Astronáutica
INTEGRAL
Organización: ESA / NASA / Roscosmos
Fecha de lanzamiento: 17 de octubre de 2002
Aplicación: Observatorio espacial
Equipo: SPI (Spectrometer on Integral)
IBIS (Imager on Board the Integral Satellite)
JEM-X (Joint European X-ray Monitor)
OMC (Optical Monitoring Camera)
Tipo de órbita: Elíptica
Período orbital: 72 horas
INTEGRAL (de International Gamma Ray Astrophysics Laboratory) es un observatorio orbital de rayos gamma, la radiación electromagnética más energética. Se destaca por ser el primer observatorio que puede captar simultáneamente un objeto en rayos gamma, rayos x y visible, lo que ayuda a detectar las fuentes de rayos gamma. La misión INTEGRAL ha sido desarrollada por la ESA en colaboración con la NASA y la Agencia Espacial Federal Rusa.
Este observatorio espacial fue lanzado usando un cohete Protón ruso, desde el cosmódromo de Baikonur el 17 de octubre de 2002. Tiene una órbita excéntrica que lo lleva a dar una vuelta a la Tierra aproximadamente cada 72 horas.
Los principales objetivos científicos de la misión INTEGRAL son:
- La observación de las poderosas explosiones de rayos gamma, que se cree son debidas al colapso de objetos compactos como estrellas de neutrones o agujeros negros, o bien por la existencia de hipernovas.
- Estudiar estas hipernovas, para determinar la composición química del interior de las estrellas y ayudar a esclarecer el proceso de nucleosíntesis estelar.
- Estudiar las estrellas de neutrones formadas tras las hipernovas, uno de los objetos más densos del universo.
- Estudiar los agujeros negros gigantes que se cree se encuentran en el centro de las galaxias.
Para ello, cuenta con los siguientes instrumentos:
- SPI (Spectrometer on Integral)
- IBIS (Imager on Board the Integral Satellite)
- JEM-X (Joint European X-ray Monitor)
- OMC (Optical Monitoring Camera)
Parte de la nave lleva el mismo diseño que el observatorio de rayos X XMM-Newton, lo que ha permitido abaratar costes. INTEGRAL es el observatorio de rayos gamma más avanzado y preciso del momento, así como el mayor peso puesto en órbita por la ESA, unas cuatro toneladas.
El Integral (International Gamma-Ray Astrophysics Laboratory), el observatorio de rayos gamma, fabricado por contrato de la ESA, explora el espectro de estos rayos en el Universo para averiguar qué procesos tuvieron lugar en las fases tempranas de gestación del Cosmos, cómo se formaron los elementos químicos y de dónde proceden las increíblemente cortas emisiones de rayos gamma.
Además, el Integral investiga estallidos de alta energía y verifica la existencia de agujeros negros como complemento de las mediciones del XMM, el telescopio de rayos X. El satélite está integrado por dos componentes principales: el módulo de servicio y el módulo de carga útil con cuatro instrumentos científicos. Airbus Defence and Space suministra el sistema anticoincidencia (ACS), que protege el espectrómetro de interferencias producidas por protones de alta energía.
INTEGRAL: 4 años observando el Universo en rayos gamma
Publicado por Administrador CBE el 27 octubre, 2006
Miguel Mas-Hesse
CSIC-CAB
El pasado 17 de octubre se cumplieron 4 años del lanzamiento del observatorio espacial INTEGRAL (International Gamma Ray Astrophysical Observatory). INTEGRAL está equipado con dos potentes telescopios de rayos gamma: SPI, optimizado para obtener espectros de alta resolución, e IBIS, diseñado para conseguir imágenes en rayos gamma con una calidad sin precedentes. Dos monitores complementan la misión: un monitor de rayos X duros (JEM-X) y una cámara óptica (OMC). Este conjunto de instrumentos, que están co-alineados y funcionan de manera simultánea, confieren a INTEGRAL una enorme potencia observacional. Más detalles de la misión pueden encontrarse en la página del INTEGRAL Science Operations Centre
Nuestro grupo es responsable de la cámara óptica OMC. Este instrumento fue diseñado en España, por científicos e ingenieros del LAEFF y del INTA, coordinados en un primer momento por Álvaro Giménez, y posteriormente y hasta la actualidad por mí. Gracias a OMC es posible obtener por primera vez las curvas de luz en el óptico al mismo tiempo que se observa la emisión de altas energías. El interés de esta simultaneidad radica en el alto grado de variabilidad que muestran los objetos emisores de rayos gamma: pueden variar su luminosidad en un factor 10 en cuestión de horas. El estudio de la correlación entre las variaciones observadas en el óptico, en rayos X y en rayos gamma es una potente herramienta para descifrar la estructura de estos objetos y sus propiedades físicas. Más información y datos de OMC pueden obtenerse en la página de INTEGRAL en el LAEFF.
¿Qué hemos aprendido con INTEGRAL en estos 4 años? Sobre todo, ahora conocemos mucho mejor la distribución y las propiedades de los objetos emisores de altas energías. La mayoría de ellos son agujeros negros, por lo general miembros de un sistema binario. La materia que la estrella compañera expulsa, ya sea por medio de vientos estelares, o través del punto de Lagrange cuando llena su lóbulo de Roche en las últimas fases de su vida, es acretada en espiral hacia la superficie del agujero negro. El potentísimo campo gravitatorio en las inmediaciones de un agujero negro, así como las destructoras fuerzas de marea, hacen que el material se caliente a temperaturas de varios millones de grados, emitiendo principalmente en rayos X y gamma. El proceso de acreción no es continuo, ya que la materia es absorbida en forma de pequeñas nubes o grumos. La caída de una de estas nubes de gas hasta las regiones más internas genera estallidos muy luminosos y de corta duración, que conocemos con el nombre inglés de “outbursts”. INTEGRAL ha estudiado la emisión de numerosos de estos agujeros negros en sistemas binarios, y ha detectado varios de estos “outbursts”. Su resolución espectral le ha permitido identificar cómo varían las propiedades de la misión antes, durante y después de estos estallidos.
Además del estudio de fuentes compactas, INTEGRAL ha realizado numerosas observaciones del gas difuso. El resultado más sorprendente ha sido sin duda la identificación en el centro de nuestra Galaxia de la emisión de 511 keV que se produce cuando un electrón y un positrón se encuentran y aniquilan. INTEGRAL ha podido obtener un detallado mapa de la región esferoidal en el centro de nuestra Galaxia donde se produce este fenómeno. El análisis de las propiedades de esta emisión ha mostrado que en esa región se producen grandes cantidades de antimateria, de forma continua, y con unas características que no somos aún capaces de explicar. Esperamos lograrlo dentro de unos años, cuando las observaciones sean más precisas gracias al aumento de tiempo de integración (hay que destacar que los astrofísicos de rayos gamma detectan éstos uno a uno, y que es necesario mucho tiempo de integración para tener una estadística suficientemente amplia).
El pasado mes de enero se realizaron las observaciones más sorprendentes con INTEGRAL: El observatorio se apuntó hacia el fondo cósmico, y se esperó a que la Tierra pasara por el campo de visión para estudiar la sombra que producía. De esta manera, utilizando la Tierra como una gigantesca pantalla, fue posible medir la intensidad y propiedades espectrales de la radiación cósmica de fondo entre 20 y 100 keV. Se piensa que esta radiación está originada en miriadas de galaxias activas, alimentadas cada una de ellas por enormes agujeros negros centrales, formados en las primeras etapas de evolución de las galaxias. Estas galaxias están tan lejanas que no podemos resolverlas aún con telescopios de rayos gamma, ni siquiera con INTEGRAL.
Esperamos que INTEGRAL continúe funcionando durante muchos años y que nos permita conocer a fondo el fascinante Universo de las Altas Energías.
El telescopio Integral vigilando el centro galáctico
22 enero 2007
El observatorio de rayos gamma de la ESA, Integral, ha observado el centro de nuestra galaxia en un momento de rara calma. Curiosamente, durante esta observación de Integral algunas de las fuentes más energéticas en torno al agujero negro que ocupa el centro de nuestra galaxia estaban temporalmente ‘en silencio’.
Se trata de un acontecimiento poco usual que está permitiendo a los astrónomos ir en busca de objetos aún más débiles. Puede que incluso les permita llegar a atisbar la materia mientras desaparece en el agujero negro masivo en el centro de nuestra galaxia.
El centro galáctico es una de las regiones más dinámicas de nuestra galaxia. Se cree que está ‘habitado’ por un agujero negro gigante, llamado Sagitario A*. Desde el principio de la misión Integral, este observatorio de rayos gamma de la ESA ha hecho posible que los astrónomos no pierdan de vista el centro galáctico y sus constantes cambios.
Integral ha descubierto muchas nuevas fuentes de radiación de alta energía en las inmediaciones del centro galáctico. Desde Febrero de 2005 Integral empezó a vigilar de forma constante el centro de la galaxia y su entorno inmediato, el llamado ‘bulbo’ galáctico.
Erik Kuulkers, del Centro de Operaciones Científicas de Integral, en el Centro Europeo de Astronomía Espacial (ESAC) de la ESA, en Madrid, dirige el programa de segumiento del centro galáctico. Ahora Integral ha puesto sus ‘ojos’ de última tecnología en unas 80 fuentes de alta energía en el bulbo galáctico. “La mayoría de estas fuentes son estrellas binarias de rayos X [que emiten intensamente en rayos X], dice Kuulkers.
Los sistemas binarios de rayos x están integrados por dos estrellas en órbita una en torno a la otra. Una de las dos es relativamente normal; la otra es una estrella colapsada, como una enana blanca, una estrella de neutrones o incluso un agujero negro. Si las estrellas están lo bastante próximas entre sí, el tirón gravitatorio de la estrella colapsada puede extraer material gaseoso de la estrella normal. A medida que este gas se aproxima a la estrella colapsada, orbitándola, también se calienta a más de un millón de grados centígrados, y eso hace que emita en rayos x y gamma. La cantidad de gas que cae de una estrella a otra determina el brillo de la emisión en rayos X y gamma.
Integral, artist’s impression
17 octubre 2012
El observatorio espacial Integral de la ESA cumple diez años en órbita hoy, 17 de octubre. Para celebrarlo, os presentamos esta galería que recopila las representaciones artísticas de los principales descubrimientos de esta misión europea.
Integral, acrónimo inglés de ‘Laboratorio Internacional de Astrofísica de Rayos Gamma’, transporta dos telescopios de rayos gamma, un monitor de rayos X y una cámara óptica. Los cuatro instrumentos apuntan simultáneamente a la misma región del firmamento para realizar observaciones complementarias de fuentes de alta energía.
Integral estudia con frecuencia las explosiones de rayos gamma, el canto del cisne de las estrellas masivas que han consumido todo su combustible y explotan dando lugar a una dramática supernova que salpica a nuestro Sistema Solar de radiación de alta energía.
Este satélite también ha descubierto fenómenos mucho más sutiles, como las binarias de rayos X. Estos sistemas están formados por una estrella de neutrones – el núcleo apagado de una estrella que explotó como una supernova – que se alimenta de materia que arranca de la estrella que la acompaña.
WMAP
La Wilkinson Microwave Anisotropy Probe (WMAP) es una sonda de la NASA cuya misión es estudiar el cielo y medir las diferencias de temperatura que se observan en la radiación de fondo de microondas, un remanente del Big Bang. Fue lanzada por un cohete Delta II el 30 de junio de 2001 desde Cabo Cañaveral, Florida, Estados Unidos.
El objetivo de la misión WMAP es comprobar las teorías sobre el origen y evolución del universo. Es la sucesora del COBE y entra dentro del programa de exploradores de clase media de la NASA.
WMAP fue nombrada así en honor a David Todd Wilkinson, miembro del equipo científico de la misión y pionero en el estudio de la radiación de fondo. Los objetivos científicos de la misión son que la temperatura del fondo cósmico de microondas debe ser medida con una altísima resolución y sensibilidad. Debido a esto, la prioridad en el diseño fue la de evitar errores sistémicos en la toma de datos.
La sonda WMAP usa radiómetros diferenciales de microondas que miden las diferencias de temperatura entre dos puntos cualesquiera del cielo. WMAP se encuentra en órbita en torno al punto Lagrangiano L2, situado a unos 1.5 millones de kilómetros de la tierra.
Nombres MAPA
Explorador 80
Tipo de misión CMBR astronomía
Operador NASA
ID COSPAR 2001-027A
SatCat № 26859
Sitio web mapa .gsfc .nasa .gov
Duración de la misión 9 años, 1 mes, 19 días
Masa de lanzamiento 835 kg (1,841 lb) [1]
Masa seca 763 kg (1.682 lb)
Dimensiones 3,6 mx 5,1 m (12 pies x 17 pies)
Poder 419 W
Inicio de la misión
Fecha de lanzamiento 19:46:46 30 de junio de 2001 [2]
Cohete Delta II 7425-10
Sitio de lanzamiento Cabo Cañaveral SLC-17
Fin de la misión
Disposición Pasivado
Desactivado 28 de de octubre de del 2010
Parámetros orbitales
Sistema de referencia L 2 puntos
Régimen lissajous
Telescopio principal
Tipo gregoriano
Diámetro 1,4 m x 1,6 m (4,6 pies x 5,2 pies)
Las longitudes de onda 23 GHz a 94 GHz
Instrumentos
K-banda (23 GHz) 52.8- minutos de arco de haz
La banda Ka (33 GHz) haz de 39,6 minutos de arco
Q-banda (41 GHz) 30.6 minutos de arco-haz
V-banda (61 GHz) haz de 21 minutos de arco
W-banda (94 GHz) haz de 13.2 minutos de arco
Diagrama del WMAP.
Este punto de observación (situado en la línea que une al sol con la tierra) proporciona a la sonda un ambiente excepcionalmente estable, ya que puede apuntar en cualquier dirección al espacio profundo, sin verse afectada por la presencia de la estrella madre. Además, desde el punto L2 observa el cielo entero cada seis meses. Para evitar las interferencias provenientes de nuestra propia galaxia, WMAP usa cinco bandas de frecuencia separadas, desde los 22 GHz a los 90 GHz.
El 11 de febrero de 2003, el grupo de relaciones públicas de la NASA convocó una rueda de prensa para comunicar la edad y composición del universo sobre la base de datos de la sonda WMAP. En dicha rueda de prensa se desveló la imagen más intrincada del universo primigenio tomada hasta hoy, en espera de los resultados del Planck. Según la NASA, esta imagen “contiene tal nivel de detalle que se puede considerar uno de los resultados científicos más importantes de los últimos años”. Hay que tener en cuenta que si bien esta imagen no es la de mayor resolución tomada sobre el fondo cósmico de microondas, es la mejor imagen que tenemos de la radiación de fondo de todo el cielo.
Los datos de tres años del WMAP fueron publicados al mediodía del 17 de marzo de 2006. Estos datos incluyen las medidas de la temperatura y de la polarización de los CMB, que proporcionan una confirmación más fuerte del modelo estándar Lambda-CDM.
Descubrimientos realizados con el WMAP
Imagen del WMAP del fondo cósmico de microondas.
Línea de tiempo de la gran explosión.
WMAP está obteniendo medidas de muchos parámetros cosmológicos con una precisión mucho mayor que la que teníamos hasta ahora. De acuerdo con los modelos actuales del universo, los datos del WMAP muestran que:
- La edad del universo es de 13.700 ± 200 millones de años.
- El universo está compuesto de un 4% de materia ordinaria, 23% de materia oscura y de un 73% de la misteriosa energía oscura.
- Los modelos cosmológicos inflacionarios se verifican con las observaciones, aunque hay una anomalía inexplicada a grandes escalas angulares.
- La Constante de Hubble es 71 ± 4 km/s/Mpc
- Los datos del WMAP confirman, con sólo un 0,5% de margen de error, que la forma del universo es plana.1
- Los panoramas cosmológicos de la inflación cósmica están en un acuerdo mejor con los datos de tres años, aunque todavía hay una anomalía inexplicada en la medida angular más grande del momento cuadrupolo.
Fecha de lanzamiento: 30 de junio de 2001
Programa (s): Astrofísica exploradores, exploradores
La misión WMAP se dirigió a las preguntas fundamentales de la cosmología: ¿Cuál es la geometría del Universo? ¿Cómo estructuras, tales como galaxias y cúmulos de galaxias, que vemos en el cielo de hoy se producen? ¿Qué edad tiene el Universo, y cuáles son sus componentes?
El detallada, todo el cielo la imagen de la infancia del universo creado a partir de siete años de datos de WMAP. La imagen revela las fluctuaciones de temperatura 13.7 millones de años de (que se muestran como las diferencias de color) que se corresponden con las semillas que crecieron para convertirse en las galaxias.
Crédito: NASA / WMAP Science Team
Las respuestas a estas preguntas se encuentran en el fondo cósmico de microondas (CMB), la radiación de fondo remanente sobrante de la Gran Explosión, que es notablemente uniforme en todo el cielo, a una temperatura efectiva de 2,7 grados Kelvin. El CMB, sin problemas, ya que es, sin embargo, contiene pequeñas fluctuaciones en la temperatura, en el nivel de una parte en 100.000. A partir de estas fluctuaciones crecieron las estructuras en el Universo que vemos hoy en día, y con una cuidadosa medición de las propiedades de estas fluctuaciones, se puede aprender mucho sobre la historia y el contenido del Universo.
WMAP usa radiómetros de microondas diferencial que midieron las diferencias de temperatura entre dos puntos en el cielo. WMAP observa el cielo desde una órbita alrededor del punto L2 Sol-Tierra Lagrange, 1,5 millones de kilómetros de la Tierra. Este punto de vista ofrece un entorno excepcionalmente estable para la observación desde el observatorio siempre puede apuntar lejos del Sol, la Tierra y la Luna, manteniendo una vista despejada hacia el espacio profundo. WMAP escanea el cielo de una manera tal como para cubrir ~ 30% del cielo cada día y como el punto L2 sigue a la Tierra alrededor del Sol WMAP observa el cielo lleno cada seis meses. Para facilitar el rechazo de las señales de primer plano de nuestra propia galaxia, WMAP usa cinco bandas de frecuencia separadas 22-90 GHz.
Ilustración de los receptores de WMAP
La Wilkinson Microwave Anisotropy Probe (WMAP) fue renombrada en honor al fallecido Dr. David Wilkinson, de la Universidad de Princeton, un miembro del equipo científico y pionero en el estudio de la radiación cósmica de fondo.
WMAP fue dado de baja en octubre de 2010, después de 9 años de vuelo. Durante estos 9 años, WMAP ayudado a cambiar la forma en que vemos nuestro Universo.
- WMAP descubrió que hoy nuestro universo se compone de un 72% la energía oscura, 23% de materia oscura y sólo el 4,6% de átomos.
- WMAP encontró la edad del Universo es de 13,75 ± 0,13 mil millones de años. Conocido dentro del 1%.
- WMAP descubrió que el Universo era muy diferente cuando se fue de 380.000 años de antigüedad. En ese momento estaba dominado por la materia oscura (63%), los fotones (15%), Átomos (12%), y los neutrinos (10%). La energía oscura no existía en cantidades medibles en ese momento.
- WMAP encontró que la primera generación de estrellas para luz en el Universo encendió a 200 millones de años después del Big Bang.
- WMAP encontró nueva evidencia de que un mar de neutrinos cósmicos impregna el Universo.
- WMAP encontró evidencia clara de las primeras estrellas tardaron más de quinientos millones de años para crear una niebla cósmica.
- WMAP tensó nuevas restricciones sobre la explosión de expansión en la primera billonésima de Universo de un segundo (llamado inflación).
- WMAP proporcionó la primera detección directa de helio pre-estelar, proporcionando una prueba importante de la predicción del Big Bang.
- WMAP ayudó a restringir la geometría del Universo. Nuevos datos indican que debe ser plana para mejor que 1%. El modelo más simple, un universo plano con una constante cosmológica, ajusta los datos muy bien. v
- los datos de WMAP coloca restricciones en el número de especies de neutrinos parecido a entre 3 y 5, con 4 como el número más probable. El modelo estándar de la física de partículas tiene 3 especies de neutrinos.
Como WMAP ha mejorado mucho conocimiento acerca de la CMB allá de lo que aprendió la misión COBE, la reciente misión Planck de la ESA-llevado ha mejorado el legado dejado por la misión WMAP. La misión Planck mide el CMB con una mayor precisión y resolución angular en comparación con WMAP. Un objetivo clave de la misión Planck fue medir la polarización del CMB debido a la radiación gravitatoria del período de la inflación en el universo primordial.
El Premio Gruber de Cosmología 2012 fue otorgado a Charles L. Bennet y el equipo de la sonda Wilkinson Microwave anisotropía (WMAP) por sus exquisitos ‘mediciones de las anisotropías en la radiación fósil del Big Bang, — el fondo cósmico de microondas. Estas medidas han ayudado a obtener restricciones rigurosas sobre el origen, el contenido, la edad y la geometría del Universo, la transformación de nuestro paradigma actual de la formación de la estructura de apelar escenario en la ciencia exacta”.
Mediciones y descubrimientos
Un año de publicación de los datos
El 11 de febrero de 2003, la NASA publicó valor de los datos de WMAP del Primer año. Se presentaron las últimas edad calculada y composición del universo temprano. Además, se presentó una imagen del universo primitivo, que “contiene detalles tan impresionantes, que puede ser uno de los resultados científicos más importantes de los últimos años”. Los datos recientemente publicados superan las mediciones anteriores CMB. [5]
Con base en el modelo Lambda-CDM, el equipo de WMAP produjo parámetros cosmológicos de resultados del primer año del WMAP. Tres conjuntos se dan a continuación; el primer y segundo conjuntos son datos de WMAP; la diferencia es la adición de índices espectrales, las predicciones de algunos modelos de inflación. El tercer conjunto de datos combina las limitaciones de WMAP con los de otros experimentos de CMB ( ACBAR y CBI ), y las limitaciones de los Redshift Survey 2dF Galaxy y forestales Lyman alfa mediciones. Observe que hay degeneraciones entre los parámetros, la más significativa es entre y ; los errores son dados en la confianza de 68%. [21]
Cinco años de publicación de los datos
Los datos de WMAP a cinco años fueron puestos en libertad el 28 de febrero de 2008. Los datos incluyen nuevas pruebas para el fondo cósmico de neutrinos, evidencia de que tomó más de la mitad de mil millones de años para que las primeras estrellas de reionizar el universo, y las nuevas restricciones sobre la inflación cósmica. [24]
Contenido de materia / energía en el universo actual y en el momento de la disociación de fotones en el recombinación época 380.000 años después del Big Bang.
La mejora en los resultados se dieron a ambos con un extra de 2 años de mediciones (el conjunto de datos se ejecuta entre la medianoche el 10 de agosto de 2001 hasta la medianoche del 9 de agosto, 2006), así como el uso de técnicas de procesamiento de datos mejoradas y una mejor caracterización de la instrumento, en particular de las formas de haz. También hacen uso de los 33 GHz observaciones para la estimación de parámetros cosmológicos; previamente se habían utilizado sólo los canales 41 GHz y 61 GHz. Por último, la mejora de las máscaras se utilizan para eliminar los primeros planos. [8]
Las mejoras en los espectros estaban en el pico acústico tercero, y los espectros de polarización. [8]
Las mediciones ponen restricciones sobre el contenido del universo en el momento que el CMB se emitió; en el momento del 10% del universo se compone de neutrinos, el 12% de los átomos, el 15% de los fotones y un 63% de materia oscura. La contribución de la energía oscura en el momento era insignificante. [24] También se limitó el contenido del universo actual; 4,6% átomos, 23% de materia oscura y la energía oscura 72%. [8]
Los datos de WMAP de cinco años se combinó con las mediciones de supernovas de tipo Ia (SNE) y oscilaciones acústicas Baryon (BAO). [8]
La forma elíptica de la skymap WMAP es el resultado de una proyección Mollweide. [25]
Se siguieron publicando datos de su vida efectiva, en años posteriores.
Seguimiento de las misiones y las mediciones futuras
trayectoria y la órbita de la WMAP.
La línea de tiempo original para WMAP se dio dos años de observaciones; éstos fueron completados por las extensiones de septiembre de 2003. Misión se les concedió en 2002, 2004, 2006, y 2008 dando la nave espacial con un total de 9 años de observación, que terminó de agosto de 2010 [18] y en octubre de 2010, la nave espacial fue trasladado a un “cementerio heliocéntrica “orbitar [12] fuera L2, en la que gira alrededor del sol 14 veces cada 15 años.[cita requerida]
La nave espacial Planck, lanzado el 14 de mayo de 2009, también mide el CMB y tiene como objetivo perfeccionar las mediciones realizadas por el WMAP, tanto en intensidad total y la polarización. Varios instrumentos terrestres y globos también han hecho contribuciones CMB, y otros están siendo construidos para hacerlo. Muchos están dirigidos a la búsqueda de la polarización en modo B se espera de los modelos más simples de la inflación, incluyendo Ebex, Araña, BICEP2, Keck, TRANQUILA, CLASE, SPTpol y otros.
El 21 de marzo de 2013, el equipo de investigación dirigido por el Europeo tras la sonda Planck cosmología liberado de todo el cielo de la misión mapa de la radiación cósmica de fondo. [31] [32] El mapa sugiere que el universo es un poco mayor de lo pensado. Según el mapa, sutiles fluctuaciones en la temperatura se estamparán en el cielo profundo cuando el cosmos tenía cerca de 370.000 años. La huella refleja ondas que surgieron tan pronto, en la existencia del universo, como el primer nonillionth (10 -30) de un segundo. Al parecer, estas ondulaciones dieron lugar a la presente vasta red cósmica de los cúmulos de galaxias y la materia oscura . Sobre la base de los datos de 2013, el universo contiene 4,9% materia ordinaria , el 26,8% de materia oscura y el 68,3% de la energía oscura. El 5 de febrero de 2015, nuevos datos fue lanzado por la misión Planck, según la cual la edad del universo es de 13.799 ± 0,021 billón años y la constante de Hubble se midió en 67,74 ± 0,46 (km / s) / Mpc. [33]
WMAP lanzamientos desde el Centro Espacial Kennedy , 30 de Junio, de 2001.
ATIC
Globos para los Rayos Cósmicos
Los astrónomos han pensado por mucho tiempo que las supernovas son la fuente de los rayos cósmicos. Sin embargo, existe una inquietante discrepancia entre la teoría y las mediciones. El lanzamiento de un globo sonda, que ya se encuentra flotando sobre la Antártica, podría ayudarnos a resolver este misterio.
Enero 12, 2001 — Estire su mano y sosténgala durante unos 10 segundos. Una docena de electrones y muones acaban de atravesar su palma sin que usted lo haya sentido. Estas fantasmales partículas son llamadas por los científicos “rayos cósmicos secundarios” — sobrantes subatómicos de las colisiones entre moléculas localizadas a gran altura en la atmósfera terrestre y rayos cósmicos de alta energía provenientes del espacio exterior.
Los rayos cósmicos son núcleos atómicos y electrones que viajan a través de la galaxia a una velocidad cercana a la de la luz. La Vía Láctea está llena de rayos cósmicos. Afortunadamente, la magnetósfera y la atmósfera de nuestro planeta nos protegen de la mayoría de los rayos cósmicos. Aún así, los más poderosos -que pueden llevar consigo mil millones de veces más energía que las partículas creadas dentro de los aceleradores atómicos en la Tierra- producen grandes tormentas de partículas secundarias en nuestra atmósfera que sí pueden alcanzar la superficie de nuestro planeta. [más datos]
Arriba: Explosiones de supernova, como la que creó la Nebulosa del Cangrejo (fotografía), podrían ser la fuente de los rayos cósmicos galácticos.
¿De dónde provienen los rayos cósmicos? Los científicos han estado tratando de contestar esta pregunta desde 1912, cuando Victor Hess descubrió las misteriosas partículas volando en un globo a gran altitud sobre Europa. Los rayos cósmicos galácticos llueven sobre nuestro planeta desde todas partes. No existe una fuente definida que los astrónomos puedan señalar aunque haya un candidato muy popular.
“La mayoría de los investigadores creen que los rayos cósmicos provienen de las explosiones de supernova”, dice Jim Adams del Centro Marshall de Vuelos Espaciales de la NASA. Cuando las estrellas masivas explotan lanzan sus propias atmósferas al espacio. Las ondas de choque en expansión pueden romper átomos interestelares y acelerar los sobrantes de estos rompimientos hasta convertirlos en la energía de los rayos cósmicos. Los rayos cósmicos son, más tarde, dispersados por campos magnéticos interestelares — y vagan a traves de la galaxia perdiendo el sentido de su dirección original.
“Se necesita una gran potencia para mantener la población galáctica de rayos cósmicos,” dice Adams. “Los rayos cósmicos que pierden energía o que escapan de los confines de la galaxia tienen que ser reemplazados. Las supernovas pueden hacer este trabajo solamente si una de ellas explota más o menos cada 50 años. Los observadores calculan que una supernova explota en algún lugar de la galaxia de cada 10 a 100 años — apenas suficiente para satisfacer las necesidades energéticas de los rayos cósmicos.
Sin embargo, puede que exista un problema con la teoría de las supernovas, dice Adams.
“Una explosión de supernova genera una burbuja en el medio interestelar que crece hasta que la onda de choque se queda sin energía”, explicó. “Estas burbujas pueden acelerar partículas hasta un cierto punto, alrededor de los 1014electrón-volts (eV) por cada núcleo atómico, pero no más allá. Por debajo de los 1014 eV de energía, todas las diferentes especies de rayos cósmicos –protones, núcleos de Helio, etc. — deberían tener el mismo tipo de espectro de energía: una ley de potencias con un índice cercano a -2.7.”
Izquierda: Esta gráfica logarítmica muestra el flujo de rayos cósmicos que bombardea la Tierra como una función de la energía por partícula. Los investigadores creen que los rayos cósmicos con energías menores a los ~3×1015 eV provienen de las explosiones de supernova. El origen de los rayos cósmicos mucho más energéticos que éstos (arriba de la “rodilla” en el diagrama) sigue siendo un misterio.
Una espectro tipo “ley de potencias” tiene forma de línea recta en un papel logarítmico. En el rango de energías de ~1010 eV a 1014 eV, la teoría de la aceleración de los rayos cósmicos en las supernovas predice que el espectro en ley de potencias de los protones tendría la misma pendiente que la ley de potencias de núcleos más pesados (alrededor de -2.7).
El problema surge cuando los científicos comparan el espectro de energía de los protones y los núcleos de Helio, pues no se parecen tanto como deberían. Ambos presentan espectros tipo ley de potencias, sin embargo “los datos que se tienen indican una posible diferencia de 0.1 entre los índices espectrales de los protones y los núcleos de Helio,” dice Eun-Suk Seo, investigadora de los rayos cósmicos de la Universidad de Maryland. “El [la pendiente del] espectro de los protones es cercano a -2.7, pero el espectro de energía del Helio y los núcleos más pesados parecería estar menos inclinado. La diferencia es pequeña y podría no ser estadísticamente significativa”. Si hubiera una discrepancia genuina, añade Seo, podría existir un problema con la teoría de la aceleración de los rayos cósmicos en las supernovas.
Para averiguar si la teoría de las supernovas está de hecho en peligro, un equipo de científicos dirigidos por John Wefel (Universidad Estatal de Louisiana) y Eun-suk Seo, y con ayuda del Centro Nacional de Ciencia con Globos Sonda, lanzaron un globo lleno de Helio desde McMurdo, Antártica, el 28 de diciembre del 2000. La carga útil, que se encuentra ahora a 120,000 pies por encima de la superficie terrestre, incluye un espectrómetro de rayos cósmicos construido con fondos de la NASA, conocido por sus creadores como el Calorímetro Delgado para Ionización de Diseño Avanzado o “ATIC”, por sus siglas en inglés.
“ATIC es sensible a los rayos cósmicos con energías entre los ~1010eV y los 1014eV”, dice Wefel. Al cubrir tal rango de energías con un solo espectrómetro, el equipo espera poder medir el espectro de los rayos cósmicos protónicos y de Helio con una precisión alcanzada hasta ahora.
Right: La carga útil del ATIC cuelga de un vehículo de lanzamiento mientras el globo es llenado al fondo por personal del Centro Nacional de Ciencia con Globos Sonda. El experimento ATIC despegó hacia su vuelo circumpolar para medir rayos cósmicos galácticos este 28 de diciembre, 2000.
“Los rayos cósmicos de alta energía son raros”, continuó. “Por ejemplo, cada día el ATIC recolecta no más de ~10 rayos cósmicos con energías que excedan los 1013 eV. Por eso debemos volar el globo durante tanto tiempo, para juntar suficientes partículas y para obtener un resultado estadísticamente significativo”. Cuando el ATIC aterrice, el 12 o 13 de enero, el espectrómetro habrá estado en la estratósfera contando rayos cósmicos por casi dos semanas enteras.
La principal razón por la que los investigadores escogieron volar el globo sonda sobre la Antártica es el tiempo de vuelo. “Estaríamos felices de volar esta carga útil sobre Norteamérica” dice Adams. “El problema es que necesitamos tener al espectrómetro a bordo durante mucho tiempo. La Antártica tiene dos grandes ventajas: es territorio internacional, por lo que no tenemos que solicitar tantos permisos de sobrevuelo y, el Vórtex Antártico (un sistema de clima circulante alrededor del Polo Sur) mantiene el globo confinado al espacio aéreo sobre el continente”.
“Si existe una diferencia entre los espectros protónicos y de Helio — algo de lo cual no estamos seguros — no será necesario desechar el modelo de las supernovas”, continuó Wefel. “Sin embargo, una discrepancia sí causaría problemas”. Los teóricos tendrían que considerar el avance de los frentes de choque de las explosiones de supernova con mayor detalle. “Cada explosión de supernova es una obra de arte en sí misma”, dice Adams. “Nosotros usamos modelos matemáticos en los que se asume que las explosiones son esféricas, pero no lo son. Dentro de la propia onda en expansión, se pueden ver irregularidades. Hay nudos brillantes, por ejemplo, en aquellos lugares donde las ondas de choque se encuentran con una nube de material interestelar. En grupos apelmazados de estrellas masivas (‘asociaciones OB’) donde las supernovas pueden ocurrir en rápida sucesión, las ondas de expansión colisionan unas con otras” ¡se puede volver un poco confuso! Modelar tales detalles podría afectar cualquier reconciliación entre la teoría y los datos.
Arriba: La carga útil del globo ATIC, Calorímetro Delgado para Ionización de diseño Avanzado.
¿Y si el modelo de las supernovas no puede ser rescatado? “Hay otras posibilidades,” dice Wefel, “Pero no hay muchas que sean buenas. Vamos a tener que buscar con mucho cuidado para encontrar algo que cumpla con los requerimientos de los rayos cósmicos y que no sean las supernovas.”
El grupo de análisis dirigido por Eun-Suk Seo está ansioso para lanzarse sobre los archivos de datos del ATIC después de que aterrice. Los nuevos conteos de partículas, que los investigadores esperan sean los más precisos hasta la fecha en el rango de energías del ATIC, podrían ayudar a resolver el misterio de los rayos cósmicos, que data de hace varias décadas.
Visite la página principal del ATIC para un reporte de situacion actual sobre el vuelo del globo sonda. Entre los Participantes del proyecto ATIC se incluyen a la Universidad Estatal de Louisiana, la Universidad de Maryland, NASA, el Laboratorio de Investigaciones Navales, La Universidad Sureña (Baton Rouge), La Fundación Nacional para la Ciencia, y colaboradores de Alemania, Corea y Rusia.
Odin
Odin (observatorio espacial)
Organización: Swedish Space Corporation
Fecha de lanzamiento: 20 de febrero de 2001
Aplicación: Astrofísica y aeronomía
Dimensiones: 2 x 3,8 m desplegado
Equipo: Radiómetro criogénico; Espectrómetro óptico
Tipo de órbita: Circular
Inclinación: 97,83 Grados
Odin es un observatorio espacial sueco estabilizado en los tres ejes, construido por la Swedish Space Corporation y dedicado tanto a la observación astrofísica como al estudio de la atmósfera terrestre. Para ello utiliza un telescopio de tipo gregoriano de 1,1 metros de diámetro (fabricado por Saab) que alimenta dos instrumentos: un radiómetro y un espectrómetro óptico. El radiómetro se utiliza para observar en la banda milimétrica, a tres bandas de frecuencia: 118,25-119,25, 486,1-503,9 y 541,0-580,4 GHz, con una resolución en las observaciones de entre 0,1 y 1 MHz. El espectrómetro cubre tres bandas visibles e infrarrojas entre los 280 y los 800 nm y una banda infrarroja a 1270 nm.
Se diseñó para observar algunos gases de interés astrofísico presentes en nubes moleculares, como ioduro de carbono, vapor de agua, sulfuro de hidrógeno y amoníaco, entre otros. Puede realizar observaciones de hasta 60 minutos seguidos de objetos concretos. Para la observación atmosférica se dedica a observar monóxido de cloro, óxido nitroso, dióxido de nitrógeno, peróxido de hidrógeno, ácido nítrico y otros, estudiando entre otros campos el mecanismo de destrucción de la capa de ozono. Odin estudia la atmósfera observando el limbo terrestre, explorándola en un rango de alturas de entre 15 y 120 km y haciendo unas 40 exploraciones por órbita.
Odin fue lanzado el 20 de febrero de 2001 desde Svobodniy, mediante un cohete Start-1 ruso. Fue diseñado para una vida útil de dos años, pero su vida operativa continúa. Es el quinto satélite sueco dedicado a la investigación científica.
Los átomos de oxígeno son comunes en el espacio, especialmente alrededor de estrellas masivas. Sin embargo, el oxígeno molecular, que constituye alrededor del 20 por ciento del aire que respiramos, había eludido las observaciones de los astrónomos hasta ahora.
“El gas de oxígeno fue descubierto en la década de 1770, pero que nos ha llevado más de 230 años para finalmente decir con certeza que esta molécula muy simple existe en el espacio”, dijo Paul Goldsmith, científico del proyecto Herschel de la NASA en el Laboratorio de Propulsión a Chorro (JPL) en Pasadena, California. Goldsmith es el autor principal de un artículo reciente que describe los hallazgos en Astrophysical Journal.
Los astrónomos buscaron estas moléculas en el espacio durante décadas con globos, así como mediante telescopios terrestres y espaciales. El telescopio sueco Odin pudo finalmente descubrir la molécula de oxígeno en 2007, pero la observación no pudo ser confirmada.
Flechas de cemento
EEUU y la larga línea de flechas de cemento
02 diciembre 2013
Si se escudriña la superficie de la Tierra desde una altura suficiente, no es difícil encontrar los restos de una época en que los aviones se orientaban a ojo. Ya hablamos por aquí en su día de la gigantesca rosa de los vientos que el ejército de EEUU pintó cerca de la base de Dryden para que los pilotos calibraran sus mediciones, y del reguero de códigos que los bombarderos usaron para poner a punto sus cámaras de fotos y que aún se pueden ver desde Google Maps.
Pues bien. De aquella época, es otro insólito sistema de señales que cruzada Estados Unidos de costa a costa: una inmensa línea de flechas de cemento que sirvió para orientar a los pilotos de la línea comercial que unía Nueva York y San Francisco.
Lo resume Wicho en Microsiervos:
“Estas balizas, situadas cada 16 kilómetros, consistían en unas torres de un poco menos de 17 metros de altura con una luz encima y unas flechas de unos 15 metros de longitud construidas en hormigón y pintadas de amarillo.
Para cubrir los 4.230 kilómetros de la ruta de costa a costa hubo que instalar varios centenares de ellas, y además se instalaron balizas en otras rutas, con lo que su número aumentó aún más”.
La mayoría de estas instalaciones han desaparecido con el tiempo, pero los restos de algunas se pueden observar desde el cielo y son visibles desde Google Maps.
HETE-2
HETE-2
High Energy Transient Explorer
El High Energy Transient Explorer es un pequeño satélite científico diseñado para detectar y localizar las explosiones de rayos gamma. Las coordenadas de los GRB detectados por HETE se distribuyen a los observadores interesados en tierra, en cuestión de segundos de la detección de ráfaga, lo que permite observaciones detalladas de las fases iniciales de los GRB.
El programa de HETE es una colaboración internacional conducido por el Centro de Investigación Espacial en el Instituto de Tecnología de Massachusetts. Nuestras instituciones colaboradoras son el Instituto de Química y Física (RIKEN), el Laboratorio Nacional de Los Alamos (LANL), el Centre d’Etude des Espacial Rayonnements (CERV), la Universidad de Chicago, la Universidad de California, Berkeley, la Universidad de California, Santa Cruz, el Centre Nationale d’Etudes Espaciales (CNES), la Escuela Nacional Superior de l’Aeronáutica y del Espacio (Sup’Aéro), Consiglio Nazionale delle el Ricerche (CNR), el Instituto Nacional de Investigaciones Espaciales (INPE), y el Instituto Tata de Investigación fundamental (TIFR).
El High Energy Transient Explorer (HETE) es un satélite espacial lanzado por la NASA con el objetivo de detectar Explosiones de rayos gamma y notificarlas a estaciones terrestres para que se encarguen de su estudio detallado.
La idea de un satélite capaz de realizar observaciones de explosiones de rayos gamma (en inglés: Gamma Ray Burst, GRB) comenzó a sonar en ciertos círculos en 1981, aunque no sería hasta 1986 cuando se propuso la primera misión realista con este objetivo, haciendo especial hincapié en localizar con precisión las GRB‘s usando las observaciones en varias longitudes de onda. Una vez conocidas las coordenadas las envía a una red de telescopios observatorios terrestres, que se encargan de investigar el evento. En 1989 la NASA aprobó dar fondos para un satélite de bajo coste de búsqueda de GRBs, y en 1992 comenzó la construcción del HETE-1.
Los instrumentos con los que contaría el HETE-1 consistían en:
- Cuatro detectores de rayos gamma suministrado por el CESR de Toulouse, Francia.
- Un detector de rayos X suministrado por el Instituto de Los Álamos y el Instituto de Química y Física de Tokio, Japón
- Cuatro cámaras para el espectro ultravioleta cercano, suministradas por el Instituto Tecnológico de Massachusetts
El satélite HETE-1 fue lanzado el 4 de noviembre de 1996 en un cohete Pegaso, que llegó bien a órbita, pero falló la tercera fase y el HETE-1 nunca se pudo desplegar.
Tras el fallo de HETE-1 la NASA decidió volver a intentarlo, usando gran parte del hardware de dicho satélite. En julio de 1997 se aprobó la financiación para un segundo satélite HETE, que sería lanzado a finales de 1999 o inicios de 2000.
La construcción de HETE-2 se llevó a cabo completamente en el Instituto Tecnológico de Massachusetts.
Los resultados de observaciones de GRBs a principios de 1997 por la sonda BeppoSAX y por telescopios terrestres indicaron que no se debían esperar grandes cantidades de radiaciones ópticas o ultravioletas, y que el flujo de rayos X era bastante mayor del previsto inicialmente, por lo que se decidió que en el HETE-2 volara un segundo detector de rayos X en lugar de las cámaras ultravioletas, dejando las cámaras ópticas sólo como sistema de orientación con las estrellas. Los demás instrumentos serían similares a los de la perdida sonda HETE-1
Finalmente HETE-2 fue lanzado el 9 de octubre de 2000 desde el atolón Kwajalein en las Islas Marshall
Actualmente se encuentra en órbita el Swift, un observatorio similar al HETE-2 pero que automáticamente se reorienta hacia la Explosión de rayos gamma detectada y la estudia en profundidad con sus propios instrumentos, eliminando el paso intermedio de tener que informar a las estaciones terrestres para que dicho fenómeno sea estudiado desde allí. Otra sonda también en órbita y con un instrumental similar al HETE-2 es la sonda europea INTEGRAL.
Organización: NASAID; COSPAR; 2000-061A
SatCat №: 26561
Fecha de lanzamiento
HETE-1: 4 de noviembre de 1996 (fallido)
HETE-2: 9 de octubre de 2000 05:38:00 UTC
Aplicación: Observatorio espacial
Equipo:
Cuatro detectores de rayos gamma
Un detector de rayos X
Cuatro cámaras para el espectro ultravioleta cercano
Fabricante: Instituto de Tecnología de Massachusetts
Masa de lanzamiento: 124 kilogramos (273 lb)
Poder: 4 paneles solares desplegables fijos
Cohete: Pegasus-H
Sitio de lanzamiento: Kwajalein
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: LEÓN
Semieje mayor: 6.932 kilómetros (4.307 millas)
Excentricidad: 0.0018587
Perigeo: 534 kilómetros (332 millas)
Apogeo: 559 kilómetros (347 millas)
Inclinación: 1.9485 °
Período: 95,7 minutos
RAAN: 207.197 grados
Argumento del perigeo: 13.7551 grados
La media de anomalía: 346.2996 grados
La media de movimiento: 85387
9 de mayo de, 2016 a 15:49:27 UTC
El High Energy Transient Explorer (abreviado HETE, también conocida como el Explorador 79) fue un estadounidense por satélite astronómico con participación internacional (principalmente Japón y Francia). El objetivo primordial de HETE era llevar a cabo el primer estudio múltiples longitudes de onda de las explosiones de rayos gamma con UV, rayos X y rayos gamma instrumentos montados en una sola nave, compacto. Una característica única de la misión HETE fue su capacidad para localizar los GRBs con ~ 10 segundo arco exactitud casi en tiempo real a bordo de la nave espacial, y para transmitir estas posiciones directamente a una red de receptores en los observatorios terrestres existentes permitiendo una rápida siguiente, sensible hasta estudios en el de radio, IR, y ópticos bandas. El bus del satélite por primera HETE fue diseñado y construido por AeroAstro, Inc., de Herndon, VA; el satélite de reemplazo, HETE-2, fue construido por el MIT basado en el diseño original de HETE.
Intentos de lanzamiento
La primera HETE se perdió durante el lanzamiento el Nov.4, 1996. El cohete Pegasus consigue un buen órbita, pero los pernos explosivos que liberan HETE de otro satélite (de Argentina SAC-B) y de su sobre DPAF no pudo cargar, acabando con los dos satélites. Una batería en la tercera etapa del cohete y responsable de estos pernos agrietado durante el ascenso.
HETE es lanzada por un cohete en el aire Pegasus como fotografiado desde el bombardero B-52.
Un segundo satélite HETE, HETE-2, fue lanzado el 9 de octubre de 2000 en una misión de seguimiento. Era similar a la primera HETE, pero sustituye la cámara UV con una cámara de rayos X adicional (cámara de rayos X blandos o SXC) capaz de una mayor precisión de localización que el instrumento de rayos X original (monitor de rayos X Ancho-Campo o WXM).
HETE-2 se colocó en un 625 kilómetros altitud de la órbita terrestre con una inclinación de 0-2 grados. [1]
Logros
Entre los logros de la misión HETE-2 son:
- El descubrimiento de GRB 030329, un ampliamente observado, cerca del estallido de rayos gamma, que conecta con firmeza los GRBs con supernovas.
- El descubrimiento de GRB 050709, que fue el primer GRB / difícil encontrarse con una contraparte óptica, lo que lleva a una firme establecimiento del origen cosmológico de esta subclase de GRB.
- estallidos oscuros, o GRB que anteriormente no tener contrapartidas ópticas, no son completamente ópticamente oscuro. Algunos de estos GRBs oscuros se desvanecen en el óptico muy rápidamente, otros son más tenue pero detectable con grandes telescopios de clase (metro).
- El establecimiento de otra subclase de los GRB, los menos energéticos destellos de rayos X (XRF), y su primera contraparte óptica.
- El primer minuto de arco para enviar posiciones de los GRB a la comunidad de observación dentro de decenas de segundos del inicio de la GRB (y en algunos casos, mientras que la explosión estaba en curso).
Burst resumen de alertas
La página web HETE [2] enumera 6 en 2001, 19 en 2002, 25 en 2003, 19 en 2004, 12 en 2005, 3 en 2006 – el último reportó estar en marzo de 2006.
Los resúmenes de activación [3] mencionan 2 GRBs en mayo de 2006 y un XRB en Ene de 2007.
Estado más reciente
A partir de marzo de 2007 “La eficacia operativa de la nave y los instrumentos HETE ha disminuido debido a la avanzada edad de las baterías de NiCd a bordo.” [4]
HETE-2 lleva a los detectores que eran sensibles a los rayos X y los rayos gamma con energías que van de 1 a 500 keV (1 keV = 1,000 electronvoltios ). Esos detectores podrían determinar la ubicación de un GRB a sólo 10 minutos de arco en menos de dos minutos por lo que los astrónomos en la Tierra podrían realizar observaciones de seguimiento. (Algunos estallidos de rayos gamma que fueron detectados con rayos X podrían tener sus lugares determinados a los 10 segundos de arco.) HETE-2 siempre apuntando en dirección opuesta desde el Sol , lo que significa que cualquier GRBs que detectó eran visibles por la noche por los basados en tierra telescopios . Sus detectores pudieron observar una amplia zona; HETE-2 cubrió aproximadamente el 60 por ciento del cielo cada año.
HETE-2 observó más de 300 estallidos de rayos gamma. Uno de estos objetos, GRB 030329, fue el primero que se GRB duda asociada con una supernova sobre la base de las similitudes entre el espectro de su resplandor óptico y la de Tipo Ic supernovas. HETE también encontró que los GRBs han evolucionado a lo largo de la historia del universo , los primeros estallidos de rayos gamma son mucho más brillantes que las que se produjeron más tarde.
XMM-Newton
El XMM-Newton (X-ray Multi-mirror Mission – Newton) es un observatorio espacial de rayos X nombrado en honor de Isaac Newton.
Con el nombre preliminar de High Throughput X-ray Spectroscopy Mission fue lanzado por la ESA el 10 de diciembre de 1999 desde Kourou por un Ariane 5. Fue colocado en una órbita muy excéntrica, cuyo apogeo está a unos 114 000 km de la Tierra, mientras que el perigeo se encuentra a solo 7000 km, tardando unas 48 horas en completar una vuelta a la tierra. Al alejarse de la atmósfera terrestre se evita el bloqueo de los rayos X que ésta produce, pudiendo observarse fenómenos de muy altas energías que ocurren en el Universo.
El satélite es el mayor satélite científico construido en Europa hasta el momento, pesa 3800 kg, mide 10 m de largo y unos 16 m de ancho con los paneles solares desplegados. Tiene tres telescopios de rayos X, cada uno con 58 espejos concéntricos, diseñados de manera que se maximiza su área colectora, focalizan los rayos X en las cámaras CCD de los detectores. Esto le hace capaz de detectar fuentes de rayos X extremadamente débiles. Para identificar estas fuentes de rayos X y estudiarlas simultáneamente en otras bandas el XMM-Newton se ha completado con un monitor óptico, un telescopio de 30 cm de diámetro del tipo Ritchey-Chrétien. Este telescopio permite observar los objetos en luz ultravioleta y visible.
La misión fue propuesta en 1984 y aprobada al año siguiente. El primer equipo que trabajó sobre la idea se formó en 1993, empezando con la construcción del observatorio en 1996. El satélite fue probado entre marzo de 1997 y septiembre de 1999. El centro de operaciones científicas del XMM (SOC, Science Operations Centre) se encuentra en ESAC, Madrid, España, mientras que centro de control de la misión (MOC, Mission Operations Centre) está en ESOC, Darmstad, Alemania. En el primero se gestiona la actividad científica (observaciones, calibración, soporte astronómico a los observadores, etc) y en el segundo, las operaciones de la plataforma (dinámica de vuelo, sistemas de generación de energía, control térmico, etc). La información se procesa en la Universidad de Leicester, en Inglaterra y se almacena y archiva en el XMM-Newton SOC en ESAC, Madrid. En un principio, la misión iba a durar dos años, aunque debido a su extraordinario funcionamiento, con más de 2000 artículos publicados en revistas científicas de primera línea Nature, Astronomy and Astrophysics, Science, Astrophysical Journal, MNRAS, etc., la misión se ha extendido hasta el 2012.
Los principales campos de estudio de XMM-Newton son los fenómenos cósmicos que involucran procesos muy energéticos: Explosiones de supernova, estrellas binarias interactivas, núcleos galácticos activos (AGN), cúmulos de galaxias… Otro de estos campos de interés son las estrellas de neutrones. XMM ha sido el primer observatorio en detectar la influencia del campo gravitacional de una estrella de neutrones en la luz que emite. Además, está detectando más fuentes de rayos X que cualquier otro observatorio anterior.
El XMM-Newton observó el cometa 9P/Tempel 1 cuando fue alcanzado por la sonda estadounidense Deep Impact.
El lanzamiento del XMM tuvo lugar el 10 de diciembre de 1999 a las 14:32 GMT desde el Centro Espacial de la Guayana. [17] XMM se lofted al espacio a bordo de un Ariane 5 04 cohetes, y se colocó en una órbita altamente elíptica, de 40 grados que tenía un perigeo 838 km (521 millas) y un apogeo de 112.473 kilometros (69.887 millas). [1] Cuarenta minutos después de salir de la etapa superior del Ariane, telemetría confirmó a estaciones terrestres que los paneles solares de la nave habían implementado de manera exitosa. Los ingenieros esperaban un período adicional de 22 horas antes de ordenar los sistemas de propulsión a bordo para disparar un total de cinco veces, lo que, entre 10-16 de diciembre de cambiar la órbita de 7365 × 113.774 kilometros (4.576 × 70.696 millas) con una inclinación de 38,9 grados . Esto dio lugar a la nave espacial completa la fabricación de una revolución de la Tierra aproximadamente cada 48 horas. [1] [18]
Inmediatamente después de su lanzamiento, el XMM comenzó su fase de lanzamiento y órbita temprana de las operaciones. [19] El 17 y el 18 de diciembre de 1999, los módulos de rayos X y las puertas del monitor óptico se abrieron, respectivamente. [20] la activación del instrumento comenzó el 4 de enero de 2000, [1] . y la fase Instrumento Puesta comenzó el 16 de enero [21] el monitor óptico (OM) logró por primera vez la luz el 5 de enero, la cámara dos Europeo de fotones de imagen (EPIC) MOS – CCD siguieron el 16 de enero y el EPIC pn – CCD el 22 de enero, y la rejilla de reflexión espectrómetros (RGS) vieron por primera vez la luz el 2 de febrero. [21] el 3 de marzo, se inició la fase de calibración y validación del rendimiento, [1] y las operaciones científicas rutinarias comenzaron el 1 de junio. [21]
Durante una rueda de prensa el 9 de febrero de 2000, la ESA presentó las primeras imágenes tomadas por el XMM y anunció que un nuevo nombre había sido escogido para la nave espacial. Considerando que el programa había sido formalmente conocido como la Misión de Alto Rendimiento de espectroscopia de rayos X, el nuevo nombre reflejaría la naturaleza del programa y el creador del campo de la espectroscopia. Al explicar el nuevo nombre del XMM-Newton, Roger Bonnet, ex Director de Ciencia de la ESA, dijo: “Hemos elegido este nombre porque Sir Isaac Newton fue el hombre que inventó la espectroscopia y XMM es una misión de la espectroscopia.” Señaló que debido a Newton es sinónimo de gravedad y uno de los objetivos del satélite era localizar un gran número de candidatos de agujero negro “, no había mejor opción que XMM-Newton para el nombre de esta misión.” [22]
Incluyendo toda la construcción, lanzamiento de naves espaciales, y dos años de funcionamiento, el proyecto se llevó a cabo dentro de un presupuesto de € 689 millones (1999 condiciones). [11] [12]
Debido a la buena salud de la nave y los retornos significativos de los datos, el XMM-Newton ha recibido varias extensiones de misión por el Comité del Programa Científico de la ESA. La primera ampliación se produjo durante noviembre de 2003 y las operaciones extendidas a través de marzo de 2008. [23] La segunda extensión fue aprobada en diciembre de 2005, que se extiende a través de trabajos de marzo de 2010. [24] Una tercera extensión fue aprobada en noviembre de 2007, que preveía operaciones hasta el 2012. Como parte de la aprobación, se observó que el satélite tenía suficientes consumibles de a bordo (combustible, la energía y la salud mecánica) para continuar las operaciones pasadas teóricamente 2017. [25] la cuarta prórroga en noviembre de 2010 aprobó operaciones hasta el 2014.[26] Una quinta ampliación fue aprobada en noviembre de 2014, las operaciones continuadas hasta 2018. [6]
La nave espacial tiene la capacidad de disminuir la temperatura de funcionamiento tanto de las cámaras EPIC y RGS, una función que se incluyó para contrarrestar los efectos nocivos de la ionizante la radiación en la cámara pixeles. En general, los instrumentos se enfrían a reducir la cantidad de corriente de oscuridad dentro de los dispositivos. Durante la noche 3-4 noviembre de 2002, RGS-2 se enfrió desde su temperatura inicial de -80 ° C (-112 ° F) hasta -113 ° C (-171 ° F), y unas horas más tarde – 115 ° C (-175 ° F). Después de analizar los resultados, se determinó la temperatura óptima para ambas unidades RGS sería -110 ° C (-166 ° F), y durante 11 13 al 14, ambos RGS-1 y RGS-2 se establece en este nivel. Durante 6 al 07 11, los detectores CCD MOS-EPIC se enfriaron de su temperatura de funcionamiento inicial de -100 ° C (-148 ° F) a un nuevo ajuste de -120 ° C (-184 ° F). Después de estos ajustes, tanto las cámaras EPIC y RGS mostraron mejoras en la calidad. [27]
El 18 de octubre de 2008, XMM-Newton sufrió un fallo en las comunicaciones inesperado, tiempo durante el cual no hubo contacto con la nave espacial. Si bien se expresó cierta preocupación de que el vehículo puede haber sufrido un evento catastrófico, fotografías tomadas por astrónomos aficionados en el Observatorio Starkenburg en Alemania y en otros lugares en todo el mundo mostraron que la nave estaba intacta y apareció en curso. Una señal débil finalmente fue detectado usando una antena de 35 metros (115 pies) en New Norcia, Australia Occidental, y la comunicación con el XMM-Newton sugirió que el interruptor de frecuencia de radio de la nave había fracasado. Después de solución de problemas de una solución, los controladores de tierra utilizan la NASA antena ‘s 34 m (112 pies) en los profundo de Goldstone comunicaciones espaciales complejas para enviar un comando que cambia el interruptor a su última posición de trabajo. ESA en un comunicado de prensa que el 22 de octubre, una estación terrestre en el Europeo de Astronomía Espacial Centre (ESAC) se puso en contacto con el satélite, lo que confirma el proceso había funcionado y que el satélite fue de nuevo bajo control. [28] [29] [30]
Nave espacial
XMM-Newton es un telescopio de largo espacio de 10,8 metros (35 pies), y es 16,16 m (53 pies) de ancho con paneles solares desplegados. En el lanzamiento pesaba 3.764 kilogramos (8.298 libras). [1] La nave espacial tiene tres grados de estabilización, lo que le permite apuntar a un objetivo con una precisión de 0,25 a 1 segundos de arco. Esta estabilización se logra a través del uso de la nave espacial Actitud y Órbita Subsistema de Control. Estos sistemas también permiten la nave espacial a señalar en diferentes objetivos celestes, y pueden convertir el arte en un máximo de 90 grados por hora. [9] [22] Los instrumentos a bordo de XMM-Newton son tres cámaras Europea de imágenes de fotones (EPIC), rejilla de reflexión de dos espectrómetros (RGS), y un monitor óptico.
La nave espacial es aproximadamente de forma cilíndrica, y tiene cuatro componentes principales. En la proa de la nave espacial es la Plataforma de soporte del espejo, que es compatible con los conjuntos de telescopios de rayos X y sistemas de rejilla, el monitor óptico, y dos sensores estelares. Alrededor de este componente es el módulo de servicio, que dispone de varios sistemas de apoyo a la nave espacial: la computadora y buses eléctricos, consumibles (tales como combustible y refrigerante), paneles solares, el Telescopio parasol y dos S-banda antenas. Detrás de estas unidades es el tubo del telescopio, de 6,8 metros (22 pies), largo y hueco de fibra de carbono estructura que proporciona separación exacta entre los espejos y su equipo de detección. Esta sección también alberga la desgasificación equipos en su exterior, lo que ayuda a eliminar cualquier contaminante del interior del satélite. En el extremo de popa de la nave espacial es la Asamblea de plano focal, lo que contribuye a la plataforma de plano focal (que lleva las cámaras y espectrómetros) y el manejo de datos, distribución de energía, y los conjuntos de radiador. [31]
Instrumentos
Cámaras Europeas de imágenes de fotones
Los tres Imaging Cámaras de Fotones Europea (EPIC) son los principales instrumentos a bordo de XMM-Newton. El sistema se compone de dos MOS – CCD cámaras y un solo pn cámara -CCD, con un campo total de visión de 30 minutos de arco y un rango de sensibilidad de energía entre 0,15 y 15 keV (82,7 a 0,83 angstroms). Cada cámara contiene una de seis posiciones rueda de filtros, con tres tipos de filtros de rayos-X transparente, una completamente abierta y una posición completamente cerrada; cada uno también contiene una fuente radiactiva utilizada para la calibración interna. Las cámaras pueden funcionar de forma independiente en una variedad de modos, dependiendo de la sensibilidad de la imagen y velocidad necesaria, así como la intensidad de la diana. [32] [33] [34]
Las dos cámaras CCD-MOS se utilizan para detectar los rayos X de baja energía. Cada cámara se compone de siete chips de silicio (una en el centro y seis circunda), con cada chip que contiene una matriz de 600 × 600 píxeles , dando a la cámara de una resolución total de alrededor de 2,5 megapíxeles. Como se discutió anteriormente, cada cámara tiene una gran adyacente radiador que enfría el instrumento a una temperatura de funcionamiento de -120 ° C (-184 ° F). Fueron desarrollados y construidos por la Universidad de Leicester Centro de Investigación Espacial y EEV Ltd. [27] [32] [34]
La cámara pn-CCD se utiliza para detectar los rayos X de alta energía, y se compone de un único chip de silicio con doce CCDs incrustadas individuales. Cada CCD es de 64 × 189 pixels, para una capacidad total de 145.000 píxeles. En el momento de su construcción, la cámara CCD-pn de XMM-Newton fue el mayor dispositivo de este tipo jamás se ha hecho, con una superficie sensible de 36 cm2 (5,6 pulgadas cuadradas). Un radiador enfría la cámara a -100 ° C (-148 ° F). Este sistema fue hecha por el Astronomisches Institut Tübingen, el Instituto Max Planck para la Física Extraterrestre, y PNSensor, toda Alemania. [32] [35] [36]
El sistema EPIC registra tres tipos de datos sobre todos los de rayos X que es detectado por sus cámaras CCD. El momento en que llega la radiografía permite a los científicos desarrollar curvas de luz que proyecta el número de rayos X que llegan con el tiempo y muestra los cambios en el brillo del blanco. Donde los rayos X golpean la cámara permite una imagen visible que se desarrollará del objetivo. La cantidad de energía transportada por los rayos X también puede ser detectada y ayuda a los científicos para determinar los procesos físicos que ocurren en el objetivo, tales como su temperatura, su composición química, y lo que el medio ambiente es como entre el objetivo y el telescopio. [37]
Rejilla de reflexión espectrómetros
Los espectrómetros Rejas de reflexión (RGS) son un sistema secundario de la nave espacial y se componen de dos cámaras de plano focal y sus matrices Rejas de reflexión asociado. Este sistema se utiliza para construir los datos del espectro de rayos X y puede determinar los elementos presentes en el objetivo, así como la temperatura, la cantidad y otras características de dichos elementos. El sistema RGS opera en el 2,5 a 0,35 keV (de 5 a 35 angstrom) gama, que permite la detección de carbono, nitrógeno, oxígeno, neón, magnesio, silicio y hierro. [38] [39]
El plano focal Cámaras se componen cada uno de los nueve dispositivos MOS-CCD montados en una fila y después de una curva llamada de un círculo de Rowland . Cada CCD contiene 384 × 1024 píxeles, para una resolución total de más de 3,5 megapíxeles. La anchura total y longitud de la matriz CCD fue dictada por el tamaño del espectro RGS y el rango de longitud de onda, respectivamente. Cada matriz de CCD está rodeada por una pared relativamente masiva, proporcionando la conducción de calor y radiación de blindaje. Radiadores de dos etapas se enfríen las cámaras a una temperatura de funcionamiento de -110 ° C (-166 ° F). Los sistemas de cámaras eran un esfuerzo conjunto entre SRON, el Instituto Paul Scherrer, y MSSL, con EEV Ltd y Espacio Contraves proporcionando hardware. [27] [38] [39] [40] [41]
Las matrices Grating de reflexión están unidos a dos de los telescopios primarios. Permiten aproximadamente 50% de los rayos X entrantes para pasar imperturbable al sistema EPIC, mientras que la reorientación de la otra 50% en las cámaras plano focal. Cada RGA fue diseñado para contener 182 rejillas idénticas, aunque un error de fabricación dejó uno con solamente 181. Debido a que los espejos de los telescopios ya se han centrado los rayos X para converger en el punto focal, cada una rejilla tiene el mismo ángulo de incidencia, y como con el Plano focal Cámaras, cada conjunto de redes se ajusta a un círculo de Rowland. Esta configuración minimiza las aberraciones focales. Cada 10 x 20 cm (4 × 8) en rejilla se compone de 1 mm (0,039 pulgadas) de espesor de carburo de silicio sustrato cubierto con un 2,000 angstrom (7,9 x 10 -6 en) el oro película, y con el apoyo de cinco berilio refuerzos. Las rejillas contienen un gran número de ranuras, que en realidad realiza la deflexión de rayos X; cada rejilla contiene un promedio de 646 ranuras por milímetro. Los RGA fueron construidos por la Universidad de Columbia. [38] [39]
Monitor óptico
El monitor óptico (OM) se encuentra a 30 cm (12 pulgadas) Ritchey-Chrétien telescopio óptico / ultravioleta diseñado para proporcionar observaciones simultáneas junto con los instrumentos de rayos X de la nave espacial. El OM es sensible entre 170 y 650 nanómetros en un campo cuadrado de 17 × 17 minutos de arco de vista co-alineado con el centro del campo de visión del telescopio de rayos X. Tiene una longitud focal de 3,8 m (12 pies) y una relación focal de ƒ / 12.7. [42] [43]
El instrumento está compuesto por el módulo de telescopio, que contiene la óptica, detectores, equipos de procesamiento, y la fuente de alimentación; y el módulo de la electrónica digital, que contiene las unidades de procesamiento de la unidad de control del instrumento y de datos. la luz entrante se dirige hacia uno de los dos sistemas de detección totalmente redundantes. La luz pasa a través de una posición 11 de la rueda de filtros (uno opaco para bloquear la luz, seis filtros de banda ancha, un filtro de luz blanca, una lupa, y dos grisms), luego a través de un intensificador que amplifica la luz en un millón de veces, y luego en el sensor CCD. El CCD es de 384 × 288 píxeles de tamaño, de las cuales 256 × 256 píxeles se utilizan para las observaciones; cada píxel se submuestreada más en 8 x 8 píxeles, lo que resulta en un producto final que es 2048 × 2048 de tamaño. El monitor óptico fue construido por el Laboratorio de Ciencia Espacial Mullard con contribuciones de organizaciones en los Estados Unidos y Bélgica. [42] [43]
Telescopios
Diagrama de un tipo Wolter 1 sistema óptico
La alimentación de los sistemas de EPIC y RGS son tres telescopios diseñados específicamente para los rayos X directos en instrumentos primarios de la nave espacial. Los conjuntos de telescopios tienen cada uno un diámetro de 90 cm (35 pulgadas), son 250 cm (98 pulgadas) de longitud, y tienen un peso de base de 425 kg (937 lb). Los dos telescopios con la reflexión matrices Rejas pesan un adicional de 20 kg (44 lb). Los componentes de los telescopios incluyen (de delante a atrás) de la puerta del conjunto de espejo, entrada y de rayos X deflectores, módulo de espejo, deflector de electrones, un conjunto de redes de reflexión en dos de los conjuntos, y el deflector de salida. [11] [44] [ 45] [46]
Cada telescopio consta de 58 cilíndrica, anidado Wolter tipo 1 espejos desarrollados por Media Lario de Italia, cada uno de 600 mm (24 pulgadas) de largo y un diámetro de entre 306 700 mm (12,0 a la 27,6 pulg), produciendo un área total de recogida de 4.425 cm2 (686 pulgadas cuadradas) en 1,5 keV y 1.740 cm2 (270 pulgadas cuadradas) a las 8 keV. [1] los espejos van desde 0,47 mm (0,02 pulgadas) de espesor para el espejo más interno de 1,07 mm (0,04 pulgadas) de espesor para el espejo exterior, y la separación entre cada uno de los rangos de espejo 1,5-4 mm (0,06 a 0,16 pulgadas) de más interno a más externo. [1] Cada espejo fue construido por vapor de deposición de una capa de 250 nm de oro superficie reflectante en una altamente aluminio pulido mandril , seguido por electroformación un monolítico níquel capa de soporte sobre el oro. Los espejos acabados fueron pegadas en las ranuras de un Inconel araña, que los mantiene alineados dentro de la tolerancia de cinco micras requiere para lograr una adecuada resolución de rayos X. Los mandriles fueron fabricados por Carl Zeiss AG , y la electroformación y el montaje final se llevaron a cabo por Media Lario con contribuciones de Kayser-Threde . [47]
Subsistemas
Actitud y Órbita Sistema de Control
Nave espacial de tres ejes de control de actitud es manejada por el Sistema de Control de Actitud y Órbita (AOCS), compuesto de cuatro ruedas de reacción, cuatro unidades de medición inercial, dos rastreadores de estrellas, tres finos sensores solares, y tres sensores de adquisición de Sun. El AOCS fue proporcionado por Matra Marconi Space del Reino Unido. [1] [48] [49]
Orientación de la nave gruesa y mantenimiento órbita es proporcionada por dos conjuntos de cuatro 20- newton (4,5 lb f) hidrazina propulsores (principal y de respaldo).[1] Los propulsores de hidracina fueron construidos por DASA-RI de Alemania. [50]
Los sistemas de energía
Energía primaria para el XMM-Newton es proporcionada por dos paneles solares fijos. Las matrices se componen de seis paneles que miden 1,81 x 1,94 m (5,9 × 6,4 pies) para un total de 21 m 2 (230 pies cuadrados) y una masa de 80 kg (180 lb). En el lanzamiento, las matrices proporcionan 2.200 W de potencia, y se espera que proporcionen 1.600 W después de diez años de funcionamiento. El despliegue de cada matriz tomó cuatro minutos. Los arreglos fueron proporcionados por espacio de Fokker de los Países Bajos. [1] [51]
Cuando la luz solar directa no está disponible, la energía es proporcionada por dos baterías de níquel-cadmio que proporcionan 24 A · h y un peso de 41 kg (90 lb) cada uno. Las baterías fueron proporcionados por SAFT de Francia.[1] [51]
Sistema de monitoreo de la radiación
Las cámaras están acompañados por el Sistema de EPIC radiación Monitor (ERMS), que mide el ambiente de radiación que rodea a la nave espacial; específicamente, el protón ambiente y el flujo de electrones. Esto proporciona una alerta de dañar los eventos de radiación para permitir el apagado automático de los sensores CCD de la cámara sensible y la electrónica asociada. El SGDEA fue construido por el Centre d’Etude des Espacial Rayonnements de Francia. [11] [32] [34]
Visual de monitoreo de cámaras
El monitoreo visual Cámaras (VMC) en la nave espacial se añadieron a supervisar el despliegue de los paneles solares y el protector solar, y han proporcionado, además, imágenes de los propulsores de cocción y la desgasificación del tubo del telescopio durante las primeras operaciones. Dos CGP se instalaron en la Asamblea de plano focal mirando hacia adelante. La primera es FUGA-15, una cámara en blanco y negro con alto rango dinámico y 290 × 290 píxeles de resolución. El segundo es IRIS-1, una cámara de color con una variable de tiempo de exposición y 400 × 310 píxeles de resolución. Ambas cámaras miden 6 x 6 x 10 cm (2.4 x 2.4 x 3.9 pulgadas) y un peso de 430 g (15 oz) de. Ellos usan sensores de píxeles activos , una tecnología que era nuevo en el momento del desarrollo del XMM-Newton ‘s. Las cámaras fueron desarrollados por la OCI-Delft y IMEC, tanto de Bélgica.[50] [52]
Los sistemas de tierra
Control de la misión XMM-Newton se encuentra en el Centro Europeo de Operaciones Espaciales (ESOC) en Darmstadt, Alemania. Dos estaciones de tierra, que se encuentra en Perth y Kourou, se utilizan para mantener un contacto continuo con la nave espacial a través de la mayor parte de su órbita. Estaciones terrestres de respaldo se encuentran en Villafranca del Castillo, Santiago, y Dongara. Debido a que el XMM-Newton de almacenamiento de datos contiene ninguna de a bordo, los datos de la ciencia se transmiten a estas estaciones terrestres en tiempo real.[18]
Los datos se envían entonces a la Astronomía Espacial Centro Europeo de Operaciones Científicas Centro ‘s en Villafranca del Castillo, España, donde el procesamiento de la tubería se ha realizado desde marzo de 2012. Los datos se archivan y distribuido por el Centro de Ciencias de la Encuesta de XMM-Newton (SSC) a L “Instituto de Investigación en Astrofísica y Planetología de Toulouse, Francia. Antes de junio de 2013, la SSC fue operado por la Universidad de Leicester , pero las operaciones fueron transferidos debido a la retirada de la financiación por el Reino Unido [14] [53]
Observaciones y descubrimientos
El observatorio espacial fue utilizado para descubrir el cúmulo de galaxias XMMXCS 2215-1738, 10 mil millones de años luz de la Tierra.[54]
El objeto SCP 06F6, descubierto por el telescopio espacial Hubble (HST) en febrero de 2006, fue observado por el XMM-Newton a principios de agosto de 2006 y parecía mostrar un brillo de rayos X alrededor de ella [55] dos órdenes de magnitud más luminosos que el de supernovas.[56]
En junio de 2011, un equipo de la Universidad de Ginebra, Suiza, informó el XMM-Newton de ver una llamarada que duró cuatro horas a una intensidad máxima de 10.000 veces la tasa normal, a partir de una observación de supergigante rápida de rayos X transitoria IGR J18410-0535, donde una supergigante azul estrella arrojar una nube de materia que fue parcialmente ingerida por un compañero más pequeña estrella de neutrones con el acompañamiento de las emisiones de rayos-X. [57] [58]
En febrero de 2013 se anunció que el XMM-Newton, junto con NuSTAR tener por primera vez se mide la velocidad de giro de un agujero negro supermasivo, observando el agujero negro en el centro de la galaxia NGC 1365 . Al mismo tiempo, se verifica el modelo eso explica la distorsión de los rayos X emitidos por un agujero negro.[59] [60]
En febrero de 2014, un análisis separado extraídos del espectro de las emisiones de rayos X observadas por el XMM-Newton de una señal monocromática alrededor de 3,5 keV.[61] [62] Esta señal está viniendo de diferentes grupos de galaxias, y varios escenarios de la materia oscura puede justificar dicha línea. Por ejemplo, un candidato 3,5 keV aniquilar en 2 fotones, [63] o una partícula de materia oscura 7 keV de decaer en fotones y neutrinos.[64]
Además de tener los elementos financiados del paquete de instrumentos de XMM-Newton, de la NASA también proporciona la instalación de la NASA huéspedes Observador (GOF) en el Centro de Vuelo Espacial de la NASA / Goddard (GSFC). El Gobierno de Francia ofrece un centro de intercambio de información técnica generada en proyectos y programas de análisis, así como el apoyo presupuestario para los astrónomos estadounidenses que solicitan tiempo de observación de XMM-Newton.
Siguiendo los pasos de Newton, de la Agencia Espacial Europea ha decidido honrar a uno de los científicos más ilustres del mundo dando el nombre de Isaac Newton a la misión XMM, el observatorio XMM-Newton. La obra de Isaac Newton (1642-1727) en el campo de las matemáticas, la óptica y la física sentó las bases de la ciencia moderna. Hizo un gran impacto en la astronomía teórica y práctica y en la actualidad no se puede evocar una manzana, un telescopio reflector, un prisma de luz o la división y un sextante sin recordar las contribuciones de Newton a la ciencia.
Aspectos destacados de la ciencia
En órbita desde hace más de 15 años, XMM-Newton ha proporcionado muchos conocimientos sobre el funcionamiento del universo, cerca y lejos. Aquí están algunos ejemplos:
- Determinó que Agujero Negro de la Vía Láctea se cree que ha despertado violentamente hace aproximadamente 400 año y luego se apaga de nuevo alrededor de 100 años más tarde.
- Identificado las firmas potenciales de axiones solares, los candidatos partícula de materia oscura.
- Medido la velocidad de giro de un agujero negro supermasivo, por primera vez en colaboración con NuSTAR.
- Adquirido el primer mapa a gran escala de las distribuciones de materia y bariónicas oscuras en el universo.
- Detectado por primera vez una emisión de rayos X de conmutación en el seguimiento de un pulsar muy variable – volvió a abrir el debate sobre los mecanismos físicos que impulsan la emisión de pulsares.
- Descubrió que la nebulosa de Orión contiene una enorme nube de gas extremadamente caliente, o plasma, calentado a millones de grados.
- Construido el mayor catálogo de objetos emisores de rayos X cósmicos.
- Mostraron que los fuertes vientos de un agujero negro supermasivo soplan hacia fuera en todas las direcciones en colaboración con NuSTAR.
- Descubierto 2XMM J083026 + 524133, el cúmulo más masivo de galaxias observadas en el Universo distante hasta ese momento.
- Descubierta la primera detección definitiva de carga intercambiada inducida por la emisión de rayos X en Marte.
- Las imágenes adquiridas de estallido de rayos gamma GRB 031203 que revelaron la primera detección de un polvo dispersado aureola de rayos X en función del tiempo en torno a un estallido de rayos gamma.
- Analizado espectros de una galaxia activa distante, 1H0707-495, lo que puso de manifiesto dos características brillantes de emisión de hierro (hierro líneas L y K) en los rayos X reflejados que nunca se había visto juntos en una galaxia activa.
Última actualización Fecha: April 2, el año 2015
Chandra
El Observatorio Chandra de rayos-X o CXC por su acrónimo en inglés,1 es un satélite artificial lanzado por la NASA el 23 de julio de 1999. Fue llamado así en honor del físico indio Subrahmanyan Chandrasekhar, uno de los fundadores de la astrofísica, quien determinó la masa límite a la que las enanas blancas se convierten en una estrella de neutrones. Además, Chandra significa “luna” en sánscrito.
El Observatorio Chandra es el tercero de los Grandes Observatorios de la NASA. El primero fue el Telescopio Espacial Hubble, el segundo fue el Observatorio de Rayos Gamma Compton, lanzado en 1991 y ya desintegrado, y el último fue el Telescopio Espacial Spitzer. Antes del lanzamiento el Observatorio Chandra era conocido como AXAF por las siglas en inglés de Advanced X-ray Astronomical Facility.
Como la atmósfera terrestre absorbe la mayoría de los rayos X, los telescopios convencionales no pueden detectarlos y para su estudio se hace necesario un telescopio espacial.
En 1976 Riccardo Giacconi y Harvey Tananbaum propusieron a la NASA la idea del Observatorio Chandra, empezando los trabajos preliminares en el Marshall Space Flight Center. Mientras tanto, en 1978, la NASA lanzó el primer telescopio espacial de rayos X, el Einstein (HEAO-2).
A pesar de ello el trabajo en el proyecto Chandra continuó adelante durante las décadas de 1980 y 1990, pero en 1992 se rediseñó la nave para reducir costes. Se eliminaron cuatro de los veinte espejos de los que iba a disponer el observatorio, y se le calculó una órbita elíptica con la que alcanzaría la tercera parte de la distancia a la luna. Esto eliminó la posibilidad de reparaciones desde el transbordador espacial, en caso de averías, pues en su posición más lejana (apogeo) está situado a 135.000 km de la Tierra, 200 veces más alto que el Hubble; y en la posición más cercana (perigeo) queda a 14.000 km sobre el nivel del mar.
Fue lanzado por el transbordador Columbia (STS-93) siendo la carga más pesada que había puesto nunca en órbita la lanzadera hasta el momento.
Chandra puede observar el cielo en rayos X con una resolución angular de 0,5 segundos de arco, mil veces más que el primer telescopio orbital de rayos X.
El Observatorio de rayos X Chandra lleva los siguientes instrumentos:
- Advanced CCD Imaging Spectrometer (ACIS)
- High Resolution Camera (HRC)
- High Energy Transmission Grating Spectrometer (HETGS)
- Low Energy Transmission Grating Spectrometer (LETGS)
Entre otros objetos ha servido para el estudio de RCW 86, resto de la supernova SN 185.
Su espejo primario tiene 1,22 metros de diámetro. Al comienzo se proyectó con 20 espejos que, al final se quedaron en 4.
Su periodo orbital es de 64 horas 12 minutos.
En los 10 años que lleva operativo, el Chandra-X ha tenido una importante influencia en la astrofísica del siglo XXI.
Con su incomparable posibilidad de captar imágenes de muy alta resolución ha facilitado enormemente la investigación de los fenómenos espaciales, desde el estudio de los cometas hasta la solución de planteamientos cosmológicos.
Los nuevos descubrimientos astronómicos se van produciendo a un ritmo creciente, gracias a las imágenes de centenares de objetos celestes observados.
Se ha conseguido comprobar la geometría del espacio-tiempo alrededor de los agujeros negros, la existencia de materia oscura y la confirmación de la existencia de energía oscura.
Los Rayos X tienen longitudes de onda extremadamente cortas (entre 0,1 y 10 nanómetros), solamente son más cortas las longitudes de los mortíferos rayos gamma (0,01 nanómetro). Las longitudes de ondas visibles se distribuyen entre 380 y 780 nanómetros.
Chandra está diseñado para observar rayos X provenientes de regiones del universo altamente energéticas, tal como los restos de la explosión de una estrella. Las dos imágenes de los restos de una supernova en la Nebulosa del Cangrejo y su pulsar asociado, mostradas abajo, ilustran cómo una alta resolución puede revelar nuevos e importantes rasgos en los fenómenos espaciales conocidos.
La imagen de la izquierda proviene del Captador de Imágenes de Alta Resolución (High Resolution Imager) instalado en el satélite Rontgen (Rontgensatellite), cuyo acrónimo es Rosat, el observatorio con la mejor capacidad de obtención de imágenes antes del Chandra. La imagen de la derecha, tomada por el instrumento Advanced CCD Imaging Spectrometer (ACIS), montado en el Chandra, tiene aproximadamente cincuenta veces mejor resolución que la imagen de la derecha. En la imagen tomada por el Chandra, nuevos detalles (anillos y chorros en la región que circunda al pulsar) proveen valiosa información para entender cómo este pulsar transmite energía a la nebulosa.
Nebolusa del Cangrejo – Chandra – Crédito: NASA/CXC/SAO
El Observatorio posee tres partes principales: (1) el telescopio de rayos-X, cuyos espejos enfocan los rayos-X desde los cuerpos estelares; (2) los instrumentos científicos, que registran los rayos-X en forma de imágenes que pueden ser analizadas posteriormente; y (3) la nave espacial, que provee el medio de soporte propicio para que el telescopio y los instrumentos puedan funcionar.
La inusual órbita del Chandra fue alcanzada, después del despliegue del satélite, gracias a un sistema de propulsión que posicionó al observatorio en una órbita alta alrededor de la Tierra. Esta órbita, que posee la forma de una elipse, hace que el satélite recorra una distancia equivalente a un tercio del camino a la Luna antes de aproximarse nuevamente a la Tierra. La menor distancia que el Chandra toma con respecto a la Tierra es de 16.000 kilómetros (9.942 millas). El tiempo necesario para completar esta órbita es de 64 horas y 18 minutos.
El 85% de la órbita del satélite queda situada más allá de los cinturones de partículas cargadas (los cinturones de Van Allen) que rodean a la Tierra. Entonces, sesiones de observación tan extensas como 55 horas son posibles; haciendo que el porcentaje útil de trabajo del Chandra sea mucho mayor que el obtenible en una órbita baja de unos pocos de cientos de kilómetros, como las usadas por la mayoría de los satélites.
Las organizaciones con mayor participación en el proyecto Chandra son las siguientes:
Coordinación y Gerenciamiento General del Programa:
Centro Espacial Marshall, dependiente de la NASA
Contratista Principal:
TRW (ahora NGST)- Construcción e Integración de Naves Espaciales
Subcontratistas Principales:
Raytheon Optical Systems – Maquinado y Pulido de Espejos
Optical Coating Laboratories, Inc. – Recubrimiento y Limpieza de Espejos
Eastman Kodak Corporation – Ensamblado de Espejos
Ball Aerospace and Technology Corp. – Módulo de Instrumentos Científicos
Instrumentos Científicos:
Advanced CCD Imaging Spectrometer (ACIS) – Instituto Tecnológico de Massachusetts (MIT) y Universidad Estatal de Penn
High Resolution Camera (HRC) – Observatorio Astrofísico Smithsonian (SAO)
High Energy Transmission Grating – MIT
Low Energy Transmission Grating – Instituto Holandés de Investigación Espacial y el Instituto Max Planck de Alemania.
Dr. Leon VanSpeybroeck, SAO
Equipo de Soporte de la Misión:
SAO
Centro de rayos-X Chandra:
SAO (con personal del MIT y NGST)
Soporte Científico
Centro de Control de Operaciones
El Centro de Rayos-X Chandra está localizado en Cambridge, Massachusetts, en el Observatorio Astrofísico Smithsonian y su personal está integrado por gente del SAO, el MIT y NGST. El Dr. Harvey Tananbaum es el director del Centro. El equipo de Soporte Científico (Science Support) es responsable del planeamiento de la misión y las operaciones científicas. El Centro de Control de Operaciones dirige el vuelo del satélite, ejecuta el plan de trabajo del observatorio, y recibe los datos científicos desde el observatorio.
Imagen de un pulsar desde el Chandra
Chandra comenzó una exploración de las turbulentas y calientes regiones del espacio con imágenes 25 veces más nítidas que las anteriores imágenes de rayos-X. El ejemplo de más abajo ilustra cómo Chandra permite a los astrónomos estudiar el proceso por el cual chorros de materia son ejectados desde agujeros negros supermasivos en las densas regiones centrales de las galaxias.
La increíble sensibilidad del Chandra puede hacer posible estudios más detallados de agujeros negros, supernovas y materia oscura, e incrementar nuestro entendimiento del origen, evolución, y destino del universo.
Cúmulo galáctico 3C438 fotografiado por el Chandra-X
El Observatorio de Rayos X Chandra (anteriormente conocido como AXAF) fue construido con objeto de hacer una búsqueda de alta resolución de la incidencia de rayos X, para realizar observaciones astrofísicas en el rango de energía desde 0,09 hasta 10,0 keV. Los objetivos científicos principales de la misión fueron determinar la naturaleza de los objetos celestes desde las estrellas normales a los cuásares, para comprender la naturaleza de los procesos físicos que tienen lugar en ellos y entre los objetos astronómicos, y estudiar en general, la historia y evolución del universo. Las observaciones se harán mediante los rayos X procedentes de regiones de alta energía, tales como los restos de supernovas, pulsares de rayos X, agujeros negros, estrellas de neutrones, y cúmulos galácticos calientes.
AMS-01
Alpha Magnetic Spectrometer
3 de junio de 1998: el transbordador Discovery espacio de carga visto desde el MIR (STS-91 fue el último vuelo del programa de traslado / MIR). AMS-01 es la pequeña caja cuadrada en la parte trasera. [Imágenes de la NASA / Roscosmos]
El AMS-01 volaría finalmente en 1998 durante la STS-91 Discovery, la última misión de un transbordador a la estación espacial rusa Mir.
A detail view of the AMS-01 module (center) mounted in the shuttle payload bay for the STS-91 mission.
Un prototipo del AMS designado AMS-01, una versión simplificada del detector, fue construido por el consorcio internacional bajo dirección de Ting y volado al espacio a bordo the Space Shuttle Discovery on STS-91 en junio de 1998. Al no detectar ninguna antihelium el AMS-01 estableció un límite máximo de 1.1 × 10−6 para el antihelium relación de flujo de helio [15] y demostró que el concepto de detector trabajó en el espacio. Esta misión de la lanzadera fue el último vuelo de transbordador a la Mir Space Station.
En 1999, luego del vuelo exitoso del prototipo AMS-01, el costo total del programa AMS fue estimado en 33 millones de dólares, con el AMS-02 siendo enviado hacia la ISS en 2003.11 Sin embargo, debido al accidente del transbordador espacial Columbia en 2003, y luego de un cierto número de problemas técnicos con la construcción del AMS-02, la estimación del costo del programa escaló hasta los 1.500 millones de dólares.12
El elevado costo del proyecto fue duramente criticado durante el período en el cual el vuelo para llevarlo al espacio había sido cancelado.5
El experimento AMS-01 fue construido alrededor de un imán cilíndrico permanente construido con 6.000 pequeños bloques de NdFeB. Ha sido el primer espectrómetro magnético grande jamás operado en el espacio.
Los subdetectores instalados en AMS-01 fueron: silicio del detector, para medir el signo de la carga y el impulso de las partículas cargadas del Tiempo de Vuelo, para medir la velocidad de las partículas cargadas y para proporcionar el gatillo del experimento Un sistema Anticounter, a las partículas que atraviesan el veto espectrómetro pero que cruzan las paredes de imán Un detector Cherenkov umbral, para separar una baja velocidad de las partículas de alta velocidad
Durante la misión de 10 días, el AMS-01 recoge cerca de 80 M de disparadores, que fueron analizados fuera de línea después del retorno a tierra. Los resultados del análisis de estos datos, donde publicados en una serie de artículos más citados, incluyendo un informe de Física:
- The Alpha Magnetic Spectrometer (AMS) on the International Space Station: Part I – results from the test flight on the space shuttle. By AMS Collaboration (J. Alcaraz et al.). Physics Reports 366: 331–405, 2002. 74pp.
- Search for anti-helium in cosmic rays. By AMS Collaboration (J. Alcaraz et al.). Feb 2000. 18pp. Phys.Lett.B 461:387-396, 1999.
- Helium in near Earth orbit. By AMS Collaboration (J. Alcaraz et al.). Nov 2000. 10pp. Phys.Lett.B 494:193-202, 2000. 9pp.
- Cosmic protons. By AMS Collaboration (J. Alcaraz et al.). 2000. 8pp. Phys.Lett.B 490:27-35, 2000.
- Leptons in near earth orbit. By AMS Collaboration (J. Alcaraz et al.). 2000. 13pp. Phys.Lett.B 484:10-22, 2000, Erratum-ibid.B495:440, 2000.
- Protons in near earth orbit. By AMS Collaboration (J. Alcaraz et al.). Feb 2000. 19pp. Phys.Lett.B 472:215-226, 2000.
- A Study of cosmic ray secondaries induced by the Mir space station using AMS-01. By AMS-01 Collaboration (M. Aguilar et al.). Jun 2004, 18pp. Nucl.Instrum.Meth.B234:321-332, 2005.
- Cosmic-ray positron fraction measurement from 1 to 30-GeV with AMS-01. By AMS-01 Collaboration (M. Aguilar et al.). Jun 2004, 18pp. Phys.Lett.B646:145-154, 2007.
El AMS-01 en la bodega del Discovery en 1998 (en la parte inferior) (NASA).
El detector AMS-01 se basa en un imán Ne-Fe-B permanente con una fuente de análisis de 0,15 m2 T que contiene 4 de los 6 capas del seguidor de silicio y los contadores de centelleo del sistema anticoincidence. Cada plano de seguimiento da una medida de 2 coordenadas (x, y) con una resolución de 30 (x) y 10 micras (y) y de deposición de energía, dando así el movimiento de la partícula y la carga
El gatillo está dada por el tiempo de sistema de vuelo (TOF), que además mide la velocidad de las partículas de desplazamiento y su carga. En combinación con las mediciones de seguimiento, esto permite la determinación de la masa de la partícula.
El detector se completa con un contador Cherenkov umbral, por debajo del imán, para mejorar la separación entre los electrones y los protones hasta 3,5 GV.
FUSE
Explorador Espectroscópico en el Ultravioleta Lejano
Representación artística de FUSE
Organización: NASA
Fecha de lanzamiento: 24 de junio de 1999
Aplicación: Observatorio espacial
Lanzamiento desde Cabo Cañaveral.
Far Ultraviolet Spectroscopic Explorer (FUSE, Explorador Espectroscópico en el Ultravioleta Lejano) fue un observatorio espacial de la NASA dedicado a la observación en la parte del espectro del ultravioleta lejano. Fue lanzado el 24 de junio de 1999 a bordo de un cohete Delta.
Con un peso total de 1400 kg, llevaba cuatro telescopios ultravioleta de 0,35 m de apertura, cada uno con un espectrógrafo ultravioleta de alta resolución. Los detectores cubrían la banda ultravioleta desde 912 angstroms (línea de ionización del hidrógeno) hasta 1187 angstroms. La banda fue elegida para medir la abundancia de deuterio en el Universo, para estudiar la absorción del helio en el medio interestelar, el gas caliente en el halo galáctico y el gas frío en las nubes moleculares.
El 12 de julio de 2007, el último volante de inercia de FUSE dejó de funcionar de manera irreversible, con lo que se perdió la capacidad de apuntado de la nave. El 6 de septiembre la NASA anunció el fin de la misión.
Satélite; País: EEUU; Nombre nativo: Far Ultraviolet Spectroscopic Explorer
Además de los SMEX, los satélites científicos Explorer de la NASA de pequeño tamaño, la agencia puso en marcha un programa paralelo llamado MIDEX, representado por ingenios de mayor peso y coste, que necesitarían cohetes Delta-II para su lanzamiento.
El primer candidato elegido fue la misión Far Ultraviolet Spectroscopic Explorer (FUSE), que consistiría en un observatorio astrofísico dedicado a trabajos espectroscópicos en el rango del ultravioleta lejano (de 90,5 a 119,5 nm, una región inobservable desde la superficie terrestre). Propuesta y liderada por la Johns Hopkins University, participarían en la misión la University of Colorado en Boulder, y la University of California en Berkeley. Canadá y Francia cooperaron a través de sus respectivas agencias espaciales. El proyecto fue supervisado por el Goddard Space Flight Center.
Entre los objetivos estarían el estudio del origen de algunos elementos creados durante el Big Bang, como el hidrógeno y el deuterio, así como la evolución de los objetos astronómicos, incluyendo los planetas, estrellas y galaxias. Sólo el observatorio espacial Copernicus había efectuado una labor semejante, tiempo atrás. Comparado con él, el FUSE sería sin embargo mucho más avanzado, desplegando una sensibilidad diez mil veces superior a la de su antecesor.
(Foto: NASA)
El vehículo sería construido por la compañía Orbital Sciences Corporation, que proporcionó su plataforma MidStar. Sobre ella se montó el instrumento principal, construido por el laboratorio APL de la Johns Hopkins University, y consistente en un telescopio para el ultravioleta lejano.
El diseño original del telescopio debía ser de tipo Wolter, pero finalmente sería dotado de cuatro espejos individuales de 39 por 35 cm, con forma parabólica ligeramente descentrada. Además del sistema óptico, se incluiría el espectrógrafo y la cámara de guía FES.
El satélite tenía un par de paneles solares desplegables y pesaba 1.334 Kg. Su altura máxima alcanzaba los 7,6 metros. Fue diseñado para una vida útil de unos 3 años, pero con una capacidad de unos 10 años.
El FUSE fue lanzado al espacio el 24 de junio de 1999, a bordo de un cohete Delta-7320-10, desde Cabo Cañaveral, en Florida. El vehículo fue colocado en una órbita de 769 por 753 Km, inclinada 25 grados respecto al ecuador.
Su operación fue muy exitosa, de modo que la NASA prolongó sus operaciones en varias ocasiones, una vez superada su vida útil mínima. El 12 de julio de 2007, sin embargo, el observatorio se quedó sin capacidad de apuntamiento fino, debido al fallo de su último giroscopio. El 6 de septiembre se anunció que la misión finalizaría en breve, y así ocurrió el 18 de octubre.
Su producción fue muy fecunda, con unos 3.000 cuerpos astronómicos observados. Un total de más de 400 artículos científicos utilizaron los datos proporcionados por el FUSE.
El explorador espectroscópico en el ultravioleta lejano (FUSE) fue un satélite de la NASA Astrofísica/telescopio cuyo propósito era explorar el Universo mediante la técnica de la espectroscopia de alta resolución en la región espectral del ultravioleta lejano. La Universidad Johns Hopkins (JHU) tuvo el papel principal en el desarrollo de la misión, en colaboración con la Universidad de Colorado en Boulder, la Universidad de California en Berkeley, los socios internacionales de la Agencia Espacial Canadiense (CSA) y la Agencia Espacial Francesa (CNES) y numerosos socios corporativos.
Profesor Warren Moos del Henry A. Rowland Departamento de Física y Astronomía de la Universidad Johns Hopkins fue el investigador principal. El satélite FUSE se puso en marcha el 24 de junio de 1999 y funcionó hasta el 18 de octubre de 2007. La misión fue operada por un grupo de científicos e ingenieros de un centro de control en el Centro de Bloomberg para la física y la construcción de la astronomía en el campus de Homewood de la Universidad Johns Hopkins en Baltimore, Maryland. La estación de tierra fusible primario se encuentra en la Unversidad de Puerto Rico Mayagüez. NASA / Goddard Space Flight Center proporciona supervisión de la gestión del proyecto. A partir de 2014, FUSE seguía siendo el más grande y compleja misión de la astrofísica que había sido operado de un entorno universitario. Después de su misión primaria de tres años, la NASA extendió operaciones FUSE varias veces para permitir el acceso continuo a la región espectral del ultravioleta lejano por la comunidad astronómica. Con los años, cientos de astrónomos de todo el mundo utilizan FUSE observó cerca de 3000 diferentes objetos astronómicos, por un total de más de 64 millones de segundos de tiempo de observación con éxito.
Al término de la misión, la presencia FUSE web se trasladó a su casa a largo plazo en el Archivo Mikulski para los telescopios espaciales (MAST), en el que el archivo de datos se mantiene así. Por favor, visite este sitio para obtener más información acerca de la historia del proyecto FUSE, los datos de la misión, el archivo de fotos, y mucho más:
Ultravioleta lejano explorador espectroscópico
El explorador espectroscópico en el ultravioleta lejano (FUSE), se puso en marcha 24 de junio de 1999, y fue dado de baja el 18 de octubre de 2007, tras el fracaso del sistema de apuntamiento del satélite. Los canadienses y franceses agencias espaciales estaban asociados con la NASA en el diseño y el funcionamiento de la Misión de fusibles. FUSE fue operado para la NASA por el Henry A. Rowland Departamento de Física y Astronomía de la Universidad Johns Hopkins .
Más de ocho años de operaciones, FUSE adquirió más de 6.000 observaciones de cerca de 3.000 objetivos astronómicos separadas. Todos los datos archivados ahora es público y ya no requiere el registro del usuario. Los astrónomos usaron FUSE observó una enorme gama de tipos de objetos, de los planetas y cometas en nuestro sistema solar a las estrellas calientes y fríos en nuestra Vía Láctea y galaxias cercanas, e incluso a las galaxias activas distantes y quásares. Sin embargo, la afirmación de bienes FUSE a la fama fue su capacidad para detectar y diagnosticar las condiciones físicas en las regiones tenues del espacio interestelar e intergaláctico, las regiones que se consideran a menudo estar vacía!
Para obtener más información, lea la Descripción General Misión o utilice el menú de la izquierda para navegar por el sitio.
Un grupo de astrónomos liderados por Jim Scott y Jeffrey Linsky, de la Universidad de Colorado, en Estados Unidos, están reportando que gracias a estudios realizados con el Telescopio Espacial FUSE (Far Ultraviolet Spectroscopic Explorer) de la NASA, ha dado luz para resolver el dilema de que por qué el gas deuterio parece estar distribuido irregularmente en la Vía Láctea. La causa a esto estaría originada en la unión del mismo elemento a granos de polvo interestelar, cambiando la forma visible que es gaseosa, a una invisible que es la sólida. Recordemos que el deuterio, un gas más pesado que el hidrógeno, creado momentos después de la Big Bang, se ha encontrado en diferentes cantidades en nuestra galaxia, lo que podría cambiar radicalmente las teorías de la formación de estrellas y galaxias.
El estudiado del deuterio por parte del FUSE, se realizó a lo largo de 6 años, resolviendo un misterio de 35 años atrás, concernientes a la distribución del deuterio en la Vía Láctea. El resultado será publicado en la revista The Astrophysical Journal del 20 de agosto de 2006.
Las teorías anteriores creían que el Deuterio, un isótopo del Hidrogeno que contiene un protón y un neutrón, era quemado y se perdía para siempre durante la formación de estrellas, por lo cual, los científicos creían que la cantidad de Deuterio presente en el Universo estaba “pura” y servía como marca para la creación de estrellas y galaxias .Las mediciones de Deuterio en el Universo temprano mostraron concentraciones de aproximadamente 27 partes por millón de átomos de Hidrógeno, pero las mediciones de FUSE y el satélite Copérnico, también de la NASA, mostraron una distribución en forma de “parches” de este elemento en la Vía Láctea, con niveles bajos en ellos.
En 2003 el científico Bruce Draine, de la Universidad de Princeton, en Estados Unidos desarrolló un modelo que mostraba que el Deuterio, cuando comparado con el Hidrogeno, tendía a unirse a los granos de polvo interestelar.
Las observaciones del FUSE que detecta la huella espectral del Deuterio en luz ultravioleta, demostraron que su teoría era cierta. El científico Linsky menciona que “donde encontramos altas concentraciones de polvo interestelar dentro de nuestra galaxia, nosotros observamos bajas concentraciones de Deuterio con el FUSE”. El estudio concluye que la cantidad presente de Deuterio, hoy en día, es menor en un 15% a los valores encontrados en el Universo temprano.
Debe estar conectado para enviar un comentario.