinaria , el 26,8% de materia oscura y el 68,3% de la energía oscura. El 5 de febrero de 2015, nuevos datos fue lanzado por la misión Planck, según la cual la edad del universo es de 13.799 ± 0,021 billón años y la constante de Hubble se midió en 67,74 ± 0,46 (km / s) / Mpc. [33]
WMAP lanzamientos desde el Centro Espacial Kennedy , 30 de Junio, de 2001.
Debe estar conectado para enviar un comentario.