Pascual
Primer hombre en la Luna
Apolo 11
Datos de la misión
Misión: Apolo 11
Nombre de los módulos:
Módulo de mando: Columbia
Módulo lunar: Eagle
Número de tripulantes: 3
Masa: MC: 30 320 kg; ML: 16 448 kg
Lanzamiento: 16 de julio de 1969; 13:32:00 UTC
Alunizaje: 20 de julio de 1969; 20:17:40 UTC
Mar de la Tranquilidad: 0°40′27″N 23°28′23″E
Tiempo de actividad extravehicular: 2 h 31 min 40 s
Tiempo en la superficie de la Luna: 21 h 36 min 20 s
Cantidad de muestras: 21,55 kg
Amerizaje: 24 de julio de 1969; 16:50:35 UTC; 13°19′N 169°9′O
Duración de la misión; 195 h 18 min 35 s
Datos de las órbitas
Tiempo en órbitas lunares; 59 h 30 min 25,79 s
Apolo 11 fue una misión espacial tripulada de Estados Unidos cuyo objetivo fue lograr que un ser humano caminara en la superficie de la Luna. La misión se envió al espacio el 16 de julio de 1969, llegó a la superficie de la Luna el 20 de julio de ese mismo año y al día siguiente logró que dos astronautas (Armstrong y Aldrin) caminaran sobre la superficie lunar. El Apolo 11 fue impulsado por un cohete Saturno V desde la plataforma LC 39A y lanzado a las 13:32 UTC del complejo de cabo Kennedy, en Florida (EE. UU.). Oficialmente se conoció a la misión como AS-506. La misión está considerada como uno de los momentos más significativos de la historia de la Humanidad y la Tecnología.
La tripulación del Apolo 11 estaba compuesta por el comandante de la misión Neil A. Armstrong, de 38 años; Edwin E. Aldrin Jr., de 39 años y piloto del LEM, apodado Buzz; y Michael Collins, de 38 años y piloto del módulo de mando. La denominación de las naves, privilegio del comandante, fue Eagle para el módulo lunar y Columbia para el módulo de mando.
El comandante Neil Armstrong fue el primer ser humano que pisó la superficie del satélite terrestre el 21 de julio de 1969 a las 2:56 (hora internacional UTC) al sur del Mar de la Tranquilidad (Mare Tranquillitatis), seis horas y media después de haber alunizado. Este hito histórico se retransmitió a todo el planeta desde las instalaciones del Observatorio Parkes (Australia). Inicialmente el paseo lunar iba a ser retransmitido a partir de la señal que llegase a la estación de seguimiento de Goldstone (California, Estados Unidos), perteneciente a la Red del Espacio Profundo, pero ante la mala recepción de la señal se optó por utilizar la señal de la estación Honeysuckle Creek, cercana a Camberra (Australia).1 Ésta retransmitió los primeros minutos del paseo lunar, tras los cuales la señal del observatorio Parkes fue utilizada de nuevo durante el resto del paseo lunar.2 Las instalaciones del MDSCC en Robledo de Chavela (Madrid, España) también pertenecientes a la Red del Espacio Profundo, sirvieron de apoyo durante todo el viaje de ida y vuelta.34
El 24 de julio, los tres astronautas lograron un perfecto amerizaje en aguas del Océano Pacífico, poniendo fin a la misión.
Despegue del Apolo 11
El 13 de junio, tres semanas antes del lanzamiento, comienza la carga de queroseno tipo RP-1 en la primera etapa del Saturno V, un trabajo que termina seis días después. El 15 de julio, ocho horas antes de la hora prevista para el lanzamiento y para evitar pérdidas por evaporación, se procede al bombeo de oxígeno líquido (LOX) e hidrógeno líquido (LH2) en los tanques de las tres etapas del cohete. Estos últimos propelentes son almacenados a altas presiones y a bajas temperaturas, por lo que se los denomina genéricamente criogénicos.
El Saturno V despega.
El 16 de julio, los astronautas Neil Armstrong, Edwin Aldrin y Michael Collins, son trasladados hasta la nave para proceder a su posterior lanzamiento. Mientras tanto, el ordenador del Complejo 39 realiza las últimas comprobaciones y supervisa que todos los sistemas funcionan. El director de vuelo, Gene Kranz, verifica las recomendaciones del ordenador y consulta a los miembros de su equipo. Entonces comienza la secuencia de ignición.
Los cohetes Saturno V constaban de varias fases que se iban desprendiendo de la nave una vez consumían su combustible. Esto es lo que ocurrió durante el despegue del Apolo 11:
Cuando los cinco motores F-1 de la primera etapa se encienden, los sistemas de refrigeración se encargan de arrojar varias toneladas de agua sobre la estructura metálica del cohete para protegerla del calor. Con la enorme vibración se desprende la escarcha que recubre el cohete, producida por el efecto de las bajísimas temperaturas a las que se mantienen los propergoles dentro de los tanques.
Cuando el Saturno V alcanza el 95 % de su empuje total, los cuatro ganchos que retienen el cohete saltan hacia atrás; con una ligera sacudida el cohete se despega de la plataforma y comienza a elevarse, mientras los cinco últimos brazos de la plataforma se desplazan hacia un lado para no entorpecer el lanzamiento del cohete. Para entonces los motores F-1 ya consumen quince toneladas de combustible por segundo.
El astronauta Charles Duke actúa como controlador de vuelo (CAPCOM) del Apolo 11 en el Lyndon B. Johnson Space Center en Houston, Texas, EE. UU.
A las 10:32 de la mañana en cabo Cañaveral el Saturno V abandona la rampa de lanzamiento.
Durante la misión la tripulación establecerá contacto verbal con el centro de control en Houston, ya que una vez que el Saturno V despega, cabo Cañaveral traspasa el control a Houston.
Ciento sesenta segundos después, los motores de cebado de la segunda etapa se ponen en marcha ya que los cinco potentes F-1 de la primera etapa han agotado su combustible y se desprenden del cohete, iniciándose la segunda etapa que consta de cinco motores J-2, cuya tarea es que el Saturno V siga ganando altura cada vez a mayor velocidad.
También se produjo la separación de la torre de escape de emergencia situada junto con la cubierta protectora del módulo de mando, ya que el Saturno V no presentaba problemas técnicos y podía continuar con su salida del campo gravitatorio terrestre.
Nueve minutos después del lanzamiento, los cinco motores J-2 de la segunda etapa se separan del resto de la nave. Después las turbo bombas de la tercera etapa envían combustible a su único motor, el mecanismo de ignición se dispara y el cohete vuelve a acelerar. Doscientos segundos después el motor se apaga y los astronautas comienzan a notar la ausencia de gravedad. El Apolo 11 está en órbita.
De la Tierra a la Luna
El módulo lunar desacoplado del Columbia.
El módulo de mando y el módulo lunar permanecen unidos todavía a la tercera etapa denominada S-IV B. Según las normas de las misiones lunares, las naves Apolo deben permanecer 3 horas en una órbita llamada órbita de aparcamiento a 215 km de altura. La tripulación emplea este tiempo en estibar los equipos, calibrar instrumentos y seguir las lecturas de navegación para comprobar que la trayectoria que siguen es la correcta.
En el control de misión verifican la localización de la nave, dan instrucciones a los astronautas y reciben los datos de quince estaciones de rastreo repartidas por todo el planeta, que han de estar perfectamente coordinadas.
Una vez que el Apolo 11 completa la segunda órbita a la Tierra y los astronautas terminan de realizar sus tareas, Houston da la orden para ponerlo rumbo a la Luna. Después de orientarse de forma precisa, la tercera etapa pone en marcha su motor con las sesenta toneladas de combustible que aún permanecen en los tanques. El cohete acelera gradualmente hasta alcanzar los 45 000 km/h. Esta maniobra recibe el nombre de inyección trans-lunar, y por su dificultad es el segundo punto crítico de la misión.
Cuando se agota el combustible de la tercera etapa, comienza otra parte crítica de la misión. El módulo lunar permanece oculto bajo un carenado troncocónico entre la tercera etapa y el módulo de servicio. Hay que iniciar la maniobra de transposición y colocar al LEM delante del módulo de mando. El carenado que protege al LEM se fragmenta en cuatro paneles usando pequeños detonadores explosivos similares a los que se usan para separar las sucesivas etapas agotadas. El LEM se separa del S-IV B y tras una complicada maniobra que ejecuta la tripulación utilizando los propulsores de posición quedan los dos vehículos ensamblados. Esta maniobra dura alrededor de una hora. Después se desprende la tercera etapa y se prosigue con la misión.
El planeta Tierra visto desde el Apolo 11
El Apolo 11 realizará durante tres días la supervisión de los aparatos de navegación, correcciones de medio rumbo y comprobaciones de los diversos instrumentos. Durante dos días, el Apolo 11 va perdiendo velocidad regularmente debido a la atracción de la Tierra, y cuando llega a la gravisfera lunar, situada a las cinco sextas partes del recorrido entre la Tierra y la Luna, el vehículo, que avanza a una velocidad de 3700 km/h, comienza de nuevo a acelerar hasta los 9000 km/h, atraído por la gravedad lunar. El Apolo 11 se encamina a esta velocidad hacia la Luna en una trayectoria denominada trayectoria de regreso libre, la cual permite a la nave pasar orbitando por detrás de la Luna y volver a la Tierra sin que sea necesario efectuar un encendido de motor.
El cuarto punto crítico de la misión es la ejecución de una maniobra conocida como inserción en órbita lunar o LOI. La trayectoria de regreso libre es útil cuando hay problemas al efectuar la LOI. Esta maniobra se realiza en la cara oculta de la Luna cuando no hay comunicación posible con Houston y consiste en un encendido de motor para efectuar una frenada y colocarse así en órbita lunar.
Desde tres inyectores distintos, comienzan a salir tres productos químicos distintos para mezclarse en la cámara de combustión e iniciar el frenado denominado frenado hipergólico. Estos tres productos, (hidracina, dimetilhidrazina y tetróxido de nitrógeno), se llaman hipergólicos por su tendencia a detonar siempre que se mezclan. A diferencia de los combustibles sólidos, los criogénicos o el keroseno, que necesitan una chispa o fuente de calor para iniciar su ignición, el combustible hipergólico lo hace espontáneamente al mezclarse los productos entre sí, sin necesidad de energía de activación. Este combustible es empleado por el Apolo 11 para todas sus maniobras una vez ha desechado la tercera etapa que utiliza combustible criogénico (LOX y LH2).
El motor funciona durante cuatro minutos y medio, y luego se apaga automáticamente. El comandante Neil Armstrong verifica en el panel de control del módulo de mando la lectura de Delta-v que se refiere al cambio de velocidad y observa que el frenado hipergólico ha situado al Apolo 11 a una velocidad correcta para abandonar la trayectoria de regreso libre y situarse en órbita lunar. También comprueba las lecturas del pericintio; esto es, el máximo acercamiento a la superficie lunar, y el apocintio, que es el máximo alejamiento. Las lecturas indicaban que el Apolo 11 orbitaba la Luna con un pericintio de 110 km y un apocintio de 313 km. En un par de revoluciones ajustarán la órbita hasta convertirla en una circunferencia casi perfecta. Poco más de media hora después de desaparecer por el hemisferio oculto del satélite, las comunicaciones con Houston se restablecen y la tripulación confirma que el Apolo 11 se encuentra orbitando la Luna.
«El Águila ha alunizado»
El Eagle se acerca al Columbia.
El comandante Neil Armstrong y el piloto del LEM Buzz Aldrin pasan del módulo de mando al LEM. Completada la decimotercera órbita lunar y cuando están en la cara oculta con las comunicaciones con Houston interrumpidas, Mike Collins, piloto del Columbia, acciona el mecanismo de desconexión y el Eagle comienza a separarse de su compañero de viaje. Con unos cuantos disparos de los propulsores de posición, el Columbia se retira, permitiendo al Eagle realizar la complicada maniobra de descenso hacia la superficie lunar. Esta maniobra comienza con un encendido de quince segundos con el motor trabajando al 10 %, seguido de quince segundos más al 40 %. Con este encendido consiguen abandonar la órbita de la Luna e iniciar una lenta caída hacia la superficie.
El LEM sigue ahora una trayectoria de Hohmann casi perfecta y en unos cuantos minutos llegan a la vertical del lugar previsto para el alunizaje. A quince kilómetros de la superficie, control de misión indica que todo está listo para la maniobra de descenso final o PDI, consistente en activar por segunda vez el motor del LEM.
Todos los sistemas funcionan con normalidad. Neil Armstrong dispara una corta ráfaga de impulsos con los propulsores de posición para realizar un proceso que se repite en todos los encendidos hipergólicos. Los propulsores de posición son accionados para empujar el combustible hipergólico al fondo del depósito y así eliminar burbujas o bolsas de aire en un proceso llamado merma. Tres segundos después el motor principal del LEM entra en ignición y este funciona al 10% durante veintiséis segundos mientras el sistema de control automático estabiliza correctamente la nave. Después el motor del LEM despliega toda su potencia.
Alunizaje del Apolo 11 en la Luna
El ordenador trabaja ahora según su programa 63 que es el modo totalmente automático. Siete minutos después de iniciada la secuencia de descenso y a una altura aproximada de seis kilómetros de la superficie, Neil Armstrong introduce en el ordenador el programa número 64. Con este programa, el empuje del motor desciende hasta un 57 % y el LEM se sitúa en posición horizontal respecto a la superficie de la Luna. El sitio exacto de alunizaje se encuentra a menos de veinte kilómetros al Oeste. Aproximadamente en esos momentos, el oficial de guiado comunica al director de vuelo que el LEM viaja a más velocidad de la programada. Este hecho podía causar el aborto del alunizaje pero el director de vuelo decide seguir con los procedimientos de alunizaje.
Debido a esto el LEM sobrepasa el lugar donde debería haber alunizado. Al parecer, el ordenador les está conduciendo hacia un gran cráter con rocas esparcidas a su alrededor que causarían serios daños al módulo si el alunizaje se produjese en esa zona. Armstrong desconecta el programa 64 e introduce el 66. Este programa de control semiautomático controla el empuje del motor pero deja en manos de la tripulación el movimiento de traslación lateral del LEM. El comandante desliza el módulo lunar en horizontal por la superficie buscando un lugar adecuado para el alunizaje mientras Aldrin le va leyendo los datos del radar y el ordenador. El LEM pierde altura gradualmente. A menos de dos metros de la superficie, una de las tres varillas sensoras que cuelgan de las patas del LEM, toca el suelo.
El Eagle recorre el último metro en una suave caída gracias a la débil gravedad lunar. El terreno ha resistido bien el peso del aparato y todos los sistemas funcionan.
Houston…aquí base Tranquilidad, el Águila ha alunizado
En Houston son las 15:17 del 20 de julio de 1969 (las 20:17:39 UTC5). El Eagle está posado sobre la superficie del satélite. En el momento del contacto el motor de descenso posee solo unos 30 segundos de combustible restante, alunizando a 38 m de un cráter de 24 m de diámetro y varios de profundidad.
Un gran salto
Neil Armstrong desciende a la superficie lunar para convertirse en el primer ser humano en lograrlo
Al sur del Mare Tranquilitatis y a unos noventa kilómetros al este de dos cráteres casi gemelos denominados Ritter y Sabine, concretamente en las coordenadas 0º40’27” Norte y 23º28’23” Este; es donde se halla en estos momentos la base lunar, denominada Tranquillitatis Statio, consistente en el LEM y su tripulación. Realizadas las comprobaciones pertinentes, Armstrong solicita permiso para efectuar los preparativos de la primera actividad extravehicular o EVA. Houston lo autoriza.
Grabación de la famosa frase que pronunció Armstrong al pisar la luna por primera vez: «It’s one small step for [a] man, one giant leap for mankind» (Un pequeño paso para un hombre,un gran salto para la humanidad).
La única posibilidad de peligro para la misión era la sonda automática soviética Luna 15, que, lanzada el 13 de julio, había estado en órbita lunar de 100 por 129 km y 25º de inclinación y corría riesgo de interferir en la órbita del Apolo, que era de 112 por 314 km y posteriormente de 99,4 por 121 km y 78º de inclinación. La misión de esta sonda era el alunizaje suave y recogida de muestras que luego enviaría de forma automática a la Tierra.
Seis horas y media después del alunizaje, los astronautas están preparados para salir del LEM. El primero en hacerlo es Armstrong, quien mientras desciende por las escaleras activa la cámara de televisión que retransmitirá imágenes a todo el mundo. Una vez hecho esto, describe a Houston lo que ve, y al pisar el suelo a las 2:56 del 21 de julio de 1969 (hora internacional UTC), dice la famosa frase: “Un pequeño paso para un hombre, un gran salto para la Humanidad”.
Aldrin saluda la bandera
Huella del astronauta Buzz Aldrin.
El reloj de Houston señala las 22:56. En un primer momento por seguridad los astronautas iban unidos a un cordón enganchado al LEM. Al ver que no corrían ningún peligro se deshicieron de él. Armstrong toma fotografías del paisaje aledaño y más tarde toma muestras del suelo lunar. Entretanto Buzz Aldrin se prepara para salir del LEM de la misma manera que su comandante, el segundo de a bordo baja por la escala, contempla a su alrededor y a continuación intercambian:
Armstrong: Una vista magnífica ahí fuera.
Los astronautas se percatan de la baja gravedad y comienzan a realizar las tareas que les han encomendado, instalar los aparatos del ALSEP, descubrir una placa con una inscripción que conmemora la efeméride, después el comandante instala una cámara de televisión sobre un trípode a veinte metros del LEM. Mientras tanto Aldrin instala un detector de partículas nucleares emitidas por el Sol, esto es una especie de cinta metalizada sobre la que incide el viento solar que posteriormente deberán trasladar al LEM para poder analizarla en la Tierra al término de la misión. Más tarde ambos despliegan una bandera estadounidense, no sin cierta dificultad para clavarla en el suelo selenita e inician una conversación telefónica con el presidente de los Estados Unidos Richard Nixon:
Hola Neil y “Buzz”’, les estoy hablando por teléfono desde el Despacho Oval de la Casa Blanca y seguramente ésta sea la llamada telefónica más importante jamás hecha, porque gracias a lo que han conseguido, desde ahora el cielo forma parte del mundo de los hombres y como nos hablan desde el Mar de la Tranquilidad, ello nos recuerda que tenemos que duplicar los esfuerzos para traer la paz y la tranquilidad a la Tierra. En este momento único en la historia del mundo, todos los pueblos de la Tierra forman uno solo. Lo que han hecho los enorgullece y rezamos para que vuelvan sanos y salvos a la Tierra.
Armstrong contesta al presidente:
Gracias, señor presidente, para nosotros es un honor y un privilegio estar aquí. Representamos no solo a los Estados Unidos, sino también a los hombres de paz de todos los países. Es una visión de futuro. Es un honor para nosotros participar en esta misión hoy.
El astronauta Buzz Aldrin en la superficie lunar con el módulo lunar (LM) Eagle durante la actividad extravehicular del Apolo 11 (EVA)
Fotografía de Buzz Aldrin por Neil Amstrong tomada con una cámara de 70 mm.
Por último instalan a pocos metros del LEM un sismómetro para conocer la actividad sísmica de la Luna y un retrorreflector de rayos láser para medir con precisión la distancia que hay hasta nuestro satélite.
Mientras esto sucede, Michael Collins sigue en órbita en el módulo de mando y servicio con un ángulo muy rasante. Cada paso en órbita, de un horizonte a otro, sólo dura seis minutos y medio pero desde semejante altura no es capaz de ver a sus compañeros. Cada dos horas ve cómo cambia la Luna y también observa cómo orbita debajo de su cápsula la sonda soviética Luna 15 en dos ocasiones.
La EVA dura más de 2 horas, durante las cuales los astronautas realizan importantes experimentos científicos: instalan un ALSEP con varios experimentos, una bandera estadounidense de 100 por 52 cm, dejan un disco con los mensajes y saludos de varias naciones del mundo, las medallas recibidas de las familias de Yuri Gagarin y Vladímir Komarov, las insignias del Apolo en recuerdo de Virgil Grissom, Edward White y Roger Chaffee, fallecidos en el incendio de la nave Apolo 1, sellan con un tampón el primer ejemplar del nuevo sello de correos de 10 centavos y recogen 22 kg de rocas lunares.
Los aparatos que han llevado son: un reflector láser con más de 100 prismas de cristal destinado a efectuar mediciones desde nuestro planeta de la distancia Tierra-Luna, un sismómetro para registrar terremotos lunares y la caída de meteoritos, así como una pantalla de aluminio de 15 por 3 dm destinada a recoger partículas del viento solar.
El primero en regresar al módulo lunar es Aldrin, al que sigue Armstrong. Después los dos astronautas duermen durante 4:20 h.
Después de 13 horas se produce el despegue. El motor de la etapa de ascenso entra en ignición abandonando su sección inferior en la superficie, y se dirige hacia el Columbia
A las 19:34 del 21 de julio, el módulo de ascenso se eleva desde la Luna hacia su cita con C.S.M. Siete minutos después del despegue, el Eagle entra en órbita lunar a cien kilómetros de altura y a quinientos kilómetros del Columbia. Lentamente y utilizando los propulsores de posición, se van acercando ambos vehículos hasta que tres horas y media después vuelan en formación. El comandante efectúa la maniobra final con el Eagle y gira para encararse con el Columbia. Se acerca hasta que los garfios de atraque actúan y ambos módulos quedan acoplados. El módulo de ascenso es abandonado, cayendo sobre la superficie lunar.
Regreso a casa
La cápsula en el Pacífico.
El transbordo de las muestras y la desconexión de parte de los sistemas del módulo Eagle, ocupa a la tripulación durante dos horas, y cuando se sitúan en sus puestos, se preparan para abandonar al Eagle en la órbita de la luna. A las 6:35 del 22 de julio encienden los motores del módulo iniciando el regreso a la Tierra. Es la maniobra denominada inyección trans-tierra, que consiste en un encendido hipergólico de dos minutos y medio y que sitúa al Columbia en una trayectoria de caída hacia la Tierra que concluirá en sesenta horas.
Durante el viaje de regreso se realizan leves correcciones de rumbo.
Houston les informa de que hay posibilidades de temporal en la zona prevista para el amerizaje y redirigen al Apolo 11 a una zona con tiempo estable, concretamente a 1500 km al sudoeste de las islas Hawái, donde serán recogidos en el océano Pacífico por los tripulantes del portaaviones USS Hornet, un veterano de la Segunda Guerra Mundial, tras efectuar 30 órbitas a la Luna.
Los astronautas, en cuarentena, reciben la visita del presidente Richard Nixon
Los equipos de recuperación se preparan para recoger a la tripulación del Apolo 11. A unos kilómetros por encima, el módulo de mando con la tripulación en él, se ha separado del módulo de servicio y se preparan para la reentrada. En esta parte de la misión no hacen falta motores de frenado puesto que es el rozamiento el que se encarga de disminuir la velocidad de la cápsula desde los 40 000 km/h iniciales a unos pocos cientos, de modo que puedan abrirse los paracaídas sin riesgo de rotura. Hay que tener en cuenta que la reentrada es un proceso en el que la inmensa energía cinética de la cápsula se disipa en forma de calor haciendo que esta alcance una elevadísima temperatura.
Por efecto de esta elevada temperatura, se forma una pantalla de aire ionizado que interrumpe totalmente las comunicaciones con la nave. Ésta se precipita como un meteoro sobre la atmósfera terrestre alcanzando temperaturas de 3000 °C.
Unos minutos después de la pérdida de comunicaciones, se reciben en Houston las primeras señales procedentes de la nave. A ocho kilómetros se abren los dos primeros paracaídas para estabilizar el descenso. A tres kilómetros, estos son reemplazados por tres paracaídas piloto y los tres paracaídas principales de veinticinco metros de diámetro. Por fin consiguen amerizar a las 18:50 del 24 de julio, exactamente ocho días, tres horas, 18 minutos y 35 segundos después de que el Saturno V abandonara la rampa del Complejo 39.
Esta misión fue un rotundo éxito para el gobierno estadounidense comandado por el presidente Richard Nixon, y un homenaje a su inductor, el presidente John F. Kennedy que no pudo disfrutar del mismo tras ser asesinado en 1963.
Cronología de la misión Apolo XI
- 00:00:00- despegue desde la plataforma del complejo 39 del polígono de lanzamiento de cabo Cañaveral.
- 00:02:41- separación del tramo S1C y encendido por control remoto del tramo S2.
- 00:03:17- separación de la torre de salvamento.
- 00:09:15- separación del tramo S2 y encendido por control remoto del motor S4-B. 1ª decisión Go/No go
- 00:11:53- parada del motor del tramo S4B y puesta en órbita de espera.
- 02:44:14- inicio del vuelo propulsado a la Luna. Encendido durante 307 s del motor del tramo S4B.
- 02:49:26- inicio del vuelo no propulsado en dirección a la Luna.
- 03:14:46- separación del tramo S4B.
- 03:25:00- inicio de la maniobra de extracción del L.E.M. del tramo S4B.
- 04:39:45- fin de la maniobra de extracción del L.E.M.
- 26:50:26- corrección de trayectoria; funcionamiento durante 3 s del motor del S.M. del Apolo.
- 75:54:28- puesta en órbita lunar elíptica. Encendido durante 357 s del motor del S.M.
- 80:09:30- puesta en órbita circumpolar. Encendido durante 17 s del motor del S.M.
- 100:15:00- desacoplamiento del módulo lunar del complejo Apolo.
- 101:38:48- inicio del descenso a la Luna. Encendido durante 29 s del motor de ajuste del L.E.M.
- 102:35:11- descenso hacia la Luna. Entra en funcionamiento el motor del tramo de descenso del L.E.M.
- 102:47:03- alunizaje en el Mar de la Tranquilidad a 0º42’50″N-23º42’28″E e inicio de las actividades E.V.A.
- 124:23:21- despegue de la Luna. Entra en funcionamiento el motor del módulo de ascenso del L.E.M.
- 124:30:44- inicio de la orbitación circular del L.E.M.
- 128:00:00- maniobra de ensamblaje a 110 km entre el módulo de ascenso del L.E.M. y el complejo Apolo.
- 131:53:00- separación del L.E.M. del Apolo. Funcionamiento del motor del Apolo durante 71 s
- 135:24:34- inicio del vuelo a la Tierra. Funcionamiento durante 151 s del motor del S.M.
- 150:27:00- corrección de la trayectoria. Funcionamiento durante 10 s de los cohetes de maniobra.
- 195:03:27- consecución del nivel de repenetración en 120 km de altitud.
- 195:03:45- interrupción de las radiocomunicaciones por el recalentamiento producido por la fricción.
- 195:06:51- restablecimiento del contacto radio.
- 195:11:39- apertura de los paracaídas de estabilización.
- 195:12:17- apertura de los paracaídas principales.
- 195:19:06- amerizaje en el Océano Pacífico y recogida de la tripulación por un portaaviones de apoyo.
- 195:19:07- inicio de la cuarentena.
- 1155:19:07- fin de la cuarentena.6
Placa conmemorativa
Esta placa está colocada en una de las patas de la fase de aterrizaje del módulo lunar que todavía permanece allí. Está firmada por la tripulación del Apolo 11 (Neil Armstrong, Buzz Aldrin, Michael Collins) y por el entonces presidente de los Estados Unidos, Richard Nixon.
En inglés:
Here Men From The Planet Earth First Set Foot Upon the Moon, July 1969 A.D. We Came in Peace For All Mankind. – President of the United States of America – Richard Nixon
En español:
Aquí, unos hombres procedentes del planeta Tierra pisaron por primera vez la Luna en julio de 1969 d.C. Vinimos en paz, en nombre de toda la humanidad. – Presidente de Estados Unidos de América – Richard Nixon
Impacto social
600 millones de personas en todo el planeta presenciaron el alunizaje del Apolo 11 y en los meses consecutivos el impacto político, mediático y social fue enorme.7 La tripulación del Apolo 11 estuvo sometida a una apretada agenda de recepciones, desfiles, entrevistas y protocolo de Estado.
Galería de imágenes
Desfile en Manhattan, Nueva York, de los astronautas en agosto de 1969.
Certificado de la NASA firmado por el comandante del Apolo 11: “la insignia scout mundial fue portada a la superficie de la Luna”.
Spider Rock
Spider Rock
Los mapas de piedra antigua no descifrados con signos misteriosos pueden ser clave para el tesoro de la roca araña
Ocultos en la tierra implacable del oeste de Texas, había pistas: pistas arcaicas grabadas sobre rocas enterradas, apiladas como artefactos sobre otras pistas, o talladas en paredes de roca. Estas pistas centenarias, colocadas para llevar a los españoles de vuelta a su escondrijo, finalmente formaron una intrincada red que ha atraído a los buscadores de tesoros y los ha capturado en su misterio.
La historia que desentrañó es una increíble historia plagada de asesinatos, misterios y aventuras. Wilson no dejó piedra sin remover en su búsqueda de pistas, tejiendo su historia de numerosas entrevistas con testigos oculares, primeras publicaciones periodísticas, cartas, documentos, reconocimiento extenso de los sitios reales y finalmente los crípticos mapas de piedra que habían sido descubiertos gradualmente por los buscadores originales. .
La historia involucra a varias ciudades y condados en el oeste de Texas; incluyendo Rotan, Aspermont, Haskell, Fisher County, Stonewall County y uno de los lugares más prolíficos de la zona, Double Mountains. El cazador de tesoros perseguido fue Dave Arnold, que apareció en 1902 con un intrigante mapa de piel de oveja.
Después de meses de búsqueda, desenterró el mapa de piedra llamado Spider Rock, con su tentador diseño tipo telaraña, números romanos y arábigos, y símbolos crípticos. Cerca encontró charreteras de plata, una espada española, un crucifijo de plata y placas de cobre con una extraña tracería. En 1905, trasladó su búsqueda a un desierto a sesenta millas al sudeste, y una vez más desenterró un mapa de piedra bellamente tallado aprisionado en las raíces de un enorme roble. Todavía más tarde, moviéndose sesenta millas al oeste-noroeste, descubrió otro mapa de piedra, que mostraba los mismos círculos concéntricos y símbolos que aparecían en el primer remolque.
La extraña búsqueda de Dave Arnold se desarrolló durante una década, hasta que desapareció sin dejar rastro en 1914. La búsqueda fue renovada una década más tarde por uno de los buscadores originales. Luego, en la década de 1930, se encontraron más pistas, incluidos los pozos de fundición de crudo, pequeñas cruces de plata y estatuillas y pepitas de oro. Los primeros dos mapas de piedra y muchos de los artefactos encontrados cerca de ellos durante mucho tiempo se creyeron destruidos en un incendio de 1909 en la tienda de drogas Terrell en Haskell, Texas.
Pero la familia Terrell había guardado un secreto por casi setenta años: que muchos de esos artículos antiguos sobrevivieron. Con ellos aparecían trazados de mapas, cartas y documentos que describían una búsqueda exhaustiva. El tercer mapa de piedra apareció en Waco, donde había sido utilizado como tope de puerta durante más de medio siglo. Los españoles enterraron algo fantástico en el interior del oeste de Texas, donde extraían metales preciosos. Marcaron esos sitios por un ingenioso método de tallar símbolos codificados, direcciones, grados y distancias en piedra.
Hasta el día de hoy, los mapas de piedra permanecen sin descifrar, el antiguo rompecabezas no ha sido resuelto y el tesoro no encontrado, por lo que sabemos.
¿Alguna vez se ha encontrado el tesoro de la Roca Araña? ¿Pueden algunos mapas antiguos de piedra sin descifrar, llenos de signos misteriosos y extraños, señalar la ubicación de este tesoro legendario bien escondido?
La extraña roca fue descubierta por un hombre llamado Stewart que estaba trabajando en el legendario entierro de oro español “Spider Rock” en el país de frenos de cedro cerca del Salt Fork del río Brazos en el condado de Stonewall. El mapa de Spider Rock fue desenterrado por un grupo de cazadores de tesoros en 1908. Se hizo un plano del “mapa” ya que la misteriosa roca se ha perdido.
Steve Wilson, autor del libro The Spider Rock Treasure: A Texas Mystery of Lost Spanish Gold ha realizado una investigación exhaustiva sobre el tesoro de la Roca Araña.
En un artículo publicado el 13 de octubre de 1963 por Wichita Falls Times, escribió lo siguiente: “Un mapa del tesoro español encontrado por un cazador de Oklahoma en el condado de Stonewall, Texas hace algunos años ha sido problemático para algunos de los mejores tesoros investigadores en el área del norte de Texas.
En algún momento entre 1902 y 1910 tres piedras misteriosas fueron descubiertas en tres condados diferentes del centro de Texas por Dave M. Arnold y los propietarios de tierras locales. Los tres descubrimientos provocaron una extensa búsqueda del tesoro. Cada piedra tenía símbolos jeroglíficos que aún no han sido descifrados por completo, incluso en esta fecha tardía.
El mapa de Spider Rock fue desenterrado por un grupo de cazadores de tesoros en 1908. Se hizo un plano del “mapa” ya que la misteriosa roca se ha perdido.
De todos los cuentos del tesoro español en el área del norte de Texas, la historia de Spider Rock es probablemente la más auténtica debido al hallazgo del mapa enterrado, el número de reliquias y los antiguos sitios de fundición. Muchas de las pistas del mapa presentado han sido descubiertas y algunos de los tesoros reputados incluso encontrados.
Sin embargo, desde el descubrimiento de la Roca Araña, el segundo mapa grabado en piedra encontrado en el condado de Stonewall ha suscitado muchas preguntas.
No sabemos qué representan las tres piedras (las tres rocas araña), que se encuentran en el centro de Texas. No sabemos quién esculpió los intrincados símbolos representados en ellos, ni tampoco sabemos por qué alguien cortaba réplicas de dos de los mapas de piedra (el mapa de Clyde y el mapa de Aspermont) en un disco de apenas un octavo de pulgada de grosor y uno y tres cuartos de pulgadas de diámetro, luego suelto o colóquelo en el lado este de Kiowa Peak (para centruies un hito histórico para los viajeros). Posiblemente todo es un engaño, pero sin duda habría llevado una cantidad considerable de tiempo para que un individuo o individuos lo conciban y lo lleven a cabo. Tal vez haya encontrado un artefacto de piedra o metal, haya localizado un documento o haya resuelto una parte de este misterioso misterio de Texas.
Acoplamiento de naves, intercambio de astronautas
Soyuz 4 y Soyuz 5
Primer pilotaje acoplado en el espacio, intercambio de astronautas
En 1969, dos naves espaciales construidas por los soviéticos se reunieron en el espacio, atracaron entre sí y formaron lo que se denominó “la primera estación espacial del mundo” con una tripulación de cuatro personas a bordo. El permaneció atracado durante cuatro horas y media, tres órbitas de la Tierra. Durante ese tiempo, el espacio de dos cosmonautas caminó ‘de Soyuz 4 a Soyuz 5, convirtiéndose en los primeros astronautas en regresar a la Tierra en una nave espacial diferente de aquella en la que entraron en el espacio. No fue sino hasta 1978 que esto se repitió, cuando la tripulación Soyuz 27 regresó a la Tierra desde Salyut 6 a bordo del Soyuz 26.
La maniobra de atraque Soyuz 4 / Soyuz 5 se había practicado dos veces, en 1967 y 1968. En cada ocasión, un par de naves Soyuz se acoplaron bajo control totalmente automático. En octubre de 1967, fue el turno de Cosmos 186 y Cosmos 188, y en la primavera de 1968, Cosmos 212 y Cosmos 213 repitieron el ejercicio. Más tarde en el mismo año, Soyuz 2 y Soyuz 3 se acercaron pero no completaron el acoplamiento.
Estas misiones siguieron a la muerte en abril de 1967 del cosmonauta Vladimir Komarov, quien orbitó la Tierra en una Soyuz mal preparada. Los tecnólogos soviéticos necesitaban continuar con el desarrollo de Soyuz, pero al mismo tiempo, no habían sido calificados para las operaciones de la tripulación a raíz de Soyuz 1, de ahí los vuelos del Cosmos.
A fines de 1968, Georgi Beregovoi había pilotado Soyuz 3 a una cita con Soyuz 2 (que no tenía tripulación) en un check-out final de Soyuz antes de reanudar un programa completo de misiones. Un intento de atraque no fue posible cuando Beregovoi se acercó a Soyuz 2 en una orientación incorrecta.
Gran parte del texto en las siguientes secciones es el publicado por la agencia de prensa Novosti en el momento de la misión y fue traducido por Novosti de la versión original en ruso.
Soyuz 4 Mission Statistics
Lanzado: 1969 14 de enero, 07:30 UTC desde el cosmódromo de Baikonur
Vehículo de lanzamiento: Soyuz 7K-OK
Lanzadera: Baikonur 31/6
Número de tripulantes: 1 (3 en el regreso)
Duración de la misión: 2,97 días
Número de órbitas: 48
Masa: 6625 kilogramos
Orbit Perigee: 205 km
Órbita Apogee: 223 km
Periodo orbital: 88.7 minutos
Inclinación orbital: 51.7 grados
Aterrizado: 1969 17 de enero, 06:51 UTC
Soyuz 5 Mission Statistics
Lanzado: 1969 15 de enero, 07:05 UTC del cosmódromo de Baikonur
Vehículo de lanzamiento: Soyuz
Masa: 6585 kilogramos
Orbit Perigee: 210 km
Órbita Apogee: 233 km
Periodo orbital: 88.9 minutos
Inclinación orbital: 51.7 grados
Modelo de la Soyuz 4 y la Soyuz 5 después de realizar el primer acoplamiento de dos naves espaciales tripuladas el 16 de enero de 1969
Soyuz 4 fue una misión tripulada de una nave Soyuz 7K-OK lanzada el 14 de enero de 1969 desde el cosmódromo de Baikonur tras un retraso de un día, con el cosmonauta Vladímir Shatálov a bordo. Al final de la misión, y tras haberse acoplado con la Soyuz 5, la Soyuz 4 regresó con tres cosmonautas a tierra. Durante el primer intento descubrió, justo antes del lanzamiento, que el encendido de la cámara de televisión del interior de la nave cortaba las comunicaciones por radio y que la plataforma giroscópica de la Soyuz no funcionaba correctamente. Se decidió la reparación de la plataforma giroscópica, lo que llevó tres horas, pero el retraso implicaba que la reentrada, al final de la misión, se haría de noche sobre territorio soviético, lo cual fue considerado demasiado inseguro, procediéndose a la cancelación del lanzamiento ese día. Al día siguiente, 14 de enero, todos los sistemas funcionaron perfectamente, incluyendo la plataforma giroscópica y el sistema de televisión y radio.
La misión de Soyuz 4 se acopló con la Soyuz 5 (lanzada con tres cosmonautas a bordo) y luego se realizó el primer intercambio de tripulación en órbita de la historia. La transferencia de tripulación se realizó desde la Soyuz 5 a la Soyuz 4. También se realizaron diversos experimentos biológicos y tecnológicos.
Soyuz 4 y 5 tripulantes (desde la izquierda) Alexei Yeliseyev, Yevgeni Khrunov, Vladimir Shatalov y Boris Volynov. Crédito de la foto: Joachim Becker / SpaceFacts.de
La Soyuz 4 reentró el 17 de enero de 1969 y fue recuperada sin problemas.
Tripulación
Durante el lanzamiento:
- Vladímir Shatálov (Comandante)
En el aterrizaje:
- Vladímir Shatálov (Comandante)
- Aleksei Yeliseyev (Ingeniero de vuelo)
- Yevgueni Jrunov (Especialista científico)
Tripulación de respaldo
Tripulación de reserva
Caminata espacial
- Yeliseyev and Khrunov – EVA 1
- EVA 1 comienzo: Enero 16, 1969, 12:43:00 UTC
- EVA 1 fin: Enero 16 13:15 UTC
- Duración: 37 minutos
Puntos destacados
Las naves espaciales Soyuz 4 y 5 atracaron el 16 de enero, la primera vez que dos naves espaciales tripuladas atracaron (el Apolo 9 haría lo mismo en marzo del mismo año). Las dos embarcaciones solo tenían una sonda primitiva (Soyuz 4) y un ensamblaje de acoplamiento drogue (Soyuz 5). Todavía no se había desarrollado un túnel de conexión para el mecanismo de acoplamiento, lo que impedía una simple transferencia interna entre la nave. Esto requirió que los dos cosmonautas transfirieran a la caminata espacial de un vehículo a otro. A bordo de Soyuz 5, Yevgueni Jrunov y Aleksei Yeliseyev comenzaron inmediatamente a prepararse para su actividad extravehicular (EVA). Boris Volynov, que permanecería a bordo de Soyuz 5, los filmó vistiendo sus trajes espaciales Yastreb.
En su 35ª revolución de la Tierra, los dos cosmonautas salieron de la nave espacial para la segunda caminata espacial soviética. Una de las líneas de Khrunov se enredó y accidentalmente cerró el vaso del ventilador de su traje. Esto distrajo a Yeliseyev que no configuró la cámara de película en el módulo orbital antes de salir de la nave espacial. Como tal, no hay película del EVA histórico, solo una transmisión de vídeo de baja calidad.
Una hora más tarde, los dos fueron recibidos por Shatálov después de la represurización del módulo orbital Soyuz 4, que también actuó como una cámara estanca. Soyuz 4 y 5 se separaron después de 4 horas y 35 minutos atracados juntos. Soyuz 4 reingresó a la atmósfera y aterrizó a 100 kilómetros al suroeste de Karaganda el 17 de enero de 1969.
La misión demostró que era posible llevar a cabo las actividades que serían necesarias en un aterrizaje lunar soviético. El plan soviético exigía que un cosmonauta en solitario aterrizara en la luna, regresara a la órbita lunar y luego realizara un paseo espacial desde la nave de aterrizaje hasta la nave espacial en órbita después de atracar. Esto se debió a que no había un túnel interno entre las dos embarcaciones como sí se dispuso entre la nave Apolo CSM y el Módulo Lunar según el diseño de los estadounidenses.
La tripulación debía encontrarse con Leonid Brézhnev durante una fastuosa ceremonia en el Kremlin, pero esto fue evitado por un intento de asesinato del líder soviético. Un hombre disparó ocho veces sobre la caravana de vehículos pero apuntó al automóvil que contenía a Georgi Beregovoi, Alexei Leonov, Andrian Nikolayev y Valentina Tereshkova. Salieron ilesos, pero el coche de Brezhnev se vio obligado a dirigirse a un lugar distinto del que era esperado por las tripulaciones de los Soyuz 4/5.
Detalles de la EVA
La misión de atraque tenía objetivos de EVA similares a los planeados para el Apolo 9. Soyuz 4 se lanzó primero, y fue el vehículo activo en el acoplamiento con Soyuz 5. La agencia de noticias TASS declaró que: “se produjo un acoplamiento mecánico mutuo de las dos naves, y sus circuitos eléctricos quedaron conectados. Por lo tanto, la primera estación cósmica experimental del mundo con cuatro compartimentos para la tripulación se ensambló y comenzó a funcionar”. La misión ensayó elementos del plan de misión lunar tripulada de los soviéticos. La televisión de Moscú llevó en vivo los preparativos de EVA de los cosmonautas. Khrunov y Yeliseyev se pusieron sus trajes Yastreb (“halcón”) en el módulo orbital Soyuz 5 con la ayuda del comandante Boris Volynov.
El diseño del traje Yastreb comenzó en 1965, poco después de la difícil EVA de Alexei Leonov, quien actuó como consultor para el proceso de diseño, que se completó en 1966. La fabricación y prueba del traje se produjo en 1967, pero el fatal accidente del Soyuz 1 en abril de ese año y las dificultades de acoplamiento en la misión conjunta Soyuz 2-Soyuz 3 retrasaron su uso en el espacio hasta Soyuz 4-Soyuz 5.
Para evitar que el traje se hinchara, el Yastreb presentaba un sistema de articulación de poleas y cables. Anillos anchos de metal alrededor de la parte superior de la pieza inferior de lona de nailon gris sirvieron como anclajes para el sistema de articulación de la parte superior del cuerpo. El Yastreb tenía un sistema de soporte de vida regenerativo en una caja rectangular de metal blanco colocada en el pecho y el abdomen para facilitar el movimiento a través de las escotillas Soyuz.
Volynov revisó los sistemas de comunicaciones y soporte de vida de Khrunov y Yeliseyev antes de volver al módulo de descenso, sellar la escotilla y despresurizar el módulo orbital. Khrunov salió primero, pasando al módulo orbital Soyuz 4 mientras la nave espacial atracada estaba fuera de contacto por radio con la Unión Soviética sobre Sudamérica. Yeliseyev pasó de un módulo a otro mientras la nave espacial estaba sobre la Unión Soviética. Cerraron la escotilla del módulo orbital Soyuz 4 detrás de ellos, a continuación el Comandante de la Soyuz 4, Vladímir Shatálov, cerró el módulo orbital y entró para ayudar a Khrunov y a Yeliseyev a salir de sus trajes. Los caminantes espaciales entregaron periódicos, cartas y telegramas impresos después de que Shatálov despegó para contribuir a probar que la transferencia se llevó a cabo.
Atraque de Soyuz-4 y Soyuz-5. Fuente: moluch.ru
Concepto del artista de la transferencia de EVA de los cosmonautas Yevgeni Khrunov y Alexei Yeliseyev de Soyuz 5 a Soyuz 4 en enero de 1969. Crédito de la imagen: Orbiter-Forum
Desde su primer vuelo piloto en abril de 1967, Soyuz ha demostrado ser el caballo de batalla de los programas espaciales humanos soviéticos y rusos. Uno de sus objetivos originales era realizar encuentros y atraque en órbita, como lo demostró la misión conjunta Soyuz 4/5. Crédito de la foto: Roscosmos
Soyuz 4 comienza su ascenso hacia el cielo, llevando un cosmonauta único, Vladimir Shatalov. Crédito de la foto: Joachim Becker / SpaceFacts.de
Yevgeni Khrunov (izquierda) y Alexei Yeliseyev revisan sus trajes espaciales Yastreb (“Halcón”) durante un ejercicio simulado de EVA. Crédito de la foto: Joachim Becker / SpaceFacts.de
La recuperación de Soyuz 4, con los tripulantes Vladimir Shatalov, Yevgeni Khrunov y Alexei Yeliseyev, marcó el primer aterrizaje seguro de la misión conjunta… y atrajo a los controladores de misión a la falsa suposición de que el propio descenso de Soyuz 5, un día después, sería una caminata en el parque. El destino, sin embargo, tenía otra carta para jugar. Crédito de la foto: Joachim Becker / SpaceFacts.de
La odisea del descenso
Por Ben Evans, el 4 de enero de 2014
Cuatro horas y 35 minutos después del atraque, las dos naves espaciales se separaron y Volynov disparó sus propulsores para alejarse. A la mañana siguiente, Shatalov inició la reentrada y él, Yeliseyev y Khrunov descendieron a través de una ventisca invernal y golpearon la nevosa estepa kazaja a las 9:53 a.m., al suroeste de la ciudad minera de Karaganda. Shatalov, cuya actuación durante el encuentro y el acoplamiento se describió más tarde como ejemplar, se convirtió en el primer cosmonauta en mantener un comentario continuo durante la caída balística a la Tierra, utilizando una antena VHF incrustada en la escotilla del módulo de descenso.
A pesar de todas las dudas sobre la validez de los reclamos de la “estación espacial”, Soyuz 4/5 se convirtió en el primer vuelo tripulado para intercambiar tripulantes en órbita. En el momento del aterrizaje, Shatalov había pasado un poco menos de tres días en el espacio, mientras Yeliseyev y Khrunov concluían misiones de casi 48 horas cada una. A pesar de aterrizar en una ventisca, con 24-30 pulgadas de nieve en el suelo y temperaturas de -37 ° C, los tres hombres estaban a salvo y fueron recogidos en helicóptero en cuestión de minutos. Sin embargo, los peligros de su aterrizaje palidecerían en comparación con el trauma sufrido por Boris Volynov durante su regreso a la Tierra temprano al día siguiente.
De hecho, tan desgarradora era la historia del regreso de Volynov -y tan cerca estaba de su desacuerdo con la muerte- que pasarían casi tres décadas antes de que Occidente supiera nada al respecto. Incluso los más cercanos al programa espacial soviético, incluido el diseñador jefe Vasili Mishin, fueron tomados totalmente en cuenta cuando se presentó la perspectiva de un desastre de reentrada de proporciones parecidas a las de Columbia. La euforia que rodeaba el aterrizaje seguro de Soyuz 4 había dado paso a una sensación errónea de que el regreso de Volynov a la Tierra sería un paseo por el parque. Poco después de que Mishin llegara a la sala de control de Eupatoria, en Crimea, alrededor de las 8 a. M. Del 18 de enero de 1969, aparentemente todavía con resaca de las festividades de la noche anterior, él y todos los demás se encontraron cara a cara con una dura realidad: que el vuelo espacial de ninguna manera rutina.
La principal preocupación de la mañana fueron las condiciones anticiclónicas en el sitio de aterrizaje, junto con temperaturas frías que rondan los -35 ° C. El plan requería que Volynov orientara manualmente a Soyuz 5 para retroceder y realizara su aterrizaje a las 9:30 a.m. hora de Moscú. Después de ensayar los pasos para este procedimiento durante su órbita final, informó que no podía hacerlo dentro de los nueve minutos asignados. Sin embargo, le dijeron que lo intentara. También se proporcionaron comandos para un segundo retrofire automático, en caso de que fallara el esfuerzo manual. El tiempo de retrofire previsto llegó a las 8:48 a.m., pero, ocho minutos más tarde, Volynov informó que no había podido completar la orientación de forma manual y que los controladores estaban preparados para enlazar los comandos para una grabación automática en la siguiente órbita. Parecería que las condiciones climáticas en el terreno también contribuyeron a la demora.
La reentrada finalmente se puso en marcha muy por encima del Golfo de Guinea a las 10:26 a.m., pero, escribieron Rex Hall y Dave Shayler en su libro Soyuz: A Universal Spacecraft, pronto se hizo alarmantemente claro “que la nave espacial… estaba cayendo violentamente. “Habiendo perdido a Vladimir Komarov durante un fallido regreso a la Tierra dos años antes, era obvio para el personal de Eupatoria que otro cosmonauta podría muy pronto ser víctima de los peligros del vuelo espacial. Lo que no se sabía en ese momento, sin embargo, era que a medida que comenzaba el reingreso, el módulo de instrumentos de la Soyuz 5 todavía estaba conectado de forma segura a su módulo de descenso.
Para Volynov, las implicaciones de esto fueron potencialmente catastróficas.
En circunstancias normales, seis segundos después de la retroadaptación, una serie de pirotecnia debería haber separado los dos, permitiendo que el módulo de descenso en forma de campana adopte su orientación de reingreso correcta, con la base fuertemente protegida orientada en la dirección de desplazamiento para proteger a Volynov de la peor parte del calor de fricción a 5.000 ° C. Por esta razón, la base estaba recubierta con un material de ablación de seis pulgadas de espesor, la mitad de la cual fue diseñada para carbonizarse, fundirse y desprenderse durante la reentrada, protegiendo el módulo de descenso del flujo de calor. Desafortunadamente, la media hora final de Soyuz 5 estaba lejos de ser normal.
Con el módulo de instrumentos todavía en su lugar, se cubrió el escudo térmico de la base, incapaz de cumplir su propósito, y, lo que es peor, la nave espacial combinada se vio obligada a adoptar la orientación más estable aerodinámicamente con el “domo” del módulo de descenso pesado y su delgada escotilla está orientada hacia la dirección de desplazamiento y está a punto de sentir toda la fuerza de un reingreso hipersónico abrasador. A diferencia de la base, la parte superior del módulo de descenso estaba cubierta con solo una pulgada de ablador. Dado que se predijo que el calor de la reentrada se dispersaría al menos tres veces desde la base, una reentrada en esta actitud probablemente terminaría en una catástrofe.
A las 10:32 am, el analista de radio de Estocolmo Sven Grahn y su colega Chris Wood, con sede en Fiji, notaron que las señales de comunicaciones de onda corta de Soyuz 5 se habían detenido abruptamente; un instante “normalmente se supone que es el momento de la separación del módulo del instrumento, y con toda probabilidad fue el momento en que se dispararon los piros de separación”. En su sitio web, http://www.svengrahn.pp.se, Grahn señaló que las conexiones eléctricas se habían separado entre los módulos orbital e instrumental… pero no sus conexiones mecánicas. A bordo del Soyuz 5, Volynov escuchó el fuego de la pirotecnia, pero se quedó atónito cuando miró por la ventana para ver los paneles solares y las antenas de látigo del módulo del instrumento aún conectado. Según Grahn, el cosmonauta informó lo que vio “a través de un canal de radio codificado” a los controladores de tierra. Esto probablemente se hizo en onda corta, ya que estaba fuera del rango de VHF con la Unión Soviética en ese momento.
Cuando se dieron cuenta de lo que había pasado, o más exactamente, de lo que no había sucedido, varios controladores de vuelo enterraron sus rostros en sus manos. Un oficial se quitó la gorra, dejó caer tres rublos en ella y la pasó a lo largo de la línea; en cuestión de minutos, se había llenado de monedas para la joven familia de Volynov. El cosmonauta estaba cayendo en picado de regreso a la Tierra, con la nariz en primer lugar, con la parte menos protegida de su nave expuesta a la mayor tensión térmica. Además, estuvo expuesto a fuerzas G en exceso de nueve veces su carga terrestre normal. Contra tan abrumadoras probabilidades, parecía que el destino de Boris Volynov estaba sellado.
No fue sino hasta 1996, casi tres décadas después del evento, que finalmente pudo hablar públicamente sobre lo que sucedió durante esa terrorífica media hora final. En lugar de ser empujado hacia su sofá, como era de esperar en una reentrada normal, con base en la base, Volynov fue “tirado” contra sus arneses. Sin embargo, logró repetir “sin pánico, sin pánico” una y otra vez. En lo que supuso que serían los minutos finales de su vida, continuó informando su estado en una grabadora de voz a bordo e incluso arrancó las últimas páginas de su cuaderno de citas, metiéndolas en sus bolsillos, con la vana esperanza de que de alguna manera podría escapar a la incineración.
Desde su sillón, solo podía mirar impotente cómo las lenguas de fuego lamían las ventanas del módulo de descenso y barrían la cabaña. La delgada escotilla, directamente delante de sus ojos, visiblemente abultada hacia adentro bajo el tremendo calor y presión. Todo el propulsor de peróxido de hidrógeno de Soyuz 5 se había gastado poco después del inicio de la reentrada, cuando los sistemas automatizados lucharon infructuosamente para orientar el módulo de descenso. Poco a poco, el intenso calor, un calor que Volynov, vestido solo con una ligera prenda de vuelo en lugar de un traje presurizado, podía sentir físicamente, comenzó a derretir las juntas que sellaban la escotilla y la cabina comenzó a llenarse de vapores nocivos. Escuchó claramente un rugido cuando los tanques de propulsor en el módulo del instrumento explotaron, junto con un sonido de trituración prolongado e inquietante a medida que las tensiones de la desaceleración pasaban factura a la configuración inusual.
“A pesar de todo”, escribió Asif Siddiqi en Challenge to Apollo , “hubo momentos terroríficos. Una vez, hubo un fuerte aplauso, lo que indica que los tanques de propulsante … se habían reventado con tanta fuerza que la escotilla de la tripulación fue forzada hacia adentro y luego hacia arriba como el fondo de una lata … “
Por fin, afortunadamente, los puntales que sostenían el módulo del instrumento se cortaron, y los dos módulos se separaron y el centro de masa del módulo de descenso provocó que asumiera una orientación de base. Cayó violentamente mientras caía balístico. El descenso terminó a las 11:08 a.m. con un touchdown cerca de Orenburg, a cientos de millas fuera del objetivo, en las nevadas montañas Urales.
A pesar de haber soportado y sobrevivido a una de las entradas más aterradoras del programa espacial, la experiencia del cosmonauta no había terminado. El daño causado por el calor y la caída de las líneas del paracaídas de Soyuz 5 se enredaron y, como resultado, sus toldos se inflaron solo parcialmente. Además, uno de los cohetes de aterrizaje suave de combustible sólido en la base del módulo no pudo disparar, lo que provocó un aterrizaje particularmente duro, tan duro, de hecho, que Volynov fue arrancado de su sillón y arrojado a través de la cabina, rompiéndose varios dientes. Como el ruido y la vibración de la última media hora fueron reemplazados por el silencio absoluto, la quietud y el frío amargo de una tarde de invierno en los Urales, pudo reflexionar sobre la suerte que tenía de estar vivo.
La temperatura exterior estaba cerca de los -40 ° C, y las superficies metálicas sobrecalentadas de la nave espacial ahora silbaban en la nieve. Volynov sabía que estaba lejos de su lugar de aterrizaje planeado y tendría que esperar varias horas para rescatarlo. Por otro lado, pasar horas en Soyuz 5 en condiciones bajo cero significaría una muerte segura. Salió a la calle y, escupiendo sangre y dientes en la nieve, se dirigió hacia una distante columna de humo hasta llegar a la casa de un campesino, donde se refugió, sabiendo que el grupo de rescate encontraría la nave espacial, y luego sigue las “huellas” de sus huellas de botas y sangre.
A través de la boca llena de dientes rotos, el traumatizado Volynov solo tenía cuatro palabras para ellos: “¿Se me pone gris el pelo?”
Esto es parte de una serie de artículos de historia, que aparecerán cada fin de semana, salvo las principales noticias. El artículo de la próxima semana se centrará en STS-61C, el vuelo “Misión Imposible” del transbordador espacial Columbia, unas semanas antes de la tragedia del Challenger… una misión que estuvo cerca del desastre.
Sonda atmosférica a Venus
Venera 5
La Venera 5 (Венера 5 en ruso) fue una sonda espacial soviética lanzada el 5 de enero de 1969. Era muy similar a la Venera 4, pero más resistente. Entró en la atmósfera de Venus el 16 de mayo de 1969, transmitiendo datos a la Tierra durante 53 minutos mientras la cápsula bajaba en paracaídas. Primera sonda en entrar en la atmósfera de Venus.
El lanzamiento se llevó a cabo utilizando un cohete Molniya-M, volando desde el cosmódromo de Baikonur.
Cuando se acercó a la atmósfera de Venus, una cápsula que pesaba 405 kg y que contenía los instrumentos científicos se echó por la borda de la nave principal. Durante el descenso del satélite hacia la superficie de Venus, un paracaídas se abrió para ralentizar la velocidad de descenso. Durante 53 minutos del 16 mayo de 1969, mientras que la cápsula estaba suspendida del paracaídas, se devolvieron los datos de la atmósfera de Venus. Aterrizó a 3 ° S 18 ° E. La nave también llevaba un medallón con el escudo de armas de Estado de la URSS y un bajorrelieve de V.I. Lenin para el lado nocturno de Venus.
Dados los resultados de Venera 4, el Venera 5 y Venera 6 contenían en sus módulos de aterrizaje nuevos experimentos de análisis químico afinados para proporcionar mediciones más precisas de los componentes de la atmósfera. Sabiendo que el ambiente era muy denso, los paracaídas también se hicieron más pequeños por lo que la cápsula alcanzaría su aplastamiento completo antes de quedarse fuera de poder (como Venera 4 había hecho).
Venera 5NSSDCA/COSPAR ID: 1969-001ADescripción
Las naves Venera 5 y Venera 6 eran de idéntico diseño y se lanzaron con 5 días de diferencia en enero de 1969. La nave espacial fue diseñada para realizar mediciones in situ a medida que descendían a través de la atmósfera de Venus. Las mediciones incluyeron temperatura, presión, composición
Nave espacial y subsistemas
La nave espacial Venera 5 era muy similar a Venera 4 aunque tenía un diseño más sólido. Comprendía un autobús con una masa de 1130 kg que sostenía la sonda de descenso. La sonda era esférica con una masa de 405 kg y fue diseñada para desaceleraciones tan altas como 450 g. Venera 5 y 6 fueron diseñados con paracaídas más pequeños (15 metros cuadrados) que Venera 4 para permitir que caigan más rápido con el fin de bajar en la atmósfera mientras aún están en funcionamiento. La parte superior de la sonda sería expulsada para desplegar el paracaídas y exponer los instrumentos a la atmósfera. La sonda llevaba un radio altímetro, dos termómetros de resistencia, un barómetro aneroide, once cartuchos analizadores de gases, un densitómetro de ionización y sensores fotoeléctricos. El autobús tenía un magnetómetro, contadores de rayos cósmicos, trampas de partículas cargadas y un fotómetro ultravioleta. La nave espacial también llevaba un medallón con el escudo de armas de los Estados Unidos y un bajorrelieve de V.I. Lenin al lado de la noche de Venus.
Perfil de la misión
Venera 5 fue lanzado a una órbita de estacionamiento de la Tierra el 5 de enero de 1969 a las 06:28:08 UT y luego desde un Tyazheliy Sputnik (69-001C) hacia Venus. Después de una maniobra a mitad de camino el 14 de marzo de 1969, la sonda se liberó del autobús el 16 de mayo de 1969 a una distancia de 37,000 km de Venus. La sonda entró en la atmósfera nocturna a las 06:01 UT y cuando la velocidad se redujo a 210 m / s, se desplegó el paracaídas y comenzaron las transmisiones a la Tierra. La sonda envió lecturas cada 45 segundos durante 53 minutos antes de finalmente sucumbir a la temperatura y presión a aproximadamente 320 C, 26.1 bar, a una altitud de 24 a 26 km sobre 3 grados S, 18 grados E.
El fotómetro detectó un nivel de luz de 250 vatios por metro cuadrado y confirmó las altas temperaturas, presiones y composición de dióxido de carbono de la atmósfera encontrada por Venera 4.
Venera 5
Lanzado el 5 de enero de 1969, Venera 5 era similar a Venera 4 con algunas modificaciones para hacerlo más fuerte. Venera 5 tenía 2 secciones:
Autobús principal
El autobús principal, con un peso de 723 kg, debía volar directamente a Venus y explorar su atmósfera, campo magnético, halo de hidrógeno y el viento solar usando los siguientes instrumentos:
- Magnetómetro Triaxial Fluxgate
- 4 trampas de iones
- Contador de descarga de gas STS-5
- 2 detectores de radiación de estado sólido de silicio
- Contador de descarga de gas SBT-9 con ventana
- Espectrómetros de hidrógeno atómico y oxígeno de Lyman-α
Después de que golpeó la atmósfera, el 18 de octubre de 1967, el autobús debía soltar la cápsula y desintegrarse. Todo fue según lo planeado y la sonda descubrió que Venus tiene un campo magnético débil (3000x <Tierra), sin campo de radiación y una corona de hidrógeno débil (1000x <Tierra).
Cápsula
La cápsula que pesaba 383 kg se dejó caer a la atmósfera al llegar y midió la atmósfera con estos instrumentos:
- Altímetro
- Control térmico (para mantener la cápsula a -8 ° C)
- Paracaídas
- Termómetro
- Barómetro
- Hidrómetro
- Conjunto de instrumentos de análisis de gases.
El paracaídas se desplegó a 52 km por encima de la superficie, donde leyó un poco menos de 1 atmósfera y 33 ° C. Las transmisiones se detuvieron a unos 26 km sobre la superficie, donde indicaban 22 atmósferas y 262 ° C. La sonda descubrió que la atmósfera contenía casi nada de hidrógeno u oxígeno (0.4-0.8%), muy poco nitrógeno (7%) y principalmente dióxido de carbono (90-93%). El altímetro no funcionó leyendo la cápsula 26 km más abajo de lo que realmente era.
La cápsula también incluía penants duraderos en la nave espacial (arriba a la derecha). Era como poner una bandera en Venus.
Hace 48 años, la nave espacial rusa Venera 5 entró en la atmósfera de Venus.
Venera 5 ilustrada en un fotograma de la película ‘The Storming of Venus’, 1969.
El 16 de mayo de 1969, la sonda espacial Venera 5 llegó a Venus. Había comenzado su viaje cuatro meses antes, como parte del programa Venera (ruso para Venus), la larga serie de misiones soviéticas al segundo planeta desde el sol.
A medida que la sonda se aproximaba a la atmósfera venusina, la nave espacial principal arrojó una cápsula que encierra los instrumentos científicos, que abrió un paracaídas y se desplazó a la superficie, transmitiendo datos atmosféricos durante 53 minutos en el descenso.
Durante más de 23 años desde 1961 hasta 1984, se enviaron 18 extrañas naves espaciales de Venera: 13 datos transmitidos con éxito desde la atmósfera de Venus, de los cuales 10 sobrevivieron para llegar a la superficie y enviar información.
Hoy, las misiones de Venera ofrecen una ventana hacia un período a menudo olvidado de exploración del Sistema Solar.
La cápsula de descenso de Venera 5 se baja a una centrífuga para probarla en un alambique de la película ‘The Storming of Venus’. Sovfoto / Getty
Oera Linda
Oera Linda
El libro Oera Linda es un polémico texto frisón de carácter mitológico y religioso publicado por primera vez en el siglo XIX. A pesar de que modernos análisis lingüísticos tienden a catalogar al libro como un fraude, el conjunto de temas presentados atrae a muchas personas. Esto es atribuido a su temática populista (eurocentrismo extremo y nacionalismo) y a su filosofía espiritual-feminista. Se conoce al menos una organización contemporánea, Hijas de Frya, que ha basado sus creencias y prácticas religiosas en el Oera Linda.
Historia
El Oera Linda salió a la luz en 1867 cuando Cornelis Over de Linden (1811–1874) entregó el manuscrito a Eelco Verwijs (1830–1880), bibliotecario provincial de Frisia, para su traducción y publicación. La versión en idioma neerlandés apareció en 1871, la cual fue seguida por la traducción al idioma inglés de William Sandbach en el año 1876. Over de Linden sostuvo que heredó el libro de su abuelo a través de un tío. El texto está escrito en una combinación gramaticalmente terrible de dialectos frisón antiguo y frisón moderno. El idioma frisón es el lenguaje más parecido al inglés en términos de agrupamiento lingüístico bajo el modelo de la familia de lenguas indo-europeas. El manuscrito se remonta al año 1256 y se afirma que es una copia de otro más antiguo. Si se comprueba su veracidad, la información contenida se remontaría hasta los años 2194 a. C. y 803. Reescribiría largamente la prehistoria europea.
Temas
Los temas tratados en el Oera Linda son: catástrofes, nacionalismo, matriarcado y mitología.
Para un lector casual el matriarcado es el tema más destacado. El texto sostiene que en Europa y en otras regiones, los frisones fueron gobernados por Folk Mothers que presidían una orden de sacerdotisas célibes, dedicadas a la diosa Frya (una temprana versión de la Freya nórdica) y a su padre el dios Wr-alda. La primera parte del libro, llamada Frya’s Tex, fue supuestamente escrita en el 2194 a. C., mientras que la parte más reciente, la carta de Hidde Oera Linda data de del año 1256. El núcleo del Oera Linda lo forma The Book of Adela’s Followers, al cual se fueron agregando diversos textos a lo largo del tiempo. Su origen se remonta al siglo VI a. C., y está compuesta por una mezcla de inscripciones antiguas y de textos de diferentes escritores, ninguno de los cuales han sobrevivido hasta nuestros días. Las últimas dos secciones del Oera Linda, lo escritos de Konered y Beden, están incompletos.
Escepticismo
Al menos en apariencia, existe un gran escepticismo acerca de este libro, no sólo por las afirmaciones sorprendentes que contiene, sino también por sus numerosos anacronismos. Esto no ha impedido que el libro se convierta, desde el momento de su publicación, en fuente de inspiración de grupos ocultistas y de seudohistoriadores. La autenticidad del libro es apoyada por grupos neonazis, posiblemente porque afirma que el norte de Europa fue el origen de las civilizaciones del Medio Oriente, a pesar de que el mismo Oera Linda califica de bárbaros a los antepasados de los alemanes. El libro también ha recibido interés por parte de grupos feministas y de grupos Nueva era. Actualmente, se discute más sobre la autoría del libro que del contenido del mismo. A Cornelis Over de Linden y a Eelco Verwijs se les consideran como los autores del libro. Otro posible autor sería el predicador protestante François Haverschmidt (1835–1894), bien conocido como poeta bajo el seudónimo Piet Paaltjens. El vivió en Frisia y fue conocido de Verwijs.
Últimas investigaciones
En el año 2004, el historiador Goffe Jensma publicó un libro acerca del tema: De gemaskerde God. François Haverschmidt en het Oera Linda-boek. En él, afirma que fue Haverschmidt el autor principal, secundado por Over de Linden y Verwijs. Según Jensma, Haverschmidt intentó con el Oera Linda parodiar a la Biblia cristiana.
Para más información del texto visitar:
Resumen: Publicado por Equipo Infinito en 0:05
Libro Oera Linda
Hace ciento treinta años un antiguo manuscrito fue descubierto. Se trataba del Oera Linda. Las historias que cuenta revelan los secretos de la más temprana civilización aria. Por él conocemos la historia de los Hijos de Frya, la diosa madre de la raza aria y del “Sagrado Tex” que les ha otorgado los valores sociales y morales necesarios para construir una gran nación, quizás la más grande civilización del mundo antiguo. Narra las luchas que se debieron sostener para mantener la libertad contra las invasiones y las influencias de los príncipes y de los sacerdotes enemigos provenientes del Este, gracias a las cuales, somos lo que somos y ostentamos los valores que ostentamos. El Oera Linda trata, también, sobre los héroes y las heroínas de nuestra mitología clásica.
La historia comienza en la Era de Tauro, cuando las míticas diosas fueron eran las madres de nuestros ancestros arios. Esa edad acabó mal, con tierras destruidas y sumergidas por devastadores maremotos y erupciones volcánicas, incendios de selvas e inundaciones que cambiaron el rostro de Europa, anunciando la llegada de la Era de Aries. Y es en el 2193 a.C. que la isla continental de Atland desapareció, como la legendaria Atlántida, completamente desintegrada por inmensas catástrofes. Muchos supervivientes lograron transferir su civilización a otros sitios, viajando a Egipto y Creta. De hecho, en este Libro, leemos que Minno (Minosse), el fabuloso rey de Creta, edificador del laberinto, era un frisón y que fue esa civilización la que originó después a Atenas, fundada por Minerva, quien era una de las Madres de nuestros ancestros de la antigua atlántida.
Los pobladores de Atland veneraban un solo diós, que se celaba bajo el nombre de Wr-alda[1]. Frya era la primera de tres hermanas. Las otras se llamaban Lyda y Finda. Lyda tenía la piel oscura y había originado las poblaciones negroides; Finda tenía la piel amarilla y había originado las poblaciones orientales; Frya tenía la piel blanca y era la antecesora de la raza aria.
La edad nueva comenzó con las Madres-Tierra, con las anclas de la ciudadela y los largos viajes del Rey del mar, acabando dos mil años después con los patriarcas, y los reyes que pidieron el reconocimiento y la fidelidad por los favores otorgados.
Este libro trata sobre la historia primitiva de Europa, una Europa con una alta conciencia racial y un sentido de la libertad individual muy desarrollado, basado en un código de ética donde hombres y mujeres eran respetados por sus intrínsecas capacidades. Esta Europa habría tratado de conservar estos valores, pero indudablemente falló. Y cuando sus antiguos habitantes trataron de educar a sus hijos en estos valores, parece ser que la fuerte influencia de los cada vez más numerosos comerciantes extranjeros, terminaron por minar su conciencia racial y acabaron por derrumbar su civilización.
El Oera Linda fue descubierto en abril de 1820, en el pequeño pueblo de Enkhuizen, frente a la isla Frisona de Texel en Holanda, con la muerte de Andries Over de linden. Entre sus efectos fue hallado un manuscrito muy antiguo que nadie pudo leer. Tenía 61 años y su hija, Aafjie Meylhoff, conocía la sagrada tradición que desde siempre existía en su familia sobre este libro. Por numerosas generaciones el Libro había sido poseído por la familia de los Over de Linden, pasando de mano en mano, de padre a hijo, con las estrictas instrucciones de preservarlo y protegerlo de la autoridad, es decir, de la Iglesia. El sucesivo heredero era su sobrino Cornelius Over de Linden que tenía solo 10 años. De hecho su padre había muerto antes que su abuelo, por lo que fue su tía Aafjie quien tomó el libro hasta que el joven alcanzó la mayoría de edad.
En 1848, Cornelius recibió el manuscrito, manifestando su curiosidad que desde siempre había tenido sobre la historia misteriosa que éste contaba y que no podía leer. Pero fue solo en 1867 que encontró alguien que pudiera traducirlo. De hecho, durante una visita suya en la Librería Provincial de Leeuwarden en Friesland, encontró al bibliotecario Dott Verwijs, y le habló del manuscrito. Lleno de curiosidad éste pidió verlo, e inmediatamente se dio cuenta que estaba escrito en Frisón antiguo, quizás el ejemplo más antiguo que había encontrado. Su primera impresión fue que el libro era falso, pero examinándolo más a fondo se convenció de su extrema antigüedad y solicitó a Cornelius que le autorizara a copiarlo en beneficio de la Friesland Society. El doct. Verwijs trató de buscar un soporte financiero de la Sociedad que había sido fundada para investigar la lengua y la historia de los Frisones, pero encontró el escepticismo inmediato, debido quizás a las revelaciones de algún fragmento que había ya traducido. La Sociedad, por lo tanto, pensó desde el comienzo que se trataba de un documento falso, aún antes consultarlo, ciñendo la fama que desde entonces ha perseguido al Oera Linda
Verwijs tuvo, de todas forma, la satisfacción de recibir la comisión de un “elderman”, diputado del estado de Friesland, para prepara una copia. El trabajo siguió por otros tres años, revelando informaciones sorprendentes y fantásticas, que confirmaron inicialmente a Verwijs que el libro no era falso, pues los hechos narrados en él podían reconocerse históricamente, y junto a los datos mitológicos terminaron por convencer al traductor de su autenticidad. Ello hizo que pudiera conseguir ayuda financiera de J. G. Ottema, para publicar el libro. Éste entusiastamente sostuvo los gastos de la traducción imprimiendo y publicando la primera copia en Frisón moderno bajo el título de “Thet Oera Linda Bok”.
En febrero de 1871, fue presentada una carta a la Sociedad de Friesland que resumía estos orígenes y mencionaba algunas de las sorprendentes revelaciones halladas en el contenido del Oera Linda, causando una controversia inmediata. Esto no nos debe sorprender en lo absoluto si consideramos que estas “revelaciones” ponían en entredicho las creencias religiosas largamente conservadas. La ciencia sustituía a la teología en la historia y la antropología. El hallazgo y la sucesiva traducción de la Piedra Rosetta habían tenido lugar solo unos cincuenta años antes, dando origen a los modernos conceptos de historia antigua basada sobre el calendario egipcio (Naturalmente considerando la historia académica y no aquella llamada “herética”). Heirich Schliemann no había aún publicado sus hallazgos sobre el actual sitio histórico de Troya, una ciudad mencionada y también datable en el Libro, y las leyendas fueron de toda forma consideradas “cuentos de hadas” sin cualquier contenido real, como muchas lo son aún hoy. La versión en lengua Frisón fue inmediatamente seguida por una traducción en lengua holandesa con el mismo título, y la versión holandesa fue traducida luego al inglés en 1876. Esta edición muestra el texto original Frisón impreso en la página izquierda en caracteres romanos con la traducción inglesa a la derecha. Cuando fue publicado creó cierto desamparo en los círculos académicos que, sin embargo, fueron rápidamente olvidados; quizás porque eran demasiado controversiales o porque significaban una gran ruptura de las ideas tradicionales.
El manuscrito original tenía los caracteres fonético inscriptos en un círculo, el símbolo del sol, con una “I” vertical y una “X” y a través de éstos se obtienen sorprendentemente una serie de caracteres en cuyo contexto se encuentra la mayoría de las letras del alfabeto y la mayoría de los números fácilmente reconocidos por los modernos Europeos. Este libro fue escrito por Hiddo Over de Linden en el año 1256 d.C. quien copió los originales sobre la nueva carta árabe, muy requerida en aquel tiempo en Europa, que era sin filigrana y prácticamente fabricada con algodón egipcio. Hiddo la llamó “carta extranjera” y usó una tinta de carbón sin hierro; y esto ha sido una suerte, porque las tintas populares basadas sobre el hierro fueron después reconocibles por desteñirse muy fácilmente, constituyendo esto una prueba más para sostener la autenticidad del Libro. En él Hiddo utilizó términos modernos de su tiempo conservando también las variantes ortográficas y de estilo de los escritores originales. Además no ha sido encontrada ninguna prueba de “contaminaciones” que induzcan a pensar en algo escrito después del siglo trece; de hecho, ni siquiera han sido utilizados, en el texto, los nombres que cobraron los lugares tras la ocupación romana en tiempos de Julio Cesar . Las batallas existían, y fueron reveladas por el Libro Oera Linda. Incluso se habla de un valeroso guerrero llamado Friso, oficial de Alejandro el Grande (nacido en el 356 a.C.) citado también en crónicas históricas de los pueblos del norte, en las que se cuenta que Friso venía de la India.
En el Oera Linda, el héroe desciende de una colonia de frisones que se establecieron en el Punjab alrededor del 1550 a.C.; y también el geógrafo griego Strabone cita estas extrañas tribus “indianas”, por él llamadas de manera genérica “Arias”. En el texto se recuerda también a Ulises y su búsqueda de la sagrada lámpara. Una profetisa le dice que si la hubiese encontrado se habría vuelto rey de Italia. Fallado el intento de hacerse consignar bajo alta recompensa (los muchos tesoros traídos de Troya) la lámpara de la sacerdotisa, la “Madre Tierra”, que la custodiaba, Ulises viaja hasta alcanzar un lugar llamado Walhallagara (nombre que suena muy similar a Walhalla) donde tiene una historia de amor con la princesa Kalip (obviamente Calipso) con la que había convivido por muchos años entre “el escándalo y la desaprobación de los que lo conocían”. Este fragmento de historia griega insertado en el Libro de Oera Linda es muy interesante. Vistas las aventuras de Ulises alrededor del 1188 a.C. es decir cincuenta años después de la moderna datación de la caída de Troya el Oera Linda parece dar en el clavo. Por lo que la leyenda transmite, la ninfa Calipso era una burgtmaagd (palabra que significa “virgen suprema”, una suerte de jefe de un grupo de vírgenes vestales), un concepto que encuentra reconocimiento en las afirmaciones fundamentales de Oera Linda, según el cual, después de la catástrofe, los Frisones habían comenzado a navegar por el mundo conocido, civilizando el área del Mediterráneo hasta llegar a India. Pero hay también situaciones que se adaptan a las teorías “isoestáticas” de Biddel Airy, con el enterramiento del canal de Suez preexistiente quizás al episodio del hundimiento de la isla de Thera en Santorini. Recientemente han sido halladas Momias en las regiones chinas con aspecto nórdico, con pelo rubio o rojo, con ojos azules, de estatura de más de 2 metros, conocido también como el Hombre de “Cherchen”, que pueden ser referibles a estas migraciones. Otro ejemplo podría ser si aceptamos que la isla de Calipso, Walhallagara, era la isla de Walcheren en el Mar del Norte, entonces Ulises había hecho sus viajes también fuera del Mediterráneo.
Hoy en día, de toda forma, no existen pruebas de que el libro sea falso y por este motivo sería útil una nueva y moderna edición del texto. No solo para consentir a los estudiosos de evaluarlo en pleno, sino también para permitir su lectura a los lectores comunes, ciertamente fascinados por tantas historias de batallas y matanzas, y responder quizás a la pregunta si la civilización Europea viene de Asia y del Este o si existía una fuente Occidental. No existe ninguna respuesta a la pregunta por el origen de comunidades civilizadas en el mundo, pero el Libro reclama una fuente originaria Occidental para su sistema de gobierno de la comunidad y el código moral para Europa, junto a la descripción de una comunidad mucho más antigua, a través del Atlántico del norte (Oldland – Aldland o también Atland) la Vieja Tierra, su casa antigua, en términos nostálgicos, llamada los tiempos buenos antes del malo. Términos que recuerdan la Edad del Oro o el Zep-Tei egipcio. Por último, si este libro no es ciertamente de fácil lectura, y los varios argumentos pasan de uno a otro a veces de manera imprevista, como emociones y pensamientos anotados rápidamente sobre un papel, hay que ser conscientes de que si alguien pudiese demostrar de manera incontrovertible la autenticidad de este libro, es decir, que cuente hechos realmente ocurridos, entonces la historia de la Humanidad Europea de la edad del bronce debería ser completamente revisada y consecuentemente re-escrita.
Los contenidos del libro
En total el libro consta de 5 capítulos: Las Cartas; Libro de los Seguidores de Adela; Escrituras de Adelbrost y Apollonia; Escrituras de Frethorik y Wiliow; Escrituras de Konered y Escrituras de Beden. Los dos últimos libros están inconclusos.
Los nazis y la “Biblia de Himmler”
Por sus aires fantásticos y las contradicciones con lo que se sabe del desarrollo de la civilización en Europa la mayor parte de los académicos rechaza la legitimidad del manuscrito y afirma que no se trata de un documento del siglo XIII, sino de una falsificación del siglo XIX. El debate sobre el asunto ha sido largo y enconado y no es mi intención replicarlo aquí tanto como hablar sobre su tremenda influencia en los movimientos supremacistas raciales europeos y, en particular, en el nazismo.
Se dice que el Oera Linda fascinó desde un principio a Himmler, que pronto lo convirtió en un libro base para el desarrollo de la ideología nazi. Esto sería impulsado por la publicación por parte de Herman Wirth, un renombrado filólogo, de una traducción que sería bautizada como “la Biblia Nórdica” (de título Die Ura Linda Chronik). Pronto un enconado debate surgió entre quienes, como Wirth, consideraban legítimo el manuscrito y quienes lo consideraban una farsa.
Imagen de una página del texto Oera Linda en frisón original
Humanos orbitan la Luna
Apolo 8
Datos de la misión
Misión: Apolo 8
Número de tripulantes: 3
Rampa de lanzamiento: Centro Espacial Kennedy, Florida LC 39A
Despegue: 21 de diciembre de 1968, 12:51:00 UT (07:51:00 am EST)
Órbitas lunares: 24 de diciembre de 1968
Tiempo AEV lunar: Paseo en CSM:
Amerizaje: 27 de diciembre de 1968, 15:51:42 UTC, Océano Pacífico 8 ° 7.5 ‘N, 165 ° 1.2’ WUSS Yorktown .
Duración: 146 horas 59 minutos 49
Número de órbitas lunares: 10
Tiempo en órbitas lunares: 20 h 10 min 13,0 s
Apolo 8. Fue la primera misión a llevar humanos a orbitar la Luna y de regreso. Un preludio importante para realmente llegar a la Luna estaba poniendo a prueba la trayectoria de vuelo y operaciones para llegar allí y volver. Apolo 8 hizo esto y logró muchas primicias, incluyendo la primera misión tripulada lanzada en el Saturno V, el primer lanzamiento tripulado de Moonport nuevo de la NASA, las primeras imágenes tomadas por los seres humanos de la Tierra desde el espacio profundo, y primera cobertura de televisión en directo de la superficie lunar.
Historia
La misión, originalmente planeada como una prueba de órbita terrestre baja (OTB) del módulo y comando lunar, tuvo un cambio ambicioso en agosto de 1968 cuando fue modificada para convertirse en un viaje para orbitar la Luna.
Esta modificación a la misión, causada por un retraso en el Módulo Lunar, generó nuevos requerimientos de personal y procedimientos que debían ser preparados en corto tiempo. Apolo 8 fue lanzado desde Cabo Kennedy, Florida, a las 7:50 a. m, hora del Este, el 21 de diciembre de 1968. Dos horas y 50 minutos más tarde, la inyección translunar se llevó a cabo, los astronautas, conformados por el Comandante de la Misión, el coronel Frank Borman, el capitán James A. Lovell Jr. como piloto del módulo de mando, y el Mayor William A. Anders, como el piloto del módulo lunar, estaban en su camino a la Luna.
La nave espacial fue colocada en una órbita lunar elíptica de 69 horas 8 minutos después del despegue. Después de volar dos órbitas elípticas de 168,5 por 60 millas náuticas con una inclinación de 12 grados con respecto al Ecuador, la nave fue colocada en una órbita casi circular de 59,7 a 60,7 millas náuticas en el que permaneció durante ocho órbitas. Las imágenes de la superficie lunar fueron transmitidas para la televisión en vivo en la Tierra.
A las 89 horas 19 minutos, la inyección se realizó por detrás de la Luna. Una misión casi perfecta se completó en la mañana del 27 de diciembre cuando se produjo amerizaje en el Océano Pacífico después de un tiempo total de 147 horas. El propósito principal de esta misión era seguir avanzando hacia la meta de llegada del hombre a la Luna mediante la obtención de experiencia operativa y las pruebas del sistema Apolo. Sin embargo, un gran esfuerzo se hizo también para llevar a cabo tareas científicas que valen la pena con la fotografía y la información visual por los astronautas.
Tripulación
Astronauta | Misiones | Cargo | Fecha |
Frank Borman | Gemini VII | Comandante de la misión | 4–18 de diciembre de 1965 |
Apolo 8 | Comandante de la misión | 21–27 de diciembre de 1968 | |
James A. Lovell, Jr | Gemini VII | Piloto | 4-18 de diciembre de 1965 |
Gemini XII | Comandante de la misión | 11-15 de noviembre de 1966 | |
Apolo 8 | Piloto del módulo de mando | 21-27 de diciembre de 1968 | |
Apolo13 | Comandante de la misión | 11–17 de abril de 1970 | |
William Anders | Apolo 8 | Piloto del módulo lunar | 21-27 de diciembre de 1968 |
Tripulación suplente
- Neil A. Armstrong: Comandante de la Misión.
- Edwin E. Aldrin, Jr.: Piloto del módulo de mando.
- Fred W. Haise, Jr.: Piloto del módulo lunar.
Récords
Se alcanzaron récords que nunca antes se habían logrado:
- Mayor distancia alcanzada por una persona: 372.800 km.
- Mayor velocidad soportada por un ser humano: 36.673 km/h.
- Primera vez que una persona orbitaba la Luna.
Artículo de: https://www.ecured.cu/Apolo_8
Debido a lo extenso del tema se sugiere ampliar conocimientos en las webs:
https://es.wikipedia.org/wiki/Apolo_8
https://danielmarin.naukas.com/2013/12/24/amanecer-de-la-tierra-45-anos-del-apolo-8/
La nave espacial Apolo 8 despega
La Tierra desde la Luna (Apolo 8, 1968)
Uno de los aspectos más famosos del vuelo fue la foto de la salida de la Tierra que fue tomada al pasar por su cuarta órbita de la Luna.50 Esta fue la primera vez que los humanos habían tomado una foto así estando atrás de la cámara, y se puede decir que ha inspirado en parte, el Primer Día de la tierra en 1970.51 Fue seleccionada como la primera de 100 fotografías que cambiaron al mundo por la revista “Life”.52
Primeros seres vivos orbitan la Luna
Zond 5
La Zond 5 fue la quinta misión del programa espacial Zond de la Unión Soviética y es considerada la precursora de los vuelos lunares tripulados, principalmente porque fue la primera sonda en dar una vuelta en torno a la Luna y regresar a la Tierra. Se trataba de una nave tipo Soyuz 7K-L1.
La sonda de la misión fue lanzada desde una plataforma para hacer investigaciones científicas durante un vuelo lunar y regresar. El lanzamiento tuvo lugar el 14 de septiembre de 1968 desde el Cosmódromo de Baikonur.
El 18 de septiembre, la nave espacial dio una vuelta alrededor de la Luna. La mayor aproximación a la superficie selenita fue de 1.950 kilómetros.
A lo largo del vuelo fueron obtenidas fotografías de alta calidad de la Tierra a una distancia de 90.000 kilómetros. Fueron incluidas en la nave varias tortugas, moscas del vino, lombrices, plantas, semillas y bacterias. El 21 de septiembre de 1968, la cápsula de reentrada ingresó en la atmósfera terrestre, abriendo unos paracaídas a 7 kilómetros de altura. La cápsula cayó en el Océano Índico y fue recuperada en el mismo día.
Primera nave en rodear la Luna, con animales, regresar a la Tierra y recogerlos vivos. La nave espacial fue un precursor de la nave espacial tripulada.
Nombres: Zond 5; Soyuz 7K-L1 s / n 9
Tipo de misión: Sobrevuelo lunar; Prueba de nave espacial
Operador: OKB-1
SATCAT no.: 03394
Duración de la misión: 6.7 días
Propiedades de naves espaciales
Fabricante: OKB-1
Lanzamiento de masa: 5,375 kilogramos (11,850 lb)
Inicio de la misión
Fecha de lanzamiento: 14 de septiembre de 1968, 21:42 UTC
Sitio de lanzamiento: Baikonur 81/23
Fin de la misión
Recuperado por: Naves soviéticas Borovichy y Vasiliy Golovin
Fecha de aterrizaje: 21 de septiembre de 1968
Lugar de aterrizaje 32 ° 38’S 65 ° 33 ‘E; océano Indio
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: Tierra baja
Semieje mayor: 6,613 kilómetros (4,109 mi)
Excentricidad: 0.00604
Perigeo: 202 kilómetros (126 mi)
Apogeo: 282 kilómetros (175 mi)
Inclinación: 51.83 °
Período: 89.29 minutos
Época: 13 de septiembre de 1968
Sobrevuelo de la Luna
Enfoque más cercano: 18 de septiembre de 1968
Distancia: 1,950 km (1,210 mi)
El vuelo de la Luna
Después del éxito parcial de Zond 4 en marzo de 1968, se lanzó un seguimiento el 22 de abril. Sin embargo, el lanzamiento falló cuando el LES envió un comando de aborto erróneo a T + 260 segundos y cerró la segunda etapa del amplificador Proton. El cohete de escape disparó y sacó el módulo de descenso a un lugar seguro. En julio, se estaba preparando otro 7K-L1 para el lanzamiento cuando la etapa del Bloque D explotó en la plataforma, matando a tres personas, pero dejando el refuerzo Proton y la nave espacial con un daño menor.
Zond 5 se lanzó el 14 de septiembre y se convirtió en la primera nave espacial en rodear la Luna y volver a aterrizar en la Tierra. El 18 de septiembre, la nave espacial voló alrededor de la Luna. La distancia más cercana fue de 1.950 km. Se tomaron fotografías de alta calidad de la Tierra a una distancia de 90,000 km. En el vuelo se incluyó una carga biológica de dos tortugas rusas, moscas del vino, gusanos de la harina, plantas, semillas, bacterias y otros seres vivos.[1]
El 21 de septiembre, la cápsula de reingreso ingresó a la atmósfera de la Tierra, pero no pudo realizar un reingreso por omisión debido a un fallo del sistema de guía.[2] [3] Se suponía que aterrizaría en Kazajstán, pero en su lugar Zond 5 se derramó en el Océano Índico y fue recuperado con éxito por los barcos de recuperación de la URSS, Borovichy y Vasiliy Golovin.[4] [5] [6]
Aunque la reentrada balística hubiera sido mala para los ocupantes humanos, no pareció afectar a los especímenes biológicos, todos los cuales estaban vivos y bien cuando el módulo de descenso finalmente se abrió cuatro días después del aterrizaje. Se anunció que las tortugas habían perdido alrededor del 10 por ciento de su peso corporal, pero se mantuvieron activas y no mostraron pérdida de apetito. Esta nave espacial fue planeada como un precursor de una nave espacial lunar tripulada.
El USS McMorris estaba siguiendo a las naves de recuperación soviéticas, recogiendo información de inteligencia.[7] Las fotografías tomadas por McMorris del módulo de descenso flotando en el océano despertaron preocupación en la NASA de que los soviéticos estaban planeando un vuelo circumlunar tripulado pronto, especialmente dado que Estados Unidos había estado rastreando Zond 5 durante todo su vuelo, y era un catalizador por la decisión de lanzar el Apolo 8 a la Luna en diciembre en lugar de su misión originalmente planeada de probar el módulo lunar en la órbita alta de la Tierra.
La cápsula de retorno Zond 5 está en exhibición en el museo RKK Energiya , en Rusia. [8]
La rara historia de las tortugas que llegaron a la luna y volvieron para contarlo
Tras los aplausos, silbidos y el tintineo de botellas de vodka con el que había arrancado la noche, el silencio se extiende ahora por el centro de control de Eupatoria como una fría ventisca. Los ingenieros soviéticos, de pie, dispersos frente a los monitores, casi pueden sentir su tacto gélido y húmedo en la piel. Todas las miradas se centran en la misma persona: Vasili Mishin, el diseñador jefe llegado de Baikonur para supervisar el lanzamiento de la nave Soyud de la misión Zond 5.
Sentado frente a las computadoras, Mishin no aparta sus penetrantes ojos de las luces intermitentes del panel. La Soyud que poco antes había despegado de forma exitosa rumbo a la Luna (con un cohete Protón) desde el Cosmódromo de Baikonur, en Kazajistán, está teniendo problemas. Y serios. A cada carraspeo de Mishin el silencio en la sala de Eupatoria se hace más y más denso.
Aunque, al igual que el resto de sus camaradas, Mishin había celebrado el despegue de la nave Soyud por todo lo alto, ahora bajo sus espesas y enmarañadas cejas sus pupilas brillan con una expresión concentrada. La historia le recuerda como “el perdedor en la carrera a la Luna“, pera esa noche da en el clavo. Ante la mirada expectante de sus colegas (y la tutela lejana pero apelmazante de los líderes de Moscú, inmersos por entonces en la carrera espacial con EE UU) Mishin da unas indicaciones precisas y la nave 7K-L1 solventa su primera incidencia.
Los gerifaltes de Moscú respiran aliviados. El ceño de Mishin se destensa. Y en el centro de control de Eupatoria vuelven a descorcharse botellas de vodka. La celebración continúa.
La Zond 5 en el momento de ser rescatada. (NASA)
Es la noche del 14 al 15 de septiembre de 1968. A cientos de metros por encima de la cabeza de Mishin y los ingenieros de Eupatoria, la 7k-L1 se eleva imparable hacia la Luna. El periplo de la Zond 5 pasará a la historia por ser la primera sonda en dar una vuelta en torno al satélite y regresar a la Tierra. Una odisea no exenta de dificultades. El problema que la nave registraba poco después de levantar el vuelo desde Kazajistán no sería el único de su accidentado periplo.
Zond y sus peculiares tripulantes
Zond 5 no llama la atención sin embargo por las incidencias que encadenó desde su despegue. Lo hace por la curiosa tripulación que viajaba a bordo. La misma que habría perecido en el espacio si Mishin y el resto del equipo de Eupatoria no hiciesen gala de su sangre fría.
Con el objetivo de comprobar si los viajes alrededor de la Luna podrían entrañar algún problema para los astronautas, los soviéticos introdujeron en la cápsula de Zond 5 moscas de la fruta, gusanos, plantas, semillas, bacterias y… Dos tortugas, dos ejemplares de Testudo horsfieldii. En el asiento del piloto viajaba además un maniquí que emulaba a un astronauta soviético: medía 1,75 metros de altura y pesaba 70 kilos. Los técnicos espaciales le habían insertado sensores para controlar los niveles de radiación a los que se exponía.
Una peculiar arca de Noé… Con un Noé de trapo y plástico a los mandos.
Los científicos con las tortugas en sus manos.
Como cuenta Brian Harvey en Soviet and Russian Lunar Exploration, las tortugas tuvieron que encarar un viaje digno de Hollywood. De camino a la Luna, parte del mecanismo se contaminó y quedó inutilizable. Durante su regreso a la Tierra otra incidencia impidió que la operación se desarrollase según lo previsto. El trabajo que habían realizado los soviéticos dejaba mucho que desear: el sensor para localizar la Tierra estaba mal montado y la óptica de los sensores estelares quedó bloqueada por el aislante térmico.
En su regreso, los quelonios tuvieron que soportar un tremendo vaivén. El violento descenso hizo que el escudo exterior de la nave (que pesaba cerca de 5.400 kilos) alcanzase altísimas temperaturas.
La cápsula aterrizó en el Océano Índico el 21 de septiembre, sobre las siete de la tarde. Sus grandes paracaídas se desplegaron para amortiguar la caída y las balizas marcaron su ubicación, a no mucha distancia del buque Borovichy, que la extrajo del agua a la mañana siguiente. De allí se trasladó al navío de carga Viasili Golovin rumbo a Bombay, donde se embarcó en un avión Antonov que la llevó de vuelta a la URSS. Cuando comprobaron el interior de la nave, los técnicos se encontraron con los ojos acuosos de la pareja de intrépidas tortugas que habían volado en torno a la Luna.
Llegaron antes que todos nosotros. (Schorle/Wikipedia)
Aunque su estado de salud era bueno, el aspecto de las tortugas parecía el de dos recién llegados de la guerra: habían perdido el 10% de su peso corporal, estaban famélicas (no probaban bocado desde días antes del despegue, cuando las introdujeron en la cápsula) y para colmo se dice que una de ellas se había lastimado un ojo. Balance nada malo si se tiene en cuenta el periplo estelar que habían superado.
Su regreso triunfal tras dar una vuelta histórica a la Luna no les sirvió sin embargo para salvar la vida. Lo que no había obrado el violento amerizaje en el Océano Índico, lo hicieron poco después los científicos de la URSS. Tras su primer examen las sacrificaron para practicarles la autopsia y estudiarlas a fondo. El viaje que se había saldadocon éxito. Zond 5 había estado a unos 1.950 kilómetros de la Luna y realizó un viaje circunlunar histórico. Para la posteridad dejó además impresionantes imágenes.
El legado de las tortugas espaciales
Las maniobras de la misión Zond 5 generaron expectación incluso fuera de las fronteras soviéticas. En el Observatorio Jodrell Bank, en Manchester, el célebre radioastrónomo Sir Bernard Lovell siguió la pista a la nave. El centro inglés haría saltar las alarmas al interceptar un mensaje con una voz humana que tenía su origen en el ingenio soviético. ¿Había conseguido la URSS hacer un viaje alrededor de la Luna pilotado por un astronauta?
En realidad, lo que escuchaban era una grabación para probar transmisiones en el espacio. Entre las voces que percibían en Manchester estaba de hecho la del veterano cosmonauta ruso Valeri Bykovsky.
En las páginas del libro Animals in Space, Colin Burgess y Chris Dubbs apuntan que la voz se detectó la noche del 19 al 20 de septiembre, mientras la nave con la pareja de quelonios emprendía su accidentado regreso a la Tierra. “Ahora se cree que las voces eran en realidad las de los cosmonautas involucrados en el programa de aterrizaje lunar. Se habían ubicado en estaciones de seguimiento soviéticas y transmitían informes a través de Zond 5 para practicar sus roles como parte de un equipo lunar real”, comentan Burgess y Dubbs.
Los de la Zond 5 no fueron los únicos tripulantes con concha que protagonizaron un viaje espacial. La Zond 6, en 1968, portaba también lo que la NASA define como una “carga biológica”. Los animales que la formaban sin embargo corrieron peor suerte: la cápsula en la que viajaban se despresurizó y se estrelló en su regreso a la Tierra. Los quelonios volvieron a subirse a la Zond 8, años después. Y estarían presentes también entre el pasaje de la Soyuz 20, que despegó en 1975 y mantuvo a los reptiles en el espacio 90 días.
Liber Linteus Zagrabiensis
Liber Linteus Zagrabiensis
Fotografía del Liber Linteus Zagrabiensis.
El Liber Linteus Zagrabiensis (en latín: Libro de lino de Zagreb), también conocido como Liber Agramensis, es el texto más largo conocido escrito en lengua etrusca (se estima que sus 230 líneas contienen unas 13 000 palabras, aunque sólo unas 1 200 palabras son legibles, dado su estado de conservación) y el único libro existente escrito en lino.
Reproducción de parte del texto.
El documento, que ha sido datado de alrededor del siglo I a.C.,1 se trata de un texto caligrafiado en tintas roja y negra en una docena de columna verticales sobre un trapo de lino dividido en veinte recuadros rectangulares, que fue utilizado en el período Ptolemaico para vendar la momia de una mujer. Fue encontrado en Egipto a mediados del siglo XIX. Se le llama “de Zagreb” por la ciudad de Zagreb, Croacia, en cuyo museo arqueológico se conserva actualmente y donde fue transportada la momia desde Egipto por Mihail de Brariæ. El texto, que parece un calendario ritual, fue estudiado solo a partir de finales del siglo XIX.
El Liber Linteus una momia con un misterioso mensaje
En 1798, el francés de Napoleón Bonaparte lanzó una campaña militar en Egipto. Junto con los soldados y personal militar, Napoleón trajo un gran número de estudiosos y científicos conocidos como sabios cuando invadió el país. La participación de estos eruditos en la guerra dio lugar a un interés europeo renovado en el antiguo Egipto, conocida como egiptomanía.
Con el tiempo, artefactos egipcios, incluyendo estatuas, papiros e incluso momias estaban siendo enviados desde el valle del Nilo a los museos de toda Europa. Una momia particularmente interesante, y sus no menos famosas vendas de lino, conocido como el Liber Linteus (del latín ‘Lino libro’), finalmente encontraron su camino en el Museo Arqueológico de Zagreb, Croacia. En 1848, un oficial de Croacia en la Real Chancillería de Hungría con el nombre de Mihajlo Barić renunció a su cargo y decidió viajar un poco. Mientras estaba en Alejandría, Egipto, Barić decidió comprar un recuerdo, y compró un sarcófago que contiene una momia femenina. Cuando Barić regresó a su casa en Viena, mostró la momia por ponerla en la esquina de su sala de estar en una posición vertical. Barić retira la envoltura de lino forma su momia y se muestra en una vitrina aparte.
En 1859, Barić murió, y su hermano Ilija, un sacerdote que vivía en Eslavonia, heredó la momia. Como Ilija no tenía intereses en momias, decidió donar la momia y sus lienzos en el Instituto Estatal de Croacia, Eslavonia y Dalmacia (ahora conocido como el Museo Arqueológico de Zagreb) en 1867. Hasta ese punto del tiempo, nadie había dado cuenta de los escritos sobre envolturas de la momia. Sólo cuando la momia fue examinado por el egiptólogo alemán Heinrich Brugsch (en 1867) que los escritos se notaron. Considerando que son los jeroglíficos egipcios, sin embargo, Brugsch no investigaron más. Una década más tarde, Brugsch tuvo una conversación casual con un amigo, el explorador británico Richard Burton. Hablaron sobre runas, resultando en Brugsch dando cuenta de que los escritos en vendas de lino de la momia no eran en realidad los jeroglíficos egipcios, pero otro guión. Aunque los dos hombres se dieron cuenta de que los escritos pueden haber sido importantes, ellos erróneamente concluyeron que se trataba de una transliteración del Libro Egipcio de los Muertos en árabe.
En 1891, los lienzos fueron enviados a Viena, y fueron examinados a fondo por un experto en la lengua copta, Jacob Krall. Inicialmente, Krall había esperado que el lenguaje del texto era copto, Caria, o Libia. Tras una inspección más cercana, sin embargo, Krall estableció que el texto fue escrito en etrusco. Mientras que él era capaz de volver a montar las tiras en el orden correcto, Krall fue incapaz de traducir el texto.
Incluso hoy en día, la lengua etrusca todavía no se entiende completamente, como muy poco de la antigua lengua ha sobrevivido. Sin embargo, ciertas palabras pueden ser recogidas a cabo para proporcionar una indicación de la Liber Linteus ‘material’. Basado en las fechas y los nombres de los dioses que se encuentran a lo largo del texto, se piensa que el Liber Linteus era un calendario religioso. Lo que era un libro etrusca de rituales que hacen en una momia egipcia? Una sugerencia es que el fallecido era etrusca rica que huyó a Egipto, tal vez en algún momento durante el siglo III antes de Cristo (el Liber Linteus ha sido datado en este período) o posterior, ya que los romanos fueron anexando territorio etrusco. Como era la norma con otros extranjeros ricos que murieron en Egipto, la joven fue embalsamado antes de su entierro. La presencia de la Liber Linteus puede explicarse como un monumento dejó para los muertos, como parte de la costumbre sepultar etrusca. Sin embargo, el mayor problema con esto es un pedazo de rollo de papiro que fue enterrado con la momia. El desplazamiento identifica el difunto como una mujer egipcia por el nombre de Nesi-Hensu, la esposa de un tebano “a medida divina ‘llamado Paher-Hensu. Por lo tanto, es probable que el Liber Linteus y Nesi-Hensu no estén conectados, y que era probablemente la única ropa de los embalsamadores podría tener en sus manos cuando se estaban preparando esta mujer egipcia para la otra vida. Como resultado de este “accidente” en la historia, el Liber Linteus es el conocido texto conservado más antiguo conservado en la lengua etrusca.
El nombre de la momia…. Nesi-Hensu.
El Liber Linteus Zagrabiensis
Nave que aluniza varias veces
Surveyor 6
Mission type: Lunar lander
Operator: NASA
SATCAT no.: 03031
Mission duration: 65 hours[citation needed]
Spacecraft properties
Manufacturer: Hughes Aircraft
Launch mass: 1,006 kilograms (2,218 lb)
Landing mass:299.6 kilograms (661 lb) after landing
Start of mission
Launch date: November 7, 1967, 07:39:00 UTC
Rocket: Atlas SLV-3C Centaur-D
Launch site: Cape Canaveral LC-36B
End of mission
Last contact: 14 December 1967
Lunar lander
Landing date: November 10, 1967, 01:01:06 UTC
Return launch: November 17, 1967, 10:32 UTC
Landing site: 0.49°N 1.40°W
Lunar lander
Landing date: November 17, 1967
Landing site: 2.5 metres (8 ft 2 in) west of original landing site
Surveyor 6 fue el sexto lander lunar del programa estadounidense Surveyor no tripulado que llegó a la superficie de la Luna. El Surveyor 6 aterrizó en el Sinus Medii. Un total de 30,027 imágenes fueron transmitidas a la Tierra.
Esta nave espacial fue la cuarta de la serie Surveyor en lograr un aterrizaje suave en la luna, obtener imágenes de televisión posteriores al aterrizaje, determinar la abundancia de los elementos químicos en el suelo lunar, obtener datos de dinámica de toma de contacto, obtener datos de reflectividad térmica y radar, y llevar a cabo un experimento Vernier de erosión del motor. Prácticamente idéntica a Surveyor 5, esta nave espacial llevaba una cámara de televisión, un pequeño imán de barra conectado a una almohadilla para el pie, y un instrumento de dispersión alfa, así como el equipo de ingeniería necesario. Aterrizó el 10 de noviembre de 1967 en Sinus Medii, a 0.49 grados de latitud y 1.40 grados de longitud oeste (coordenadas selenográficas), el centro del hemisferio visible de la luna. La nave espacial logró todos los objetivos planeados. La finalización exitosa de esta misión satisfizo la obligación del programa Surveyor con el proyecto Apollo. El 24 de noviembre de 1967, la nave espacial fue cerrada por la noche lunar de dos semanas. El contacto se realizó el 14 de diciembre de 1967, pero no se obtuvieron datos útiles.
Las encuestas del suelo lunar se completaron utilizando métodos de retrodispersión fotográfica y de partículas alfa. Un instrumento similar, el APXS, se usó a bordo de varias misiones de Marte. [1]
Primera nave en alunizar varias veces.
En una prueba adicional de tecnología espacial, los motores del Surveyor 6 se reiniciaron y quemaron durante 2,5 segundos en el primer despegue lunar el 17 de noviembre a las 10:32 UTC. Esto creó 150 lbf (700 N) de empuje y levantó el vehículo a 12 pies (4 m) de la superficie lunar. Después de moverse hacia el oeste a 8 pies (2,5 m), la nave espacial volvió a aterrizar suavemente con éxito y continuó funcionando según lo diseñado.
Television
La cámara de TV consistía en un tubo vidicón, lentes de distancia focal de 25 y 100 mm, obturadores, filtros polarizadores (a diferencia de los filtros de color utilizados en las cámaras Surveyor anteriores) e iris montado casi verticalmente y superado por un espejo que podía ajustarse mediante motores paso a paso para moverse tanto en azimut como en elevación. Los filtros de polarización sirvieron como analizadores para la detección de la medición de la componente de luz polarizada linealmente dispersada desde la superficie lunar. Se usó un espejo auxiliar para ver la superficie lunar debajo de la nave espacial. La cobertura fotograma a fotograma de la superficie lunar proporcionó una vista de azimut de 360 grados y una vista en alzado de aproximadamente +90 grados sobre el plano normal al eje z de la cámara a -60 grados debajo de este mismo plano. Se usaron modos de operación de 600 líneas y 200 líneas. El modo de 200 líneas transmitido a través de una antena omnidireccional y un fotograma escaneado cada 61,8 segundos. Una transmisión de video completa de cada imagen de 200 líneas requirió 20 segundos y utilizó un ancho de banda de 1.2 kHz. La mayoría de las transmisiones consistían en las imágenes de 600 líneas, que fueron telemetradas por una antena direccional. Los marcos fueron escaneados cada 3.6 segundos. Cada cuadro requirió nominalmente un segundo para ser leído desde el vidicón y utilizó un ancho de banda de 220 kHz para la transmisión. Las superficies ópticas eran las más limpias de cualquier misión debido a una capucha de espejo rediseñada. Las imágenes de televisión se muestran en un monitor de escaneo lento cubierto con un fósforo de larga persistencia. La persistencia se seleccionó para coincidir de forma óptima con la velocidad de fotogramas máxima nominal. Se recibió un cuadro de identificación de TV para cada fotograma de TV entrante y se visualizó en tiempo real a una velocidad compatible con la de la imagen entrante. Estos datos se grabaron en una grabadora de cinta magnética de video y en una película de 70 mm. El rendimiento de la cámara fue excelente en términos de cantidad y calidad de imágenes. Entre el aterrizaje lunar, el aterrizaje lunar “segundo” y el primer ocaso lunar del 24 de noviembre de 1967, se tomaron 29.914 imágenes y se transmitieron.
The mare surface
Another view of the mare surface
Analizador de superficie de alfa-dispersión
El analizador de superficie de dispersión alfa se diseñó para medir directamente la abundancia de los elementos principales de la superficie lunar. La instrumentación consistía en una fuente alfa (curio 242) colimada para irradiar una abertura de 100 mm (3,94 pulgadas) de diámetro en el fondo del instrumento donde se ubicaba la muestra y dos sistemas de detección de partículas cargadas paralelas pero independientes. Un sistema, que contiene dos sensores, detectó los espectros de energía de las partículas alfa dispersas desde la superficie lunar y el otro, que contiene cuatro sensores, detectó los espectros de energía de los protones producidos mediante reacciones (alfa y protones) en el material de la superficie. Cada conjunto de detector se conectó a un analizador de altura de pulso. Un paquete de electrónica digital, ubicado en un compartimento de la nave espacial, telemétrico continuamente señales a tierra cada vez que el experimento estaba en funcionamiento. Los espectros contenían información cuantitativa sobre todos los elementos principales en las muestras a excepción de hidrógeno, helio y litio. El curio se acumuló en las películas del colimador y se dispersó por el chapado en oro en la parte inferior interna de la cabeza del sensor. Esto dio como resultado un fondo gradualmente creciente y una reducción de la técnica de sensibilidad para elementos pesados. Un detector de protones se apagó durante el segundo día de operación debido al ruido. Se obtuvieron un total de 43 horas de datos del 11 de noviembre al 24 de noviembre de 1967. Los datos finales se obtuvieron 4 horas después del ocaso local. Sin embargo, después de la maniobra de ‘salto’ de la nave espacial el 17 de noviembre de 1967, la cabeza del sensor estaba boca abajo. Se continuaron las mediciones para obtener información sobre protones solares y rayos cósmicos. Por lo tanto, los datos con el propósito del análisis químico del material de la superficie lunar se obtuvieron solo durante las primeras 30 horas de operación. Durante este período, se sabía que 27 horas y 44 minutos de datos estaban libres de ruido.
Logros
Surveyor 6 fue el primer lanzamiento de cohete desde la superficie de la Luna, que fue monitoreado por el Jet Propulsion Laboratory en Pasadena. Usó sus motores vernier de combustible líquido para levantarse desde su lugar de aterrizaje original hasta una posición a unos 10 pies de distancia. [2]
Esto fue notado más tarde por la misión Mars Geyser Hopper como un salto de propulsión post-aterrizaje suave que precedió a su propuesta. [3]
Surveyor 6NSSDCA/COSPAR ID: 1967-112ADescription Surveyor 6 fue la cuarta de la serie Surveyor en lograr con éxito un aterrizaje suave en la Luna. Los objetivos principales del programa Surveyor, una serie de siete vuelos robóticos de vuelo suave lunar, fueron para apoyar los aterrizajes Apollo tripulados próximos por: (1) el desarrollo y la validación de la tecnología para aterrizar suavemente en la Luna; (2) proporcionar datos sobre la compatibilidad del diseño Apollo con las condiciones encontradas en la superficie lunar; y (3) añadiendo al conocimiento científico de la Luna. Los objetivos principales específicos para esta misión fueron realizar un aterrizaje suave en la Luna en la región del Sinus Medii y obtener imágenes de la superficie lunar después de aterrizar. Los objetivos secundarios fueron determinar la abundancia relativa de los elementos químicos en el suelo lunar mediante la operación del instrumento de dispersión alfa, obtener datos de dinámica de toma de contacto, obtener datos de reflectividad térmica y de radar, y realizar un experimento de erosión con motor vernier.
Nave espacial y subsistemas
La estructura básica de la nave espacial Surveyor consistía en un trípode de tubos de aluminio de pared delgada y abrazaderas de interconexión que proporcionaban superficies de montaje y accesorios para los sistemas de alimentación, comunicaciones, propulsión, control de vuelo y carga útil. Un mástil central se extendía aproximadamente un metro por encima del vértice del trípode. Tres patas de aterrizaje con bisagras se unieron a las esquinas inferiores de la estructura. Las patas sostenían amortiguadores, bloques de aluminio moldeables y apisonados, y el mecanismo de bloqueo de despliegue y terminaban en almohadillas con fondos aplastables. Las tres almohadillas se extendieron a 4.3 metros del centro del Topógrafo. La nave espacial tenía unos 3 metros de altura. Las piernas dobladas para caber en una mortaja de la nariz para el lanzamiento.
Un conjunto de 0.855 metros cuadrados de 792 células solares se montó en un posicionador en la parte superior del mástil y generó hasta 85 vatios de potencia que se almacenaron en baterías recargables de plata y zinc. Las comunicaciones se lograron a través de una antena móvil de gran ganancia móvil montada cerca de la parte superior del mástil central para transmitir imágenes de televisión, dos antenas cónicas omnidireccionales montadas en los extremos de las barreras plegables para enlace ascendente y descendente, dos receptores y dos transmisores. El control térmico se logró mediante una combinación de pintura blanca, acabado térmico de alta emisión IR, superficie inferior de aluminio pulido. En la estructura de la nave espacial se montaron dos compartimentos controlados térmicamente, equipados con mantas superinsulares, trayectorias de calor conductivo, interruptores térmicos y pequeños calentadores eléctricos. Un compartimento, mantenido a 5 – 50 grados C, alberga electrónica de comunicaciones y suministro de energía. El otro, mantenido entre -20 y 50 grados C, alojó los componentes de comando y procesamiento de señal. La cámara de inspección de TV se montó cerca de la parte superior del trípode y se incorporaron medidores de tensión, sensores de temperatura y otros instrumentos de ingeniería en toda la nave espacial. Se montaron unos objetivos fotométricos cerca del extremo de una pata de aterrizaje y uno en una pluma corta que se extiende desde la parte inferior de la estructura. Otros paquetes de carga útil, que difieren de una misión a otra, se montaron en varias partes de la estructura en función de su función.
Un sensor solar, un seguidor de Canopus y giroscopios de velocidad en tres ejes proporcionaban conocimiento de actitud. El control de la propulsión y la actitud fueron proporcionados por chorros de control de actitud de gas frío (nitrógeno) durante las fases de crucero, tres motores de cohetes vernier accionables durante las fases motorizadas, incluido el aterrizaje, y el motor retrorocket de propelente sólido durante el descenso de la terminal. El retrorocket era una caja de acero esférica montada en el centro inferior de la nave espacial. Los motores Vernier usaron el combustible de hidratos de monometilhidrazina y el oxidante MON-10 (90% N2O2, 10% NO). Cada cámara de empuje podría producir 130 N a 460 N de empuje en la leva, un motor podría girar para controlar el balanceo. El combustible se almacenó en tanques esféricos montados en la estructura del trípode. Para la secuencia de aterrizaje, un radar de marcado de altitud inició el disparo del retrocohete principal para el frenado primario. Después de que se completó el disparo, el retrorocket y el radar se descartaron y los radares Doppler y altímetro se activaron. Estos proporcionaron información al piloto automático que controlaba el sistema de propulsión de Vernier para aterrizar.
Con una carga útil prácticamente idéntica a la del Surveyor 5, esta nave espacial llevaba una cámara de televisión, un pequeño imán de barra conectado a una almohadilla para detectar material magnético, un instrumento de dispersión alfa para estudiar la composición de la superficie y espejos auxiliares convexos montados en el marco para ver la superficie debajo de la nave espacial, así como también el equipo de ingeniería necesario. Las principales diferencias fueron que el Surveyor 6 tenía filtros polarizadores en la cámara de TV, un tipo diferente de capucha antideslumbrante, y tenía 3 espejos auxiliares en lugar de 2. El topógrafo 6 tenía una masa de 1006 kg en el lanzamiento y 299.6 kg en el aterrizaje.
Perfil de la misión
Surveyor 6 se lanzó el 7 de noviembre de 1967 a las 7:39:00 UT (2:39 a.m. EST) desde el complejo de lanzamiento 36B de la gama Eastern Test en Cape Kennedy. El refuerzo del Atlas-Centauro colocó a la nave espacial en una órbita de estacionamiento terrestre inicial desde la cual se inyectó en una trayectoria de transferencia lunar a las 8:03:30 UT. El 8 de noviembre de 1967 se realizó una maniobra de corrección a mitad de camino a las 2:20:00 UT. El topógrafo 6 aterrizó en la superficie lunar el 10 de noviembre de 1967 a las 01:01:06 UT (8:01:06 EST 9 de noviembre) en Sinus Medii. , una región de yegua plana, con muchos cráteres, en 0.4743 N, 358.5725 E (según lo determinado por las imágenes de Luner Reconnaissance Orbiter), cerca del centro del hemisferio visible de la Luna.
El 17 de noviembre a las 10:32 UT, los motores Vernier se dispararon durante 2,5 segundos, lo que provocó que Surveyor despegara de la superficie lunar de 3 a 4 metros y aterrizara a unos 2,4 metros al oeste de su posición original. Este “salto” lunar representaba el primer despegue impulsado desde la superficie lunar y proporcionaba nueva información sobre los efectos de los motores de cohetes en la Luna, permitía ver el sitio de aterrizaje original y proporcionaba una línea base para la visualización estereoscópica y el mapeo fotogramétrico de los alrededores terreno. La misión transmitió imágenes hasta unas pocas horas después de la puesta del sol el 24 de noviembre, devolviendo un total de 29.952 imágenes. El experimento de dispersión alfa adquirió 30 horas de datos en el material de la superficie.
La nave espacial fue puesta en hibernación por la noche lunar el 26 de noviembre. El contacto con la nave espacial se reanudó el 14 de diciembre por un corto período, pero no se devolvieron datos útiles y la última transmisión se recibió a las 19:14 UT del 14 de diciembre de 1967. Los resultados de los experimentos mostraron que la superficie tenía una composición basáltica. similar al encontrado en el sitio de aterrizaje del Surveyor 5. Los datos de ingeniería y mecánica del suelo indicaron que la resistencia de la superficie era más que adecuada para soportar los aterrizajes humanos. Esta nave espacial logró todos los objetivos planeados. La finalización exitosa de esta misión satisfizo la obligación del programa Surveyor con el proyecto Apollo. El programa Surveyor involucró la construcción y lanzamiento de 7 naves espaciales Surveyor a la Luna a un costo total de $ 469 millones.
Imagen del Surveyor 6 proyectando una sombra de 18 metros de largo con el sol a solo 8 grados sobre el horizonte. Imagen LROC NAC M117501284L. Crédito: NASA / Goddard / Arizona State University
Surveyor 6 on the Plains of Sinus Medii
Acoplamiento automático de naves
Cosmos 186 y Cosmos 188
Sello soviético conmemorando el acoplamiento de Cosmos 186 y Cosmos 188.
Cosmos 186 fue una misión no tripulada de una nave Soyuz 7K-OK lanzada el 27 de octubre de 1967 desde el cosmódromo de Baikonur. Se acopló con la Soyuz de la misión Cosmos 188, también sin tripular, en el que fue el primer acoplamiento automático de dos naves en el espacio.
Cosmos 186
Índice COSPAR: 1967-105A
País: URSS
Cohete portador: Soyuz
Lugar de inicio: Bajkonur, SSR kazajo
Órbita (objetivo, inicial)
Perigeo: 172 [1] km
Apogeo: 212 [1] km
Periodo de circulación: 88.7 [1] min
Inclinación: 51.7 [1] °
Excentricidad: 0.00304 [1]
Duración
El comienzo de la misión: 27 de octubre de 1967 (9:30 UTC)
Regreso a la atmosfera: 31 de octubre de 1967
Dimensiones
Peso total: 6000 [1] kg
Kosmos 186 (ruso: Космос-186) – vuelo espacial no tripulado como parte del programa Soyuz.La misión Kosmos 186 se usó para probar la maniobra de atracar naves en órbita alrededor de la Tierra.
Las naves se acoplaron en el segundo intento. Las naves quedaron unidas, pero no se consiguió el acoplamiento total ni la conexión eléctrica entre ambas naves debido a un error en el alineamiento entre ambas.
Antes de la reentrada el seguidor estelar de la nave, produciendo una reentrada balística.
La misión fue programada para coincidir con las celebraciones del 50 aniversario de la Revolución de octubre.
Cosmos 186 incorporó un cuerpo de reentrada (cápsula) para aterrizar instrumentos científicos y objetos de prueba. El acoplamiento automático de satélites en órbita se llevó a cabo el 30 de octubre de 1967 por Cosmos 186 y Cosmos 188. La búsqueda mutua, el acercamiento, el amarre y el atraque se realizaron automáticamente. Después de 3.5 horas de vuelo conjunto, los satélites se separaron en una orden enviada desde la Tierra y continuaron orbitando por separado. El 31 de octubre de 1976, Cosmos 186 realizó un aterrizaje suave en una región predeterminada de la URSS.
Cosmos 188
Cosmos 188 (en ruso: Космос-188) fue una misión no tripulada de una nave Soyuz 7K-OK lanzada el 30 de octubre de 1967 desde el cosmódromo de Baikonur, tras un retraso de un día. Se acopló con la Soyuz de la misión Cosmos 186, también sin tripular, en el que fue el primer acoplamiento automático de dos naves en el espacio.
Las naves se acoplaron en el segundo intento. Las naves quedaron unidas, pero no se consiguió el acoplamiento total ni la conexión eléctrica entre ambas naves debido a un error en el alineamiento entre ambas.
Antes de la reentrada el sensor de actitud de la nave, un sensor de flujo de iones, falló produciendo que el encendido del motor se produjese en una dirección incorrecta y provocando una reentrada descontrolada y fuera de la trayectoria planeada. Cuando la nave detectó el desvío del curso previsto activó el sistema de autodestrucción, produciendo la explosión de la cápsula a una altura de entre 60 y 70 km sobre la ciudad de Irkutsk.
En octubre de 1967, un par de naves espaciales Soyuz no tripuladas, oficialmente identificadas como Kosmos-186 y Kosmos-188, lograron el primer acoplamiento totalmente robótico en órbita del mundo. Este logro de ingeniería verdaderamente notable proporcionó un gran estímulo moral para el programa espacial soviético que aún se tambaleaba por la pérdida de Vladimir Komarov. A largo plazo, el acoplamiento automático abrió la puerta a numerosos avances futuros en la exploración del espacio, incluidas las primeras misiones lunares y las primeras estaciones orbitales. El acoplamiento automático soviético se produjo después de que la tripulación de la nave espacial estadounidense Gemini-8 hiciera un acoplamiento controlado manualmente con un cohete Agena en marzo de 1966.
Misión conjunta de Kosmos-186 y Kosmos-188 de un vistazo:
– Kosmos-186 Kosmos-188
Designación de nave espacial Soyuz , 7K-OK -11F615 No. 6 activo Soyuz , 7K-OK -P 11F615 No. 5 pasivo
Fecha de lanzamiento 1967 27 de octubre 1967 30 de octubre
Sitio de lanzamiento Sitio 31 Sitio 1
Fecha de aterrizaje 1967 31 de octubre (descenso y aterrizaje balísticos) 1967 3 de noviembre (volado en el descenso)
Misión Encuentro activo y acoplamiento con el Vehículo n. ° 5 Encuentro pasivo y acoplamiento con el Vehículo n. ° 6
Tripulación Sin tripulación Sin tripulación
Debe estar conectado para enviar un comentario.