Este Mundo, a veces insólito

Calendario
noviembre 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
252627282930  

Pascual

La escritura en las hojas de palma

La escritura en las hojas de palma

Las misteriosas escrituras halladas en hojas de palma que nadie puede traducir

La información contenida sobre este soporte vegetal podría perderse para siempre

Dos ejemplos de los cuatro documentos que no se han podido traducir – GOVERNMENT ORIENTAL MANUSCRIPTS LIBRARY

ABC-09/07/2018 11:15h

Desde el nacimiento de la escritura en torno al año 3000 a.C., el desarrollo de la escritura ha sido distinto en función del territorio. Tanto, que día de hoy existen distintas lenguas que resultan imposibles de traducir. La biblioteca Oriental de Manuscritos del gobierno de Chennai, en el sur de la India, cuenta con una colección compuesta por más de 70.000 manuscritos de distinta procedencia. Entre estos se encuentran documentos escritos en una extraña escritura antigua que, hasta el momento, nadie ha sido capaz de descifrar.

«No tenemos esta escritura registrada. Está realizada en hojas de palma, y vino con el resto de la colección cuando nuestra biblioteca abrió, en 1869», explica en unas declaraciones recogidas por la «BBC» el bibliotecario Chandra Mohan. Mohan afirma que la institución guarda en la actualidad 50.180 manuscritos realizados sobre hojas de palama, 22.134 manuscritos en papel y 26.556 obras de referencia. Dentro de estas, 49.000 están escritas en sánscrito, mientras las escritas en tamil están en torno a las 16.000.

La mayoría de los manuscritos se escriben en hojas de palma, pero algunas también se escriben en láminas de cobre.

Muchos de estos documentos formaban parte de la colección privada del coronel Colin McKenzie, el primer topógrafo de la India. «Él hizo que parte de su personal viajara por todo el país, especialmente por el sur, para recolectar estas escrituras», relata Chandra Mohan en una entrevista al diario «The Hindu». La coleeción de McKenzie está conformada por obras de literatura, historia, medicina y naturaleza.

Mckenzie murió en 1821 y la compañía East India compró su colección.

Esta fue agrupada en tres partes y una de ellas fue enviada a Chennai, en el sur del país. Mientras, otros dos trabajadores de la compañía tenían su propia colección.

Fue un profesor de sánscrito de la Universidad Presidency de Calcuta quien jugó un rol crucial en reunir toda la colección bajo el mismo techo.

Fue uno de los académicos que visitó la biblioteca en 2008 quien se encontró con unas escrituras no identificadas e hizo una suposición. «Él creía que los manuscritos habían venido de Karnataka y que lo más probable era que pertenecieran a la época de Krishnadevaraya (un guerrero del siglo XVI)», recuerda Mohan. Ahora, esa escritura no identificada, que se extiende por cuatro páginas, se encuentra en la sala de exhibición de la biblioteca.

«En 1965 publicamos un anuncio en un periódico regional y convocamos a lingüistas y académicos a que nos ayudaran a identificar las escrituras, pero no obtuvimos ninguna respuesta», dice Mohan.

La biblioteca reúne esfuerzos actualmente para preservar tanto el manuscrito misterioso como el resto de los que la biblioteca atesora.

Una combinación de métodos químicos y manuales están siendo usados para evitar su deterioro.

“Cada tres meses usamos aceite de citronela para preservar las copias,” dice Mohan.

“También hemos incorporado tecnología moderna y hemos podido laminar varias escrituras, además de nuestros esfuerzos de digitalización y transcripción.”

Las autoridades del estado concedieron US$45.000 a la biblioteca para que pueda modernizar y digitalizar su contenido.

El remozamiento probablemente haga más entendibles las escrituras. Pero ¿podría esto llevar a su identificación?

“Quizás en algún momento en el futuro un académico será capaz de interpretar estas escrituras. Si no, toda esta información se perderá.”

La biblioteca preserva manuscritos en diversas lenguas, incluyendo el telugu.

Juan José Prieto Gutiérrez 19 de Septiembre de 2016

Los manuscritos realizados sobre hoja de palma son uno de los soportes de lectura más asombrosos jamás realizados. Es muy importante destacar que fueron uno de los primeros materiales de escritura comenzándose a grabar antes del siglo V antes de Cristo.

Originalmente se concentraron, en el Sur y en el Sudeste Asiático y fueron empleados durante más de dos mil años para transmitir el saber y el conocimiento de unas generaciones a otras. Concretamente las materias incluidas en los mismos abarcan desde las matemáticas, arte, astronomía, astrología, temas religiosos y medicina, entre otras.

Fueron un medio popular en donde se grababan, mediante una aguja o punzón metálico las letras, en las hojas secas de palma en donde posteriormente se aplicaba, para mejorar la legibilidad de la lectura, cenizas y aceites aromáticos.

En la actualidad, podemos ubicar los manuscritos de palma en varios países, siendo India el que más salvaguarda. Aunque muchos de ellos se sitúan, por falta de medios, en malas condiciones.

Libros de hojas de palmera

Hoy os vamos a hablar de un formato de libros muy curioso, que nos trae peripatus_capensis, nuestro vendedor de libros favorito de eBay. Se trata de los libros de hojas de palmera, un extraño formato de publicación.

Historia

En el sudeste asiático (India, Tailandia, Burma, Sri Lanka, e Indonesia) la forma tradicional de los libros manuscritos, desde el siglo V a.C., consistía en tiras de hojas de palmera (o de palma talipot -palmera de Ceilán-).

El tamaño de las hojas solía elegirse en función de su uso, y para los libros valiosos la medida aceptada era de dos palmos y cuatro dedos, con una anchura de 3-4 dedos, es decir aproximadamente 48 cm de largo por 4 cm de ancho.

Aunque en función del lugar de origen pueden ofrecer una gran variedad de tamaños, el promedio es la medida antes indicada. Las mayores o más pequeñas son raras.

Las tiras de hojas de palmera son más gruesas y rígidas que la de talipot, mientras que la de ésta son mas finas, flexibles y tienen una mejor perdurabilidad (más de 300 años). Para su uso, las hojas eran sometidas a un complicado proceso en el que eran tratadas con arena para su pulimento y también  hervidas en agua o leche para endurecerlas. Después se realizaban en las tiras uno, dos o tres orificios. Estas hojas preparadas para la escritura se denominaban ola (u olla).

Las hojas eran “escritas” mediante incisiones realizadas con instrumentos punzantes. Estas incisiones se ponen más oscuras que el resto de la hoja gracias a aplicaciones de extractos vegetales o aceites aromáticos, lo que las hace más legibles al tiempo que le proporciona un efecto repelente para los insectos. No es raro encontrar libros de hojas de palmera en los que se han realizado adiciones o enmiendas con lápiz o pluma con posterioridad.

Cuando el libro estaba concluido se les añadía “tapas” de madera “poth kammba” para una mejor conservación. Era frecuente que estas tapas tuvieran adornos en bronce, cobre, plata e incluso oro. Después se pasaban por los orificios un cordel para mantener unido y ordenado el conjunto.

El contenido de este tipo de manuscritos suele ser mitológico, crónicas históricas, tratados religiosos, salmos, prescripciones médicas, horóscopos, calendarios…

Se estima que en la actualidad, ni el 10% de los manuscritos han sido estudiados, y mucho menos transcritos o impresos.

Reparación

Los procedimientos de reparación de los manuscritos estropeados comprenden la limpieza con agua y glicerina, el “retintado”, la flexibilización con determinados aceites o polietilenglicol, la reparación de las láminas rotas, empleando por ejemplo acetato de polivinilo, y también la fumigación para prevenir las plagas de insectos y la sustitución del encordado por cordoncillo de seda.

Adquisición

El precio de adquisición de estos libros depende sobre todo de su antigüedad.

Se vienen realizando desde hace miles de años y en la actualidad se ha recuperado la tradición, vendiéndose en algunos países principalmente como artesanía para los turistas occidentales.

Un auténtico manuscrito antiguo puede tener un valor incalculable, superior con mucho a los 1000 euros. Los que tienen entre 80 y 160 años, la mayoría de los que pueden encontrarse actualmente que no sean nuevos, se cotizan en función de su conservación, tamaño y número de hojas, siendo los precios más usuales entre 100 y 600 euros.

Los de reciente creación, preparados como recuerdos de artesanía, suelen ser pequeños tanto en extensión como en dimensiones de la hoja de palmera, principalmente constan de dibujos que los hacen más atractivos y suele apreciarse que son trabajos nuevos. Su precio, dependiendo también de sus características puede oscilar entre los 30 y los 60 euros aproximadamente.

Desde luego, estos precios deben tomarse siempre de una forma relativa y cada cual debe ajustarse a sus gustos y decisiones.

Satélite sobrevuela Venus

Mariner 5

Mariner 5

 

Organización: NASA

Sobrevuelo: Venus

Fecha del sobrevuelo: 19 de octubre de 1967

Fecha de lanzamiento: 14 de junio de 1967

Vehículo de lanzamiento: Atlas

Sitio de lanzamiento: Cabo Cañaveral

Aplicación: Científico

Masa: 244 kg

NSSDC ID: 1967-060A

Equipamiento

Bandas espectrales: Banda S

La nave espacial Mariner 5 fue la quinta de una serie de naves espaciales de la NASA dentro del Programa Mariner usadas para la exploración en el modo de sobre vuelo. El Mariner 5 fue una nave espacial reconstruida que serviría de respaldo en la misión Mariner 4 y posteriormente se cambió el objetivo de la misión de sobrevolar Marte para dirigirse y sobrevolar Venus.

La nave usó al Sol y a Canopus como referencias para mantenerse estabilizada en su navegación. Una computadora central y un subsistema secuenciador dieron las secuencias de tiempo y los servicios de cómputo para otros subsistemas de naves espaciales.

El Mariner 5 fue lanzado el 14 de junio de 1967, y llegó a la vecindad de Venus el 19 de octubre de 1967. La nave espacial llevó una serie de instrumentos para estudiar la refractividad de la atmósfera de Venus usando ondas de radio y ultravioleta. Así mismo con sus instrumentos midió plasma y partículas cargadas, el campo magnético interplanetario así como el campo magnético de Venus.

La distancia más cercana de vuelo fue de 3.990 km y, con instrumentos más sensitivos que su predecesor, el Mariner 5 pudo verter nueva información acerca del planeta caliente y cubierto de nubes, y acerca de las condiciones en el espacio interplanetario. La nave espacial también modernizó las técnicas de construcción y operación de las naves espaciales interplanetarias, así como lo hizo antes cada Mariner. Todas las operaciones en el Mariner 5 fueron cerradas en noviembre de 1967.

El despegue tuvo lugar el 14 de junio de 1967 desde el Complejo 12 de lanzamiento de la Estación Aérea de Cabo Cañaveral en el vehículo Atlas 5401. El rendimiento de refuerzo fue normal a través de la porción Atlas del lanzamiento y la primera quemadura Agena, con todos los sistemas funcionando al nivel adecuado. Durante la segunda quemadura Agena, se produjeron fluctuaciones anormales en la presión de la cámara del motor, sin embargo, no impidieron una inyección interplanetaria exitosa. Hubo varias ocurrencias de este comportamiento en lanzamientos previos de la NASA y la Fuerza Aérea y se inició un programa para corregirlo, lo que condujo a un rediseño de la caja de cambios Ageo turbopump. El Mariner 5 voló por Venus el 19 de octubre de ese año a una altitud de 3.990 kilómetros (2.480 millas). Con instrumentos más sensibles que su predecesor Mariner 2, Mariner 5 pudo arrojar nueva luz sobre el planeta caliente cubierto de nubes y sobre las condiciones en el espacio interplanetario.

Los datos de ocultación de radio de Mariner 5 ayudaron a comprender los datos de temperatura y presión devueltos por el módulo de aterrizaje Venera 4, que llegó a Venus poco antes. Después de estas misiones, estaba claro que Venus tenía una superficie muy caliente y una atmósfera aún más densa de lo esperado.

Las operaciones de Mariner 5 terminaron en noviembre de 1967 y ahora está difunta en una órbita heliocéntrica.

Lanzamiento de Mariner 5

Otros intentos de comunicación

Se intentaron otros intentos de comunicación, en una investigación conjunta de campo solar / campos magnéticos solares de naves espaciales con Mariner 4, de nuevo en comunicación con la Tierra después de estar fuera de la telemetría durante aproximadamente un año o más en una conjunción superior. Durante el experimento, ambas naves espaciales iban a estar en la misma espiral de campo magnético idealizada que el sol lleva a cabo desde el sol.

Entre abril y noviembre de 1968, la NASA intentó readquirir Mariner 5 para continuar investigando las condiciones interplanetarias. Los intentos de readquirir Mariner 5 durante junio, julio y principios de agosto de 1968 no dieron señales de naves espaciales.

El 14 de octubre, el operador del receptor en el DSS 14 obtuvo un bloqueo en la señal Mariner 5. Se detectó una onda portadora, pero fuera de los límites de frecuencia esperados y variando en la longitud de onda. Los cambios en la intensidad de la señal indicaron que la nave espacial estaba en una lenta rotación. Sin embargo, fue posible bloquear la nave espacial a una señal de enlace ascendente, pero no se observó respuesta a ningún comando enviado a ella. Sin telemetría y sin ningún cambio de señal en respuesta a los comandos, no había posibilidad de reparar o continuar utilizando la nave espacial. Las operaciones finalizaron al final de la pista desde el DSS 61 a las 07:46 GMT del 5 de noviembre de 1968.

Instrumentos

  1. Receptor de baliza de dos frecuencias
  2. Ocultación de S-Band
  3. Magnetómetro de helio
  4. Sonda de plasma de iones interplanetario para E / Q de 40 a 9400 voltios
  5. Mecánica celeste

Otras descripciones

La nave espacial Mariner 5 consistía en un marco octagonal de magnesio, 127 cm de diagonal y 45,7 cm de alto. Cuatro paneles solares se unieron a la parte superior del marco. También se montó una antena parabólica de alta ganancia de 116,8 cm de diámetro en la parte superior del marco. Una antena omnidireccional de baja ganancia y el magnetómetro se montaron en un mástil de 223,5 cm de alto junto a la antena de alta ganancia. La altura total de la nave espacial fue de 289 cm. El marco octogonal albergaba el equipo electrónico, el cableado, el sistema de propulsión a mitad de camino y los reguladores y suministros de gas para control de actitud. La mayoría de los experimentos científicos se montaron en el exterior del marco. Los instrumentos de ciencia fueron un magnetómetro, telemetría de ocultación de banda S, fotómetro UV, detector de radiación atrapada, baliza de propagación de doble frecuencia, taza de Faraday y mecánica celeste.

La energía fue suministrada por 17.640 n / p células solares contenidas en los cuatro paneles solares con un tramo de extremo a extremo de 550 cm, lo que podría proporcionar 555 W en Venus. También se usó una batería recargable de plata y zinc de 1200 W-h para maniobras y respaldo. La hidrazina monopropelante se usó para la propulsión, a través de un motor 222-N con control de vector de paleta de 4 chorros instalado en uno de los lados de la estructura octogonal. El control de la actitud fue proporcionado por 12 chorros de gas nitrógeno frío montados en los extremos de los paneles solares y tres giroscopios. La información posicional fue proporcionada por dos sensores solares principales, sensores solares secundarios, un sensor de tierra, un sensor planetario, un sensor terminador de Venus y un seguidor de estrellas Canopus.

El equipo de telecomunicación consistía en un transmisor TWTA dual de cavidad triodo de 6.5 W y un transmisor TWTA de 10.5 W y un receptor único que podía enviar y recibir datos a través de antenas de baja y alta ganancia a 8 1/3 o 33 1 / 3 pb. Los datos también se pueden almacenar en una grabadora para transmisión posterior. Todas las operaciones fueron controladas por un subsistema de comando. La computadora central y el secuenciador operaban comandos de secuencia de tiempo almacenados. El control de la temperatura se mantuvo mediante el uso de persianas ajustables, sombrilla desplegable, mantas aislantes multicapa, escudos de aluminio pulido, tratamientos superficiales y unidades de referencia montadas en tres paneles solares.

Perfil de la misión

Mariner 5 fue lanzado desde el Eastern Test Range de Cape Kennedy en un Atlas Agena Don el 14 de junio de 1967 a las 06:01:00 UT. El 19 de junio se realizó una corrección a mitad de camino (una combustión de 17,66 segundos). Mariner 5 llegó a Venus el 19 de octubre y comenzó a transmitir datos. El acercamiento más cercano a una altitud de 4094 km ocurrió a las 17:34:56 UT. En este momento Venus estaba aproximadamente a 79.5 millones de km de la Tierra. El Mariner 5 pasó frente a la órbita de Venus y se ocultó de la Tierra durante aproximadamente 26 minutos. Las transmisiones de datos ocurrieron después del encuentro. El contacto se perdió el 4 de diciembre de 1967, pero se recuperó temporalmente el 14 de octubre de 1968. La nave espacial ahora se encuentra en órbita heliocéntrica. Los instrumentos de la nave espacial midieron los campos magnéticos interplanetarios y venusinos, las partículas cargadas y los plasmas, así como la refracción de la radio y las emisiones UV de la atmósfera de Venus. La misión se denominó un éxito. El costo total de investigación, desarrollo, lanzamiento y soporte para la serie de naves espaciales Mariner (Marineros 1 a 10) fue de aproximadamente $ 554 millones.

Astronauta muerto en el espacio – Komarov – Soyuz 1

Soyuz 1

Insignia de la misión

Datos de la misión

Nombre: Soyuz 1

Cohete lanzador: Soyuz (11A511)

Nombre de la nave: Рубин (Rubin) –Rubí)

Tripulantes: 1 (Vladímir Komarov)

Lanzamiento: 23 de abril de 1967; 00:35 UTC
Baikonur LC1; 45°55′00″N 63°20′00″E

Aterrizaje: 24 de abril de 1967; 03:22 UTC; 51’13° N, 57’27° E

Duración: 1 día, 2 h, 47 min y 52 s

Número de órbitas: 18

La Soyuz 1 (en ruso Союз 1, Unión 1) fue el primer vuelo tripulado de una nueva serie de naves espaciales de la Unión Soviética. Lanzada el 23 de abril de 1967 con un único tripulante, el coronel Vladímir Mijáilovich Komarov, que murió cuando la nave se estrelló en su regreso a la Tierra. Se trató del primer accidente mortal en vuelo de la historia de los vuelos espaciales.

Vuelos de prueba

Al igual que en los programas previos Vostok y Vosjod la Unión Soviética envió primero prototipos no tripulados para validar la nave. Sin embargo, al contrario de lo que había sucedido anteriormente, en esta ocasión todos ellos fracasaron.

El primero se lanzó el 28 de noviembre de 1966 y se le asignó la denominación de Cosmos 133.

El segundo vuelo de prueba se intentó realizar el 14 de diciembre de 1966. Como era norma en la Unión Soviética, la nave que no alcanzaba la órbita no recibía nombre; actualmente se la suele denominar como Cosmos 140A.

El tercer vuelo de prueba se efectuó el 7 de febrero de 1967 y la nave, tras el lanzamiento, recibió el nombre de Cosmos 140.

Cabe citar el lanzamiento de una versión lunar de la Soyuz (Zond) que fue efectuado el 8 de abril de 1967 y bautizada como Cosmos 154.

Elección de la tripulación

Sello postal de la URSS de 1964 homenajeando a Vladimir Komarov.

Nikolái Kamanin, jefe del cuerpo de cosmonautas de la Unión Soviética y Serguéi Koroliov, ingeniero jefe del programa Soyuz, hablaron el 20 de agosto de 1965 sobre la elección de cosmonautas. Entre otros, se propuso a Yuri Gagarin y Vladímir Komarov.

Tras la muerte de Koroliov el 14 de enero de 1966 se nombró a Vasily Pavlovich Mishin como su sustituto. Mishin propuso que se enviara a “ingenieros no válidos” de su propio grupo de trabajo (OKB-1) para las primeras misiones de la Soyuz. Esto originó una agria disputa con Kamanin, quien consideró que no había tiempo para prepararlos adecuadamente. Tras meses de disputa se optó finalmente por cosmonautas profesionales. Komarov fue escogido astronauta principal, con Gagarin como reserva.

Tanto la Vostok como la Vosjod habían pasado por vuelos de prueba con éxito antes de enviar a un ser humano a bordo. Con la Soyuz, los malos resultados de todos los vuelos automáticos hizo que se tuvieran malos presagios para la primera misión tripulada. Unas semanas antes del lanzamiento Komarov afirmó que si él no volaba «mandarán al piloto de reserva. Él [Yuri] morirá en vez de mí». A su vez Yuri Gagarin intentó desbancar a Komarov, con la convicción de que la URSS no arriesgaría la vida de un héroe nacional.

Presiones políticas

En la planificación de la Soyuz 1 hubo intensas presiones políticas. Una actuación prudente hubiera esperado a que se efectuara al menos un vuelo de prueba con éxito antes de autorizar la presencia de cosmonautas a bordo del vehículo, tal y como se hizo con los anteriores programas Vostok y Vosjod. No obstante, las presiones políticas provenientes de Leonid Brézhnev y, especialmente, de Dimitry Ustinov hicieron que se incurriera en mayores riesgos. Ustinov llegó a decir a Komarov (que era escéptico sobre la preparación de la Soyuz) que si no accedía a pilotar el vehículo le «quitaría las estrellas del pecho y los galones de los hombros». Ante las dudas que suscitaba el programa entre los cosmonautas el director del programa Soyuz, Vasily Mishin, llegó a gritar que «¡no quiero cobardes en mis naves!».

El 14 de abril se realizó una inspección. Uno de los participantes, el coronel Kirillov, señaló que había cientos de cuestiones técnicas sin resolver en la nave y que, por ello, la Soyuz no estaba lista. Al oírlo Mishin estalló de furia y le replicó que él le enseñaría cómo hacer su trabajo. Finalmente, el 20 de abril se autorizó el despegue, que quedó fijado para el día 23.

En la elección de la fecha intervinieron también cuestiones políticas. Algunas fuentes señalan que la fecha escogida para el lanzamiento pretendía conmemorar el cumpleaños de Lenin (22 de abril), el Día del Trabajo (1 de mayo) y coincidía también con una importante reunión de líderes comunistas en Checoslovaquia.

Objetivos de la misión

La Soyuz 1 iba a ser seguida un día después por el lanzamiento de la Soyuz 2, con tres tripulantes: Valery Fyodorovich Bykovsky, Yevgeny Vassilyevich Khrunov y Aleksei Stanislavovich Yeliseyev. Estaba previsto que las dos naves se acoplaran, con la Soyuz 1 actuando como “nave activa” y la Soyuz 2 como “nave pasiva”. Tras el acoplamiento dos de los cosmonautas de la Soyuz 2 efectuarían un paseo espacial hasta la Soyuz 1 (aunque la Soyuz ya tenía capacidad de acoplamiento los astronautas aún no podían pasar directamente de una a otra). Una vez realizado el intercambio, ambas naves se separarían y volverían a Tierra.

La misión Soyuz 1 & 2 se iba a enviar apenas unos meses después del mortal accidente del Apollo 1. Los soviéticos esperaban que el nuevo éxito, tras más de dos años sin vuelos tripulados, les devolviera la supremacía en la carrera espacial.

Sin embargo, muchos responsables del programa espacial soviético temían que la distancia que estaban ganando los EE. UU. fuera irrecuperable. Hasta el momento, las naves estadounidenses ya habían efectuado maniobras de aproximación (Gemini 6 y Gemini 7, 15 de diciembre de 1965) y de acoplamiento (Gemini 8 y Agena 8, 16 de marzo de 1966). En cambio, los soviéticos no tenían experiencia ni en aproximación ni en acoplamiento.

Iba a ser, además, la primera vez en la historia en la que se acoplaban dos naves tripuladas y se producía un intercambio de tripulaciones. Dominar estos dos elementos era clave en el programa lunar soviético.

El vuelo de la Soyuz 1

Despegue de la Soyuz TMA-2 el 26 de abril de 2003 desde Baikonur.

La Soyuz 1 despegó el 23 de abril de 1967 con el cosmonauta Vladimir Mijailovich Komarov a bordo.

El lanzamiento se efectuó a la perfección pero una vez en órbita inmediatamente comenzaron los problemas. El panel solar izquierdo no se abrió, lo que produjo una gran merma de la energía disponible para la nave. Además el sensor solar 45 K falló, imposibilitando orientar el panel derecho, por lo que la corriente proveniente de este bajó a apenas 24 Amperios, insuficiente para mantener las baterías cargadas. Además, los giróscopos y el sensor de iones también fallaron. Los fallos fueron claramente mencionados por el propio cosmonauta en sus comunicaciones con tierra. En su segunda órbita, Komarov exclamó “maldita máquina, ¡nada de lo que hago funciona!“.

La Soyuz 1 salió del alcance de las estaciones de seguimiento soviéticas. Desde tierra se ordenó a Komarov que intentara dormir. Al volver a contactar con la nave, el sistema de control de actitud automático había fallado.

En tierra se vio rápidamente lo preocupante de la situación. La primera prioridad seguía siendo que la Soyuz 1 se estabilizara mediante el giro sobre su eje. Pero había otro problema: a pesar de todos los intentos de Komarov por orientar el único panel solar hacia el Sol, la Soyuz sólo producía la mitad de la electricidad necesaria para recargar completamente la batería. Eso hacía que la batería se degradara más rápido de lo previsto, por lo que se estimó que a partir de la revolución nº17 se tendría que recurrir a la batería de reserva. Así pues, se determinó que la Soyuz debía volver a tierra en la 17ª revolución.

En algún momento se pensó en lanzar la Soyuz 2 para que se acoplara a su gemela y se reparara el panel solar en un paseo espacial. No obstante, es difícil que se considerara demasiado en serio. Una fuerte lluvia impedía el lanzamiento inmediato de la Soyuz 2 y por aquel entonces estaba claro que la Soyuz 1 no debía permanecer mucho más tiempo en órbita. La opción más sensata era devolver la Soyuz 1 lo más pronto posible a tierra. Tal y como demostró la investigación posterior, de haberse lanzado la Soyuz 2 probablemente también se hubiera estrellado al volver a Tierra.

Mientras los directores de la misión se debatían en discusiones interminables, el tiempo corría en contra de la Soyuz 1. En la 14ª revolución el jefe de balística llamó la atención de que era hora de dejar las discusiones y llevar a cabo un plan de actuación.

Esquema de la Soyuz versión 7K-OK (la misma que se usó en la misión Soyuz 1).

Mientras Komarov recorría su 16ª vuelta a la Tierra Gagarin le transmitió las órdenes para su regreso. Mishin y Kamanin le desearon suerte. El primer ministro Alekséi Kosygin habló personalmente con Komarov. Después se llevó a la esposa de éste, Valentina, a hablar con él en una consola privada. Komarov, que se mantenía en calma, se despidió de su esposa.

El primer intento de salir de órbita se efectuó con los sistemas automáticos en la 17ª órbita. La maniobra se efectuó fuera del alcance de las estaciones terrestres. Pero, cuando la Soyuz 1 entró en el radio de alcance de éstas, comprobaron que la maniobra no se había efectuado porque la nave seguía en la misma órbita que antes. Komarov se puso en contacto con tierra y explicó que, aunque inicialmente los sensores de orientación iónicos funcionaron bien y el vehículo se estabilizó, cerca del Ecuador la cápsula volvió a perder el control, por lo que no se pudieron encender los motores.

Los controladores se vieron urgidos a preparar un nuevo plan, pero la Soyuz salió fuera de cobertura y se tuvo que esperar otra vuelta a la Tierra para poder enviar a Komarov las instrucciones. El intento de regreso se efectuaría en la revolución nº19. La idea era que Komarov orientara la nave manualmente mientras ésta permaneciera en el lado diurno de la Tierra. Al pasar al lado nocturno usaría unos giroscopios para mantener la orientación y finalmente, al volver al lado diurno, orientaría manualmente otra vez. Mientras tanto, se estimó que la batería principal aguantaría una o dos órbitas más, mientras que la de reserva lo haría tres. Komarov no había sido entrenado para realizar una maniobra así, pero se consideraba que estaba preparado para llevarla a buen término.

Komarov intentó llevar a cabo el plan. Debido a que la maniobra de frenado debía efectuarse en el lado nocturno de la Tierra, el cosmonauta no pudo utilizar el visor. En su lugar, Komarov empleó el periscopio y usó la Luna para orientarse (tal y como harían los astronautas del Apollo 13 años después). Para estabilizar la cápsula le produjo un giro sobre sí misma (como el de una peonza). El frenado inició correctamente pero, cuando se llevaban 146 de los 150 segundos previstos, se agotó el combustible usado para controlar la cápsula. Sin orientación, el sistema de navegación ordenó el apagado de los motores. La maniobra había sido un éxito relativo: la Soyuz 1 volvía a Tierra aunque, sin combustible para orientarse, efectuaría la reentrada en modo balístico (lo que conlleva una elevada desaceleración).

Además, al efectuarse la reentrada en modo balístico, hubo que volver a desplegar un dispositivo de rescate, ya que el inicial esperaba en Orenburg mientras que la nueva previsión indicaba que la Soyuz 1 aterrizaría en Orsk.

Parte del compartimiento de los paracaídas, expuesto al calor generado, se fundió. Al término de la maniobra se abrió el paracaídas guía. Sin embargo, debido a un fallo de diseño, éste no ejerció suficiente fuerza para arrastrar al paracaídas principal. Komarov intentó abrir el de reserva, pero éste se enredó sobre el paracaídas guía. Sin posibilidad de frenar, la Soyuz 1 se estrelló a unos 200 km/h, matando a su único ocupante y quedando completamente destrozada.

Soyuz versión 7K-OK exhibida el National Space Centre, Leicester, Reino Unido.

El equipo de rescate que había partido de Orsk vio a la cápsula desde el aire. Estaba ya en el suelo, yaciendo de medio lado. Poco después, debido al impacto, se encendieron los retrocohetes, lo cual alarmó a los especialistas, pues los retrocohetes deberían haberse activado antes de tocar el suelo para frenar a la nave. Los retrocohetes prendieron fuego a la cápsula y, para cuando por fin llegaron hasta ella, ésta no era más que un amasijo humeante.

El equipo de rescate no tenía bengalas de colores que indicaran que el cosmonauta estaba muerto, así que usaron unas que querían decir que el cosmonauta requería ayuda médica urgente, lo cual aumentó aún más el caos informativo que se estaba viviendo.

El fuego y el mal estado de la cápsula hicieron que los restos de Komarov no fueran encontrados hasta una hora más tarde. Se efectuó una rápida autopsia de su cuerpo, que fue incinerado y llevado al Kremlin para un funeral de estado. Supuestamente un grupo de Jóvenes Pioneros encontró después restos de Komarov en el lugar del accidente y le dieron un segundo lugar de entierro.

Algunos medios occidentales captaron las transmisiones de la Soyuz 1. Esos mensajes interceptados han sido objeto de diversas especulaciones. Según algunos Komarov lanzó agrias críticas al programa aunque según James Oberg estos informes resultaron de la mala interpretación de la señal –plagada de ruido– y un pobre conocimiento del ruso. También se especula con la posibilidad de que poco antes de la reentrada los controladores del vuelo prometieran a Komarov un funeral de estado en el Kremlin.

El accidente según los medios soviéticos

Al cabo de poco tiempo de haberse lanzado la misión los medios de comunicación soviéticos anunciaron el éxito del despegue. Sin embargo, en cuanto comenzaron los problemas técnicos, enmudecieron.

Unas siete horas después de que la Soyuz 1 se estrellara la Unión Soviética anunció el trágico final. Sin embargo sólo se mencionó el fallo del paracaídas como causa del accidente, sin comentar la larga secuencia de problemas técnicos que venía arrastrando tanto la nave como el programa Soyuz.

Hasta aquel momento la Unión Soviética, salvo reconocer implícitamente fallos en algunas sondas, sólo había hablado de éxitos en su programa espacial. Aquel fue el primer fracaso reconocido de forma explícita.

Komarov fue enterrado en el Kremlin el 26 de abril en un funeral multitudinario.

Causas del accidente

Causas directas

Las causas directas del accidente, tal y como mostró la comisión encargada a tal fin (20 de mayo de 1967), fueron:

  1. El paracaídas principal no se abrió debido a que el paracaídas guía no ejerció suficiente fuerza.
  2. Jamás se comprobó que el paracaídas guía y el de reserva no interfirieran entre sí.

Otra fuente asegura que fue el giro inducido a la cápsula para estabilizarla lo que impidió que se abriera el paracaídas.

Finalmente, Boris Chertok, uno de los jefes de la oficina de diseño OKB-1, especuló que el contenedor del paracaídas podría haberse contaminado con un polímero que actuara a modo de pegamento aunque otros líderes del proyecto, como Konstantin Feoktistov, no consideraban creíble esta hipótesis.

Causas indirectas

Otras circunstancias que afectaron al programa Soyuz y que se pueden considerar causas indirectas del accidente:

  1. Fallo de todos los vuelos de prueba anteriores.
  2. Falta de presupuesto en el programa espacial soviético.
  3. Carencia de una gran agencia que controlara todo el programa (como la NASA estadounidense). En su lugar existían múltiples pequeños organismos, frecuentemente en disputa entre sí.
  4. El Politburó prefería éxitos con los que adornar fechas señaladas a una planificación a largo plazo. Eso había funcionado bien desde el Sputnik 1, pero se hizo paulatinamente más difícil conforme la carrera espacial se iba complicando.
  5. La muerte de Koroliov y su sustitución por Mishin, que fue muy criticado por Kamanin y los propios cosmonautas.
  6. No se efectuaron pruebas de naves completas en tierra. En su lugar se optó por enviar los primeros prototipos al espacio.
  7. La no apertura de uno de los paneles solares.
  8. La preferencia por usar sistemas de vuelo automáticos en vez de permitir a los cosmonautas tomar el mando de la nave.

Consecuencias del accidente

Los soviéticos, que intentaban conseguir un nuevo éxito para su programa espacial que contrastara con el accidente del Apollo 1 se vieron envueltos en un fallo similar.

La Soyuz tuvo que pasar una revisión de 18 meses antes de ser declarada apta para el vuelo tripulado. Antes de poder hacerlo se efectuaron con éxito diversos vuelos de prueba. La siguiente misión tripulada, Soyuz 3 no voló hasta el 26 de octubre de 1968. A las Soyuz 4 y Soyuz 5 (lanzamiento 19 de enero de 1969) les fueron asignadas la misión originalmente prevista para las 1 y 2.

Para entonces la carrera a la Luna ya estaba prácticamente perdida para la Unión Soviética. A los problemas del programa Soyuz había que sumarle los de su versión lunar (Zond) y los de los cohetes que debían llevar las naves hasta la Luna (Protón para el sobrevuelo y N-1 para el alunizaje).

Komarov descansa en el muro del Kremlin. Imagen Spacefacts

Komarov fue incinerado y la urna con sus restos depositada en los muros del Kremlin. Desde el despegue su suerte estaba sellada a pesar de su gran desempeño durante la misión.

 

 

 

 

Estatua erigida en el sitio de aterrizaje de la Soyuz 1. Imagen Simotron

.

Gagarin a la izquierda, junto a Komarov. Imagen GCTC

Anillos Gigantes en el Mar de Panonia

Anillos Gigantes en el Mar de Panonia

De acuerdo con la población local, se cree que estos “artefactos” se remontan a la época del Mar de Panonia y las leyendas sugieren que estos fueron utilizados por los seres gigantes que habitaron la zona en el pasado distante.

Mar de Panonia

El mar de Panonia durante el Mioceno.

El mar de Panonia fue un mar somero localizado en el área conocida como Llanura Panónica en Europa Central.1​ Se formó hace unos 10 millones de años cuando Paratetis quedó aislado y se dividió en varios mares, siendo el mar de Panonia uno de ellos. El mar de Panonia existió durante el Plioceno, cuando tres a cuatro kilómetros de sedimentos marinos se depositaron en la cuenca de Panonia.

Llanura de Panonia (Bosnia) donde se encontraba el Mar de Panonia

Los descubrimientos recientes apuntan a un momento en que los gigantes vagaban por la Tierra. Los misteriosos anillos gigantes que se encontraron en la cima de las montañas sugieren que estos fueron utilizados por seres gigantes que habitaron hace millones de años la región, y tal vez hayan sido de origen extraterrestre.

Los residentes locales han mezclado sensaciones sobre estos misteriosos anillos. Algunos han sugerido una explicación particularmente simple. Según algunos residentes locales, estos anillos “gigantes” pertenecen al imperio austro-húngaro puesto en marcha para ayudar al transporte de madera a través de las agrestes montañas de la región.

Los que apoyan esta teoría señalan que estos anillos gigantes se colocaron de alguna manera dentro de las montañas en un momento en el Mar de Panonia cuando todavía existía. Estos anillos gigantes fueron utilizados para atar los barcos, y está región se utilizó como un puerto de mar.

Hay leyendas de la región que hablan de gigantes y sus enormes barcos. Hay hipótesis que estos anillos gigantes fueron hechos por gigantes, armadores y marineros antiguos que habitaron la región en el pasado distante.

Pero, ¿es posible que estos anillos sean de millones de años? Si es así, ¿cómo lo hicieron? ¿De qué material están hechos? Como no ha habido ninguna investigación “oficial” del hecho las posibilidades son infinitas.

Los residentes locales han declarado que hay muchos otros hallazgos en la zona que no se pueden explicar, y todos estos hallazgos se ocultan deliberadamente a las personas.

Estos anillos gigantes y rocas gigantes que parecen estar finamente tallados se encuentran en las colinas alrededor de Vogosca entre Breza y Vares, cerca de Dubrovnik y en varios lugares en el este de Bosnia.

Nota como el metal esta incrustado en la piedra sólida.

También hay cuatro de estos en Bjelasnica y Vlasic, Vranica, Prenj, Vélez, entonces Majevica, Bukovica cerca de Travnik, sobre Stolac. Los lugareños insisten en lo importante que es examinar estos hallazgos.

Los lugareños han hablado de estos misteriosos anillos durante años, y hay sensaciones encontrados cuando se trata de hallazgos como estos.

Mientras que algunos sugieren que es literalmente imposible que estos anillos gigantes sean antiguos, otros creen que esto apunta al hecho de que los gigantes vagaban por la Tierra en el pasado distante, y la evidencia de esto se pueden encontrarse en todo el mundo.

Aquellos que creen firmemente que es imposible que estos anillos gigantes pueden ser muy antiguos, apuntan al hecho de que el Mar de Panonia se encontraba en la zona de la llanura de Panonia hace unos 30 millones de años.

Este mar desapareció hace unos 600.000 años. Simplemente no sería una buena razón para crear anillos gigantes para los buques si estos barcos no serían capaces de llegar a estos “puertos”. A pesar de todo, muchas personas han visto los anillos gigantes, pero algunos sugieren que estos no fueron utilizados para atar los barcos a la costa.

En su momento en las cercanías del Mar de Panonia no habitaba gente, por lo tanto, no podrían haber construido los barcos? Así que si no había nadie para construir un barco, ¿quién o qué habría creado los anillos? Los primeros humanos que construyeron herramientas datan de alrededor de 200.000 años, el intervalo de tiempo entre ellos y el Mar de Panonia es de 400.000 años.

Kozara, donde se encontraron las plataformas gigantes, era una isla en el océano Paratethyan hace 50.000 años. Ya que el Mar de Panonia se retiró, las costas aparecieron. Es por esto que, Dragan Romčević, director del Parque Nacional “Kozara” afirma que estos anillos gigantes no pueden ser de este período.

Otros sugieren que estos “anillos gigantes” fueron realizadas en el pasado reciente y se utilizaron para asegurar “globos sonda” en el suelo.

Dejan pelvis, profesor de historia en la Prijedor Gymnasium cree que estos anillos de Kozara son uno de esos misterios increíbles asociados al pasado. Todos estos misterios comparten un mismo hecho – que nadie puede explicar con precisión su origen y propósito. Estos hallazgos son un misterio.

Este es un tema en el que la ciencia no puede ofrecer explicaciones, simplemente porque carece de hechos lógicos, y puesto que la ciencia no puede explicar estos misteriosos artefactos, la gente no tiene más remedio que interpretar los fenómenos mismos, y luego, todo se vuelve posible.

De este tema sólo hay un artículo (este que se reproduce) que todo el mundo copia, y como siempre todo son especulaciones. En realidad comparándolos con la mano no parecen tan gigantes, y su función si que podría ser la de sujetar globos de observación y/o medición.

Conclusión: seguramente erróneo.

Astronautas USA muertos (en tierra)

Apolo 1

Apollo 1 (conocido también como AS-204)

Grissom, White y Chaffee posan frente a su vehículo espacial Apolo/Saturno IB en la plataforma de lanzamiento, diez días antes de que un fuego de la cabina cobrara sus vidas.

Tipo: Prueba de verificación de la nave espacial con tripulación.

Ámbito: Espacial

Sede: Cape Canaveral Air Force Station

Lugar: Florida

Ubicación: Cape Canaveral, Florida

País: Estados Unidos: Coordenadas: 28°31′18″N 80°33′41″O

Fecha: 21 de febrero de 1967 (planeado)

Duración: Hasta 14 días (previsto)

Participantes: Virgil I. “Gus” Grissom, Comandante; Edward H. White, Piloto Senior; Roger B. Chaffee, Piloto.

Organización

Delegados: NASA

Apolo 1 (inicialmente designado AS-204) fue la primera misión tripulada del programa espacial estadounidense conocido como proyecto Apolo, cuyo objetivo consistía en alcanzar un alunizaje tripulado sobre la Luna.1​ La prueba orbital planeada en la órbita baja terrestre del módulo de mando y servicio del Apolo no llegó a cumplir la fecha de lanzamiento prevista para el 21 de febrero de 1967, debido a un incendio en la cabina durante una prueba en la plataforma de lanzamiento 34, que se produjo el 27 de enero en el complejo de lanzamiento de la estación de la Fuerza Aérea de Cabo Cañaveral, matando a los tres tripulantes: el comandante piloto Virgil I. “Gus” Grissom, el piloto del módulo de comando Edward H. White II y el piloto Roger B. Chaffee, destruyendo también el módulo de comando (CM).1​ El nombre “Apolo 1”, elegido por la tripulación, se retiró oficialmente por la NASA en conmemoración a la fallecida tripulación el 24 de abril de 1967.1

Inmediatamente después del incendio, la NASA convocó a la Junta de Revisión del Accidente del Apolo 204 para determinar las causas del incendio, y las dos cámaras del Congreso de Estados Unidos pusieron en marcha sus propias investigaciones del comité para supervisar la investigación de la NASA. Durante la investigación, un documento interno de la NASA citando problemas con el contratista principal del Apolo, North American Aviation, fue revelado públicamente por el entonces senador estadounidense Walter F. Mondale, y llegó a ser conocido como el “Informe Phillips”. El avergonzado administrador de la NASA, James E. Webb, que desconocía la existencia del documento, dio inicio a la controversia con el programa Apolo. A pesar del descontento en el congreso estadounidense por la falta de apertura de la NASA, los dos comités del congreso dictaminaron que las cuestiones planteadas en el informe no tenían nada que ver con el accidente, y se dejó a la NASA continuar con el programa.

Aunque la fuente de ignición que generó el incendio no pudo ser determinada de manera concluyente, las muertes de los astronautas se atribuyeron a una amplia gama de defectos de diseño y construcción con materiales letales en el módulo de comando del Apolo. Los vuelos tripulados Apolo fueron suspendidos por 20 meses mientras se corrigieron estos problemas. El vehículo de lanzamiento Saturno IB, SA-204, previsto para su uso en esta misión, más tarde se utilizó para el primer vuelo de prueba no tripulado en el módulo lunar (LM), misión denominada Apolo 5.2​ La primera misión tripulada con éxito del programa Apolo fue volada por la tripulación de reserva del Apolo 1, el Apolo 7 en octubre de 1968.

Grissom, Chaffee y White durante unas pruebas de salida de la cápsula Apolo, en junio de 1966.

Tripulación

Posición                        Astronauta

Piloto Comandante      Virgil I. “Gus” Grissom
Tercer vuelo

Piloto de Alto Nivel      Edward H. White II
Segundo vuelo

Piloto                             Roger B. Chaffee
Primer vuelo

Primera Tripulación de Respaldo (abril – diciembre de 1966)

Posición                        Astronauta

Piloto Comandante      James A. McDivitt

Piloto de Alto Nivel      David R. Scott

Piloto                             Russell L. “Rusty” Schweickart

Esta Tripulación voló en el Apolo 9.

Segunda Tripulación de Respaldo (diciembre de 1966 – enero de 1967)

Posición                        Astronauta

Piloto Comandante      Walter M. “Wally” Schirra

Piloto de Alto Nivel      Donn F. Eisele

Piloto                             R. Walter Cunningham

Esta tripulación voló en el Apolo 7.

AS-204 iba a ser el primer vuelo de prueba tripulado del módulo de mando y servicio del Apolo en la órbita de la Tierra, lanzado en un cohete Saturno IB. El vehículo de lanzamiento y la misión AS-204 iba a poner a prueba las operaciones de lanzamiento, el seguimiento de terreno y las instalaciones de control y el funcionamiento de la plataforma de lanzamiento Apolo-Saturno y habría durado hasta dos semanas, dependiendo del desempeño de la nave espacial durante la misión.3

El módulo de comando y servicio (CSM) para este vuelo, número 012 construido por North American Aviation (NAA), era una versión denominada Bloque I, diseñada antes de que la estrategia de cita y encuentro en la órbita lunar (LOR, por sus siglas en inglés) fueran elegidos como método de alunizaje; por lo tanto, carecía de la capacidad de acoplamiento con el módulo lunar. Éste fue incorporado en el diseño del denominado Bloque II, junto con la experiencia adquirida en el Bloque I. El vuelo del Bloque II sería usado en ensayos de vuelo con el módulo lunar (LM) cuando éste estuviera listo, y posteriormente sería utilizado en los vuelos de aterrizaje de la Luna.

El módulo de comando 012, etiquetado Apolo Uno, llega al Centro Espacial Kennedy el 26 de agosto de 1966

Un artículo de prensa publicado el 4 de agosto de 1966, se refiere al vuelo como “Apolo 1”.8​ La nave 012 llegó al Centro Espacial Kennedy el 26 de agosto, con la etiqueta “Apolo Uno” por North American Aviation en su cobertura de embalaje.

Chaffee, White, y Grissom entrenando en un simulador de su cabina del módulo de comando, 19 de enero de 1967

La nave espacial Apolo, el módulo de comando/servicio, era mucho más grande y mucho más compleja que cualquier diseño de nave espacial construido y usado previamente. En octubre de 1963, Joseph F. Shea fue nombrado gerente de la Oficina del Programa de la Nave Espacial Apolo (ASPO, por sus siglas en inglés), responsable de la gestión del diseño y la construcción, tanto del CSM y el LM (módulo lunar). En una reunión de revisión nave espacial celebrada con Shea el 19 de agosto de 1966, la tripulación expresó su preocupación por la cantidad de material inflamable en la cabina (principalmente red de nailon y velcro), a lo que los técnicos encontraron conveniente para anclar herramientas y equipos en su lugar en la ingravidez del espacio.

Apolo 1 Fliteline medallón (más tarde voló en el Apolo 9 por Jim McDivitt).

Shea dio órdenes al personal de North American Aviation para eliminar los materiales inflamables de la cabina, pero no supervisó el asunto personalmente.13

North American Aviation envió la nave espacial CM-012 al Centro Espacial Kennedy el 26 de agosto de 1966 bajo un certificado condicional de vuelo: 113 importantes cambios de ingeniería incompletos previstos tuvieron que ser completados en el KSC. Pero eso no fue todo: 623 órdenes de cambio de ingeniería adicionales se realizaron y terminaron después de la entrega.14​ Grissom se frustró tanto con la incapacidad de los ingenieros de simuladores de entrenamiento para mantenerse al día con los cambios realizados en la nave espacial, que tomó un limón de un árbol cerca de su casa15​ y lo colgó en el simulador en señal de protesta.16

Los módulos de comando y servicio se acoplaron en la cámara de altitud del KSC en septiembre y se realizó la prueba del sistema combinado. Se realizó la prueba altitud primero en un ambiente no tripulado; a continuación, tanto con el primer y equipos de respaldo, del 10 de octubre a diciembre 30. Durante esta prueba, la unidad de control ambiental (ECU, por sus siglas en inglés) en el módulo de comando se encontró que tenía un defecto de diseño, y fue enviado de vuelta al fabricante para los cambios de diseño y actualización. La unidad devuelta ECU tuvo una filtración de refrigerante de agua/glicol, y tuvo que ser devuelta una segunda oportunidad para su reparación. También durante este tiempo, un tanque de propelente en el módulo de servicio 017 se había roto durante las pruebas en North American Aviation, lo que provocó la separación de los módulos y la eliminación de la cámara, de modo que el módulo de servicio podría ponerse a prueba en busca de signos del problema del tanque. Estas pruebas fueron negativas, y una vez que todos los problemas de hardware pendientes se resolvieron, la nave espacial fue montada y finalmente completaron una prueba de altitud éxito con tripulación de reserva de Schirra.17

De acuerdo con el informe final de la junta de investigación de accidentes, “En el post-prueba la tripulación de vuelo de respaldo expresaron su satisfacción por el estado y el rendimiento de la nave espacial”.17​ Esto parece contradecir el relato en “Luna Perdida: El peligroso viaje del Apolo 13” por Jeffrey Kluger y el astronauta James Lovell, que “Cuando el trío salió de la nave… Schirra dejó claro que no estaba contento con lo que había visto”, y que más tarde se advirtió a Grissom y Shea que “no hay nada malo con esta nave que pueda señalar, pero simplemente me resulta incómodo. Algo simplemente no suena bien”, y que Grissom y su tripulación debían salir de inmediato a la primera señal de problemas.18

Después de las pruebas de altitud con éxito, la nave espacial fue retirada de la cámara de altitud el 3 de enero de 1967, y acoplada a su vehículo de lanzamiento Saturno IB en la plataforma 34, el 6 de enero.

Prueba “desconectada”

La escotilla del Bloque I usada en la nave Apolo 1 consistía de dos piezas requería que la presión dentro de la cabina no debería ser más alta que a atmosférica, a fin de abrirla. La tercera capa exterior, la cubierta térmica protectora de la escotilla durante el lanzamiento no se muestra en la imagen.

La simulación de lanzamiento el 27 de enero de 1967, en la plataforma 34, era una prueba denominada “desconectada” para determinar si la nave espacial operaría nominalmente (simulado) con su propia alimentación interna, mientras se desconectaban todos los cables y umbilicales de alimentación externa. La superación de esta prueba era esencial para la fecha de lanzamiento el 21 de febrero. La prueba se consideró no peligrosa, porque ni el vehículo de lanzamiento ni la nave espacial fueron cargadas con combustible o propelentes criogénicos, y todos los sistemas pirotécnicos fueron desactivados.7

A las 1:00 pm, hora del este (1800 GMT) del 27 de enero, primero Grissom, después Chaffee y luego White entraron en el módulo de mando a la presión atmosférica adecuada, y fueron atados a sus asientos y conectados a los sistemas de oxígeno y comunicación de la nave espacial. Hubo un problema de inmediato: Grissom notó un olor extraño en el aire que circulaba a través de su traje, que comparó con “suero de leche agria”, y la cuenta regresiva simulada se detuvo a las 1:20 de la tarde, mientras que se tomaron muestras de aire. Ninguna causa del olor se pudo encontrar, y la cuenta atrás se reanudaría a las 14:42. (Durante la investigación del accidente se determinó que este olor no estaba relacionado de alguna manera con el fuego.)7

Tres minutos después se reanudó el recuento, se inició la instalación de la escotilla. La misma se componía de tres partes: una escotilla interior extraíble, que se mantuvo dentro de la cabina; una escotilla exterior con bisagras, que formaba parte del escudo térmico protector de la nave, y una tapa de escotilla exterior, que era parte de la cubierta protectora impulso que envuelve todo el módulo de comando para protegerlo del calentamiento aerodinámico durante el lanzamiento e igualmente lo protege de las llamas del cohete de escape de lanzamiento en caso de un aborto de lanzamiento. La cubierta de impulso de la escotilla fue parcialmente, pero no totalmente trabada en su lugar, ya que la cubierta protectora impulso flexible fue ligeramente distorsionada para permitir el paso de algunos cables para deslizarlos debajo de ella para proporcionar la energía interna simulada. (Reactivos de pila de combustible de la nave no se cargaron para esta prueba). Después se sellaron las escotillas, el aire en la cabina se reemplazó con oxígeno puro a 16,7 psi (1.150 hPa), 2 psi (140 hPa) superior a la presión atmosférica.7

Otros problemas incluyeron episodios de alto flujo de oxígeno a los trajes espaciales, lo que disparó una alarma. La causa probable se determinó a causa de los movimientos de los astronautas, que fueron detectados por el sistema giroscópico inercial y de orientación de la nave y el micrófono-atascado de Grissom. El micrófono abierto era parte del tercer gran problema, con el bucle de comunicaciones que conectaba a la tripulación, las operaciones y la sala de control dentro del complejo de lanzamiento. Los problemas llevaron a Grissom a la siguiente observación: “¿Cómo vamos a llegar a la Luna si no podemos hablar entre dos o tres edificios?” La cuenta atrás simulada se reanudó a las 17:40, mientras se hicieron intentos para solucionar el problema. Todas las funciones de cuenta atrás hasta la transferencia de energía interna simulada se habían completado con éxito por 18:20, pero a las 6:30 de la cuenta permaneció en espera a T menos 10 minutos.7

Fuego

El exterior del módulo de comando del Apolo 1 ennegrecido por la erupción del fuego debido al fallo de la cubierta de la cabina.

Los restos calcinados del interior de la cabina de Apolo 1

Los miembros de la tripulación transcurrían el tiempo de la prueba cotejando su lista de comprobaciones, cuando un corto transitorio de tensión se registró a las 06:30:54 (23:30:54 GMT). Diez segundos más tarde (a las 6:31:04), Chaffee exclamó “¡Hey!”, seguido por sonidos de forcejeo durante dos segundos. White informó entonces, “¡Tenemos un incendio en la cabina!”. Algunos testigos dijeron que vieron a White en los monitores de televisión tratando de alcanzar la manija de liberación de la compuerta interior, y cómo las llamas se propagaban en la cabina de izquierda a derecha y lamían la ventana. Se cree que la transmisión de voz final podría haber venido de Chaffee. Seis segundos después del informe de White sobre el fuego en la cabina, una voz gritó: “¡Hay un terrible fuego!”. El sonido de la ruptura del casco de la nave espacial se escuchó inmediatamente después, seguido de “¡Me estoy quemando!” y un grito de pánico. La transmisión entonces terminó de manera abrupta en 6:31:21, a tan sólo 15 segundos después de que se escuchara el primer informe de fuego.

La intensidad del fuego, alimentado por oxígeno puro, causó que la presión aumentara en 15 segundos a 29 psi (2.000 hPa), lo que rompió la pared interior del módulo de comando (fase inicial del fuego). Luego las llamas y gases corrieron fuera del módulo de mando a través de los paneles de acceso abiertos a dos niveles de la estructura de servicio. El intenso calor, el humo denso y máscaras de gas ineficaces diseñadas para gases tóxicos en lugar de humo pesado obstaculizaron los intentos del personal de tierra para rescatar a los hombres. Se temía que el módulo de comando explotase, o que pronto lo haría, y que el fuego podría encender el cohete de combustible sólido en la torre de escape de lanzamiento por encima del módulo de comando, lo que habría matado probablemente al personal de tierra más cercano y posiblemente destruido la plataforma de lanzamiento.7

Cuando la presión se liberó por la ruptura de la cabina, la convección de aire hizo que las llamas se propagaran a través de la misma, dando comienzo a la segunda fase del incendio. La tercera fase comenzó cuando la mayor parte del oxígeno se consumió y se reemplazó con el aire atmosférico y las labores de extinción se llevaron a cabo a fin de no producir grandes cantidades de humo, polvo y vapores que envolvieran la cabina.

Fueron necesarios cinco minutos para que los trabajadores de la plataforma de lanzamiento abrieran las tres capas de la escotilla, y no podían dejar caer la compuerta interior del piso de la cabina según lo previsto, por lo que la empujaron a un lado. Aunque las luces de la cabina permanecían encendidas, en un principio no pudieron encontrar a los astronautas a través del denso humo. Cuando el humo se disipó, encontraron los cuerpos, pero no fueron capaces de extraerlos. El fuego había derretido en parte los trajes espaciales de nailon y las mangueras de conexión al sistema de soporte de vida de Grissom y White. Grissom se había quitado sus correas de fijación y yacía en el suelo de la nave espacial. Las correas de fijación de White se habían quemado, y él se encontraba tumbado de lado, justo debajo de la escotilla. Se determinó que había tratado de abrir la escotilla a través del procedimiento de emergencia, pero no fue capaz de hacerlo en contra de la gran presión interna generada por las llamas. Chaffee fue encontrado con su mano derecha atada al asiento, siguiendo el procedimiento para mantener la comunicación hasta que White abriera la escotilla. Debido a las grandes cadenas de nailon fundido que habían fusionado a los astronautas con el interior de la cabina, la extracción de los cuerpos llevó cerca de 90 minutos.7

Investigación

Inmediatamente después del incendio del Apolo 1, para evitar un conflicto de intereses, el Administrador de la NASA James E. Webb se dirigió al presidente Lyndon B. Johnson a fin de que le permitiera a la NASA manejar la investigación de acuerdo a sus procedimientos establecidos, con la promesa de ser veraz en la evaluación de las responsabilidades y mantener apropiadamente informados a los líderes del Congreso. De acuerdo con la biografía de James Webb (del sitio oficial de la NASA):

“… Webb acudió al presidente Lyndon Johnson y le pidió que la NASA le permitiera manejar la investigación del accidente. Se comprometió a ser veraz en la evaluación y determinar las responsabilidades y se comprometió a asignar a sí mismo, y la gestión de la NASA, según corresponda. “21

Seamans estableció la Junta de Revisión del Apolo 1, presidida por el director del Centro de Investigaciones Langley, Floyd L. Thompson, la cual incluía al astronauta Frank Borman, el diseñador de naves espaciales Maxime Faget y seis personas adicionales. El 1° de febrero, el profesor de la Universidad Cornell, Frank A. Long dejó la junta y fue reemplazado por el Dr. Robert W. Van Dolah, del Buró de Minas. Al día siguiente, el ingeniero jefe de North American Aviation para el programa Apolo, George Jeffs, igualmente renunció.

Seamans inmediatamente ordenó que todo el hardware y software del Apolo 1 fuera confiscado, a fin de ser revisado solo bajo control de la junta. Después de la minuciosa documentación estéreo-fotográfica del interior del CM-012, la junta ordenó su desmontaje utilizando procedimientos probados para desmontar a la idéntica nave CM-014 y llevó a cabo una investigación exhaustiva de todas las partes. La junta también examinó los resultados de la autopsia de los astronautas y entrevistó a los testigos del siniestro. Seamans envió a Webb informes semanales del progreso de la investigación, y la junta emitió su informe final el 5 de abril de 1967.

Según la Junta, Grissom sufrió graves quemaduras de tercer grado en más de un tercio de su cuerpo y su traje espacial fue destruido en su mayoría. White sufrió quemaduras de tercer grado en casi la mitad de su cuerpo y una cuarta parte de su traje espacial se había derretido. Chaffee sufrió quemaduras de tercer grado en casi una cuarta parte de su cuerpo y una pequeña porción de su traje espacial resultó dañado. El informe de la autopsia confirmó que la causa principal de muerte para los tres astronautas fue un paro cardíaco causado por las altas concentraciones de monóxido de carbono. No se creyó que las quemaduras sufridas por la tripulación fueran los principales factores de los decesos, y se concluyó que la mayoría de ellas se habían producido después de la muerte. La asfixia sucedió después de que el fuego fundiera los trajes de los astronautas y los tubos de oxígeno, exponiéndolos a la atmósfera letal de la cabina.14

La junta de revisión identificó cinco factores principales que se combinaron para causar el fuego y la muerte de los astronautas

  • Una fuente de ignición más probablemente relacionada con “cableado vulnerable para poder manejar el flujo eléctrico de la nave espacial” y “fontanería y tuberías vulnerables para manejar un refrigerante inflamable y corrosivo”.
  • Una atmósfera de oxígeno puro a una presión más alta que la presión atmosférica.
  • Una amplia distribución de materiales altamente inflamables en la cabina.
  • Una cabina sellada con una tapa de escotilla que no pudo ser eliminada rápidamente debido a la alta presión.
  • Preparación inadecuada de emergencia (salvamento y de asistencia médica, y procedimientos de escape de la tripulación).

Monumento Conmemorativo

Los nombres de los tres astronautas en el Espejo Espacial en el Centro Espacial Kennedy

Gus Grissom y Roger Chaffee fueron enterrados en el Cementerio Nacional de Arlington. Ed White fue enterrado en el cementerio de West Point en los terrenos de la Academia Militar de Estados Unidos en West Point, Nueva York.

Sus nombres se encuentran entre los de varios astronautas y cosmonautas que han muerto en el cumplimiento del deber se encuentran en el Espejo del Memorial del Espacio en el Complejo de Visitantes del Centro Espacial Kennedy en Merritt Island, Florida.

Un parche de la misión Apolo 1 se quedó en la superficie de la Luna después del primer alunizaje tripulado, dejado allí por los miembros de la tripulación del Apolo 11 Neil Armstrong y Buzz Aldrin.45

La misión Apolo 15 dejó en la superficie de la Luna una pequeña estatua conmemorativa, “El Astronauta Caído”, junto con una placa que contiene los nombres de los astronautas de Apolo 1, entre otros, incluyendo los cosmonautas soviéticos que perecieron durante los vuelos espaciales tripulados.46

Complejo de Lanzamiento 34

Después del incendio de Apolo 1, el complejo de Lanzamiento 34 fue posteriormente utilizado solamente para el lanzamiento de Apolo 7 y posteriormente desmantelado hasta el pedestal de lanzamiento de concreto, que se mantiene en el sitio (28 ° 31’19 “N 80 ° 33’41” O / 28.52182, -80.561258), junto con algunos otros de hormigón y estructuras de acero reforzado. El pedestal tiene dos placas conmemorativas de la tripulación. Cada año a las familias de la tripulación del Apolo 1 se les invita al sitio para actos en su memoria, y el Centro Espacial Kennedy Centro de Visitantes incluye el sitio en su recorrido por los lugares históricos de lanzamiento en Cabo Cañaveral.

Estrellas, puntos de referencia en la Luna y Marte

  • Los astronautas del Apolo frecuentemente alinean sus naves espaciales con las plataformas de navegación inercial y determinaron sus posiciones con respecto a la Tierra y la Luna para avistar grupos de estrellas con instrumentos ópticos. Como una broma, la tripulación del Apolo 1 nombraron tres de las estrellas del catálogo de Apolo de sí mismos y les introduce en la documentación de la NASA. Gamma Cassiopeiae convirtió Navi – Ivan (el segundo nombre de Gus Grissom) deletreado al revés. Talitha Borealis convirtió Dnoces – “Segundo” escrito al revés, por Edward H. White II. Y Gamma Velorum convirtió Regor – Roger (Chaffee) deletreado al revés. Estos nombres atrapados rápidamente después del accidente de Apolo 1 y fueron utilizados regularmente por posteriores tripulaciones del Apolo.47
  • Los cráteres de la Luna y las colinas de Marte llevan el nombre de los tres astronautas de Apolo 1.

Restos del CM-012

Los restos del módulo de comando Apolo 1 nunca han estado en exhibición pública. Después del accidente, la nave espacial fue retirada y trasladada al Centro Espacial Kennedy para facilitar el desmontaje de la junta de revisión con el fin de investigar la causa del incendio. Cuando la investigación había sido completada, la nave se trasladó al Centro de Investigación Langley de la NASA en Hampton, Virginia, y se colocó en un depósito de almacenamiento seguro.

El 17 de febrero de 2007, las partes de CM-012 se trasladaron en aproximadamente 90 cajas (27.432 m) a un almacén más nuevo, de ambiente controlado.64​ Solamente unas semanas antes, el hermano de Gus Grissom, Lowell Grissom, sugirió públicamente que el CM-012 fuera enterrado permanentemente en los restos de hormigón de Complejo de Lanzamiento 34.65

Hay múltiples referencias a este echo, en películas, libros, monumentos, ciudades, tec.

Apolo 1 tras la tragedia (fuente)

De este modo, los astronautas Virgil Grissom, Edward White y Roger Chaffee se convirtieron en las primeras víctimas humanas reconocidas de la carrera espacial. Las investigaciones posteriores mostraron cómo un cortocircuito en un cable mal aislado, junto a la pureza de oxígeno del interior de la nave, la gran presencia de materiales inflamables y la falta de cualquier sistema de emergencia para el escape provocaron la muerte de los tripulantes de la AS-204, misión que más tarde sería nombrada Apolo 1, en honor a la tragedia.

Curiosamente, la tripulación ya había mostrado su preocupación ante la presencia de mucho material inflamable dentro del módulo lunar en los primeros meses de su entrenamiento, sobre todo por el exceso de nailon y velcro. Joseph F. Shea tomó en cuenta las advertencias de la tripulación, mandando que estos materiales fueran sustituidos, aunque nunca supervisó que sus órdenes fueran llevadas a cabo.

Nota: Durante años se creyó que esta había sido el primer accidente mortal en la carrera espacial, pero en la década de los 80 la Unión Soviética desveló que el 23 de marzo de 1961 Valentin Bondarenko murió en unas circunstancias muy similares a los tripulantes de la Apolo 1, mientras realizaba pruebas en una cabina a presión con oxígeno puro. Algunos historiadores consideran que, de haberse conocido este accidente y sus causas, podría haber evitado la muerte de los astronautas de la Apolo 1.

Insignia del Programa Apolo (fuente)

Información más extensa y detallada en: https://es.wikipedia.org/wiki/Apolo_1, de donde se ha extraído este artículo.

Gráfico de la cápsula del Apolo

La cápsula tras el fuego

Acoplamiento de naves en órbita

Gemini 8 y Atlas Agena

Gemini 8

Insignia de la misión

Datos de la misión

Misión: Gemini 8

Número de tripulantes: 2

Masa: 3.789 kg

Rampa de lanzamiento: Centro Espacial Kennedy, Florida: LC 19

Lanzamiento: 16 de marzo de 1966; 16:41:02.389 UTC

Aterrizaje: 17 de marzo de 1966; 03:22:28 UTC; 25°13.8′N 136°0′E

Recuperado por: USS Leonard F. Mason

Duración de la misión: 10 h 41 min 26 s

Distancia recorrida: 293,206 kilómetros (158,319 millas náuticas)

Datos de las órbitas

Número de órbitas: 6

Apogeo: 271.9 km

Perigeo: 159.9 km

Período: 88.83 min

Inclinación orbital: 28.91°

Operador: NASA

ID COSPAR: 1966-020A

SATCAT no.: 2105

Cohete Titán II GLV , s / n 62-12563

 

(I-D) Scott, Armstrong

Gemini 8 (oficialmente llamado Gemini VIII) fue un vuelo espacial en 1966, en el programa Gemini de la NASA. Este era el 6º vuelo de una misión Gemini, el 14º vuelo estadounidense y el 22º vuelo espacial (incluidos los vuelos del X-15 por encima de los 100 km).

Tripulación

Tripulación de reserva

Objetivos

Gemini VIII tenía dos objetivos principales. Los dos objetivos eran:

  1. lograr un encuentro en órbita, un acoplamiento y
  2. lograr una EVA extendida. Ed White, durante el Gemini IV, había pasado 20 minutos fuera de la nave.

El primer objetivo principal fue logrado por el comandante de nave espacial, Neil Armstrong, quien pilotó el Gemini VIII adentro de 90 cm del Agena lanzado anteriormente. Este fue el primer acoplamiento orbital. El segundo objetivo debía haber sido logrado por el piloto David Scott, quien debía pasar hasta dos horas fuera de la nave espacial, pero acontecimientos subsecuentes cancelaron el paseo espacial planificado.

Vuelo

Agena

Esto fue cinco meses desde que la NASA había tratado de lanzar un Agena y Gemini durante la misión Gemini VI en octubre de 1965. Esta vez todo funcionó perfectamente. El Agena se colocó en una órbita circular de 298 km y se orientó a la altitud correcta para el acoplamiento. La cápsula Gemini fue puesta en una órbita de 160 km por 272 km por un Titan II modificado.

Gemini 8                     Agena Info.

Agena                          GATV-5003

NSSDC ID:                 1966-019A

Peso                             3175 kg

Sitio de lanzamiento    LC-14

Fecha de lanzamiento 16 de marzo de 1966

Hora lanzamiento        15:00:03 UTC

1.er Perigeo                   299.1 km

1.er Apogeo                  299.7 km

Periodo                        90.47 m

Inclinación                   28.86

Vista del Agena desde el Gemini 8.

Reentrada 15 de septiembre de 1967

Rendezvous y acoplamiento

Primero se realiza un encendido de motores a 1 hora y 34 minutos en la misión, cuando bajaron su apogeo con un encendido de motores de 5 segundos. El segundo encendido fue en el apogeo de la segunda órbita. Esta vez elevaron su perigeo añadiendo 15 metros por segundo a su velocidad. Su tercer encendido aseguró que estaban en el mismo plano orbital del Agena. Esta vez giraron 90° de su dirección de avance e hicieron un impulso de 8 metros por segundo mientras estaban sobre el Océano Pacífico. Entonces tuvieron que hacer un último encendido de 0,8 m/s.

El radar de encuentro adquirió el vehículo objetivo Agena a una distancia de 332 km. A las 3 horas, 48 minutos y 10 segundos en la misión se realiza un encendido para entrar en una órbita circular a 28 km por debajo de la órbita del Agena. El primer avistamiento cuando estaban a 141 km de distancia, ya a 102 km la computadora tomó el control.

Después de varias maniobras estuvieron a 46 m de distancia y sin velocidad relativa. Después de 30 minutos de inspección visual del Agena para asegurarse de que no había sido dañado por el lanzamiento, se les dio el visto bueno para el acoplamiento. Armstrong empezó a moverse hacia el Agena a 8 centímetros por segundo. En cuestión de minutos, los pestillos de conexión del Agena se cerraron y una luz verde indicó que el acoplamiento se había completado con éxito.

Emergencia

Había un poco de sospecha sobre cómo estaba funcionando el sistema de control de actitud del Agena actuando y que podría no tener el programa correcto almacenado en él (posteriormente se encontró que esa sospecha era incorrecta). Justo antes de que se perdieran contacto con el control, la tripulación del Gemini 8 fueron informados de que si algo extraño llegara a suceder, que apagaran el Agena.

Después de que el Agena comenzó la ejecución de su programa almacenado, que maniobró las naves unidas a girar 90° a la derecha, Scott se dio cuenta de que estaban en un giro. Armstrong utilizó los propulsores OAMS del Gemini para detener el giro, pero después de detenerse, de inmediato comenzó de nuevo. Gemini 8 estaba fuera del alcance de las comunicaciones terrestres en este momento.

Armstrong informó de que el combustible del sistema OAMS se había reducido a 30%, lo que indica que el problema podría ser en su propia nave espacial. Decidieron desacoplarse del Agena para que pudieran analizar la situación. Scott, cambió el control del Agena a comando de tierra, mientras que Armstrong luchaba por estabilizar el vehículo combinado lo suficiente para permitir el desacoplamiento. Scott, después pulsó el botón de desacoplamiento, y Armstrong disparó una larga ráfaga de los propulsores de traslación para alejarse del Agena.

Durante el EVA, después de que Armstrong se desacopló del Agena, Scott debía ponerse y probar un Paquete de Soporte Extravehicular (ESP) almacenado en la parte posterior del adaptador de la nave espacial. Esta era una mochila con un suministro de oxígeno autónomo, propelente Freon adicional para su unidad de maniobra manual y una extensión de 75 pies (23 m) a su correa. Practicaría varias maniobras en formación con los vehículos Gemini y Agena (separados a distancias de hasta 60 pies (18 m), en concierto con Armstrong en el Géminis.[7] Scott nunca pudo realizar este EVA, debido al aborto de el vuelo debido a una emergencia crítica en vuelo que ocurrió poco después del acoplamiento.

El vuelo también llevó a cabo tres experimentos científicos, cuatro tecnológicos y uno médico adicionales.[8]

Sin la masa añadida del Agena, velocidad de giro de la Gemini comenzó a acelerar rápidamente. Poco después de esto, se encontraron en el rango del buque de comunicaciones terrestres Coastal Sentry Quebec. Por ahora la velocidad de giro había llegado a una revolución por segundo, causando que los astronautas tuvieran visión borrosa, y poniéndolos en peligro de pérdida de conocimiento. Armstrong decidió cerrar el sistema OAMS y utilizó los propulsores del sistema de control de reingreso (RCS) para detener el giro. Después de estabilizar la nave espacial, probaron cada propulsor OAMS uno por uno y se encontró que el número 8 se había quedado encendido. Casi el 75 por ciento del combustible de maniobra de reentrada se había utilizado para detener el giro, y las reglas de la misión dictaban que el vuelo se cancela una vez que el RCS fuera utilizador por cualquier motivo. Gemini 8 se preparó inmediatamente para un aterrizaje de emergencia.

Aterrizaje

Se decidió dejar que la nave continuara una órbita más para que pudiera aterrizar en un lugar que podría ser alcanzado por las fuerzas de recuperación. El plan original era que Gemini 8 aterrizaría en el Atlántico, pero esto era para tres días después. Así el USS Leonard F. Mason comenzó su viaje hacia el nuevo lugar de aterrizaje de 800 kilómetros al este de Okinawa y 1000 kilómetros al sur de Yokosuka, Japón.

La mayor parte de la reentrada se produjo sobre Asia, más allá de las estaciones de seguimiento de la NASA.

Los aviones también fueron enviados y un piloto (Capitán Les Schneider, USAF), logró ver la nave espacial a medida que descendía. Tres rescatistas saltaron del helicóptero y adjuntaron el collar de flotación a la cápsula. Tres horas después del amerizaje, la nave espacial estaba a bordo del USS Leonard F. Mason.

Gemini VIII atraca con su vehículo objetivo Agena

Acoplamiento con GATV-5003

Fecha de atraque: 16 de marzo de 1966, 22:14 UTC

Fecha de desacoplamiento: 16 de marzo de 1966, ~ 22:45 UTC

Tiempo atracado: ~ 30 minutos

Era el duodécimo vuelo tripulado estadounidense y el vigésimo segundo vuelo espacial tripulado de todos los tiempos (incluidos los vuelos X-15 de más de 100 kilómetros (54 millas náuticas)). El piloto de comando Neil Armstrong marcó la segunda vez que un civil estadounidense voló al espacio (Joseph Albert Walker se convirtió en el primer civil estadounidense en el vuelo 90 de X-15 [3] [4]). Armstrong había renunciado a su comisión en la Reserva Naval de los Estados Unidos en 1960. La Unión Soviética había lanzado a la primera civil, Valentina Tereshkova (también la primera mujer), a bordo del Vostok 6 el 16 de junio de 1963.[5]

Ubicación de la nave espacial

La nave espacial está en exhibición en el Museo Neil Armstrong Air and Space, Wapakoneta, Ohio

. Armstrong y Scott, en una imagen previa a la misión. (NASA)

Armstrong (R) y Scott (L) esperan al USS Leonard F. Mason

Gemini 8 Space- flyingn Fliteline Medallion

 

 

 

 

 

 

 

 

 

 

 

 

 

Tablillas de Davenport

Tablillas de Davenport

Las tabletas Davenport son tres tabletas de pizarra inscritas que se encontraron en montículos cerca de Davenport, Iowa.

Descubrimiento

Las dos primeras tabletas fueron descubiertas el 10 de enero de 1877 por un clérigo local (aunque algunos indican una fecha anterior) el reverendo Jacob Gass, mientras realizaba una excavación de emergencia (debido a la inminente transferencia de los derechos de acceso) en el sitio conocido como Granja de Cook. Este objeto curioso se llama “La estela del Calendario Davenport” o la “Tableta del Festival Djed”. En una excavación un año más tarde (los derechos de acceso han sido restaurados), Charles Harrison, el presidente de la Academia de Ciencias Naturales Davenport, mientras excavaba allí con Gass, encontró una tercera tableta. A menudo se asocian en discusiones con un tubo encontrado por Gass y otro ministro luterano, el reverendo Ad Blumer en 1880 en un grupo separado de montículos, conocido como el “tubo de elefante” por Gass. Blumer le dio la pipa a la Academia y poco después de su donación, la Academia adquirió una pipa similar de Gass que informó que había sido encontrada por un agricultor en el condado de Louisa, Iowa. Charles Putnam escribió una reivindicación de los artefactos en 1885.

Interpretaciones

Inicialmente, la autenticidad de los artefactos de Davenport no fue cuestionada, e incluso recibió buenas críticas de personas como Spencer Baird, de la Smithsonian Institution, y el empresario Charles E. Putnam. Sin embargo, cuando el debate escaló de las páginas de revistas académicas menores a las principales noticias en la revista Science, eventualmente la autenticidad de las tabletas cayó bajo la crítica del nuevo portavoz del Smithsonian, Cyrus Thomas. Thomas los criticó como “anómalos abandonados”, que no tenían absolutamente ninguna evidencia de apoyo o contextual para ayudarlos en su autenticidad.

El profesor de la Universidad de Iowa, Marshall McKusick, ahora se refiere al hallazgo y las circunstancias que lo rodean como “The Davenport Conspiracy”. McKusick sugirió que las tabletas eran tejas modificadas robadas de Old Slate House, una casa de prostitutas [1], a pesar de que Gass describió su hallazgo en un túmulo funerario en la granja de la familia Cook.

McKusick sugirió que la ambigüedad contextual de las tabletas, junto con cuestiones de la honestidad de Gass como arqueólogo, e incluso los rumores de un complot de colegas envidiosos para plantar los pseudoartefactos en un esfuerzo por desacreditar y expulsar a los Gass nacidos en el extranjero de su puesto recientemente galardonado en la Academia Davenport – desacreditó la credibilidad de las tabletas Davenport.

En su libro de 1991, The Davenport Conspiracy Revisited, el profesor Marshall McKusick afirma que Gass pudo haber sido víctima de una broma desacertada interpretada sobre él por otros miembros de la Academia Davenport, que posiblemente estaban motivados por sus celos de un extraño de origen extranjero en medio de ellos En 1874 Gass hizo importantes descubrimientos de la hermosa McKusick sugirió que la ambigüedad contextual de las tabletas, junto con cuestiones de la honestidad de Gass como arqueólogo, e incluso los rumores de un complot de colegas envidiosos para plantar los pseudoartefactos en un esfuerzo por desacreditar y expulsar a los Gass nacidos en el extranjero de su puesto recientemente galardonado en la Academia Davenport – desacreditó la credibilidad de las tabletas Davenport.complex Native American arte en la granja Cook, como las hachas de cobre. El nivel de habilidad técnica y artesanía artística de los antiguos nativos americanos fue evidente en estos artefactos. En un momento en que las personas que cavaban a lo largo del río Mississippi en Iowa e Illinois no obtenían ningún beneficio, Gass tuvo la suerte de alcanzar un verdadero pozo arqueológico. Después de esa fecha, es cuestionable cuáles fueron los motivos de sus rivales académicos y familiares.

Otra explicación para los dudosos orígenes de los artefactos podría implicar la credibilidad del propio Gass. Se cree que Gass vendió falsos tubos efigie nativos americanos, como los muchos ejemplos ilustrados en The Davenport Conspiracy Revisited. Los tubos de efigie genuinos son un testimonio de las habilidades creativas de los antiguos indios nativos americanos, pero sus falsificaciones son de mala calidad. Hecho de pizarra, arcilla y piedra caliza, estos fraudes se intercambiaban entre Gass y sus colegas, muchos de los cuales terminaban en el museo de la Academia Davenport. Sin embargo, es posible que el propio Gass no fuera el autor de estas falsificaciones, sino que estuviera nuevamente bajo la influencia de personas que estaban celosas de sus habilidades y de su suerte para seleccionar los sitios de excavación. Esta vez, sin embargo, fueron sus propios parientes, Edwin Gass y Adolph Blumer, quienes lo convencieron de tomarse en serio estas falsificaciones y cambiarlas.

Algunos trataron que estos dudosos objetos, pasaran como indicios de la presencia de libios y egipcios, en tiempos milenarios en esta zona del país, y por ende en Norteamérica.

Incluso escriben libros: En el libro, The First Americans Were Africans: Documented Evidence, el Dr. David Imhotep escribe que “las similitudes religiosas aquí son numerosas y en ocasiones no solo similares, sino idénticas al Festival Djed del antiguo Egipto. Esta ceremonia se remonta, sin embargo, antes de Egipto a Nubia porque el dios egipcio Osiris es parte de la ceremonia. Esto significa que el Festival de Djed es anterior incluso a Egipto”.

Según Fell, Davenport Stele contiene un “texto trilingüe” en los idiomas egipcio, ibérico-púnico y libio. “Esta estela, largamente condenada como una falsificación sin sentido, es de hecho una de las estelas más importantes jamás descubiertas”, escribió el Dr. Fell en su libro America B. C. – Ancient Settlers in the New World.

El Dr. Fell conjeturó que Daleport Stele se remonta a la Vigésimo Segunda, o Libia, dinastía del imperio egipcio, “un período de exploración en el extranjero”.

En uno de los lados hay esculturas de escritura egipcia y el festival. En el otro lado, hay una imagen de dos obeliscos egipcios, una pirámide y animales africanos.

Alunizaje de satélite – Luna 9

Luna 9

Luna 9 (Lunik 9), módulo de aterrizaje.

Tras ser lanzada el 31 de enero de 1966 a bordo de un cohete Molniya-M desde el cosmódromo de Baikonur, el 3 de febrero de 1966 a las 18:44 UTC; era el duodécimo intento de la URSS de hacer un aterrizaje suave.

La sonda alunizó exitosamente el 3 de febrero del mismo año en el Océano de las Tormentas (en las coordenadas 7,08ºN-64,4ºW). Fue el primer objeto construido por el hombre en posarse suavemente en otro cuerpo celeste. Cuando se posó, abrió sus largas placas con forma de pétalo y tomó fotos del panorama. Trasmitió fotos y datos durante tres días.

La sonda, diseñada por la oficina OKB 1 de Serguéi Koroliov, tenía al lanzamiento un peso de 1580 kg. Las sondas de esta serie, cuando se posaban sobre la superficie lunar a unos 15 metros por segundo, eyectaban mecánicamente la carga útil: una esfera rodeada por una bolsa de aire que actuaba como amortiguador del golpe. Luego la bolsa se desinflaba y se abrían cuatro piezas en forma de pétalos que ponían al descubierto cámaras, antenas y otros instrumentos.

La carga útil tenía un peso de 82 kg. En versiones posteriores se aumentó el peso a 230 kg.

La Luna 9 aterrizó dentro de un airbag que se infló cuando el radar del módulo de propulsión detectó que estaba a una altitud de 75 kilómetros sobre la superficie lunar y que fue eyectado a 5 metros de altura, cuando un sensor de contacto tocó esta.

Desde el Océano de las Tormentas transmitió datos de su medidor de radiación, el único instrumento científico que llevaba a bordo, que midió una dosis de 0,3 miligrays por día, aunque su aterrizaje también permitió determinar que la superficie lunar es capaz de soportar el peso de una sonda sin que esta se hunda en ella.

El último contacto con la Luna 9 se produjo a las 22:55 UTC del 6 de febrero 1966, cuando se agotaron sus baterías.

Durante el periodo en el que estuvo en funcionamiento estuvo en contacto con el control de la misión durante un total de 8 horas y 5 minutos, durante las que, aparte de los datos de radiación, transmitió un total de 27 fotografías de la superficie de la Luna.

Esas fotografías fueron transmitidas en abierto en un formato estándar, así que aunque las autoridades soviéticas no las hicieron públicas de inmediato en el Observatorio Jodrell Bank, donde se dieron cuenta en seguida de que estaban siendo transmitidas así, las recibieron todas, haciéndolas públicas.


Primera foto transmitida por la Luna 9 – Jodrell Bank Centre for Astrophysics, University of Manchester

Las cámara que las tomaba estaba montada sobre un soporte que le permitía girar, así que en total forman tres panoramas, que se pueden ver como Panorama 1, Panorama 2 y Panorama 3 en la página Soviet Moon Images de la web de Don P. Mitchell.

Referencia:

La primera imagen de la superficie de la luna, tomada por la nave espacial Luna 9.Crédito: NASA

Los airbags montados en la cápsula de aterrizaje Luna 9 ayudaron a amortiguar el impacto.Crédito: NASA

“La estación consistía en un contenedor sellado herméticamente, presurizado a 1.2 atmósferas, que contenía el sistema de radio, el dispositivo de programación, las baterías, el sistema de control térmico y el aparato científico. Cuatro antenas que se abrían automáticamente después del aterrizaje estaban montadas en el exterior del compartimento”. La NASA escribió , y agregó que también había bolsas de aire montadas en el módulo de aterrizaje para amortiguar el impacto.

Además del equipo necesario para mantener la nave espacial sana, así como el combustible, llevaba algunos equipos científicos. Esto incluyó una cámara de televisión y un detector de radiación.

La nave espacial rebotó en la superficie lunar varias veces antes de detenerse en el Océano de las Tormentas, según la NASA. Aproximadamente 250 segundos después del aterrizaje, cuatro pétalos estabilizaron la nave espacial y el sistema de televisión comenzó a enviar imágenes a la Tierra. Los primeros días de la fotografía espacial fueron difíciles, pero con el tiempo los controladores podían tener una idea de cómo era la superficie.

La primera imagen de prueba, que mostraba un contraste muy pobre porque el Sol estaba a solo 3 grados sobre el horizonte, se completó 15 minutos [después del aterrizaje] “, afirmó la NASA. Se transmitieron siete sesiones de radio, un total de 8 horas y 5 minutos. Fueron tres series de imágenes de televisión. Cuando se ensamblaron, las fotografías proporcionaron cuatro vistas panorámicas de la superficie lunar cercana”.

Luna 9 sobrevivió a tres días terrestres en la superficie hasta que sus baterías se agotaron. Según las imágenes, los científicos podrían decir que la nave espacial había aterrizado cerca de un cráter de veintisiete metros (25 pies). El módulo de aterrizaje estaba inicialmente en una inclinación de 15 grados, pero el regolito (suelo) en la luna se movió debajo y colocó el módulo de aterrizaje a una inclinación de 22.5 grados, según las imágenes.

Recurso adicional

Esta fue la primera misión exitosa de la serie de exploradores lunares que utilizan el bus de vuelo ‘E-6’, que se utiliza para misiones tanto de aterrizaje como de orbitador.

En esta vista, estamos mirando el extremo del vehículo que alberga el módulo de aterrizaje. En el extremo opuesto está la carcasa cónica del retrocohete, que se disparó justo antes del aterrizaje. Hay una mejor vista de ella en la fotografía en la página de Luna 10. Dos de los cuatro motores de corrección de recorrido de baja potencia se pueden ver alrededor del cuerpo del vehículo. Varias cajas de equipo están conectadas a la nave espacial principal. Estos contienen el sistema de guía, baterías químicas y sistemas de navegación. Para minimizar el uso de combustible, fueron diseñados para ser desechados justo antes del disparo retro-cohete.

Aquí, un técnico trabaja en una nave espacial del diseño Luna 9. El objeto en forma de bola cubierto de material aislante es el módulo de aterrizaje. Antes del impacto, la capa aislante se inflaba como un globo para proporcionar un impacto relativamente suave. Tener un ser humano en la imagen da una indicación del tamaño real de la nave espacial.

El cuerpo principal del autobús de la nave espacial tenía una varilla que se extendía hacia abajo desde la sección retro del cohete. Al entrar en contacto con la superficie lunar, activó un mecanismo de eyección para empujar el módulo de aterrizaje hacia arriba y lejos de la nave espacial para que cayera por separado a la superficie de la Luna para un impacto (relativamente) de baja velocidad, suavizado aún más por el “globo” inflado. Un centro de gravedad desplazado le permitió rodar ‘hacia arriba para que los pétalos se abrieran.

El resto del mundo se asombrará del éxito soviético, pero el camino hasta el éxito no ha sido nada fácil. Nada más y nada menos que once misiones previas intentaron alunizar de forma suave y no lo consiguieron. Todo comenzó a finales de los años 50, cuando la oficina de diseño OKB-1 de Serguéi Koroliov diseñó su plan para desarrollar una familia de sondas automáticas que estudiasen nuestro satélite en varias etapas. Las naves recibieron como nombre la letra cirílica Ye (Е) por el sencillo motivo de que es la siguiente después de la D (Д), una letra usada para los proyectos de primeros satélites artificiales alrededor de la Tierra que culminaron en la puesta en órbita del Sputnik en 1957.

Las sondas Ye-1 tenían como objetivo chocar contra la Luna y dejar un bonito cráter en el proceso. En realidad su misión era analizar las condiciones del espacio cislunar, auténtica terra incognita por aquel entonces y permitir el desarrollo de tecnologías necesarias para guiar una sonda espacial hasta la Luna. Las sondas Ye-2 y Ye-3 fueron concebidas para fotografiar la misteriosa cara oculta, mientras que las Ye-5 tenían como misión orbitar la Luna y fotografiar su superficie en detalle. Pero sin duda el proyecto Ye-4 era el más llamativo de todos. Esta familia de naves debía enviar un arma nuclear hasta la Luna y detonarla en el momento del impacto para que todo el mundo pudiese ver la explosión desde la Tierra.

Cápsula de descenso de la Luna 9 (Eureka).

El siguiente paso en el plan de la OKB-1 era, lógicamente, alcanzar la superficie lunar. Para tal fin se creó la familia Ye-6, que también recibió la denominación oficial de ALS (Avtomatícheskaia Lúnnaia Stantsia, “estación lunar automática”). Pero ¿cómo diseñar una nave capaz de alunizar suavemente en la Luna? Para conseguir esta hazaña es necesario saber en todo momento la altura y velocidad del vehículo, así como disponer de la capacidad para modificar estos parámetros si es necesario. Esto puede parecer sencillo hoy en día, pero a comienzos de los años 60 era un desafío mayúsculo. Para colmo ni siquiera se tenían datos precisos de la superficie lunar, así que una nave debía descender a ciegas, guiada por un simple radar. Al otro lado del planeta, los estadounidenses habían creado el programa Surveyor para aterrizar en la Luna. Estas sondas usarían un cohete de combustible sólido desechable para reducir la mayor parte de la velocidad de caída durante el descenso. Luego, en la fase final, emplearían un sistema de propulsión regulable guiado por un radar que les permitiría posarse suavemente sobre su tren de aterrizaje. Se trataba de un sistema tan lógico que resultaba difícil concebir otro diseño alternativo.

Los ingenieros de la OKB-1 consideraron que el sistema norteamericano era demasiado complejo para una fase inicial. Ya habría tiempo de diseñar sondas avanzadas de aterrizaje dentro del marco de los proyectos Ye-8 (Lunojod) y Ye-8-5 (retorno de muestras). Ahora la prioridad era alcanzar la superficie como fuera. El principal problema del diseño estadounidense era la precisión en la navegación. Para garantizar un aterrizaje suave era necesaria una coordinación exquisita en tiempo real entre el sistema de propulsión y el sistema de guiado. Cualquier fallo por pequeño que fuese y la sonda se estrellaría contra la superficie. Si los motores se apagaban a demasiada altura, la sonda terminaría destruida al caer. Si no frenaba lo suficiente, también sería destruida. ¿Qué hacer entonces?

La solución de la OKB-1 fue tan ingeniosa como simple. De entrada, decidieron renunciar a conseguir que la sonda redujese su velocidad a cero cerca de la superficie. La nave se estrellaría, sí, pero no antes de desprender una pequeña cápsula con los instrumentos. Esta cápsula, que sería la auténtica sonda de superficie, estaría protegida por dos bolsas inflables de aire comprimido. De esta forma se podía evitar el tener que diseñar un sistema de guiado avanzado.

Partes de la sonda Ye-6M.

La Ye-6 sería por tanto una nave formada por tres secciones. La primera comprendía el motor principal construido por la oficina de diseño de Isayev. Estaba dotado de un empuje de 4,64 toneladas y quemaba ácido nítrico e hidracina almacenados en quince tanques distintos. Ayudando al motor había cuatro pequeños impulsores de 245 newtons de empuje cada uno para correcciones durante el descenso. La sección intermedia estaba presurizada a 1,2 atmósferas y contenía todos los sistemas de comunicación y control del vehículo. A ambos lados de esta sección estaban acoplados dos módulos que contenían el radar altímetro y los sensores estelares del sistema de navegación Yupíter (Júpiter), respectivamente. La sección presurizada también incluía el sistema de control I-100 que debía dirigir no solo la sonda, sino también la tercera y cuarta etapas del cohete Mólniya (una versión de cuatro etapas del misil R-7 Semiorka).

Otra vista de una sonda Ye-6 sin la cápsula superior (Novosti Kosmonavtiki).

 

 

 

 

 

 

Detalle de la cámara (Novosti Kosmonavtiki).

Los instrumentos consistían en una cámara de 3,6 kg y un detector de radiación KS-17M (un contador Geiger). La cámara, situada en la parte superior, era realmente un fotómetro situado en el interior de un cilindro presurizado (en inglés, a este tipo de cámara extremadamente simple se le llama push broom). Un espejo se encargaba de escanear los alrededores, produciendo una imagen con una resolución de 5,5 milímetros a una distancia de 1,4 metros. Este tipo de cámaras sería usado en muchas otras misiones, como las sondas Mars o los Lunojods. La cápsula contaba con cuatro antenas desplegables de comunicación de las que colgaban cuatro masas. Observando la inclinación de dichos pesos en las imágenes, los investigadores podían medir la pendiente y orientación de la sonda con respecto a la superficie. Con los pétalos desplegados el diámetro total de la cápsula era de 160 centímetros y, con las antenas, la altura alcanzaba los 112 centímetros.

 

 

Paseo espacial semiautónomo

Paseo espacial semiautónomo

El primer paseo espacial estadounidense se realizó el 3 de junio de 1965, por Ed White, del segundo vuelo tripulado de Gemini, Gemini 4, durante 21 minutos. White estaba amarrado a la nave espacial y su oxígeno se suministró a través de un cordón umbilical de 7,6 m, que también llevaba comunicaciones e instrumentos biomédicos. Él fue el primero en controlar su movimiento en el espacio con una Unidad de Maniobra de Mano. White encontró que su atadura era útil para limitar su distancia de la nave espacial, pero era difícil de usar para moverse, contrariamente a lo que afirmaba Leonov. Sin embargo, un defecto en el mecanismo de enganche de la cápsula causó dificultades para abrir y cerrar la escotilla, lo que retrasó el inicio del EVA y puso a White y su compañero de tripulación en peligro de no regresar vivos a la Tierra. 6

Gemini 4

Insignia de la misión

Datos de la misión

Operador: NASA

ID COSPAR: 1965-043A [1]

SATCAT no.: 1390 [2]

Misión: Gemini 4-SC4

Fabricante: McDonnell

Número de tripulantes: 2

Masa: 3.574 kg

Rampa de lanzamiento: Centro Espacial Kennedy, Florida. LC 19

Lanzamiento: 3 de junio de 1965. 15:15:59.562 UTC

Aterrizaje: 7 de junio de 1965. 16:12:11 UTC

Duración de la misión: 4 días 1 h 56 min 2 s

Datos de las órbitas

Distancia recorrida: 2,590,600 kilómetros (1,398,800 millas náuticas)

Órbitas completadas: 66 (62 revoluciones)

Apogeo: 282,1 km

Perigeo: 162,3 km

Período: 88,94 min

Inclinación orbital: 32,53°

Fin de la misión

Recuperado por: USS Wasp

Fecha de aterrizaje: 7 de junio de 1965, 17:12:11 UTC

Lugar de aterrizaje: océano Atlántico Norte: 27 ° 44 ‘N 74 °

Tripulación del Gemini 4: (I-D: White, McDivitt)]]

Géminis 4 (oficialmente Géminis IV)[3] fue el segundo vuelo espacial tripulado en el Proyecto Gemini de la NASA, que tuvo lugar en junio de 1965. Fue el décimo vuelo espacial tripulado estadounidense (incluidos dos vuelos X-15 a altitudes superiores a 100 kilómetros (54 millas náuticas))). Los astronautas James McDivitt y Ed White rodearon la Tierra 66 veces en cuatro días, convirtiéndose en el primer vuelo de los Estados Unidos que se acerca al vuelo de cinco días del Vostok 5 soviético. Lo más destacado de la misión fue la primera caminata espacial de un estadounidense, durante la cual White flotó libremente fuera de la nave espacial, atado a ella, durante aproximadamente 20 minutos. Ambos logros ayudaron a los Estados Unidos a superar el liderazgo inicial de la Unión Soviética en la carrera espacial.

El vuelo también incluyó el primer intento de hacer una cita espacial mientras McDivitt intentaba maniobrar su nave cerca de la plataforma superior de Titán II que la lanzó a la órbita, pero no tuvo éxito.

El vuelo fue el primer vuelo estadounidense en realizar muchos experimentos científicos en el espacio, incluido el uso de un sextante para investigar el uso de la navegación celestial para el vuelo lunar en el programa Apollo .

Tripulación

Tripulación de reemplazo

Más información en: http://www.spacefacts.de/mission/english/gemini-4.htm

Ed White, el primer estadounidense en realizar actividad extravehicular, fuera de Gemini IV

Un vehículo de lanzamiento de Titan II levanta Géminis 4 en órbita, el 3 de junio de 1965.

Lanzamiento

La transmisión del lanzamiento fue en sí misma histórica. Por primera vez, una audiencia internacional, proveniente de 12 naciones europeas, podría ver el despegue en la televisión en vivo a través del satélite Early Bird. El interés de la prensa, debido a la transmisión por satélite y al nuevo centro en Houston, demostró ser tan alto que la NASA tuvo que arrendar edificios para acomodar a los 1.100 periodistas de medios impresos y radiodifusión que solicitaron la acreditación. El control de vuelo cambió de Cabo Kennedy a Houston tan pronto como el vehículo despejó la torre de lanzamiento.

Excepto por unos pocos momentos de oscilación de pogo (vibraciones axiales en el cohete), el lanzamiento salió perfectamente, la nave espacial entró en una órbita de 87 por 153 millas náuticas (161 por 283 km).[9]

Actividad extravehicular (EVA)

El blanco flota lejos de la escotilla abierta, hacia la nariz de la nave espacial al comienzo de la EVA

Originalmente planeados para la segunda revolución, los astronautas pospusieron la EVA hasta la tercera después de que McDivitt decidiera que White, tras el estrés del lanzamiento y el encuentro fallido, parecía cansado y acalorado. Después de un descanso, el par terminó de realizar la lista de verificación para el EVA. Volando sobre Carnarvon, Australia, comenzaron a despresurizar la cabina. Sobre Hawaii, White tiró de la manija para abrir su escotilla, pero los pestillos no se movieron.

Afortunadamente, McDivitt sabía cuál era el problema, porque la escotilla no se cerró en una prueba de cámara de vacío en el suelo, después de lo cual McDivitt trabajó con un técnico para ver cuál era la causa. Una primera vez, que obligó a los engranajes a engancharse al mecanismo, no se pudo comprimir, y McDivitt pudo ver cómo funcionaba el mecanismo. En vuelo, pudo ayudar a White a abrirlo, y pensó que podría volver a engancharse.[10]

Hubo problemas de comunicación durante la caminata espacial. La nave espacial Gemini fue la primera en usar un interruptor operado por voz (conocido como VOX) en los micrófonos del astronauta, pero McDivitt pronto se dio cuenta de que su circuito VOX no funcionaba correctamente; solo podía escuchar el Comunicador de Cápsula (CAPCOM) en la configuración de pulsar para hablar, pero no en VOX (aunque ambos astronautas podían ser escuchados por el otro y por el suelo). Además, mientras estaba fuera de la nave espacial, White no pudo recibir transmisiones desde el suelo y tenía que transmitir todos los mensajes a través de McDivitt. McDivitt debe haber cambiado al ajuste VOX en algún momento cuando White estaba saliendo de la nave espacial, porque en ese momento, para la mayoría de los EVA, ni él ni White respondieron ni al CAPCOM de Hawai ni al CAPCOM de Houston, Gus Grissom. Grissom intentó hablar con Gemini 4 un total de 40 veces en 13 minutos antes de obtener una respuesta.[9]

Atado a una correa, White salió flotando de la nave espacial, usando una Unidad de Maniobra de Mano (informalmente llamada “pistola zip”) que expulsó oxígeno presurizado para proporcionar empuje para controlar su viaje. Se fue a cinco metros de distancia y comenzó a experimentar con las maniobras. Lo encontró fácil, especialmente el cabeceo y la guiñada, aunque pensó que el rollo usaría demasiada gasolina. Él maniobró alrededor de la nave espacial mientras McDivitt tomaba fotografías. White disfrutó de la experiencia, pero agotó el gas HHMU antes de lo que le hubiera gustado.

White se estaba enfrentando a dos factores que limitaban el tiempo para su EVA: la pérdida de señal de la estación de seguimiento de las Bermudas y el cruce del terminador solar. Los controladores de vuelo estaban cada vez más frustrados con su incapacidad para recordarle a White la restricción de tiempo, porque no querían que el primer EVA se realizara en la oscuridad o fuera de comunicación con la Tierra. Finalmente, McDivitt decidió quitarle el micrófono a VOX:

McDivitt, a White: voy a salir a PUSH-TO-TALK y ver lo que el Director de vuelo tiene que decir.

El director de vuelo Chris Kraft , a Grissom: ¡El director de vuelo dice, vuelve a entrar! (Kraft no estaba en el bucle aire-tierra con los astronautas).

McDivitt: Gus, este es Jim. ¿Tienes algún mensaje para nosotros?

Grissom: Géminis 4, vuelve a entrar!

McDivitt: Bien. … (a White): … Quieren que vuelvas ahora.[9]

White trató de usar tomando más fotos como una excusa para permanecer afuera por más tiempo, y McDivitt tuvo que convencerlo para que entrara. Finalmente regresó después de un total de aproximadamente 20 minutos. Él dijo: “Es el momento más triste de mi vida”.[9] Cuando llegó, la nave espacial había entrado en la oscuridad.[10]

La escotilla probó ser tan terca para cerrarse como abrirse. Esto hubiera sido desastroso, lo que resultaría en la muerte de ambos hombres al reingresar. Pero McDivitt pudo reparar el mecanismo una vez más, por lo que White pudo cerrarlo. El plan de la misión pedía que se abriera la escotilla nuevamente para arrojar el equipo EVA que ahora no es necesario, pero McDivitt decidió no hacerlo, manteniendo el equipo innecesario a bordo durante el resto del vuelo.[10]

Apagaron el sistema de maniobras de la nave espacial, con la intención de derivar durante los próximos dos días y medio para conservar el combustible restante. También tenían la intención de dormir periodos alternos de cuatro horas, pero esto resultó ser extremadamente difícil con las comunicaciones de radio constantes y la cabina pequeña, aproximadamente del tamaño de los asientos delanteros de un automóvil compacto.

El recorrido espacial de 20 minutos de White fue el punto culminante de la misión, y las fotografías de McDivitt se publicaron en todo el mundo. Estos también mostraron a White vistiendo un reloj cronógrafo Omega ‘Speedmaster’ en su manga de traje espacial, una de las dos marcas que habían sido aprobadas por la NASA para uso espacial después de extensas pruebas. Omega desconocía estas pruebas o el hecho de que su producto iba a ser utilizado en el espacio, hasta que vieron las fotos de McDivitt. El modelo usado durante la caminata espacial ahora se conoce como el “Ed White” por los coleccionistas de relojes.

Experimentos

Once experimentos fueron llevados a cabo en la nave espacial.

Reingreso

White (l) y McDivitt son felicitados por el presidente Lyndon B. Johnson por teléfono a bordo del portaaviones USS Wasp

La computadora falló en la 48ª revolución. Esto fue desafortunado para IBM, que acababa de poner un anuncio en el Wall Street Journal diciendo que sus computadoras eran tan confiables que incluso la NASA las usaba.[citación necesitada] La falla de la computadora significaba que la cápsula no sería capaz de realizar una reentrada de elevación de circuito cerrado como estaba previsto.

La reentrada llegó en la 62.ª revolución. Se tuvo que utilizar una reentrada continua de circuito abierto (como se usa en Mercurio) debido a la falla de la computadora.[10] Los astronautas comenzaron a rodar la nave espacial a 65 millas náuticas (120 km) de altitud para aumentar su estabilidad. Comenzaron a reducir la velocidad de balanceo a 89,000 pies (27 km) y lo detuvieron en 39,000 pies (12 km). El paracaídas drogue se desplegó poco después de esto, y el principal se desplegó a 10,600 pies (3,2 km). Un propulsor que no funcionaba hizo que el rodillo fuera mucho más rápido de lo planeado,[10] y el aterrizaje fue brusco. Sin embargo, ninguno de los miembros de la tripulación encontró ningún problema, contrariamente a las preocupaciones de los médicos de la NASA sobre su aterrizaje vertical, en lugar de sobre sus espaldas, como en Mercurio, después de cuatro días en el espacio.[10] A pesar de que aterrizaron a 43 millas náuticas (80 km) del objetivo de aterrizaje previsto, algunos barcos ya habían comenzado a navegar hasta el punto de toma de contacto y un helicóptero pudo verlos aterrizar. La nave principal de recuperación fue USS Wasp.

La recuperación fue apoyada por 10,249 personal del Departamento de Defensa de Estados Unidos, 134 aviones y 26 naves.

Insignia

Gemini 4 Fliteline Medallion con vuelo espacial

La tripulación de Gemini 4 originalmente intentó llamar a su nave espacial American Eagle, pero esto fue rechazado luego de que la administración de la NASA emitió un memo diciendo que no querían repetir la misión anterior, en la que Gus Grissom había llamado a su nave espacial Molly Brown.[12]

La Unidad de Maniobra de Mano (HHMU), también conocida como la pistola de maniobra, o informalmente como “la pistola de tirolesa”, fue utilizada por el astronauta Ed White en la primera “caminata espacial” estadounidense (actividad extravehicular, EVA), en Géminis 4, 3 de junio de 1965. Diferentes modelos de HHMU estuvieron presentes en Gemini 4, 8, 10 y 11, pero solo se usaron en Gemini 4 y 10. [1] [2] También se usó a bordo de Skylab.

Los astronautas describieron la pistola como más fácil de usar que otros métodos de maniobra durante la caminata espacial. Proporcionó un impulso para enviar al caminante espacial lejos de la nave espacial y de regreso a ella, y era la forma más fácil para él de controlar sus movimientos en el entorno de microgravedad.

El dispositivo Gemini 4 recibió su propelente de los tanques en el dispositivo y utilizó oxígeno presurizado para controlar e impulsar al astronauta mediante la conservación del impulso.[1][3] White disfrutó usando el arma[4] y lo encontró útil,[5] pero rápidamente se quedó sin propelente, lo que le obligó a tirar de su correa para continuar las maniobras. Sin embargo, su compañero de tripulación James McDivitt recordó el arma como “sin esperanza” y “totalmente inútil”, ya que requiere un objetivo preciso a través del centro de masa del usuario para traducir en línea recta sin inducir la rotación no deseada.[4]

El dispositivo que llevaba el Gemini 8 (del 16 al 17 de marzo de 1966) recibió su propelente Freon 14 de un tanque para llevarlo a la espalda del astronauta.[1] El astronauta David Scott nunca tuvo la oportunidad de usarlo, porque la misión tuvo que ser cancelada antes de su EVA debido a un problema crítico del propulsor.

El dispositivo Gemini 10 utilizado por Michael Collins recibió su propulsor de gas nitrógeno desde el interior de la nave espacial, a través de una manguera incluida con el conector umbilical del astronauta. [1] Collins lo utilizó con éxito para moverse hacia adelante y hacia atrás entre el Géminis y el vehículo objetivo Agena.

Richard Gordon no pudo usar su HHMU en Gemini 11 , porque su EVA tuvo que acortarse cuando se cansó.

Gemini 4 HHMU

Gemini 8 HHMU

Código Jötunvillur

Código Jötunvillur

Descifrado por un investigador noruego

De AncientPages.com

AncientPages.com – ¿Por qué los Vikingos crearon los códigos? Este largo rompecabezas sin respuesta ha desconcertado a los lingüistas e historiadores.

Los investigadores aún no lo saben con certeza.

Se han encontrado alrededor de 80 inscripciones con diferentes códigos de runas en Escandinavia y las Islas Británicas. Las inscripciones más antiguas se pueden remontar a los 800.

“El misterioso código Jötunvillur, que data de los siglos 12 o 13 de Escandinavia, ha sido descifrado por K Jonas Nordby de la Universidad de Oslo, después de estudiar un palo del siglo 13 en el que dos hombres, Sigurd y Lavrans, habían tallado su nombre tanto en código como en runas estándar. “.

“El código jötunvillur se encuentra en solo nueve inscripciones, de diferentes partes de Escandinavia, y nunca se ha interpretado antes.

Comúnmente se cree que los vikingos usaron la criptografía para ocultar mensajes secretos. Según Nordby, los vikingos usaron códigos para jugar, intercambiar mensajes diarios frecuentes y aprender las runas, en lugar de comunicarse.

Vikingos de la vida real y la gente nórdica medieval habían tallada códigos rúnicas en palos de madera, piedras y otros objetos. Comúnmente se cree que los vikingos usaron la criptografía para ocultar mensajes secretos. Según Nordby, los vikingos usaron códigos para jugar, intercambiar mensajes diarios frecuentes y aprender las runas, en lugar de comunicarse. Las cifras muestran también que los vikingos jugaron con escritura.

Un mensaje bastante directo escrito en código: “Kiss me” está grabado en una pieza de hueso hallada en Sigtuna en Suecia, que data del siglo XII o XIII. El código está en las runas de cifrado, el código más común conocido en la Escandinavia medieval. Esta variedad se llama runas de hielo. (Foto: Jonas Nordby)

Dos hombres, Sigurd y Lavrans, grabaron sus nombres en código y en runas estándar en este palo, que data del siglo XIII y se encontraron en el muelle de Bergen. Esto ayudó al investigador Jonas Nordby a descifrar el código jötunvillur. Foto: Aslak Liestøl / Museo de Historia Cultural, Universidad de Oslo

Hasta el momento, lo que él llama su “piedra Rosetta”, que se encontró en el muelle de Bergen, es el único lugar en el que es posible estar seguro de lo que dice el código jötunvillur, aunque cree que otra runa puede haber sido inscrita con el nombre Thorstein, y otro con el nombre Einar.

Luego se dio cuenta, continuó, que en jötunvillur, el signo de la runa se intercambia por el último sonido en el nombre de la runa, por lo que, por ejemplo, la runa “m”, maðr, se escribiría como la runa de “r”.

“Pensé ‘wow, este es el sistema, esta es la solución, ahora podemos leer este texto”, dijo Nordby. Pero el código resultó ser extremadamente confuso, porque muchas runas terminan en el mismo sonido, “por lo que debe decidir cuál elegir”.

“Estas runas fueron talladas por el hombre más rudimentario al oeste del mar”, se jactó el autor de este texto. La inscripción está en runas de cifrado y en runas regulares. Fue encontrado en una cámara funeraria de principios de la Edad de Piedra en la que los escandinavos irrumpieron en el 1100 en las Islas Orcadas. “Un grupo típico de adolescentes varones bromeaba y escribía cuentos sobre tesoros y su propia proeza sexual”, dice el runólogo Jonas Nordby. (Foto: Bengt A. Lundberg / Riksantikvarieämbetet)

Los palos en los que se ha escrito el código, dijo Nordby, son “objetos cotidianos, por lo que a menudo se encuentran nombres en ellos, ya sea porque los usaron para comunicar que era algo que querían conservar o vender, o para practicar la escritura, o porque estaban hablando de personas, por lo que los nombres aparecen con frecuencia”.

Una runa del muelle de Bergen es un testimonio de un uso travieso de la escritura rúnica. Las líneas en las barbas de estos hombres comprenden un mensaje, escrito en runas de cifrado. Foto: Aslak Liestøl / Museo de Historia Cultural, Universidad de Oslo

Muchas runas se han excavado en Escandinavia, datan de los años 1100 y 1200, dijo. Solo unos pocos códigos de uso e incluso menos usan el código jötunvillur. “Se usaban para comunicarse, como los SMS de la Edad Media: eran mensajes frecuentes que tenían validez en el aquí y el ahora”, dijo.

“Tal vez un mensaje a una esposa, o una transacción”.

El reciente descubrimiento “nos ayuda a comprender que había más códigos de los que conocíamos”. Cada inscripción rúnica que interpretamos aumenta nuestras esperanzas de poder leer más pronto. Este es un trabajo de detective puro y cada nuevo método mejora nuestras posibilidades “, dijo Henrik Williams, profesor del Departamento de Idiomas Escandinavos de la Universidad de Uppsala y experto sueco en runas.