Astronáutica
(03) Salyut 3, Almaz OPS-2
Salyut 3 (ruso: Салют-3; Inglés: Saludo 3, también conocida como OPS-2 [1] o Almaz 2 [2]) fue una soviética estación espacial lanzado el 25 de junio de 1974. Fue el segundo Almaz militar estación espacial, y la primera estación de este tipo que se puso en marcha con éxito. [2] Fue incluido en el Salyut programa para disfrazar su verdadera naturaleza militar. [5] Debido a la naturaleza militar de la estación, la Unión Soviética era reacio a divulgar información acerca de su diseño y acerca de las misiones relacionadas con la estación. [6]
Se alcanzó una altitud de 219 a 270 km en el lanzamiento [3] y la NASA informó su altitud orbital final fue de 268 a 272 kilómetros. [4] Sólo uno de los tres equipos destinados abordado y abierta la estación, interpuesto por éxito Soyuz 14; Soyuz 15 trataron de traer una segunda tripulación, pero no pudieron atracar.
Aunque poca información oficial ha sido puesto en libertad sobre la estación, varias fuentes informan de que contenía varias cámaras de observación de la Tierra, así como un cañón de a bordo. La estación fue salir de la órbita, y volvió a entrar en la atmósfera el 24 de enero de 1975. La siguiente estación espacial lanzado por la Unión Soviética fue la estación civil Salyut 4; la siguiente estación militar era Salyut 5, que era la estación espacial Almaz final.
La OPS-2, anunciada como la Salyut-3, fue lanzada el 25 de junio de 1974. La tripulación de la nave Soyuz 14 paso 15 dias a bordo de la estación en julio de 1974. La segunda expedición lanzada hacia la OPS-2 en agosto de 1974, fallo en llegar a la estación. La Salyut-3 fue de orbitada en enero de 1975.
Una versión de la Soyuz 7KT desarrollada específicamente para el programa Almaz, hizo un vuelo de prueba de dos días sin tripulación, el 27 de mayo de 1974, y anunciada como Cosmos-656.
Un mes después desde el cosmodromo de Baikonur fue lanzada la OPS-2, el 25 de junio, y fue anunciada como la Salyut 3. Fuentes soviéticas oficiales dijeron que la nueva estación espacial estaba equipada con un sistema de control de actitud electromecánico, o Gyrodines: paneles solares rotables; un sistema de control térmico mejorado, y que tenia áreas separadas para descansar y trabajar. El uso por primera vez de un sistema de reciclado de agua, y capsulas de reentrada no tripuladas.
Luego se dijo que entre los equipamientos que poseía estaban:
– Una cámara fotográfica Agat-1, con una profundidad de foco de 6.375 mm y una resolucion mayor a 3 metros.
– Un visor óptico OD-5
– Un sistema panorámico POU
– Una cámara topográfica
– Una cámara estelar
– Una cámara infrarroja Volga con una resolución de 100 metros
El cosmonauta Pavel Popovich, quien entreno para la misión Almaz y mas tarde tripulo la estación, dijo en una entrevista que la estación poseía 14 diferentes tipos de cámaras.
La estación también estaba equipada con un cañón de auto-defensa elaborado en una oficina de diseño liderada por Nudelman. El cañón fue instalado en la sección frontal de la estación y para apuntarla, era necesario ajustar la actitud de la estación. Durante los tests de esta arma se vio producía considerable estremecimiento de la Estación al ser usada, por lo que se descarto su uso durante la estadía de la tripulación.
Soyuz 14
Tripulantes: Pavel Popovich y Yuri Artukhin
Lanzamiento: 3 de julio de 1974
Abordaje: 4 de julio
Descenso: 19 de julio
La Soyuz 14 partió hacia la Estación el 3 de julio con dos tripulantes: Popovich que era un cosmonauta veterano y Artukhin que era novato. La nave los llevo en forma automática hasta 100 metros de la Estación, entonces la tripulación cambio a manual y efectúo el acoplamiento, sin inconvenientes. Popovich para controlar mas cómodamente la Soyuz se había quitado los guantes del traje espacial y con ello por lo tanto había despresurizado su traje.
Después del acoplamiento, se detecto una pequeña fuga de aire por la periferia del sistema de acoplamiento, sin embargo el Control de Misión considero esta un problema menor y autorizo el abordaje de la OPS-2. La tripulación entro a la Estación el 4 de julio de 1974 y paso 15 días a bordo. El equipo sensor remoto fue activado el 9 de julio, seguido por varios días de fotografías de la superficie terrestre.
Varias veces, las alarmas despertaron a los tripulantes, sin embargo, estas no fueron emergencias reales. Durante el vuelo los cosmonautas hicieron chequeos de los sistemas de a bordo, ajustes de la temperatura, y otras actividades de mantenimiento, también recargaron las cámaras de la estación y colocaron los film expuestos en la capsula KSI.
Soyuz 15
Tripulantes: Genadi Sarafanov y Lev Demin
Lanzamiento: 26 de agosto de 1974
Descenso: 28 de agosto
La que pudo ser la segunda tripulación de la Salyut-3, estaba compuesta por: el Comandante Genadi Sarafanov y el Ingeniero de Vuelo Lev Demin, y fueron lanzados en la Soyuz 15 el 26 de agosto de 1974. Sin embargo por problemas en el rendezvous de la nave Soyuz, se canceló el intento de acoplamiento. La nave retorno a Tierra después de dos días en el espacio y aterrizo durante la noche.
Después se supo que el sistema de acoplamiento Igla (Aguja) había llevado a la Soyuz hasta una distancia de 300 metros de la estación, luego este fallo en cambiar al modo de aproximamiento final, y en cambio comenzó a implementar una secuencia, la cual se debería ejecutar normalmente a una distancia de tres kilómetros de la estación. A partir de un comando del Sistema Igla, la Soyuz disparo sus motores, acelerándose en dirección a la estación. La velocidad relativa entre la estación y la nave llego a 72 kilómetros por hora. Debido al hecho que a 20 kilómetros de distancia, el sistema de rendezvous tolera una mayor desviación de la nave de su blanco, la Soyuz-15 paso a 40 metros en forma paralela a la estación a gran velocidad.
La tripulación no advirtió el problema (y no desconecto el sistema Igla), el sistema de rendezvous intento regañar el radio-contacto con el blanco y envío a la Soyuz-15 hacia la estación en dos oportunidades mas, de nuevo por poca distancia evitando una colisión letal. En este momento, los controladores de Tierra comandaron la desactivación del Sistema Igla, la tripulación solamente tenia suficiente propelente para el descenso de vuelta a Tierra.
La misión de la OPS-2 no tripulada
Debido a lo lato de las modificaciones de la nave para corregir la falla en el sistema de rendezvous, no hubieron mas expediciones tripuladas posteriores a la Salyut-3.
El 23 de septiembre de 1974 una pequeña capsula conteniendo film fue eyectada desde la OPS-2 para ser recuperada en Tierra.
24 de enero de 1975, la estación fue de orbitada sobre el Océano Pacifico.
La Salyut-3 fue la primera estación espacial en mantener una orientación constante en relación a la superficie de la Tierra. Para obtener esto, se realizaron alrededor de 500.000 encendidos de los propulsores de control de actitud. Este hecho hizo presumir en occidente que la estación llevaba a cabo una misión de reconocimiento.
Años mas tarde se revelo que poco antes de de orbitar la OPS-2 (Salyut-3), los controladores de Tierra comandaron disparar el cañón de autodefensa de la estación. De acuerdo a Igor Afanasiev, un experto en la historia de la tecnología espacial, los disparos fueron hechos en dirección opuesta al vector de velocidad de la estación, con el fin de acortar la vida orbital de los proyectiles. Un total de tres disparos fueron ejecutados durante el vuelo de la OPS-2
(04) Salyut 4
Salyut 4 (DOS 4) (ruso: Салют-4; Inglés traducción: Saludo 4) fue un Salyut estación espacial lanzada el 26 de diciembre 1974 en una órbita con un apogeo de 355 km, un perigeo de 343 km y una inclinación orbital de 51,6 grados. Era esencialmente una copia del DOS 3, ya diferencia de su hermano malogrado fue un éxito total. Tres tripulantes intentaron realizar estancias a bordo de Salyut 4 (Soyuz 17 y Soyuz 18 atracado; Soyuz 18a sufrió un aborto de lanzamiento). La segunda estancia fue de 63 días de duración, y una cápsula Soyuz sin tripulación permaneció atracada a la estación durante tres meses, lo que demuestra durabilidad a largo plazo del sistema a pesar de cierto deterioro del sistema ambiental durante la misión de Soyuz 18. Salyut 4 fue salir de la órbita 02 de febrero 1977, y volvió a entrar en la atmósfera terrestre el 3 de febrero.
Salyut 4 representa la segunda fase de la estación espacial civil DOS. Aunque el diseño básico de Salyut 1 se retuvo, se cambió a tres grandes paneles solares montados en el módulo hacia adelante en lugar de cuatro pequeños paneles de su predecesor en el módulo de acoplamiento y el compartimiento del motor, presumiblemente para generar más energía. Tenía una Superficie interior de 34,8 metros cuadrados. El paso de la estación fue de 2 X 59 N, guiñada fue 2 X 59 N y rollo fue 2 X 20 N. Se orbitaba a una velocidad de 320 m / s (1.040 pies / seg ). El sistema eléctrico produjo un promedio de 2,00 kW de potencia. Tenía 2.000 kg de material científico junto a dos conjuntos de tres paneles solares cada uno y estaba equipado con el Sistema Delta navegación que era un nuevo sistema de navegación autónomo que calcula elementos orbitales y sin la asistencia de la tierra. [1] Fue accionado por KTDU-66 propulsores . [2]
Instrumentación
Instalado en la Salyut 4 eran OST-1 (Telescopio Solar) 25 cm telescopio solar con una longitud focal de 2,5 m y espectrógrafo de difracción de la onda corta espectrómetro de emisiones lejos ultravioleta, diseñado en el Observatorio Astrofísico de Crimea, y dos de rayos X telescopios. [ 3] [4] Uno de los telescopios de rayos X, a menudo llamado el telescopio Filin, consistió en cuatro contadores proporcionales de flujo de gas, tres de los cuales tenían una superficie de detección total de 450 cm² en el rango de energía 2-10 keV, y uno de que tenía una superficie efectiva de 37 cm² para el rango de 0,2 a 2 keV (32-320 aJ). El campo de visión estaba limitada por un colimador de hendidura a 3 × 10 en en anchura total a la mitad del máximo. La instrumentación también incluye sensores ópticos que se montan en el exterior de la estación junto con los detectores de rayos X, y fuente de alimentación y unidades de medida que estaban dentro de la estación. Calibración en tierra de los detectores se consideró junto con la operación en vuelo en tres modos: orientación inercial, orientación orbital, y la encuesta. Los datos podrían ser recogidos en 4 canales de energía: 2 a 3,1 keV (320 a 497 aJ), 3,1 a 5,9 keV (497 a 945 aJ), 5,9-9,6 keV (945 a 1538 aJ), y 2 a 9,6 keV (320 a 1,538 aJ) en los detectores más grandes. El detector más pequeño había niveles discriminadores fijado en 0,2 keV (32 aJ), 0,55 keV (88 aJ), y 0,95 keV (152 aJ). [5]
Otros instrumentos incluyen una silla giratoria de pruebas de la función vestibular, artes de presión negativa inferior del cuerpo para estudios cardiovasculares, bicicleta ergométrica integrado preparador físico (pista de atletismo de accionamiento eléctrico 1 mx 0,3 m con cuerdas elásticas que proporcionan 50 kg de carga), trajes de pingüinos y atlética alternativa traje, sensores de temperatura y las características de la atmósfera superior, ITS-K infrarrojos del espectrómetro telescopio y espectrómetro ultravioleta para el estudio de la radiación infrarroja de la Tierra, cámara multiespectral recursos de la tierra, detector de rayos cósmicos, los estudios embriológicos, nuevos instrumentos de ingeniería probadas para la orientación de la estación por los objetos celestes y en la oscuridad y un teletipo. [6]
Ciencia
Entre otros, las observaciones de Sco X-1, Cir X-1, Cyg X-1, y se publicaron A0620-00 partir de los datos Filin. Un bajo consumo de energía muy variable de 0,6 a 0,9 keV (96 a 144 aJ se detectó) de flujo en Sco X-1. Cir X-1 no se detectó en absoluto durante 5 Un informe de julio, 1.975 mil observación, proporcionando un límite superior en la emisión de 3.5E-11 erg · cm -2 · s -1 (35 fW / m²) en la keV 0,2 a 2.0 (32 a 320 aJ) gama. Se observó Cyg X-1 en varias ocasiones. Flujo muy variable, en los ámbitos tanto el tiempo y la energía, se observó.
Especificaciones
- Longitud – 15,8 m
- Diámetro máximo – 4,15 m
- Volumen habitable – 90 m³
- Peso en el lanzamiento – 18.900 kg
- Vehículo de lanzamiento – protones (en tres etapas)
- Inclinación orbital – 51,6 °
- Área de paneles solares – 60 m²
- Número de paneles solares – 3
- La producción de electricidad – 4 kW
- Reabastecer los transportistas – Soyuz Ferry
- Número de puertos de conexión – 1
- Total de misiones tripuladas – 3
- Total de misiones no tripuladas – 1
- Total de larga duración misiones tripuladas – 2
Visitar las naves espaciales y las tripulaciones
- Soyuz 17 – Enero 11 a 10 febrero 1975
- Soyuz 18a – 05 de abril 1975 – Lanzamiento de aborto
- Soyuz 18 – 24 de mayo de – 26 de julio 1975
- Soyuz 20 – 17 noviembre 1975 hasta 16 febrero 1976
- sin tripulación
(05) Salyut 5
Salyut 5 (en ruso Салют-5: Салют-5 significado Salute 5), también conocida como OPS-3, fue una estación espacial soviética. Lanzado en 1976 como parte del programa Salyut, fue la tercera y última Estación Espacial. Al principio se denominó Almaz y funcionó principalmente como una Estación Espacial militar, y en 1971 se llamó Salyut. Dos misiones Soyuz visitaron la estación, cada una manejada por dos cosmonautas. En el regreso de los cosmonautas a la Tierra, la nave que tripulaban falló al descender en la atmósfera terrestre. Su falta oxígeno provocó que los cosmonautas murieran al entrar en la atmósfera terrestre. La Unión Soviética lloró la muerte de sus héroes. Aquel incidente significó el peligro de los vuelos espaciales.
Salyut 5 estuvo lanzado en 18:04:00 UTC el 22 de junio de 1976. El lanzamiento tuvo lugar en el Sitio 81/23 del Cosmódromo de Baikonuren la República Socialista Soviética de Kazajistán, y utilizó un cohete cargador Proton-K 8K82K de tres etapas con el número de serial 290-02.1
Al lograr llegar a la órbita, al Salyut 5 se le asignó el International Designator 1976-057A, mientras que la Orden de Defensa Aeroespacial norteamericana se lo dio el Satélite que Cataloga Número 08911.2
Aún, la guerra fría designaba el futuro de de la Unión Soviética y de los Estados Unidos y la carrera espacial. Luego de esto, la MIR (en ruso: Мир, que en español significa “paz”, muchos dicen que significa “mundo”, pero su traducción exacta es paz) que fue una Gran Estación Espacial internacional que también, lanzó la Unión Soviética, y después de una serie de vuelos espaciales de la Unión Soviética, Estados Unidos continuó con ello legando a la Luna y lanzando demás naves espaciales.
Aeronave
Salyut 5 era una aeronave Almaz , el último de tres para ser lanzado como estaciones espaciales después de Salyut 1 y Salyut 3. Sus predecesores, medían 14.55 metros (47.7 ft) de largo, con un diámetro máximo de 4.15 metros (13.6 ft), tenían un volumen habitable de interior de 100 metros cúbicos (3,500 cu ft), y un peso de 19,000 kilogramos (42,000 lb). La estación estuvo equipada con un solo puerto acoplado para la aeronave Soyuz, con el Soyuz 7K-T siendo la configuración en servicio en ese entonces. Dos variedades solares montadas lateralmente en el mismo punto de la estación mientras el puerto acoplado proporcionaba la energía. La estación estaba equipada con una cápsula KSI para regresar datos de búsquedas y materiales.[cita requerida]
Operación
Cuatro misiones tripuladas al Salyut 5 fueron originalmente planeadas. La primera, Soyuz 21, fue lanzada desde Baikonur el 6 de julio de 1976, y atracada a las 13:40 UTC del día siguiente.3 El objetivo primario de la misión Soyuz 21 a bordo del Salyut 5 era la conducción de experimentos militares, no obstante la búsqueda científica también era conducida, la cual incluía estudiar peces de acuario en microgravedad y observar el sol. La tripulación también condujo una conferencia televisada con alumnos escolares. Los astronautas Boris Volynov y Vitali Zholobov quedaron a bordo del Salyut 5 hasta el 24 agosto, cuándo regresaron a la tierra aterrizando a 200 km al suroeste de Kokchetav. Se esperaba que la misión durase más tiempo, pero la atmósfera dentro del Salyut 5 se vio contaminada con humo de ácido nítrico proveniente de una filtración de combustible, la cual afectó la condición psicológica y física de la tripulación, requiriendo de un aterrizaje de emergencia.
El 14 de octubre de 1976, el Soyuz 23 fue lanzado llevando a los astronautas Vyacheslav Zudov y Valery Rozhdestvensky a la estación espacial. Durante la aproximación para el acoplamiento al día siguiente, un sensor defectuoso incorrectamente detectó un inesperado movimiento lateral. El sistema de acoplamiento automático de la aeronave Igla desprendió los propulsores de maniobra de la nave espacial en un intento de parar el movimiento inexistente. A pesar de que la tripulación era capaz de desactivar el sistema Igla, la aeronave había gastado demasiado combustible para volver a intentar el acoplamiento bajo control manual. El 16 de octubre el Soyuz 23 regresó a la Tierra sin completar los objetivos de la misión.
La última misión al Salyut 5, Soyuz 24, fue desplegada el 7 de febrero de 1977. Su tripulación se compuso por los astronautas Viktor Gorbatko y Yury Glazkov, quién condujo reparaciones a bordo de la estación y descargó el aire que había sido informado como contaminado. Los experimentos científicos fueron llevados a cabo, incluyendo la observación del sol. La tripulación partió rumbo devuelta el 25 de febrero. La corta misión aparentemente se relacionó a que el Salyut 5 comenzó a agotar el propulsor para sus principales motores y sistema de control de actitud.4
Soyuz 21
La cuarta misión prevista, la cual habría sido designado como Soyuz 25 si se hubiese concretado, estuvo pretendida para visitar la estación por dos semanas en julio de 1977.5 Su tripulación habría sido compuesta por los astronautas Anatoly Berezovoy y Mikhail Lisun; la tripulación de relevo para la misión Soyuz 24. La misión se canceló por la escasez de propulsor anteriormente mencionada.6 La aeronave qué se construyó para la misión Soyuz 25 fue reutilizada posteriormente para la misión Soyuz 30 hacia el Salyut 6. Como no podía ser re abastecida, y ya no contaba con el combustible para sostener las operaciones tripuladas, la cápsula recuperable KSI fue expulsada y regresada a la Tierra el 26 de febrero. Salyut 5 fue desorbitado el 8 de agosto de 1977 y quemado mientras reingresaba a la atmósfera de la Tierra.7
Estadísticas Station | ||
Distintivo de llamada | Salyut 5 [cita requerida] | |
Tripulación | 2 | |
Lanzamiento | 22 de de junio de de 1976 18:04:00 UTC |
|
Cohete portador | Protón-K | |
Plataforma de lanzamiento | Baikonur Sitio 81/23 | |
Reentrada | 8 de agosto de 1977 | |
Masa | 19.000 kg | |
Largo | 14.55 metros (47,7 pies) | |
Diámetro | 4.15 metros (13,6 pies) | |
Presurizado volumen | 100 metros cúbicos (3.500 pies cúbicos) | |
Perigeo | 223 kilómetros (120 millas náuticas) | |
Apogeo | 269 kilómetros (145 millas náuticas) | |
Orbital inclinación | 51.6 ° | |
Periodo orbital | 89 minutos | |
Días en órbita | 412 días | |
Días ocupados | 67 días | |
Número de órbitas | 6666 | |
Distancia recorrida | Aprox 270409616 kilómetros (168,024,745 millas) |
(06) Salyut 6
Salyut 6 (En ruso: Салют-6; lit. Saludo 6), DOS-5, fue una estación espacial soviética, el octavo vuelo como parte del programa Saliut. Lanzada el 29 de septiembre de 1977 por el cohete Protón, es la primera estación espacial de “segunda generación”. Salyut 6 poseía varios avances revolucionarios superiores a los de las estaciones soviéticas anteriores, la cual sin embargo se asemejaba totalmente en el diseño. Estos incluyen la adición de un segundo puerto de atraque, un nuevo sistema de propulsión principal y el instrumento científico más importante de la estación, el telescopio multiespectral BST-1M. La suma de un segundo puerto de atraque hizo posibles los traspasos de tripulación y por primera vez el reabastecimiento de la estación por los cargueros no tripulados Progress, lo cual permitió al programa evolucionar de visitas de corta duración a expediciones de larga duración, marcando el inicio de la transición a las estaciones de investigación multimodulares en el espacio.
Desde 1977 hasta 1982, la Saliut 6 fue visitada por cinco tripulaciones de larga duración y siete de corta, incluyendo los cosmonautas de los países del Pacto de Varsovia como parte del programa Intercosmos. Estas tripulaciones fueron responsables de llevar a cabo las primeras misiones de la Salyut 6, incluyendo astronomía, observaciones de los recursos de la Tierra y el estudio de la adaptación humana al espacio. Siguiendo a la finalización de esas misiones y el lanzamiento de su sucesor, la Saliut 7, la estación espacial Salyut 6 fue destruida el 29 de julio de 1982, casi cinco años después de su lanzamiento.
La Saliut 6, lanzada en un cohete Proton 8K82K el 29 de septiembre de 1977, marcó el paso de las estaciones de desarrollo de ingeniería a las operaciones rutinarias y unió los elementos más efectivos de cada una de las estaciones anteriores. Su sistema de navegación, formado por el equipo semiautomático Delta para representar la órbita de la estación y el sistema Kaskad para controlar su orientación, fue basado en el usado en la Salyut 4 al igual que su sistema de energía, que consistía en un trío de paneles solares orientables que juntos producían a máximo rendimiento 4 kilovatios de energía en sus 51 metros cuadrados. El sistema de regulación térmico de la estación, el cual hizo uso de un sofisticado aislamiento y radiadores también derivados de los usados en la Salyut 4. Además, la Saliut 6 hizo uso de un sistema ambiental utilizado por primera vez en la Salyut 3, y se controló su orientación usando giroscopios que fueron probados primero en esa estación.
La característica más importante de la Saliut 6 fue, sin embargo, la adición de un segundo puerto de atraque en el extremo de popa de la estación, lo cual permitió acoplar dos naves espaciales a la vez. Esto a su vez posibilitó a las tripulaciones residentes recibir expediciones “de visita” mientras permanecian a bordo, y facilitó los traspasos de tripulación que tuvieran lugar. Tales traspasos, con una expedición desalojando la estación solo despúes de la llegada de la siguiente hizo posible que el codiciado objetivo de la ocupación ininterrumpida estuviese un paso más cerca. La primera tripulación de larga duración en visitar la estación rompió el récord de permanencia en el espacio establecido por la estación estadounidense Skylab, permaneciendo 96 días en órbita, mientras que la expedición más larga duró 185 días en órbita. Algunas de las expediciones de visita fueron trasladadas como parte del programa Intercosmos junto con los cosmonautas no soviéticos. Vladimír Remek de Checoslovaquia fue el primer astronauta en no ser estadounidense o soviético, visitando la Salyut 6 en 1978. Además la estación también fue visitada por cosmonautas de Hungría, Polonia, Rumanía, Cuba, Mongolia, Vietnam y Alemania oriental.
La parte posterior de los dos puertos fue designada para permitir el reabastecimiento con las naves no tripuladas Progress. Estos cargeros, los cuales llevaron suministros y equipamiento extra de repuesto, ayudaron a garantizar que la tripulación tuviese siempre algún trabajo científico útil que hacer a bordo de la estación. En total, doce vuelos Progress entregaron más de 20 toneladas de equipamiento, suministros y combustible.
La adición del puerto de acoplamiento extra hizo necesaria la adopción del sistema de propulsión de doble cámara Almaz derivado de los usados por primera vez en las Saliut 3 y Saliut 5 con las dos toberas del motor cada una produciendo 2.9 kilonewtons de empuje a cada lado del puerto de popa. La Saliut 6 introdujo un sistema de propulsión unificado, los motores y propulsores de control de la estación utilizaban dimetilhidrazina asimétrica y tetróxido de nitrógeno almacenados a partir de depósitos a presión, lo que permitía que la capacidad de los tanques de los cargueros Progress fuese aprovechada al máximo. La totalidad del motor y el combustible almacenado se encontraban dentro de una bahía no presurizada en la parte trasera de la estación, la cual era del mismo diámetro que el principal compartimento presurizado. Sin embargo, el reemplazo del motor Soyuz usado en estaciones anteriores junto con la bahía dio como resultado que la estación mantuviese una longitud global similar a la de sus predecesores.
Para permitir los paseos espaciales, la Saliut 6 estaba equipada con una compuerta de apertura hacia el interior EVA en el compatimento de transferencia delantero que podía ser utilizada como esclusa de aire de una manera similar al sistema utilizado en la Saliut 4. Este compartimento contenía dos nuevos trajes espaciales semirrígidos que permitieron una mayor flexibilidad que los trajes anteriores, y podían ser puestos en menos de cinco minutos en caso de emergencia. Por último, la estación ofreció unas mejoras considerables en las condiciones de vida sobre las anteriores, con maquinaria insonorizada, con la tripulación provista de camas para dormir y equipando la estación con una ducha y un extenso gimnasio.
El instrumento principal llevado a bordo en la estación fue el telescopio multiespectral BST-1M, el cual podía llevar a cabo observaciones astronómicas en el espectro infrarrojo, ultravioleta y submilimétrico usando un espejo de 1.5 metros de diámetro que se hizo funcionar en condiciones criogénicas rondando los -269°C. El telescopio podía ser operado sólo cuando la Saliut 6 estaba en la cara nocturna de la Tierra, y tenía su tapa cerrada el resto del tiempo.
El segundo instrumento en importancia fue la cámara multiespectral MKF-6M que llevó a cabo observaciones de los recursos de la Tierra. Era un diseño mejorado de la cámara probada por primera vez en el Soyuz 22, la cámara capturaba un área de 165×220 kilómetros con cada imagen con una resolución de 20 metros. Cada imagen era capturada simultáneamente en seis grupos de casetes de 1200 fotogramas que requerían un reemplazo regular debido a los efectos de la radiación. La Saliut 6 también disponía de una cámara de trazado de mapas topográficas y estereoscópicas con una longitud central de 140 milímetros, la cual capturaba imágenes de 450×450 kilómetros con una resolución de 50 metros en el espectro visible e infrarrojo, y que podía ser operada de forma remota o por las tripulaciones residentes. Las capacidades fotográficas de la estación fueron por lo tanto amplias, y el Ministerio de Agricultura soviético había plantado en Ucrania y en Voronezh una serie de cultivos seleccionados específicamente para examinar la capacidad de las cámaras.
Para ampliar aún más sus capacidades científicas, la Saliut 6 estaba equipada con 20 ventanillas de observación, dos esclusas de aire para sacar equipamiento al espacio o expulsar basura, y varias piezas de aparatos para llevar a cabo experimentos biológicos. Más tarde, cuando la estación ya estaba en órbita, un carguero Progress entregó un telescopio externo, el observatorio de radio KRT-10, que incorporó una antena direccional y cinco radiómetros. La antena estaba desplegada en el ensamblaje de acoplamiento trasero con su controlador que permanecia en el interior de la estación, y fue usada para observaciones astronómicas y metereológicas.
La Saliut 6 fue primero abastecida por naves tripuladas Soyuz, que llevaban a cabo la rotación de las tripulaciones y fueron también utilizadas en los casos de una evacuación de emergencia. Las naves atracaban automáticamente haciendo uso del nuevo sistema de acoplamiento automático Igla, y fueron utilizados también por las tripulaciones al regresar a la Tierra al final de su vuelo.
La Saliut 6 fue la primera en ser capaz de reabastecerse con los cargueros Progress, aunque sólo podían atracar en el puerto trasero ya que los conductos que permitían a la estación reponer sus fluidos no estaban disponibles en el puerto frontal. Los cargueros atracaban automáticamente gracias al Igla y eran descargadas por los cosmonautas a bordo, mientras que la transferencia de combustible se llevaba a cabo automáticamente bajo la supervisión de la Tierra.
Además de las naves Soyuz y Progress, despúes de que se hubiera ido la última tripulación, la Salyut 6 fue visitada por una nave logística de transporte experimental llamada Cosmos 1267 en 1982. La nave, conocida como TKS, fue originalmente diseñada para el programa Almaz y probó que los módulos de gran tamaño podrían atracar automáticamente con estaciones espaciales, un paso importante hacia la fabricación de estaciones multimodulares como la Mir o la Estación Espacial Internacional.
La estación recibió 16 tripulaciones de cosmonautas, incluyendo seis tripulaciones de larga duración, con la larga expedición de 185 días de duración. Las tripulaciones residentes fueron identificadas con el prefijo EO , y al mismo tiempo las misiones de corta duración con el prefijo EP.
- El 10 de diciembre de 1977 la primera tripulación residente, Yuri Romanenko y Georgi Grechko, llegaron en la Soyuz 26 y permanecieron a bordo de la Saliut 6 durante 96 días.
- El 15 de junio de 1978, Vladimir Kovalyonok y Aleksandr Ivanchenkov (Soyuz 29) llegaron y permanecieron a bordo durante 140 días.
- Vladimir Lyakhov y Valery Ryumin (Soyuz 32) llegaron el 25 de febrero de 1979 y permanecieron 175 días.
- El 9 de abril de 1980 Leonid Popov y Valery Ryumin (Soyuz 35) llegaron y permanecieron 185 días, la expedición más larga. A bordo, el 19 de julio, enviaron sus saludos en directo a los olímpicos y les desearon una feliz apertura de los juegos en una comunicación entre la estación y el estadio Lenin, donde se celebró la ceremonia de apertura de los Juegos Olímpicos de 1980. Aparecieron en el marcador del estadio y sus voces fueron traducidas a través de altavoces.
- Una misión de reparación, compuesta por Leonid Kizim, Oleg Makarov, y Gennady Strekalov (Soyuz T-3) trabajaron en la estación durante 12 días a partir del 27 de noviembre de 1980.
- El 12 de marzo de 1981 la última trupulación residente, Vladimir Kovalyonok y Viktor Savinykh, llegaron y permanecieron durante 75 días.
https://en.wikipedia.org/wiki/Salyut_6
http://www.britannica.com/topic/Salyut
Estadística de la misión | |
Call Sign: | Saliut 6 |
Lanzamiento: | 29 de septiembre de 1977 06:50:00 UTC Baikonur, U.R.S.S. |
Reentrada: | 29 de julio de 1982 |
Longitud: | 15.8 metros |
Diámetro: | 4.15 metros |
Volumen presurizado: | 90 metros³ |
Ocupada: | 683 días |
En órbita: | 1,764 días |
Número de órbitas: |
28,024 |
Apogeo: | 275 km (171 mi) |
Perigeo: | 219 km (136 mi) |
Periodo: | 89.1 min |
Inclinación | 51.6 deg |
Distancia viajada: |
~1,136,861,930 km (~706,413,253 mi) |
Masa orbital: | 19,824 kg |
Salyut 6 Motores
Primer plano de los motores de Salyut 6 como se muestra en Moscú en 1981.
Crédito: © Mark Wade
(07) Salyut 7
La estación espacial soviética Salyut 7 (Салют-7) fue la última del programa Saliut. Al igual que su antecesora, la estación espacial Saliut 6, era más avanzada que las cinco estaciones lanzadas anteriormente. Ambas tenían escotillas de atraque en ambos extremos, un sistema de abastecimiento de combustible mejorado y alojamientos más cómodos. Los tripulantes accedían a ellas con naves Soyuz, y eran abastecidas por naves no tripuladas Progress.
Fue lanzada al espacio el 19 de abril de 1982 empleando un cohete Protón de tres etapas. Su tamaño era de entre 13 y 16 metros y estaba construida con una aleación especial de aluminio y acero, en forma similar a las cápsulas de exploración submarina, para mantener el mismo nivel de presión en el espacio, que sobre la superficie terrestre. Permitía una tripulación máxima de tres cosmonautas. Estuvo habitada entre 1982 y 1986. El complejo formado por la Salyut 7 y el módulo Cosmos 1686 (TKS-4) culminó su vida operativa y reentró en la atmósfera terrestre sobre Argentina el 7 de febrero de 1991.
Características principales
- Longitud: cerca de 16 m
- Diámetro máximo: 4,15 m
- Espacio habitable: 90 m³
- Peso en el lanzamiento: 19.824 kg
- Cohete de lanzamiento: Protón
- Inclinación orbital: 51,6°
- Potencia eléctrica: 4,5 kW
- Naves de transporte: Soyuz-T, Progress y TKS
- Número de puertos de atraque: 2
- Total de misiones tripuladas realizadas: 12
- Total de misiones no tripuladas realizadas: 15
- Misiones de larga duración: 6
Salyut 7 con módulo acoplado.
En la Salyut 7 residieron seis tripulaciones estables.
- Anatoli Beriozovói y Valentin Lebedev (13 de mayo de 1982), a bordo de la Soyuz T-5, permanecieron 211 días en la estación, hasta el 10 de diciembre de 1982.
- El 27 de junio de 1983 llegó la tripulación compuesta por Vladimir Lyakhov y Alexander Alexandrov en la Soyuz T-9, permaneciendo en la estación 150 días, hasta el 23 de noviembre de 1983.
- El 8 de febrero de 1984 Leonid Kizim, Vladimir Solovyev, y Oleg Atkov iniciaron su estancia de 237 días, la más larga a bordo de la estación en su historia. La misión finalizó el 2 de octubre de 1984. Durante el transcurso de esta misión visitó la estación Svetlana Savitskaja, la segunda mujer astronauta tras Tereshkova y la primera en dar un paseo espacial, quien ya había visitado la estación en agosto de 1982.
- Vladimir Dzhanibekov y Viktor Savinykh (Soyuz T-13) llegaron a la estación el 6 de junio de 1985.
- El 17 de septiembre de 1985 la Soyuz T-14 se acopló a la estación, siendo sus tripulantes Vladimir Vasyutin, Alexander Volkov, y Georgi Grechko. Ocho días más tarde Dzhanibekov y Grechko regresaron a la Tierra. Dzhanibekov había permanecido en la Saliut 7 durante 103 días. Por su parte, Savinyikh, Vasyutin, y Volkov volvieron el 21 de noviembre del mismo año, los dos últimos tras 65 días y Savinykh después de 168.
- El 6 de mayo de 1986 la Soyuz T-15 transportó a la última misión tripulada, compuesta por Leonid Kizim y Vladimir Solovyov. Tras permanecer 50 días a bordo, la tripulación se desplazó en la Soyuz hasta la estación espacial Mir.
El 26 de septiembre de 1983 la Soyuz T-10-1, tripulada por Vladimir Titov y Gennady Strekalov, destinada a la estación espacial, tuvo un accidente en el lanzamiento, por lo que la misión fue abortada y la tripulación fue expulsada con un sistema de rescate.
A la estación también se acoplaron dos módulos TKS, el primero el 2 de marzo de 1983, el TKS-3, lanzado bajo el nombre de Cosmos 1443. Se separó de la estación el 14 de agosto. Por su parte, el TKS-4 fue lanzado bajo el nombre de Cosmos 1686 el 27 de septiembre de 1985. Se contempló la posibilidad de recuperar el módulo TKS usando el transbordador espacial Buran, pero el primer vuelo del mismo fue retrasado hasta finales de 1988, cuando ya la estación había sido abandonada y su órbita era demasiado baja.
Modelo de la Saliut 7 con una Soyuz (a la izquierda) y con una Progress (a la derecha) acopladas.
El 7 de febrero de 1991, a las 01:00 (hora local), los restos de la Salyut 7 cayeron en Argentina, impactando gran parte de su fuselaje en los Andes, Buenos Aires y Entre Ríos. Para evitar accidentes, los controladores pusieron a girar la nave, tratando de controlar el impacto y de que éste se hiciera en el Océano Atlántico. Obviamente fallaron todos esos intentos, y el complejo satelital cayó convertido en una bola de fuego. Algunos de los fragmentos tocaron tierra cerca de la ciudad de Capitán Bermúdez, a unos 400 kilómetros de Buenos Aires. Entre los restos también se encontró la sección de la escotilla, caída en la provincia de Entre Ríos, y parte del fuselaje y paneles con gran cantidad de componentes electrónicos. Actualmente se encuentran en el predio del Observatorio Astronómico de Oro Verde, perteneciente a la Asociación Entrerriana de Astronomía. Algunos fragmentos incendiaron un basurero en Puerto Madryn, Chubut, otros fueron a parar en una zona cordillerana de San Juan y también cayeron en el océano Atlántico. En la localidad de Piedritas, provincia de Buenos Aires, el policía Leandro Rodríguez recogió una esfera metálica y otras esferas fueron recuperadas Venado Tuerto y Firmat, provincia de Santa Fe.
(08) Mir (estación espacial)
Mir (en ruso Мир, significa paz o mundo) fue el nombre de la famosa estación espacial originalmente soviética, que después del colapso de la URSS pasó a ser rusa. La primera estación espacial de investigación habitada de forma permanente de la historia, y la culminación del programa espacial soviético. Estaba prevista para que estuviera funcionando durante tan sólo 5 años; lo hizo durante 13 años. A través de numerosas colaboraciones internacionales, fue accesible a cosmonautas y astronautas.
La Mir fue ensamblada en órbita al conectar de forma sucesiva distintos módulos, cada uno lanzado de forma separada desde el 19 de febrero de 1986 hasta el año 1996. Estaba situada en una órbita entre los 300 y 400 kilómetros de la superficie terrestre, orbitando completamente la Tierra en menos de dos horas. Sirvió como laboratorio de pruebas para numerosos experimentos científicos y observaciones astronómicas, estableciendo récords de permanencia de seres humanos en el espacio. Tras un incendio en febrero de 1997, la estación empezó a quedarse vieja y obsoleta, con la consecuente cadena de fallos que prosiguió hasta su desorbitación y desintegración en la atmósfera. Fue destruida de forma controlada el 23 de marzo de 2001, precipitándose sobre el Océano Pacífico.
Lanzamiento | 19 de febrero de 1986 (Cosmódromo de Baikonur, URSS) |
Re-entrada | 23 de marzo de 2001 |
Tripulación | 3 |
Perigeo | 386 km |
Apogeo | 398 km |
Período orbital | 89,8 minutos |
Inclinación orbital | 51,6 grados |
Órbitas por día | 16,13 |
Días en órbita | 5.519 |
Días ocupada | 4.592 |
Distancia recorrida | 3.638.470.307 km |
Masa | 124.340 kg |
Volumen del área habitable | 350 m³ |
El concepto de la nueva serie de estaciones espaciales que iba a sustituir a la serie Saliut fue decretado el 17 de febrero de 1976, con un diseño mejorado de la base Salyut-DOS 17K. Inicialmente constaba de la base del bloque DOS, que estaría equipada con cuatro puertos de atraque, dos en cada extremo, al igual que las Salyut, y dos puertos adicionales en una esfera de acoplamiento en la parte frontal de la estación. Finalmente, en agosto de 1978, evolucionó a un puerto en la parte de popa y cinco puertos en proa, en forma de esfera (nodo).
El programa Mir se consolidó con la aprobación del programa militar Almaz, de Vladimir Chelomei, en febrero de 1979. Los puertos de acoplamiento se reforzaron para dar cabida a las 20 toneladas de la estación sobre los módulos en base de la nave espacial TKS. El NPO Energia era el responsable de la estación; sin embargo, el trabajo fue subcontratado a KB Salyut, el brazo de desarrollo de Khrunichev debido a la tarea en curso de Energía, Salyut 7, Soyuz-T, y en el progreso de naves espaciales. KB Salyut comenzó a trabajar en 1979, y los primeros bocetos de la Mir fueron publicados en 1982. Entre los nuevos sistemas incorporados a la estación incluían el ordenador de control de vuelo Salyut 5B y giroscopios provenientes del Almaz.
Hasta la Mir, los soviéticos experimentaban en la estación Salyut 7. Dos meses antes, ésta estación se quedó vacía al enfermar uno de los cosmonautas que trabajaban allí. Pero con una batería solar de 76 metros cuadrados, capacidad para tres personas y seis muelles de atraque para otros vehículos espaciales, la Mir dejaba obsoleta a la Salyut 7.
A los 21 días del lanzamiento del primer módulo de la estación Mir, a las 15:30 hora de Moscú, partían hacia ella los cosmonautas que la bautizarían; Leonid Kizim y Vladímir Soloviov, transportados por la nave soviética Soyuz T-15. Dos días después, se ensamblaban con la Mir, a una altura de 400 km. A los 50 días del acoplamiento, el 6 de mayo, los cosmonautas partieron con la Soyuz T-15 y 500 kg de material y herramientas hacia la antigua Salyut 7. Después de 52 días de reparaciones regresaron a la Mir; éste sería el primer viaje entre dos estaciones orbitales de la historia. Tras 125 días ininterrumpidos en órbita, realizando un total de 31 horas y 40 minutos de salidas extravehiculares en ocho salidas, regresaron a la Tierra.
Cinco meses después del regreso de la primera tripulación, se produce el acoplamiento de una nave no tripulada de suministro, la Progress 27, a la estación espacial, aportando combustible, agua, comestibles y diversos equipos. Tras ello, se prepara la segunda misión tripulada para batir todos los récords. El 8 de febrero de 1987 llegan en la Soyuz TM-2 Yuri Romarenko y Alexandr Laveikin, ingeniero de vuelo, realizando su primer viaje espacial. Al entrar en la estación encontraron pan y sal, símbolo de bienvenida que les dejaron sus antecesores.
Apertura internacional
El 5 de abril de 1987 fue lanzado para acoplarse al módulo base Mir (o Mir 1) el módulo astrofísico Kvant, diseñado por ingenieros soviéticos, británicos, holandeses, alemanes y técnicos de la Agencia Espacial Europea; pero la maniobra de acoplamiento no puede realizarse: un objeto extraño atascado en la puerta de atraque lo impide. Los cosmonautas realizaron entonces un paseo espacial para poder acoplarlo. Ya con cuatro módulos, Mir 1, Soyuz TM-2, Progress 29, lanzada en marzo, y el Kvant. De esta manera, la URSS logra el mayor complejo orbital jamás realizado hasta la fecha. La euforia duró un mes; el consumo eléctrico del Kvant es demasiado elevado para la estación. Para solucionarlo fue necesario un paseo extravehicular, instalando nuevas baterías solares. Dos meses más tarde, Alexandr Viktorenko, Alexandr Alexandrov y el sirio Mohamed Faris, iniciaron la primera misión a la Mir con tripulación internacional, surgiendo otro problema; Laveikin sufría de arritmia. Regresó junto a Viktorenko y Faris seis días después de estar en la estación. Romarenko continuó en la Mir para batir el récord de permanencia.
El 23 de diciembre de 1987 llegaron a la estación los soviéticos Vladímir Titov, Musa Maranov y Antoli Levchenko con el objetivo de establecer la primera tripulación permanente. Dos días antes de terminar el año, descendieron Romanenko (estableciendo un nuevo récord de permanencia en el espacio, 327 días ininterrumpidos) Alexandov y Levchenko.
Intercosmos
Logo del programa Intercosmos.
En el verano de 1988 comenzaron las misiones conjuntas con los países satélites de la URSS. El 7 de junio de 1988 el búlgaro Alexander Alexandrov y los soviéticos Anatoli Soloviov y Víctor Savinji, iniciaron el embarque con destino a la Mir. En la misión de 10 días, se incluyeron espectrometrías del territorio búlgaro. Abdul Mohamed, primer cosmonauta afgano, junto a Vladímir Liajov, piloto, y Valery Poliakov, médico, completaron esta misión, con objetivos como experimentación biológica y estudios sobre los efectos de la microgravedad en los cosmonautas (con más de ocho meses habitando la Mir). Al llegar a la estación, Mohamed abrazó el Corán y entonó una plegaria. La misión fue exitosa, pero al regresar a la Tierra se produjeron momentos de tensión y pánico, puesto que la nave, la Soyuz TM-5, sufrió una cadena de fallos en las maniobras de aproximación, por lo que tuvieron que quedarse en órbita con poco oxígeno a bordo. La situación es tan desesperada que la NASA ofreció su ayuda, pero los soviéticos la rechazaron. Finalmente consiguieron iniciar la re-entrada volviendo sanos y salvos.
El 26 de noviembre de 1988 el francés Jean-Loup Chrétien se unió a la exploración espacial en la Mir con los soviéticos Volkov y Krikaliev. A punto de terminar 1988, Musa Manarov y Vladímir Titov, tras batir de nuevo el récord de permanencia, 366 días ininterrumpidos, regresaron junto al astronauta francés a la Tierra.
Fin de la época soviética
La nueva política de restricción de gastos en el programa espacial de la URSS afectó a la Mir. Alexandr Volkov, Serguéi Krikaliov y Valeri Poliakov regresaron dejando vacía la estación espacial. Pero afortunadamente para la Mir, las medidas de recorte presupuestario solo afectaron durante tres meses. El 5 de septiembre de 1989 Alexandr Viktorenko y Alexandr Serebrov en la Soyuz TM-8 se convirtieron en la siguiente misión a la Mir, acoplándose a la estación el 8 de septiembre. Los cosmonautas llevaron consigo un sillón espacial, el cual permitía moverse libremente por el espacio en las salidas extravehiculares, sin necesidad de arneses de sujeción. En noviembre de ese año, el módulo Kvant 2 se acopló a la estación con un nuevo equipo para la obtención de oxígeno.
El astronauta alemán Ewald Reinhold junto a Vasili Tsibliyev, en 1997.
El 19 de febrero de 1990, la Soyuz TM-8 partió hacia la Tierra mientras la Soyuz TM-9 lo hacía hacia la Mir. Anatoli Soloviov y Alexandr Baladin descubrieron que su Soyuz se averió en el despegue, no pudiendo regresar a la Tierra. En julio tuvieron que realizar un paseo de siete horas (el más largo de la historia) para reparar la nave. Guennadi Mannakov y Guennadi Strekalov relevaron a los cosmonautas en la Soyuz TM-10 (lanzada el 1 de agosto de 1990). El 4 de diciembre el japonés Toyohiro Akiyama se convirtió en el primer periodista en el espacio y en visitar la Mir. Estuvo durante seis días compartiendo la estación con los cosmonautas que ya estaban ahí y con Musa Manarov y Víctor Afanésiev, con los que viajó. El gobierno soviético hizo un contrato con la cadena de TV japonesa que ascendía a 8,5 millones de €.
Finalmente, y marcando el final de la época soviética de la estación espacial, el cosmonauta soviético Serguéi Krikaliov despegó hacia la Mir cuando todavía era soviético en la Soyuz TM-11, el 2 de diciembre de 1990. Con un retraso de seis meses, o sea, diez meses después, aterrizó en un nuevo país, la CEI, el remanente político de la desintegrada Unión Soviética.
Euromir
En las siguientes misiones una serie de europeos, algunos en representación de la ESA, formaron parte de las tripulaciones; la británica Helen Sharman en la Soyuz TM-12 (lanzada el 18 de mayo de 1991), el austríaco Franz Viehböck en la Soyuz TM-13 (2 de octubre de 1991), el alemán Klaus-Dietrich Flade, en la Soyuz TM-14 (17 de marzo de 1992), y en posteriores misiones los franceses Michel Tognini y Jean-Piere Haigneré.
En 1994 Yelena Kondákova se convirtió en la primera rusa enviada al espacio desde 1982. Junto a ella fueron en la Soyuz TM-20 el alemán Ulf Merbold y el veterano cosmonauta Alexandr Viktorenko, conformando la misión ‘Euromir 94’. Kondákova permanecería en la Mir unos ocho meses para el estudio del efecto de la microgravedad en la mujer.
Época ruso-estadounidense: programa Shuttle-Mir
De derecha a izquierda: la astronauta norteamericana Shannon Lucid, el comandante de la misión Yury I. Onufrienko, y el ingeniero de vuelo Yury V. Usachev, durante la misión Mir-21, el 25 de marzo de 1996.
Yury I. Onufrienko realizando una salida extravehicular, en 1996.
Estados Unidos había planeado construir la estación espacial Freedom como homóloga a la Mir, pero recortes en el presupuesto de la NASA echaron atrás el proyecto. Pasados los años, al final de la Guerra fría, el programa Shuttle-Mir combinó las capacidades de la estación Mir y los transbordadores de Estados Unidos. La Mir en órbita proveía de un laboratorio científico amplio y habitable en el espacio exterior. Los transbordadores espaciales visitantes servían de medio de transporte de personas y suministros, así como de ampliaciones temporales de las zonas de trabajo y vivienda, creando la mayor nave espacial de la historia, con una masa combinada de 250 toneladas. Las visitas de los transbordadores estadounidenses emplearon un collar de atraque modificado, diseñado originalmente para el transbordador soviético Burán.
En junio de 1992, el presidente de EE.UU. George H. W. Bush y el presidente ruso Borís Yeltsin se mostraron de acuerdo en unir esfuerzos para la exploración espacial; un astronauta estadounidense embarcaría en la Mir, y dos cosmonautas rusos lo harían en el transbordador espacial estadounidense. En septiembre de 1993 el vicepresidente estadounidense Al Gore y el primer ministro ruso Víctor Chernomirdin anunciaron los planes para una nueva estación espacial, la cual se llamaría después como la Estación Espacial Internacional o ISS (de sus siglas en inglés). Ellos se mostraron de acuerdo en que en preparación de ese nuevo proyecto, los EE.UU. deberían involucrarse en el proyecto Mir, bajo el nombre en código “Fase Uno” (la ISS sería la “Fase Dos”). Los transbordadores espaciales se encargarían del transporte de personas y suministros a la Mir y a cambio los astronautas estadounidenses vivirían en la Mir varios meses. De ese modo EE.UU. podrían aprender y compartir la experiencia rusa de los viajes de larga duración en el espacio.La nave estadounidense Discovery, en la misión STS-63 (3 de febrero de 1995), fue la primera nave estadounidense que visitó la Mir, aunque no se acopló. La pilotaba además por vez primera una mujer, Eillen Collins, y entre la tripulación se encontraba el cosmonauta ruso Vladímir Titov, que estuvo durante un año en la estación anteriormente. La nave se aproximó hasta los 10 metros, distancia con la que el propio cosmonauta ruso Polyakov, que se encontraba en el módulo Mir, pudo asomarse y saludar a los estadounidenses. Un mes más tarde, Norman Thagard se convirtió en el primer estadounidense en viajar con los rusos y atracar en la Mir a bordo de la Soyuz TM-21. La NASA pagó entonces la cifra de 312,5 millones de € por enviar durante un periodo de cuatro años astronautas a la Mir. La nave despegó el 14 de marzo de 1995. El 29 de junio, la lanzadera Atlantis atracó en la Mir: hasta 10 personas se juntaron en el espacio (6 estadounidenses y 4 rusos), batiendo el récord de personas juntas en órbita. Thagard estuvo 115 días en la estación, sintiéndose de manera forzosa aislado cultural y lingüísticamente. Su estancia en la estación espacial fue compartida con los cosmonautas rusos Dezhurov y Strekalov, regresando los tres en la Atlantis (STS-71). Unos meses más tarde, el 2 de septiembre, llegó a la Mir el alemán Thomas Reiter, en la Soyuz TM-22, convirtiéndose en el primer astronauta europeo en realizar un paseo por el espacio. El mismo año el ruso Valeri Poliakov batió otro nuevo récord de permanencia en el espacio (438 días ininterrumpidos, que es el récord absoluto hoy en día). Tras el paso del canadiense Chris Hadfield por la estación a finales de 1995, en septiembre de 1996 Shannon Lucid le arrebató a la cosmonauta Kondákova el récord femenino de permanencia en el espacio (188 días), así como a su compatriota Thagard el récord de permanencia estadounidense.
Etapa final de la Mir
El cosmonauta ruso Vasily Tsibliev, realizando una salida extravehicular.
Desde principios de marzo de 1995, siete astronautas estadounidenses pasaron de forma consecutiva 28 meses en la Mir. Durante su estancia en la estación espacial hubo varios momentos difíciles debidos a emergencias graves. El 23 de febrero de 1997 se produjo un gran incendio a bordo. Dicho incendio colapsó las unidades de filtración de aire de la nave, manteniéndose las llamas durante algo más de 7 minutos, obligando a la tripulación a llevar puestas las mascarillas. A bordo se encontraban el norteamericano Jerry Michael Linenger, que llegó en el transbordador Atlantis en la misión STS-81 (12 de enero de 1997), y los cosmonautas rusos Alexandr Lazutkin y Basili Tsibliyev, de la misión Soyuz T-25, que despegó a la Mir el 10 de febrero. Las reparaciones de los daños causados por el fuego comenzaron en abril de ese año con herramientas llegadas desde la Tierra.
Pero con el recién llegado astronauta con doble nacionalidad británica y norteamericana, Collin Michael Foale, de la misión STS- 84, y cuando los problemas parecían haber quedado en anécdota, el 25 de junio de ese mismo año se produjo una colisión con una nave de carga no tripulada Progress M-34: en la maniobra de aproximación de la nave Progress, se produjo un choque en el módulo Spektr, provocando la descompresión del módulo por culpa del agujero en el fuselaje de la estación. Uno de los paneles solares quedó seriamente dañado, conllevando al fallo del suministro eléctrico en toda la Mir. Los tripulantes tuvieron que desconectar los otros tres paneles del módulo dañado para poder cerrar la escotilla de acceso, pero al hacerlo también desconectaron el cable de suministro del ordenador central, dejando a la estación en completa oscuridad. Michael Foale sustituyó a Vasili Tsibliyev en el mando de la misión, pues éste padeció de problemas cardiovasculares. Vasili fue además objeto de las culpas desde Rusia, pasando por alto que el cosmonauta tuvo que realizar la fase de acoplamiento de la nave Progress a la Mir de manera manual, sin un radar ucraniano imprescindible para dicho acoplamiento, puesto que la instalación de este radar era excesivamente cara. El hecho es que, sin las herramientas adecuadas, Vasili poco pudo hacer para evitar el impacto.
Los cosmonautas Pavel Vinogradov (ingeniero) y Anatoli Soloviov partieron hacia la Mir, en la Soyuz Tm-26, en un intento de arreglar la estación con preparación específica y herramientas, y de paso relevar a los estresados tripulantes. Michael Foale se quedó en la estación. Tras un exhaustivo trabajo, con pequeñas interrupciones que lo hicieron más complicado como es el caso de que Pavel tenía un guante defectuoso, empezaron a conectar cables para arreglar el problema. Para ello, hicieron una salida extravehicular dentro del dañado módulo Spektr, que se encontraba despresurizado. Millones de personas estuvieron durante horas viendo en directo por televisión el transcurso de la operación. En ambas ocasiones, con el incendio y la colisión, se evitó la evacuación completa de la Mir (siempre existía una nave de escape Soyuz para regresar a la Tierra), aunque por un estrecho margen.
La cooperación entre Rusia y EE.UU. estuvo lejos de ser fácil. Discusiones, falta de coordinación, problemas de lenguaje, diferentes puntos de vista de las responsabilidades de los otros e intereses contrapuestos causaron muchos problemas. Después de los accidentes el Congreso estadounidense y la NASA consideraron que EE.UU. debía abandonar el programa por la falta de seguridad de los astronautas, sin embargo el administrador de la NASA Daniel S. Goldin decidió continuar con el programa. En junio de 1998, el último astronauta estadounidense de la Mir, Andy Thomas, dejó la estación a bordo del transbordador espacial Discovery.
Polyakov observando la llegada del transbordador Discovery (6 de febrero de 1995)
(09) Estación Espacial Internacional
La Estación Espacial Internacional, (en inglés, International Space Station o ISS) es un centro de investigación en la órbita terrestre, cuya administración, gestión y desarrollo está a cargo de la cooperación internacional. El proyecto funciona como una estación espacial permanentemente tripulada, en la que rotan equipos de astronautas e investigadores de las cinco agencias del espacio participantes: la Agencia Administración Nacional de la Aeronáutica y del Espacio (NASA), la Agencia Espacial Federal Rusa (FKA), la Agencia Japonesa de Exploración Espacial (JAXA), la Agencia Espacial Canadiense (CSA) y la Agencia Espacial Europea (ESA).4 Está considerada como uno de los logros más grandes de la ingeniería.
La Agencia Espacial Brasileña participa a través de un contrato separado con la NASA. La Agencia Espacial Italiana tiene semejantemente contratos separados para las varias actividades no incluidas en el marco de los trabajos de la ESA en la ISS (donde participa Italia también completamente).
De muchas maneras la ISS representa una fusión de las estaciones espaciales previamente previstas: la Mir-2 de Rusia, la estación espacial estadounidense Freedom, el previsto módulo europeo Columbus y el JEM (Módulo Japonés de Experimentos). Los primeros planes de montar una gran estación internacional remontan a los años 1980. La estación se planificó en ese entonces también bajo el nombre Alpha.
La ISS está en construcción desde 1998 y en el presente es el objeto artificial más grande en órbita terrestre. Completa una vuelta aproximadamente cada 92 minutos y se encuentra a unos 400 km aproximadamente de la superficie de la Tierra. 5 de altura (datos de febrero de 2015), aunque su altura puede variar debido a la fricción atmosférica y a las repetidas propulsiones. La inclinación es de 51,6°.
La estación ha alcanzado dimensiones aproximadas de unos 110 m × 100 m × 30 m, con una gran superficie habitable. Según los planes, debería mantenerse en operaciones por lo menos hasta el año 2024.6
Gracias a la estación, hay presencia humana permanente en el espacio, pues al menos dos personas la han habitado desde el 2 de noviembre de 2000. La estación se mantiene hoy día principalmente por las lanzaderas rusas Soyuz y la nave espacial Progress. Anteriormente el mantenimiento se hacía gracias a los Space Shuttle norteamericanos, que operaron hasta el año 2011, puesto que posteriormente el programa de transbordadores espaciales de Estados Unidos fue cancelado debido a que sus exorbitantes costos no correspondían al recorte general de gastos del gobierno de ese país.
En sus primeros tiempos, la estación tenía una capacidad para una tripulación de tres astronautas, pero desde la llegada de la Expedición 20, estuvo lista para soportar una tripulación de seis astronautas. Antes de que llegara el astronauta alemán Thomas Reiter, de la ESA; que se unió al equipo de la Expedición 13 en julio de 2006, todos los astronautas permanentes pertenecían a los programas espaciales ruso, estadounidense o canadiense. Entretanto, la ISS ha sido visitada por 205 personas de dieciséis países y ha sido también el destino de los primeros turistas espaciales.
Debido a lo extenso de su descripción, uso, etc. Se adjuntan unas webs al efecto:
https://es.wikipedia.org/wiki/Estaci%C3%B3n_Espacial_Internacional
http://www.huffingtonpost.es/2015/11/07/estacion-espacial-internacional_n_8490220.html
https://en.wikipedia.org/wiki/Assembly_of_the_International_Space_Station
Características
En líneas generales, se puede describir la Estación Espacial Internacional como un gigantesco mecano situado en órbita alrededor de la Tierra, a 400 km de altura. Sus dimensiones son de aproximadamente 109 m de longitud total y 88 m de ancho, con una masa cercana a las 420 toneladas. El volumen habitable alcanza a unos 916 m3, con lo que sobrepasa en amplitud y complejidad todo lo que existe hasta la fecha. Puede acoger hasta seis astronautas permanentemente, quienes se suceden según las exigencias de las misiones. Su energía es proporcionada por los paneles solares más grandes que jamás se hayan construido, de una potencia de 84 kW.
Resumen de las características
(datos de 2012)7
- Longitud del módulo: 51 metros (167,3 pies)
- Longitud del rack: 109 metros (357,5 pies) (Prácticamente el equivalente a un campo de fútbol, incluida su área exterior)
- Longitud de los paneles solares: 73 metros (239,4 pies)
- Masa: 419 455 kilogramos (924 739 libras)
- Volumen habitable: 388 metros cúbicos (13 696)
- Volumen presurizado: 916 metros cúbicos (32 333 pies cúbicos)
- Producción de energía: 8 paneles solares = 84 kilovatios
- Líneas de código de software: aproximadamente 2,3 millones
- Número de personas por cada expedición: 6
- Laboratorios: 4
- Velocidad: 27 743 km/h
- Altura aproximada: 400 km
La estación ha progresado de manera sostenida, no sólo en sus características técnicas, sino también en cuanto a la calidad de los espacios habitables, proporcionando mayor confort para las expediciones de larga duración. Actualmente tiene un espacio habitable comparable con una casa estándar de cinco dormitorios, tiene además dos baños y posee un gimnasio. Desde mayo de 2014 se encuentra tripulada por la expedición 40 hasta septiembre de 2014.
La historia de la Estación Espacial Internacional comenzó el 20 de noviembre de 1998, cuando el cohete ruso Protón colocó en órbita el módulo ruso Zaryá, el módulo principal y más grande, diseñado para dotar a la estación espacial de la energía y capacidad de propulsión iniciales. El 2 de diciembre la NASA puso en órbita el nodo Unity a través de su transbordador espacial Endeavour.8
Los paneles solares fotovoltaicos de la Estación Espacial Internacional.
El 12 de julio de 2000 se añadió el segundo módulo de servicio ruso Zvezdá (pronunciado /zviozda/) que aportaba los sistemas de soporte vital de la Estación Espacial y preparaba la estación, para recibir a sus primeros astronautas. El 11 de octubre de 2000 se añadió sobre el nodo Unity la estructura integrada ITS Z1 que permite comunicarse con la Tierra. El 2 de noviembre llegan los primeros tripulantes a bordo de una Soyuz lanzada el 31 de octubre de 2000. Un mes después se añadió el primer módulo fotovoltaico que proporcionaba energía solar a toda la estación.
Al año siguiente llegó a la estación espacial el laboratorio más importante, el Destiny, de fabricación estadounidense. Fue acoplado a la estación el 7 de febrero de 2001 mediante el transbordador Atlantis. El 19 de abril de 2001 fue colocado el primer brazo de la ISS, de fabricación canadiense. Con el brazo SSRMS también llegaron un pequeño módulo italiano y una antena UHF. El 12 de julio de ese mismo año se añadió una cámara de descompresión para que los tripulantes pudieran salir de la estación espacial y dar los primeros paseos espaciales. El 14 de septiembre del 2001 se añadió un módulo de atraque ruso con una cámara de descompresión.
El 8 de abril de 2002 se acopló el segmento central ITS S0 del futuro armazón de 91 metros que soportará los grandes paneles solares de los extremos de la ISS. El brazo SSRMS canadiense que se había colocado en el módulo Destiny fue trasladado al segmento central ITS S0 el 5 de junio de ese mismo año. El 7 de octubre se colocó el segmento de estribor ITS S1 del armazón de la estación. El armazón principal se completó el 23 de noviembre de 2002 con el segmento de babor ITS P1.
El 27 de febrero de 2004, los tripulantes Michael Foale y Alexandr Kaleri realizaron el primer paseo espacial que involucraba a la totalidad de la tripulación. La mayoría de los objetivos del paseo, incluyendo la instalación de equipo externo, se lograron antes de que se abortara la misión debido a un problema de refrigeración en el traje de Kalery HL.
El 28 de julio de 2005 llegó a la estación el módulo italiano de carga Raffaello a través del transbordador Discovery de la NASA.
El 27 de junio de 2006 una pieza de basura espacial que posteriormente fue identificada como el satélite militar estadounidense Hitch Hiker 1 lanzado en 1963, y ya fuera de servicio, pasó a aproximadamente 2 kilómetros de la ISS (ésta se mueve a unos 7,7 km/s). Este suceso provocó una situación de alarma y se iniciaron preparativos para una evacuación de urgencia de la Estación Espacial. Este acercamiento estuvo monitorizado por técnicos del CCVE ruso y el Centro de la NASA en Houston, y concluyó sin incidentes. Se estimó que la pieza de chatarra espacial tenía una masa de 79 kilos.
El 7 de julio de 2006 el transbordador Discovery se acopló a la ISS con éxito. Entre la tripulación del Discovery estaba el astronauta alemán Thomas Reiter que junto con el estadounidense Jeff Williams y el ruso Pavel Vinogradov formaron la tripulación permanente del complejo orbital. Con la llegada del astronauta de la ESA la estación pasa de una tripulación permanente de dos astronautas a tres.
La Estación Espacial Internacional y el Transbordador Espacial Discovery listos para acoplarse.
El 8 de junio de 2007, el transbordador Atlantis (misión STS-117) parte para la Estación Espacial Internacional para instalar unos nuevos paneles solares9 tarea que realiza con éxito. El día 10 se detecta una grieta en la cubierta térmica del transbordador Atlantis que debe repararse en vuelo.10 El día 14 se produce un fallo informático grave que deja sin agua, luz y capacidad de orientación a la estación espacial. En el peor de los casos, ésta debería haber sido desalojada, pero el fallo se soluciona y los sistemas vuelven a funcionar con normalidad.11
El 17 de junio de 2007 la astronauta Sunita Williams se convierte en la mujer que más tiempo seguido ha estado en el espacio, al completar 188 días y 4 horas fuera de nuestro planeta.12
El 23 de octubre de 2007 partió el módulo de fabricación italiana Harmony hacia la ISS con la misión STS-120 y se montó provisionalmente tres días más tarde en Unitiy, tomando finalmente su posición definitiva en el extremo del laboratorio Destiny. Con un peso cercano a las 15 toneladas, su objetivo es servir como puerto de enlace para los laboratorios europeos y japoneses.13
En febrero de 2008 se añadió el módulo Columbus europeo y en junio el transbordador Discovery visitó nuevamente la Estación Espacial Internacional y añadió componentes nuevos, de los cuales destaca el módulo principal del esperado Kibo Science Laboratory.
En marzo de 2009 se agregó el cuarto y último módulo de paneles solares (el S6) por la misión STS-119. En mayo de 2009 la Estación ya podía albergar a seis tripulantes dentro de ella.
El último elemento constructivo del módulo Kibo se instaló en junio por la misión STS-127. En noviembre de 2009, el módulo de acoplamiento ruso Poisk llegó a la estación. En febrero de 2010 se instaló el nodo de empalme Tranquility (Node 3) con la cúpula de vista panorámica Cupola. En mayo de 2010 le siguió el módulo ruso Rassvet y el MPLM Leonardo en marzo de 2011. El 23 de octubre de 2010 la ISS efectuó el relevo de la Mir, el vehículo espacial que había estado durante más tiempo (3644 días) ininterrumpidamente tripulado por seres humanos. Ese récord se ha extendido ahora a 4304 días. El experimento del AMS se instaló en mayo de 2011 con el penúltimo Transbordador STS. En el verano de 2013 la estación se completó además con el módulo de laboratorio ruso Naúka o Módulo laboratorio multipropósito.
Tras el acuerdo de los países participantes de operar la estación en conjunto hasta por lo menos 2020, Rusia planea la construcción de otros tres módulos que surgen de una concepción nueva. En 2012 se instalará primeramente un módulo de acoplamiento esférico en el extremo inferior del MLM Nauka. Aquí se acoplarían en 2014 y 2015 dos grandes módulos nuevos (NEM 1 und 2), de investigación y de energía, respectivamente.
En diciembre de 2010, la masa de la estación bordeaba ya las 370 toneladas y su estructura tenía una longitud de 109 metros. Dado que la envergadura definitiva ya se había alcanzado desde la instalación de los primeros paneles solares, la ISS fue desde entonces, y continúa siendo hasta la fecha, la estación espacial más grande que se ha construido en la historia.
Contribuyentes primarios. Países con contrato con la NASA.
Los astronautas dividen su tiempo en la estación entre los laboratorios (Destiny, Kibo y Columbus), el módulo de servicio Zvezda (donde está la “cocina”, por ejemplo), el observatorio Cupola y la escotilla presurizada Quest, en la que se preparan los tripulantes que van a realizar una actividad extravehicular, es decir, un paseo espacial por el exterior de la estación. Cuando no están desempeñando sus labores diarias, tienen asignado un tiempo muy preciso para su aseo personal, para comer, para hacer ejercicio y para dormir, y en cada módulo se realizan diferentes tareas:
- Zvezda: Módulo de servicio ruso, construido de modo similar al módulo principal de la estación espacial Mir. Contiene compartimentos para dormir y para el aseo.
- Zarya: Dedicado principalmente al almacenaje y para la propulsión de la estación, que necesita elevar periódicamente la altura de su órbita.
- Harmony y Unity: Nodos de conexión entre otros módulos. Harmony, además, alberga sistemas de generación de aire, electricidad, reciclaje de agua y otros servicios esenciales.
- Kibo: Laboratorio japonés, es el módulo de mayor tamaño de la ISS. Está formado por un módulo presurizado y dos secciones para experimentos, una de ellas expuesta al espacio.
- Columbus: Laboratorio europeo.
- Destiny: Laboratorio de la NASA.
- Tranquility: Nodo de conexión con el módulo observatorio Cupola, que también contiene el equipamiento de soporte vital, los sistemas para el reciclaje de agua y generación de oxígeno y la cinta de correr.
- Quest: Escotilla para la preparación de las actividades extravehicular. Allí se guardan los trajes espaciales.
- Rassvet y Poisk: Nodos para el atraque de la Soyuz, en los que sus tripulantes disponen también de una cámara para aclimatarse a la presión atmosférica de la ISS.
Figura 1: La estación espacial definitiva deberá desarrollar hasta el año 2015 numerosos experimentos científicos, y para ello consta de seis laboratorios presurizados y 36 agregados de carga. Los experimentos incluyen las siguientes áreas: investigaciones humanas; biotecnológica; ciencias de materiales, fluidos y combustión; biología gravitacional; ciencias de la tierra y del espacio.
(1) El laboratorio americano incluye 11 lugares experimentales, incluyendo facilidades para investigación humana y de materiales, combustión y ciencia de fluidos.
(2) Los laboratorios japoneses incluyen 10 departamentos presurizados y 10 sitios expuestos, incluyendo facilidades para ensayos de materiales y biología gravitacional.
(3) Los laboratorios rusos incluyen facilidades para ciencias de la vida, materiales y otros.
(4) Los laboratorios europeos generales tienen 12 lugares de experimentos, incluyendo un laboratorio para estudios biológicos y varios laboratorios de combustión.
(5) Una centrífuga permitirá a los investigadores variar la fuerza gravitacional, permitiendo comparaciones en tiempo real con ensayos de baja.
(6) Diversos instrumentos de observación de la Tierra y del espacio y tecnologías relacionadas.
(10) Tiangong 1
Imagen de la estación Tiangong 1.
Tiangong 1 (chino simplificado: 天宫一号, pinyin: Tiāngōng yīhào, literalmente «Palacio celestial 1») es una estación espacial china en fase de construcción y que se encuentra en órbita desde el 29 de septiembre de 2011.1 La puesta en órbita, originalmente planificada para finales de 2010,2 fue más tarde pospuesta a 2011.3 Según ha informado la Agencia Espacial China, la estación contará con un laboratorio espacial de aproximadamente 8 toneladas de peso en la que participarán las misiones espaciales Shenzhou 8, Shenzhou 9 y Shenzhou 10 durante sus dos primeros años de funcionamiento.
El objetivo es crear una estación espacial de tercera generación, comparable a la Mir. Este programa es autónomo y no tiene relación con otros países que realizan actividades en el espacio.1 El programa comenzó en 1992 como el Proyecto 921-2. En enero de 2013, China sigue adelante en un gran programa multifase de construcción que dará lugar a una gran estación espacial en 2020.2
China lanzó su primer laboratorio espacial, Tiangong 1, el 29 de septiembre de 2011. Tras Tiangong 1, un laboratorio espacial más avanzado completado con la nave de carga, llamado Tiangong 2, será construido. Tiangong 3 continuará desarrollando estas tecnologías. El proyecto culminará con una estación orbital grande, que constará de un módulo principal de 20 toneladas, 2 módulos de investigación más pequeños y embarcación de transporte de carga.3 Dispondrá de alojamiento para tres astronautas durante largos periodos2 y está previsto que se complete justo en la fecha en la que la Estación Espacial Internacional está programada para ser retirada.4
Fase de laboratorio espacial
Los esfuerzos de China para desarrollar una estación espacial de órbita baja terrestre comenzarán con una fase de laboratorio espacial, con el lanzamiento de los tres módulos espaciales Tiangong.2
Tiangong 1 “objetivo de acoplamiento”
Escotilla de acoplamiento del Tiangong (CCTV).
El objetivo de acoplamiento chino consiste en un módulo de propulsión (recurso) y un módulo presurizado para los experimentos, con un mecanismo de acoplamiento en cada extremo. El puerto de acoplamiento de la sección de experimentos soporta acoplamiento automatizado.10 Su longitud es de 10,5 metros y el diámetro es de 3,4 m.2 Tiene una masa de 8.000 kg. Fue lanzado el 29 de septiembre de 2011 y está destinado a estancias cortas de una tripulación de tres astronautas.
Modelo del sistema de acoplamiento (CCTV).
El laboratorio espacial está diseñado principalmente para probar sistemas de navegación y acoplamiento. A 10,5 metros de largo y 4,5 metros de ancho, contiene instrumentos científicos y sistemas de soporte vital, pero no pretenden ser un puesto de avanzada permanente chino en el espacio.
La nave Shenzhou 10 fue lanzada al espacio desde el desierto de Gobi, y se espera que una vez en la órbita, se conecte con el módulo Tiangong-1.
Preparando la Shenzhou-8.
China lanzó hoy un cohete con tres astronautas a bordo, a completar una misión de 15 días en su laboratorio espacial que está en desarrollo para convertirse en una estación china en el espacio.
La nave Shenzhou 10 fue lanzada al espacio desde el desierto de Gobi, y se espera que una vez en la órbita, se conecte con el módulo Tiangong-1. Los astronautas – dos hombres y una mujer – probarán los sistemas del módulo y realizarán experimentos científicos, además de realizar una transmisión para estudiantes en la Tierra.
China logró conectar una nave a la estación Tiangong-1 en junio del año pasado, demostrando la capacidad tecnológica y logística para crear su propia estación. Esta es la primera misión de larga duración que los astronautas chinos hayan realizado en el espacio.
Interior del Tiangong-1 (CCTV)
Esta pantalla tomada el 26 de junio de 2012 muestra los astronautas chinos que están llevando a cabo ensayos científicos en el módulo de laboratorio espacial Tiangong-1 agitando las manos en el Tiangong-1. (Xinhua)
La estación espacial china ‘Tiangong-1’ cae en el Pacífico sur
Pekín 2 ABR 2018 – 18:41 CEST
Una imagen por radar de la estación espacial china Tiangong-1. AP REUTERS-QUALITY
El Tiangong-1, el primer laboratorio espacial que China lanzó al espacio, se desintegró este lunes (02/04/2018), durante su reentrada en la atmósfera terrestre. La nave, que se desplazaba de forma descontrolada desde 2016, puso fin a más de seis años en el espacio a las 8.15 hora china (2.15 hora española) al precipitarse en la remota región central del Pacífico sur.
“La mayoría de los dispositivos del módulo fueron eliminados y destruidos durante la reentrada”, informó en un comunicado la Oficina de Ingeniería Espacial Tripulada de China. El Tiangong-1 entró en la atmósfera una media hora antes de lo previsto por la misma agencia, que había estimado inicialmente que la zona de caída sería el Atlántico Sur, frente a las costas de la ciudad brasileña de Sao Paulo. Su entrada, finalmente, se produjo en el vasto océano Pacífico, a miles de kilómetros al noreste de Nueva Zelanda.
Lanzado en 2011, Tiangong-1 sirvió como laboratorio para tres misiones tripuladas -la última partió de allí en junio de 2013- y como un experimento para una futura estación espacial más grande. En marzo de 2016, China anunció que había dejado de recibir datos de telemetría de la plataforma y meses más tarde reconocía que la estación volvería a entrar en la atmósfera, aunque creían que sucedería antes, en la segunda mitad de 2017. Ahora se tambalea de forma incontrolada.
La Agencia Espacial Europea (ESA) explicó hace algunos días que solo será posible conocer el lugar de reentrada aproximado con un día de antelación. De momento, se sabe que la estación caerá en algún punto situado entre los 43ºN y 43ºS de latitud, una amplísima franja del mundo que comprende España, Francia, Grecia, Portugal o Italia por el norte, pero también Australia, Nueva Zelanda y Argentina por el sur. Sin embargo, la probabilidad de impacto será máxima justo en los extremos de esa franja, donde se encuentra nuestro país.
Una de las razones por la que es tan difícil determinar el viaje de Tiangong-1 es que este ocupa una órbita terrestre baja (LEO, por sus siglas en inglés), relativamente cerca de la superficie de la Tierra en comparación con otras órbitas, como la órbita media y la geoestacionaria, un espacio lejano donde residen los satélites de comunicación. Los objetos en LEO «se mueven realmente rápido», explica Vishnu Reddy, investigador de la Universidad de Arizona (EE.UU.), que rastrea la vuelta de Tiangong-1 con un sensor óptico de apenas 1.500 dólares que construyó junto a su colega Tanner Campbell en cuatro meses. A 17.400 mph, Tiangong-1 orbita la Tierra cada 90 minutos.
(01) – Sputnik 1
El Sputnik 1 (en ruso: Спутник-1, pronunciación: [ˈsputnʲɪk], que significa satélite) lanzado el 4 de octubre de 1957 por la Unión Soviética fue el primer satélite artificial de la historia.1
El Sputnik 1 fue el primero de varios satélites lanzados por la Unión Soviética en su programa Sputnik, la mayoría de ellos con éxito. Le siguió el Sputnik 2, como el segundo satélite en órbita y también el primero en llevar a un animal a bordo, una perra llamada Laika. El primer fracaso lo sufrió el Sputnik 3.1 2
La nave Sputnik 1 fue el primer intento no fallido de poner en órbita un satélite artificial alrededor de la Tierra. Se lanzó desde el Cosmódromo de Baikonur en Tyuratam, 370 km al suroeste de la pequeña ciudad de Baikonur, en Kazajistán (antes parte de la Unión Soviética). La palabra sputnik en ruso significa “compañero de viaje” (“satélite” en astronáutica). El nombre oficial completo, se traduce sin embargo como “Satélite Artificial Terrestre” (ISZ por sus siglas en ruso).1 2
El Sputnik 1 fue el primero de una serie de cuatro satélites que formaron parte del programa Sputnik de la antigua Unión Soviética y se planeó como una contribución al Año Geofísico Internacional (1957–1958), establecido por Organización de las Naciones Unidas. Tres de estos satélites (Sputnik 1, Sputnik 2 y Sputnik 3) alcanzaron la órbita terrestre. El Sputnik 1 se lanzó con el vehículo de lanzamiento R-7 y se incineró durante su reentrada el 4 de enero de 1958.1 2
El Sputnik 1 tenía una masa aproximada de 83 kg, contaba con dos transmisores de radio (20,007 y 40,002 MHz) y orbitó la Tierra a una distancia de entre 938 km en su apogeo y 214 km, en su perigeo. El análisis de las señales de radio se usó para obtener información sobre la concentración de los electrones en la ionosfera. La temperatura y la presión se codificaron en la duración de los pitidos de radio que emitía, indicando que el satélite no había sido perforado por un meteorito.1 2
El satélite artificial Sputnik 1 era una esfera de aluminio de 58 cm de diámetro que llevaba cuatro largas y finas antenas de 2,4 a 2,9 m de longitud. Las antenas parecían largos bigotes señalando hacia un lado. La nave obtuvo información perteneciente a la densidad de las capas altas de la atmósfera y la propagación de ondas de radio en la ionosfera. Los instrumentos y fuentes de energía eléctrica estaban alojadas en una cápsula que también incluía transmisores de radio operando a 20,007 y 40,002 Mhz. (alrededor de 15 y 7,5 m en longitud de onda), las emisiones se realizaron en grupos alternativos de 0,3 s de duración. El envío a tierra de la telemetría incluía datos de temperatura dentro y sobre la superficie de la esfera.1 2
Debido a que la esfera estaba llena de nitrógeno a presión, el Sputnik 1 dispuso de la primera oportunidad de detectar meteoritos, aunque no detectó ninguno. Una pérdida de presión en su interior, debido a la penetración de la superficie exterior, se habría reflejado en los datos de temperatura.1 2
La nave Sputnik 1 | |
Organización | Unión Soviética |
Contratistas | Serguéi Koroliov |
Tipo de misión | Estudios astronómicos |
Satélite de | Tierra |
Lanzamiento | 4 de octubre de 1957 a las 19:12 UTC |
Cohete | R-7/SS-6 ICBM |
Reingreso | 4 de enero de 1958 |
Duración | 3 meses |
NSSDC ID | 1957-001B |
Masa | 83,6 kg |
Axis | 6 955,2 km |
Excentricidad | 0,05201 |
Inclinación | 65,1º |
Período orbital | 96,2 minutos |
Apogeo | 939 km |
Perigeo | 215 km |
Órbitas | 1400 |
Web | 1 |
Tipo de Misión | Tecnología |
Operador | OKB-1 |
Designación de Harvard | 1957 alfa 2 |
SatCat № | 00002 |
Duración de la misión | 92 días [1] |
Órbitas completado | 1,440 [1] |
Propiedades Spacecraft | |
Fabricante | OKB-1 Ministerio de Industria radioeléctricos |
Masa de lanzamiento | 83.60 kg (184.3 libras) |
Inicio de la misión | |
Fecha de lanzamiento | 04 de octubre 1957, 19:28:34 |
Cohete | Sputnik 8K71PS |
Lugar de lanzamiento | Baikonur 1.5 |
Fin de la misión | |
Último contacto | 26 de octubre 1957 |
Fecha Decay | 04 de enero 1958 |
Parámetros orbitales | |
Sistema de referencia | Geocéntrico |
Régimen | Bajo Tierra |
Semieje mayor | 6,955.2 km (4,321.8 millas) |
Excentricidad | 0.05201 |
Perigeo | 215,0 kilómetros (133,6 millas) |
Apogeo | 939,0 kilómetros (583,5 millas) |
Inclinación | 65.100 ° |
Período | 96,2 min |
Época | 1956 |
(02) – Explorer 1
El Explorer 1, oficialmente 1958 Alpha 1,7 fue el primer satélite artificial puesto en órbita terrestre por Estados Unidos. Fue lanzado a las 22:48 horas EST del 31 de enero (03:48 del 1 de febrero en UTC) de 1958 desde el Complejo de Lanzamiento 26 (LC-26) de la estación de la Fuerza Aérea de Cabo Cañaveral a bordo del cohete Juno I, como parte del Año Geofísico Internacional y en respuesta al lanzamiento del Sputnik I y del Sputnik II por parte de la Unión Soviética, con lo que se dio así comienzo a la carrera espacial, estrechamente relacionada con la Guerra Fría.8
Fue el primer vehículo espacial que detectó los cinturones de radiación de Van Allen,9 bautizados así en honor a James van Allen, quien había dirigido el diseño y la construcción de la instrumentación científica del Explorer 1, que envió datos durante algo menos de cuatro meses, hasta que sus baterías se agotaron. El pequeño satélite permaneció en órbita hasta el 31 de marzo de 1970, cuando se produjo su reentrada en la atmósfera y se precipitó al océano Pacífico. Fue el primer lanzamiento del programa Explorer, una larga serie de más de noventa satélites estadounidenses.
El programa estadounidense de satélites terrestres comenzó en el año 1954 como una propuesta conjunta del Ejército y de la Armada de los Estados Unidos llamada Project Orbiter, que pretendía poner en órbita un satélite científico durante el Año Geofísico Internacional. La idea, que utilizaría un misil Redstone como lanzador, fue rechazada en 1955 por el gobierno del presidente Dwight D. Eisenhower, que se declinó por el Project Vanguard de la Armada, que no contemplaba el uso de un misil sino el de un cohete pensado expresamente para lanzamientos civiles.10 Tras el lanzamiento del satélite soviético Sputnik I el 4 de octubre de 1957, el Project Orbiter inicial fue retomado como programa Explorer con la intención de estar al mismo nivel que la Unión Soviética.11
El Explorer 1 fue diseñado y construido por el Jet Propulsion Laboratory (JPL) al tiempo que la Army Ballistic Missile Agency (ABMA) modificaba un cohete Jupiter-C para dar cabida a la carga de pago, lo que dio origen al Juno I. El diseño del Jupiter-C utilizado para el lanzamiento ya se había probado en ensayos de vuelo y reentrada para el misil balístico de alcance intermedio PGM-19 Jupiter. Gracias al trabajo conjunto, ABMA y JPL completaron la construcción del Explorer 1 y la modificación del Jupiter-C en ochenta y cuatro días. A pesar de su rapidez, la URSS pudo colocar en órbita un segundo satélite, el Sputnik II, el 3 de noviembre de 1957. Además, el intento de la Armada estadounidense de situar su primer satélite en órbita el 6 de diciembre de 1957 con el Vanguard TV3 fracasó.12
El diseño y la construcción de Explorer 1 se llevaron a cabo por el Jet Propulsion Laboratory del Instituto de Tecnología de California bajo la dirección del Dr. William Hayward Pickering. Fue el segundo satélite que llevó carga de pago, sólo por detrás del Sputnik II.
Presentaba una forma fuselada muy esbelta, con 203 cm de largo y 15,9 cm de diámetro.5 Del peso total del satélite, que era de 13,97 kg, la instrumentación sumaba 8,3 kg. La sección de instrumentación en la parte frontal del satélite y la estructura del cohete de cuatro etapas —una versión reducida del MGM-29 Sergeant— orbitaban como un único cuerpo girando alrededor de su eje de revolución 750 veces por minuto. Es reseñable la diferencia de peso y forma del Explorer 1 respecto al primer satélite ruso, el Sputnik I, que pesaba 83,6 kg y tenía forma esférica.
La transmisión de datos de los aparatos científicos a la base en tierra se realizaba mediante dos antenas. Un transmisor de 60 mW alimentaba una antena dipolo formada por dos antenas de ranura de fibra de vidrio situadas en el cuerpo del satélite cuya frecuencia de operación era de 108,03 MHz; otro transmisor de 10 mW operando a 108,00 MHz alimentaba cuatro latiguillos flexibles que conformaban una antena de torniquete.1 13
Debido al escaso espacio disponible en el satélite y a los requisitos de bajo peso, la instrumentación de la carga útil fue diseñada teniendo como pilares su simplicidad y su alta fiabilidad. Se usaron transistores consistentes en aparatos de germanio y silicio, una tecnología muy nueva por aquellos años para la que su utilización en el mundo espacial supuso un importante desarrollo. Asimismo, es el primer uso documentado de transistores en el programa de satélites de Estados Unidos.14 En total, el Explorer 1 contaba con veintinueve transistores, además de algunos adicionales del detector de micrometeoritos de la Armada.15 La potencia eléctrica del satélite era generada por unas pilas de mercurio, que por sí solas suponían un 40% del peso de la carga de pago.
La estructura que encerraba la sección de instrumentos se pintó a rayas, alternando blanco y verde oscuro para proveer de control térmico pasivo al satélite. Las proporciones de las rayas se determinaron estudiando los intervalos de luz y sombra basados en momento de lanzamiento, trayectoria, órbita e inclinación.
La carga útil del Explorer 1 consistía principalmente en un instrumento de rayos cósmicos (Iowa Cosmic Ray Instrument) sin grabador de cinta para datos que no se modificó a tiempo para poder incorporar uno. Los datos recibidos en tiempo real por la estación en tierra eran por tanto muy escasos y desconcertantes, mostrando frecuencias de conteo normales o ningún conteo en absoluto. Posteriormente, la misión del Explorer 3, que sí incluía una grabadora para los datos, pudo completar la información adicional necesaria para comprobar los datos enviados por el Explorer 1.
La instrumentación científica a bordo del Explorer 1 fue diseñada y construida por el Dr. James van Allen, de la Universidad de Iowa. Contenía:18
- Un tubo de Geiger-Müller omnidireccional Anton 314, diseñado por el Dr. George Ludwig del Labratorio de Radiación Cósmica de Iowa para la detección de rayos cósmicos. Era capaz de detectar protones de energía superior a 30 MeV y electrones de energía superior a 3 MeV. Gran parte del tiempo este instrumento se encontraba saturado. Dejó de funcionar el 16 de marzo de 1958, a causa de las baterías.19
- Cinco sensores de temperatura (uno interno, tres externos y uno en la ojiva de la parte frontal).
- Un detector acústico para detectar impactos de micrometeoros (polvo cósmico). Cada impacto en la superficie de la nave sería función de la masa y la velocidad. Su área efectiva era de 0,075 m2 y el límite medio de sensibilidad era 2,5 × 10−3 g cm/s;20 21
- Un detector de malla, también usado para detectar impactos de micrometeoros. Estaba formado por doce placas conectadas paralelas montadas en un anillo de fibra de vidrio. Cada una de las placas se encontraba envuelta por dos capas de cable de aleación de níquel con aislamiento, que tenían un diámetro de 17 µm (21 µm incluyendo el aislamiento de esmalte), de tal manera que se cubría completamente una superficie de 1 cm2 En caso de que impactara un micrometeoro de unos 10 µm de longitud, rompería el cable y detendría la conexión eléctrica, para así dejar grabado el suceso.20 21
Información general | |
Organización | Army Ballistic Missile Agency1 2 3 4 |
Contratos principales | Jet Propulsion Laboratory1 2 3 4 |
Estado | Destruido en la reentrada |
Satélite de | Tierra1 2 3 4 |
Fecha de lanzamiento | 1 de febrero de 1958, 03:48 (UTC) (31 de enero de 1958, 22:48 hora local)1 2 3 4 |
Vehículo de lanzamiento | Jupiter-C, Juno I1 2 3 4 |
Sitio de lanzamiento | Estación de la Fuerza Aérea de Cabo Cañaveral, EE.UU.1 2 3 4 |
Reingreso | 31 de marzo de 1970 (+58 000 órbitas)1 2 3 4 5 |
Vida útil | 111 días1 2 3 4 |
Aplicación | Ciencias de la Tierra1 2 3 4 |
Masa | 13,97 kg1 2 3 4 |
NSSDC ID | 1 2 3 4 1958-001A1 2 3 4 |
Sitio web | Explorer 1, NASA NSSDC Master Catalog |
Elementos orbitales | |
Semieje mayor | 7832,2 km1 2 3 4 |
Excentricidad | 0,1398491 2 3 4 |
Inclinación | 33,24 grados1 2 3 4 |
Período orbital | 114,8 minutos1 2 3 4 |
Apoastro | 2550 km (altura sobre superficie)1 2 3 4 |
Periastro | 358 km (altura sobre superficie)1 2 3 4 |
Órbitas diarias | 12,545 |
Debe estar conectado para enviar un comentario.