Sociedad
Océano panafricano
Océano panafricano
El Océano panafricano es una hipótesis paleo-oceánica cuyo cierre creó el supercontinente de Pannotia.[1] El océano pudo haber existido antes de la ruptura del supercontinente de Rodinia. El océano se cerró antes del comienzo del Eón Fanerozoico, cuando el océano Panthalassa se expandió, y finalmente fue reemplazado por él.
El anterior supercontinente Rodinia se fragmentó hace unos 750 millones de años en tres continentes: Proto-Laurasia (que a su vez se fragmentó, aunque finalmente se reensambló como Laurasia), el cratón continental del Congo y Proto-Gondwana (toda Gondwana excepto el cratón del Congo y Atlántica). Proto-Laurasia giró hacia el Polo Sur, mientras que Proto-Gondwana hizo lo propio y el cratón del Congo se situó entre ambos, hace alrededor de 600 millones de años. Esto formó Pannotia. Con tanta masa de tierra en torno al Polo Sur, probablemente fue una de las épocas de la historia geológica con más glaciares.2
Ubicación del supercontinente Pannotia hacia el Polo Sur.
Mirovia puede ser esencialmente similar al Océano Panafricano o el precursor. Se cree que el Océano Panafricano existió antes de la desintegración del supercontinente de Rodinia. El cierre del Océano Panafricano dio como resultado la formación del supercontinente de Pannotia.
Pannotia tenía forma de “V” orientada hacia al noreste. Dentro de la “V” se encontraba el océano Panthalassa, que en el futuro se convertiría en el océano Pacífico. Había una dorsal oceánica en el medio del océano Panthalassa. Fuera de la “V”, rodeando a Pannotia, se localizaba un gran océano antiguo, el denominado océano Panafricano.
Su forma era de “V” orientada hacia el noreste, y dentro de éste se encontraba el océano Panthalassa, el cual se convertiría en el futuro en el océano Pacífico, en tanto que rodeando el supercontinente se encontraba el gran océano antiguo Panafricano.
Círculos del mar Adriático
Los círculos del mar Adriático
Los científicos no encuentran explicación al hallazgo de 50 circunferencias en el fondo marino y en cuyo interior no crece nada
El misterioso hallazgo de unos sospechosos círculos de origen desconocido en el mar Adriático, junto a la costa croata, ha dado lugar a numerosas teorías sobre el origen de este extraño fenómeno. El biólogo Mosor Prvan, de la organización «Sunce» para la preservación de entorno humano, ha asegurado que «se trata de círculos perfectos, impecablemente delineados sobre el fondo del mar, de modo que la yerba Posidonia oceánica no traspasa un milímetro. Jamás he visto algo así».
A lo largo de la isla de Dugi Otok, situada en la Dalmacia central cerca de Zadar, hay 28 círculos, todos de un diámetro idéntico de unos 50 metros, todos a la misma distancia de la costa y alejados unos de otros todos a unos 300 metros. Hasta ahora, se han detectado más de 50 círculos de este tipo, también cerca de las islas de Premuda, Molat, Unije, Susak y Srakane, pero creen que podría haber más.
El extraño fenómeno fue descubierto por casualidad por «Sunce» el año pasado (2013) mientras documentaban las especies marítimas de esa zona, primero al estudiar fotografías desde el aire y luego al explorar la zona con buzos. En medio de los círculos no crece nada, puro sedimento, arena desierta, explica el biólogo Mosor Prvan en declaraciones a Efe.
Extrañas hipótesis
«Parece como si alguien hubiera eliminado la Posidonia con enormes sacacorchos. No sabemos cuándo fueron creados, ni cómo, pero vemos que por alguna razón, la planta no crece sobre los bordes de los círculos y que dentro de los mismos tampoco ha echado semillas, según sería de esperar», explica. «Sunce» ha intentado averiguar si este fenómeno se debe a la pesca ilegal con dinamita o por prospecciones de petróleo, pero expertos en esas materias han asegurado que actividades ese tipo dejan huellas muy diferentes.
«Es un misterio. Hay que investigar la posibilidad de que el ejército de la antigua Yugoslavia realizara aquí unos experimentos desconocidos. Pero la población local no recuerda nada de este tipo, habrá que ver», comenta Prvan. El biólogo considera que sería necesario hacer un análisis químico del terreno dentro de los círculos, hacer excavaciones y realizar otras mediciones, para hallar posibles pistas.
La explicación extraterrestre
La población local no duda en relacionar los círculos con alienígenas y «extraños destellos» en el cielo que ven ocasionalmente desde hace años, también al final del verano pasado. Según el portal informativo «24 sata», varios habitantes habían informado en septiembre de extraños destellos, breves y grandes, sobre el mar, a lo largo de la línea que une las islas mencionadas, mientras el ejército negó simulacros militares en la zona.
En 1997 la policía registró un extraño fenómeno sobre las islas frente a Zadar, como «globos resplandecientes que se sumergían en el mar», que nunca tuvo explicación, asegura «24 horas». No obstante, Renato Batel, director del reconocido centro de investigaciones marítimas «Rudjer Boskovic», asegura que en el mar pasan muchas cosas que parecen extrañas, pero todas tienen al final su explicación científica.
«Por ejemplo, me llaman buceadores para contarme que al sumergirse cerca del buque austro-húngaro hundido (en 1914) Baron Gautsch (cerca del archipiélago de Brijuni) oyen música vienesa, tocada en piano», cuenta en declaraciones a Efe.«Yo les explico que no existen fantasmas, solo sonidos variados en el mar que el cerebro asocia con el trágico naufragio» concluye el científico croata. Una explicación que para unos mitigará el enigma de los círculos pero para otros podría destapar un nuevo misterio submarino
Mirovia
Mirovia
Rodinia se centraba probablemente al sur del ecuador.4 Puesto que la Tierra en ese momento experimentaba la glaciación del Período Criogénico y las temperaturas eran al menos tan frías como actualmente, gran parte de Rodinia pudo haber estado cubierta por glaciares o formando parte del casquete de hielo del Polo Sur. El interior del continente, distante de los efectos moderadores del océano, es probable que fuera estacionalmente muy frío (clima continental). Rodinia estaba rodeado por el superocéano que los geólogos denominan Mirovia (de Mir, la palabra rusa que significa «paz»).
Mirovia puede haber sido un Superocean que rodea el supercontinente llamado Rodinia en la Era Neoproterozoica. El superoceano también se llama Mirovoi y existió aproximadamente 1 mil millones a 750 hace millones de años. Mirovia puede ser esencialmente similar al Océano Panafricano o el precursor.
Los océanos actuales son sólo una muestra de lo que hace mucho tiempo, millones y millones de años, era conocido como el gran Panthalassa. Según la teoría de la deriva continental, del geofísico y astrónomo Alfred Wegner, antes de la formación de los continentes actuales, había un gran continente llamado Pangea (del griego toda la tierra). Esta Pangea estaba rodeada por tanto por un inmenso océano, el que se conocía como Panthalassa (del griego todos los mares).
Sería la ruptura de Pangea la que crearía la cuenca del actual océano Atlántico y del océano Ártico, provocando también el cierre de la cuenca de Tetis y creando la cuenca del océano Índico.
Continentes que formaron el supercontinente Rodinia
Existen hipótesis que van un poco más lejos que esta teoría y aseguran que antes de la Pangea habría existido un supercontinente mucho más compacto llamado Rodinia. Así, se considera que Rodinia se formó entre hace 1.3 y 1.23 millones de años, y se rompió hace 750 millones de años. Éste, estaría a su vez rodeado por un antecesor del Panthalassa llamado Mirovia, una masa inmensa de agua que habría pasado parte de su existencia congelada, incluso hasta los dos kilómetros de profundidad.
En la zona oeste de Laurentia, episodios tectónicos que precedieron a esta separación, produjeron riftes fallidos que albergar grandes cuencas sedimentarias. Mirovia, el océano global que rodeaba Rodínia, comenzó a encogerse debido a la expansión de los océanos Pan-Africano y Pantalásico. Entre 650 y 550 millones de años, otro supercontinente se encontraba en formación, la Pannotia, cuya forma recordaba un “V”. Dentro de este “V” emergía la Pantalassa, mientras en el exterior de éste se situaba el Océano Pan-Africano y las remanentes de Mirovia.
Reconstrucción del supercontinente Rodinia
La mayoría de las reconstrucciones muestran el núcleo de Rodinia formado por el cratón norteamericano (el último paleocontinente de Laurentia), rodeado en el sudeste con el cratón de Europa del Este (Báltica), el cratón amazónico (Amazonia) y el cratón de África Occidental. En el sur, con los cratones del Río de la Plata y San Francisco; en el suroeste con los cratones Congo y Kalahari, y en el noreste con Australia, India y Antártida Oriental.
Las posiciones de Siberia y el norte y sur de China al norte del cratón norteamericano, difieren mucho según la reconstrucción a la que se haga referencia.
Supercontinente Rodinia y el océano que lo rodea es Mirovia
Hace 650 millones de años, los cambios climáticos desencadenados por la formación del supercontinente Rodinia habían dejado, a la superficie de la Tierra, cubierta de una capa de hielo de 1,5 kilómetros de espesor. La temperatura se mantenía en 40°C. Los organismos marinos, la única vida en el planeta, casi habían desaparecido. El futuro de la vida en la Tierra pendía de un hilo. Pero bajo el hielo, el supercontinente era un caos. Inmensas erupciones volcánicas destrozaban Rodinia. La acumulación de calor en la base del supercontinente, sería la causa de su destrucción. Fue como cubrir la Tierra con una manta; el calor que se generaba en el interior de la Tierra, se acumuló debajo de ese manto. Ese calor provocaría el fin de la glaciación global. Cuando Rodinia se fragmentó, el dióxido de carbono expulsado por las erupciones creó un efecto invernadero temporal. Las capas de hielo retrocedieron. Rodinia se había resquebrajado en fragmentos gigantescos, y el dominio del hielo sobre la vida, llegó a su fin. Durante el despertar de Rodinia se formaron mares poco profundos, y el nivel de oxígeno aumentó.
Dolmen de Soto
Dolmen de Soto
Trigueros – Huelva
El dolmen de Soto, datado entre el 3000 y el 2500 a.C.- se encuentra en la localidad de Trigueros, provincia de Huelva (España), siendo uno de los más importantes entre los más de doscientos monumentos megalíticos descubiertos en la provincia. Este dolmen es uno de los más impactantes ejemplos del neolítico en el sur de España.1
Fue descubierto en la finca “La Lobita” en 1922 por Armando de Soto, iniciándose inmediatamente las excavaciones, que duraron tres años, terminándose con un estudio de Hugo Obermaier. En 1931 fue declarado Monumento Nacional. Está en buen estado de conservación, pese a que fue expoliado, encontrándose en las excavaciones ocho cuerpos, colocados en cuclillas con sus ajuares correspondientes.
Desde 1987 es de titularidad pública, dependiente de la Delegación Provincial de la Consejería de Cultura de la Junta de Andalucía. En 2008 se concluyó la primera fase de la puesta en valor de este monumento, tras unas investigaciones que lo situaron, por su anillo perimetral de más de 80 metros, como una de las mayores construcciones megalíticas de Europa Occidental.2 En este estudio se pudo fijar mediante dataciones de carbono 14, la fecha de su construcción hacia finales del tercer milenio.
Se trata de un dolmen perteneciente a la familia de los dólmenes de corredor largo (conjunto de dólmenes yuxtapuestos), siendo el más grande de los encontrados en la provincia de Huelva. Su longitud es de casi 21 m., variando su anchura desde los 0,82 m. en la puerta hasta los 3,10m. en la cámara. Está orientado de Levante a Poniente, de tal manera que los primeros rayos de sol en el equinocio, avanzan por el corredor y se proyectan en la cámara durante unos minutos, en un rito donde quizás los difuntos renacían de la vida de ultratumba, bañados por la luz solar.
A continuación se transcribe, casi en su totalidad, el:
Blog de Francisco Javier Torres Goberna
El término municipal de Trigueros se localiza en la Ribera Baja del Tinto, en la denominada Tierra Llana de Huelva. En esta zona de campiña se descubrió el dolmen de Soto, en la finca “La Lobita” bajo una pequeña loma llamada el “cabecillo del Zancarrón“, a unos quinientos metros de la ribera del arroyo Candón.
El Zancarrón era un suave cerro casi circular de 75 m de diámetro y unos 3,5 m de altura, resultado de la acumulación de tierra blancuzca y fragmentos de piedra traídos desde otro lugar. El cabecillo destacaba claramente sobre la campiña que lo rodeaba y en su punto más alto se construyó en 1919 una casita para el guarda de la finca.
El dolmen de Soto fue descubierto en 1923 por Armando de Soto, propietario de la finca, y la excavación la realizó el arqueólogo Hugo Obermaier Grad (1877-1946). Sus resultados se publicaron en marzo de 1.924 en el Boletín de la Sociedad Española de Excursiones. El 3 de junio de 1.931 fue declarado Monumento Nacional y desde 1987 es de titularidad pública y dependiente de la Consejería de Cultura de la Junta de Andalucía.
Hugo Obermaier-Armando de Soto-Jacobo Fitz-James Stuart y Falcó (D-I) (1923)
Todo el conjunto del dolmen de Soto tuvo que ser restaurado mediante varias intervenciones. La primera la llevó a cabo el Ministerio de Cultura en 1957 y en 1981 Ismael Guarner acometió la fase inicial del proyecto de restauración. Este mismo arquitecto desarrolló la segunda fase en 1982, presentando la Memoria final de las obras realizadas en 1985. En 1986 la Consejería de Cultura de la Junta de Andalucía comenzó el proyecto de protección arqueológica del monumento realizando mejoras en el cerramiento, interior, entorno y acceso del dolmen, mediante el asfaltado de una serie de caminos que lo conectan con la A-286 y la nacional 436.
El círculo de piedras del Neolítico (4000-3000 a.C)
A partir del 4000 a.C, grupos humanos comenzaron a establecerse en esta región de Huelva. En esa época neolítica el clima del lugar era más húmedo que el actual y había una mayor densidad de vegetación, principalmente bosques de encinas. Como demuestran los análisis polínicos, la actividad humana relacionada con la agricultura y la ganadería provocó la progresiva desaparición de la masa forestal, de modo que en el período de transición entre el Neolítico Final y el Calcolítico predominaban las dehesas y las zonas de cultivo de cereales y vid.
Las excavaciones arqueológicas han descubierto que durante el Neolítico en este lugar ya se erigía un círculo de piedras sobre el cual posteriormente se levantó el dolmen de Soto, de modo que el anillo perimetral del túmulo que podemos contemplar actualmente es similar en tamaño y trazado al del primitivo círculo lítico.
Este círculo medía unos 60 m de diámetro y estaba constituido por piedras de distintas formas, tamaños y materiales: bloques, menhires, estelas-menhires de grauvaca, calcarenitas y conglomerados ferruginosos. A su lado había un grupo de cabañas, hogueras y estructuras votivas o rituales, que eran utilizadas en ceremonias y en prácticas relacionadas con la astronomía.
En base a los restos encontrados, se supone que debió tratarse de un santuario de gran importancia utilizado durante cientos de años hasta la Edad del Cobre, momento en el que fue transformado en dolmen empleando para ello los menhires y estelas-menhires del antiguo círculo.
Una de estas piedras reutilizadas es la losa 21 de la pared izquierda del dolmen, en la que aparece grabado un posible “ídolo dolménico oculado” del que se distingue la nariz, los dos ojos, el pecho y los brazos. El hecho de que esta representación esté colocada al revés, es una prueba de que la piedra sobre la que se halla fue extraída del círculo lítico y recolocada en posición invertida en el corredor del dolmen. Por lo tanto la figura que aparece en ella sería anterior a la construcción del dolmen y correspondería a la época neolítica.
El dolmen de Soto I (3000-2500 a.C)
El dolmen de Soto es una de las mayores construcciones megalíticas de Europa Occidental y la datación con carbono 14 estableció su antigüedad hacia finales del tercer milenio, en el período conocido como Eneolítico, Calcolítico o Edad del Cobre (3000- 2500 a.C).
Planta círculo piedras y estructuras neolíticas previas al dolmen de Soto (J.A Linares Catela)
El túmulo que recubre toda la estructura forma una colina circular de unos 3,5 m de altura y 70 m de diámetro, que sería visible desde varios kilómetros en la llanura que lo rodea. Fue construido mediante sucesivas capas de arcilla, rematado con cantos de río y delimitado por un anillo perimetral de bloques de piedras (calcarenitas, conglomerados ferruginosos, lajas de pizarra y grauvacas), hincados verticalmente y junto a las cuales se han hallado restos de platos de borde almendrado, cazuelas y cerámicas globulares.
Este anillo de piedras está rodeado por un deambulatorio pavimentado con cantos de cuarzo y cuarcita.
El sepulcro mide 21,5 m de largo y consta de 64 monolitos verticales, de los que 30 componen la pared derecha del corredor y 33 la izquierda. Algunos de ellos son estelas y menhires que formaban parte del círculo de piedras neolítico y que fueron reutilizados en la construcción del megalito.
La cabecera de la cámara la ocupa una gran losa de 3,41 m de altura, 3,10 m de ancho, un grosor de 0,72 m y un peso aproximado de 21,3 tm.
Casi todas las losas tienen zapata y han sido consolidadas con muros de contención de hasta dos metros de espesor, realizados con una masa dura de cantos y fragmentos de pizarra entremezclados con arcilla.
Maqueta del dolmen de Soto (Museo Arqueológico de Huelva)
Obermaier tan sólo encontró veinte losas de la cubierta del corredor y ninguna de la cámara ya que fueron utilizadas por los campesinos en sus construcciones, apreciándose en algunos trozos las huellas de los barrenos.
El acceso al interior del túmulo se realiza desde la puerta orientada al E y situada en el atrio externo abierto. Cuando Obermaier realizó su excavación, la entrada tenía una altura de 145 cm y una anchura de 93 cm.
Tras la puerta, un corredor con suelo de arcilla compactada nos conduce al interior. Al principio el piso es ligeramente descendente pero pronto se nivela, a la vez que la anchura y la altura del sepulcro van aumentando progresivamente.
La galería continúa y a 4 m de la entrada llegamos a la antecámara, a la que se accede pasando por una segunda puerta que en el momento de la excavación medía 1,74 m de alto, con anchura entre las dos jambas de 82 cm.
A 6 m de la entrada hay un pequeño pilar libre y a 14,5 m desde la puerta comienza la cámara, que cuando se excavó tenía una altura de 2,30 m y una anchura de 2,10 m.
El interior de la cámara se halla a 19 m de la entrada y su altura es de 3,41 m con una anchura de 3,10 m.
Para la construcción de este colosal megalito se extrajeron enormes bloques de piedra realizando perforaciones en las rocas con herramientas muy rudimentarias, mediante las cuales se trazaban unas líneas de agujeros en los que se introducían cuñas de madera que al dilatarse por efecto del agua desgarraban grandes lajas. Sabemos que los ortostatos y losas de la cubierta del dolmen de Soto proceden de varios lugares, algunos de ellos muy distantes. Las rocas calizas, pizarras y conglomerados fueron traídas desde Niebla (6 km); las rocas areniscas desde Lucena (10 km); hay dos bloques de rocas volcánicas del Andévalo (30 km); los granitos fueron extraídos a unos 40 km de distancia. El transporte de todos estos materiales se realizó mediante arrastre, utilizando rodillos sobre los que se colocaban las losas y empleando la técnica de elevación de planos inclinados de tierra prensada. Además, como ya dije anteriormente, también se reutilizaron algunos monolitos que formaban parte del antiguo círculo neolítico.
En el centro de la cámara y delante de la cabecera existía una “pileta” o “mesa” rectangular muy baja de 115 cm de largo, 75 cm de ancho y 15 cm de alto, realizada con dos capas superpuestas de guijarros blancos unidos con arcilla.
Localización de la pileta dentro de la cámara (Obermaier)
Cámara funeraria con la pileta al fondo (Obermaier)
Se supone que tenía un uso ritual y que sobre ella se depositaban materiales, objetos o huesos durante la realización de las ceremonias. La presencia de este pileta es un hecho infrecuente, ya que en la mayor parte de los casos aparecen en sepulcros de cúpula del O penínsular. Obermaier también encontró restos de pequeñas hogueras que según el arqueólogo hispano-alemán no estaban relacionadas con las sepulturas y que tampoco habían afectado a los huesos.
Como dije anteriormente, la puerta de acceso al interior del sepulcro está orientada al E, de modo que en los ortos solares de los equinocios de primavera y otoño, los rayos de luz entran y recorren el corredor para llegar hasta el fondo de la cámara. Por lo tanto este monumento aúna tanto las creencias rituales vinculadas a la muerte y la regeneración, como el conocimiento astronómico necesario para controlar los ciclos de la naturaleza en la actividad agrícola y ganadera.
Las sepulturas
Cuando Hugo Obermaier excavó el dolmen de Soto comprobó que conservaba intacto su interior, debido a que una argamasa de arcilla durísima llenaba el sepulcro hasta casi la altura del techo y había recubierto las sepulturas totalmente. Desconocemos cuándo y cómo fue rellenado el dolmen con arcilla, pero en todo caso impidió que el éste fuera saqueado, aunque dificultó mucho los trabajos de excavación.
La enorme presión producida por todo este volumen de arcilla destruyó todos los restos humanos y cerámicos, por lo que Obermaier no pudo extraer más que fragmentos de huesos, entre los que destaca la mitad de una mandíbula superior de un hombre de complexión fuerte y de unos cuarenta años de edad; un fragmento de mandíbula inferior de una mujer; quince fragmentos de bóvedas craneanas; una porción de fémur superior y dientes. La sepultura que estaba más dañada era la número uno, situada en la entrada junto a la losa 4 de la pared derecha, donde también se encontraron restos de cerámica romana y árabe, lo que hace pensar que fue saqueada.
Dentro del sepulcro, Obermaier localizó restos de ocho cuerpos todos ellos situados junto a ortostatos que presentaban signos grabados. Los cadáveres fueron colocados en posición agachada, atados y envueltos en cueros y tejidos, para posteriormente ser llevados al interior del dolmen. Allí se situaron “sentados” a cierta altura sobre el suelo y con la espalda apoyada en la pared del monolito, lo cual es frecuente en los enterramientos megalíticos ya que permite aprovechar todo el espacio. El ajuar funerario se colocó al lado de cada uno de los cuerpos, e incluso es posible que en parte dentro de la propia cobertura del cadáver. Junto a los cráneos aparecieron restos de cerámica.
En su excelente trabajo, Obermaier describe la disposición de las sepulturas y el ajuar encontrado en cada una de ellas.
Pared N o derecha:
Sepultura 1. Junto a la losa 4 en la que aparece un grabado escutiforme. El ajuar consistía en sílex tallados, cerámica y un hacha.
Sepultura 2. Junto a la losa 15 decorada con tres círculos. Se encontraron sílex tallados, cerámica y un hacha.
Sepulturas 3 y 4. Restos de un adulto y un niño de unos cinco años (tal vez madre e hijo) junto a la losa 24, decorada con varios grabados entre los que destacan dos figuras antropomórficas esquemáticas. La figura de mayor tamaño parece proteger bajo su brazo derecho a otra persona mucho más pequeña, por lo que pudiera tratarse de una representación de los dos difuntos. Además de otros objetos se encontró un puñal de pizarra y un pequeño brazalete cónico que por su tamaño debió pertenecer al niño.
Sepultura 5. Junto a losa 29, con diseño esquematizado. Restos de un cuenco fino, sílex tallado y varias hachas.
Cabecera:
Sepultura 6. Un cadáver al pie de la gran losa con dos signos antropomorfos.
Pared S o izquierda:
Sepultura 7. Junto losa 20, con inscripciones de tres puñales.
Sepultura 8. Losa 25, con dos puñales tallados.
Los hallazgos de Obermaier llevan a concluir que el dolmen de Soto fué realizado para albergar los cuerpos de personas que tenían relevancia social dentro de su comunidad y que probablemente estaban unidas por lazos de parentesco. De la presencia del cadáver de un niño y de la edad atribuida a los huesos encontrados, podemos deducir que la mortalidad infantil debió ser alta durante el Calcolítico. Probablemente la esperanza de vida estaría entre los veinte y los cuarenta años y muy pocos individuos superarían los sesenta años.
Los grabados
El hecho de que el dolmen de Soto se encontrara pintado y grabado por completo, lo convierte en uno de los monumentos más interesantes del megalitismo europeo.
Todos los ortostatos y losas de la cubierta estaban decorados con pinturas de color rojo y grabados realizados utilizando diversas técnicas, como el piqueteado, la incisión, la abrasión o el bajorrelieve.
Los motivos que aparecen en estos petroglifos son todos muy esquemáticos, como elementos geométricos, antropomorfos, idoliformes, cazoletas, hachas, puñales o líneas, símbolos todos ellos que guardan gran semejanza con los encontrados en otros megalitos de la Europa Atlántica. Además, todos los restos humanos hallados en el interior del dolmen estaban cerca de losas en las que había grabados símbolos, por lo que es razonable pensar en un simbolismo religioso relacionado con la muerte.
La presencia de varias representaciones de puñales triangulares de metal típicos de la Edad del Cobre, con empuñadura recta, vaina y a veces con regatones ovales, nos aporta una referencia a la hora de datar este tipo concreto de diseños.
No obstante, no existe consenso en lo que se refiere a si los grabados y pinturas eran contemporáneos a los monumentos megalíticos o si fueron realizados posteriormente. Incluso hay divergencia en si las pinturas y los grabados son contemporáneos, ya que las pinturas suelen representar temas naturalistas y los grabados más abstractos.
Aterrizaje en el lado oculto de la Luna
Aterrizaje en el lado oculto de la Luna
Chang’e 4
Chang’e 4 (chino simplificado: 嫦娥四号) es una misión de exploración lunar de nacionalidad china, lanzada el 7 de diciembre de 2018, que incorpora un orbitador, un módulo de aterrizador robótico y un rover (Yutu-2). Es el segundo módulo lunar y explorador lunar de China. Se construyó como copia de seguridad de la Chang’e 3, como Chang’e 2 fue igualmente para Chang’e 1. Tras el exitoso aterrizaje de la misión Chang’e 3, la configuración de Chang’e 4 va equipada para cumplir nuevos objetivos científicos. Al igual que sus predecesores, la nave espacial lleva el nombre de la diosa de la luna china.
Misión
La misión estaba programada para ser lanzada en el año 2015 formando parte de la segunda fase del Programa Chino de Exploración Lunar12 pero por tener objetivos tan ajustados y el retraso en el diseño de la misión hubo que aplazarla, finalmente fue lanzada el 7 de diciembre de 2018 mediante un cohete Larga Marcha 3B.
El plan es hacer que Chang’e 4 aterrice en la cara oculta de la Luna,3 la Administración Espacial Nacional China (CNSA) lanzó, el 21 de mayo de 2018, el satélite de retransmisión de comunicaciones Queqiao al punto L2 Queqiao (Puente de las Urracas), el nombre de un antiguo cuento popular chino, como una estación de retransmisión de comunicaciones para retransmitir las señales entre el módulo de aterrizaje/rover y la estación de la Tierra.4 El módulo de aterrizaje y el róver aterrizarán a principios de 2019. Será el primer aterrizaje en el lado más alejado de la Luna, región de la Luna que aún está sin explorar conocida como Cuenca Aitken,5 que es una gran cuenca ubicada en el hemisferio sur del extremo que se extiende desde el Polo Sur hasta el cráter Aitken.6 La misión Chang’e 4 de China se ha convertido también en pionera en el primer mini experimento de biosfera en la Luna.
El Programa Chino de Exploración Lunar ha comenzado a recibir inversiones privadas tanto de empresas como de particulares por primera vez, medida destinada a acelerar la innovación aeroespacial, reducir costos de producción y promover relaciones entre militares y civiles.7 Después de Chang’e 4, China seguirá con misiones lunares robóticas que se construirán con la intención de realizar misiones para enviar humanos en un plazo aproximado de 15 años.89
Lugar de aterrizaje
El lugar de aterrizaje propuesto es el cráter Von Kármán10 (de 180 km de diámetro) en la Cuenca Aitken en el lado oculto de la Luna. Se cree que el cráter es consecuencia del impacto más antiguo en la Luna. En cuanto a su composición, contiene aproximadamente 10% de óxido de hierro (FeO) y 4-5 partes por millón de torio,10 que puede ser utilizado en lugar del uranio como combustible nuclear en reactores de torio.
Carga útil
Mientras que el orbitador facilitará las retransmisiones de comunicación,11 el módulo de aterrizaje y el rover llevarán experimentos científicos para estudiar la geofísica en la zona de aterrizaje, con una capacidad de análisis químico muy limitada.12910 Además, Chang’e 4 también transportará material internacional originaria de Suecia, Alemania, los Países Bajos y Arabia Saudita.13
Rover
- Cámara panorámica
- Georradar
- Espectrómetro infrarrojo
- Active Source Hammer (ASH) para experimentos sísmicos de fuente activa
- Energetic neutral atom: Analizador pequeño avanzado para neutrales (ASAN), proporcionado por el Instituto Sueco de Física Espacial (IRF). Revelará cómo el viento solar interactúa con la superficie lunar y quizás incluso el proceso detrás de la formación del agua lunar.14
Aterrizador
- Analizador de Polvo Lunar (LDA)
- Analizador de campo eléctrico (EFA)
- Paquete de observación de campo magnético y plasma (PMFOP)
- Sismómetro Lunar (LS), para estructura interna
- Interferómetro de radio VLF (VRI), un radiotelescopio para observaciones astronómicas9
- Neutron dosimeter: proyecto Lunar Lander Neutron Dosimetry (LND) desarrollado por la Universidad de Kiel en Alemania.14
Además, el módulo de aterrizaje lleva un contenedor con semillas y huevos de insectos para probar si las plantas y los insectos pueden eclosionar y crecer de manera conjunta.9 El experimento incluye semillas de patata y Arabidopsis thaliana, así como huevos de gusanos de seda. Si los huevos eclosionan, las larvas producirían dióxido de carbono, mientras que las plantas germinadas liberarían oxígeno mediante la fotosíntesis. Se espera que, juntos, las plantas y los gusanos de seda puedan establecer una sinergia simple dentro del contenedor.9 En el año 1982, la tripulación de la estación espacial soviética Saliut 7 consiguió hacer crecer un poco de Arabidopsis, convirtiéndose así en las primeras plantas en florecer y producir semillas en el espacio. Tuvieron una vida de 40 días.15
En esta fotografía facilitada por la Agencia de Noticias Xinhua, un cohete chino despega con la sonda lunar Chang’e 4 desde el Centro de Lanzamiento de Satélites Xichang en la provincia de Sichuan, suroeste de China. (AP)
El cohete Gran Marcha 3B que transporta la sonda lunar despegó a las 2:23 de la mañana del Centro de Lanzamiento de Satélites Xichang, en la provincia de Sichuan, en el suroeste de China, dijo la agencia de noticias estatal Xinhua.
China lanza la sonda Chang’e 4 rumbo a la cara oculta de la Luna
China ha lanzado la primera sonda que aterrizará en la cara oculta de la Luna. El 7 de diciembre de 2018 a las 18:23 UTC despegó la Cháng’é 4 desde la rampa LC-2 del centro de Xichang a bordo de un cohete Larga Marcha CZ-3B/G3Z (o CZ-3B/GIII, una variante del CZ-3B con una tercera etapa criogénica modificada para misiones de espacio profundo que ya fue empleado en el lanzamiento de la Cháng’é 3 en diciembre de 2013). Si todo va bien, la misión Cháng’é 4 se convertirá en la segunda sonda china que aterriza en la superficie lunar después de la Chang’e 3. También es la octava nave lunar china tras las Cháng’é 1, Cháng’é 2, Cháng’é 3, Cháng’é 5-T1, Quèqiáo, Lonngjiang 1 y Longjiang 2. La órbita inicial de transferencia es de 200 x 420.000 kilómetros. Está previsto que la Cháng’é 4 entre en órbita lunar el 11 de diciembre.
La Cháng’é 4 (CE-4 o 嫦娥四号) y su rover aterrizarán en el cráter Von Kármán de la zona de la cuenca Aitken, situada a 45,5º de latitud sur y 178º de longitud este, en la cara oculta de nuestro satélite el próximo 3 de enero de 2019. Se trata de una nave de unas 3.780 kg con un diseño idéntico a la de la sonda Cháng’é 3 y lleva un pequeño rover de 140 kg idéntico al Yùtù de la Chang’e 3. La sonda Cháng’é 4 fue construida originalmente como reserva de la Cháng’é 3. En principio la sonda debía despegar en 2015, pero fue retrasada repetidas veces hasta el punto de que se rumoreó que había sido cancelada. El éxito de la Chang’e 3, que logró casi todos sus objetivos al primer intento, convirtió a la misión de la Cháng’é 4 en un tanto superflua. Además, China quería concentrarse en la Cháng’é 5, una misión de retorno de muestras mucho más ambiciosa que debía despegar en 2018. Finalmente, en 2015 China confirmó que lanzaría la Cháng’é 4 después de la Cháng’é 5 a la cara oculta de la Luna.
Pero los problemas de desarrollo del cohete lanzador de la Cháng’é 5, el Larga Marcha CZ-5, obligaron a posponer la misión Cháng’é 5 a 2019, por lo que al final la Cháng’é 4 despegaría antes. La Cháng’é 4 incorpora varios instrumentos, entre ellos el detector de neutrones alemán LND (Lunar Lander Neutrons and Dosimetry) construido por la agencia espacial alemana (DLR), un pequeño experimento de «astrobiología» y otro de radioastronomía. El experimento astrobiológico, de 3 kg, lleva gusanos de seda, además de semillas de patatas y arabidopsis, una planta muy común en los ensayos espaciales, incluido un experimento en la estación espacial china Tiangong 2. Las semillas deberán germinar dentro de un contenedor presurizado de 18 x 16 centímetros y 3 kilogramos. El experimento, desarrollado por 28 universidades chinas, incorpora su propias reservas de aire, agua y nutrientes, además de una cámara.
Sonda Chang’e 4 para estudiar la cara oculta de la Luna. La Chang’e 4 antes del lanzamiento (Xinhua). La Chang’e 4 en l aLuna (Xinhua). La Chang’e 4 durante las pruebas de la cámara de vacío (Xinhua).
El experimento de radioastronomía LFS (Low Frequency Spectrometer) usará cinco antenas desplegables para observar el cielo en las frecuencias de 0,1 a 40 megahertzios. Estas frecuencias tan bajas son la parte menos explorada del espectro electromagnético por culpa de las interferencias con las señales de radio artificiales, pero la Cháng’é 4 será capaz de estudiar la bóveda celeste usando toda la masa de la Luna como escudo. Las observaciones se llevarán a cabo conjuntamente con el satélite repetidor Quèqiáo, dotado de un instrumento similar. La sonda lleva también la cámara inferior LCAM (Landing Camera) para filmar el alunizaje y la cámara panorámica a color TCAM (Terrain Camera) similares a las de la Chang’e 3.
El rover de 140 kg (月球车) no ha recibido todavía ningún nombre oficial a pesar de que China organizó un concurso para bautizarlo. Es posible que en los próximos días sepamos cuál es el nombre del que debe convertirse en el cuarto rover automático que recorre la Luna y el primero que se moverá por la cara oculta. El rover lleva una cámara panorámica PCAM (Panoramic Camera), el radar LPR (Lunar Penetrating Radar) para estudiar el subsuelo, el espectrómetro infrarrojo VNIS (Near-Infrared Imaging Spectrometer) y el detector de átomos neutros ASAN (Advanced Small Analyser for Neutrals) fabricado en Suecia. El rover de la Cháng’é 4 no incorpora un espectrómetro de rayos X mediante partículas alfa (APXS) como el que llevaba el rover Yùtù de la Cháng’é 3.
Experimento de astrobiología a bordo de la Chang’e 4 (Xinhua). El rover de la Cháng’é 4 (Xinhua). El rover de la Chang’e 4 antes del lanzamiento (Xinhua).
Para garantizar las comunicaciones con la Cháng’é 4 con la Tierra, China lanzó el 20 de mayo el satélite repetidor Quèqiáo (“鹊桥”号中继星), también conocido como LRS ([Chang’e 4] Lunar Relay Satellite) o 嫦娥四号中继星 / Cháng’é 4 hào Zhōngjì Xīng). Quèqiáo tiene una masa de 425 kg y fue lanzado mediante un cohete Larga Marcha CZ-4B desde Xichang. Actualmente está situado en una órbita de halo —con un diámetro de 13.000 kilómetros) alrededor del punto de Lagrange L2 del sistema Tierra-Luna (EML-2), entre 64.500 y 80.000 kilómetros sobre la cara oculta de nuestro satélite. Quèqiáo usa la plataforma CAST-100 e incluye una antena desplegable de 4,2 metros de diámetro que transmitirá datos hacia y desde la Chang’e 4 en cuatro canales en banda X a 256 kbps y un canal en banda S a 2 MBps hacia la Tierra. Dispone de varios motores con un empuje total de 130 newton alimentados por un tanque con 100 kg de hidrazina. La precisión en el apuntado de la antena será de 0,06º y su vida útil se espera que estima en cinco años. Quèqiáo lleva además un retrorreflector láser de 17 cm de diámetro para medir su posición precisa con respecto a la Tierra. Por cierto, Quèqiáo significa en mandarín el «puente de urracas» y es un elemento de la leyenda china que ve en la Vía Láctea un puente formado por aves —urracas— que cada año une a los amantes representados por las estrellas Vega y Altair (se trata de leyenda una leyenda muy popular en Asia que sirve como excusa para celebrar varios festivales anuales, siendo el Tanabata japonés el más conocido).
El cohete lanzador de la Chnag’e 4. La cofia de la Chang’e 4 (Xinhua).
Satélite retransmisor Queqiao (chinaspaceflight.com). Queqiao antes del lanzamiento con la antena plegada (Xinhua). Situación esquemática del punto EML2 y la órbita de halo de Queqiao. La sonda lunar Chang’e 4 y el satélite retransmisor Queqiao que usará para las comunicaciones (chinaspaeceflight.com).
La Tierra y la cara oculta de la Luna vistos por el satélite Longjiang 2 (Xinhua).
La cara oculta de la Luna y la Tierra vistas por la Chang’e 5-T1 (Xinhua).
La Tierra vista desde la Luna por la cámara saudí del Longjiang 2 (Xinhua).
Zona de aterrizaje de la Cháng’é 4. Arriba a la izquierda la cuenca Aitken. Abajo, el cráter Von Kármán donde alunizará la sonda (en uno de las regiones que aparecen en rectángulos) (Huang et al.). Reconstrucción del alunizaje de la Chang’ e 4 (Xinhua). La Chang’e 4 sobre la Luna (Xinhua). La Chang’e 3 en la Luna vista desde el rover Yutu (http://moon.bao.ac.cn).
Si todo sale bien, la Cháng’é 4 será un paso adelante fundamental en el ambicioso programa chino de exploración lunar (CLEP) que durante la próxima década debe lanzar una flota de sondas hacia nuestro satélite. En 2019 se lanzará la Cháng’é 5 para traer muestras de la zona de Mons Rümker, en el Oceanus Procellarum. Entre 2020 y 2024 deben despegar hasta tres Cháng’é adicionales que se posarán en el polo sur de la Luna. Una de ellas, probablemente la Cháng’é 6, traerá muestras de esta zona.
Uno de los mayores desafíos es lograr comunicarse con el robot lunar. Como la cara oscura de la Luna está orientada en sentido opuesto a la Tierra, no hay una “línea de visión” directa para transmitir señales, salvo que se instale un relevo.
Así, China lanzó en mayo un satélite que bautizó Queqiao, posicionado en la órbita lunar para transmitir órdenes y datos intercambiados entre la Tierra y el módulo.
Imagen tomada por la sonda Chang’e 4 durante el proceso de alunizaje. (China National Space Administration/Xinhua News Agency via AP)
El satélite de retransmisión de datos LRS será parecido a las Chang’e 1 y 2 (CNSA).
Sonda de retorno de muestras lunares Chang’e 5.
Llegando a donde ningún occidental ha llegado jamás.
El 14 de diciembre de 2013 China se convirtió en la tercera nación del planeta Tierra que realizó un aterrizaje suave en la superficie lunar cuando la sonda Chang’e 3 (CE-3) se posó en el Mare Imbrium (44,12° norte, 19,51° oeste). Aunque el rover Yutu sucumbió a las pocas semanas del alunizaje, la sonda sigue activa, lo que constituye un logro de primera magnitud para el programa espacial chino. Tras la Chang’e 3 debía haber despegado la Chang’e 4 (CE-5), una sonda gemela de la anterior construida como reserva en caso de que el primer intento de alunizaje no hubiese salido según lo esperado. Originalmente planeada para 2015, la Chang’e 4 ha sido aplazada una y otra vez, hasta el punto de que ha estado a punto de ser cancelada. Sin embargo, las últimas noticias que nos llegan desde China indican que la misión sigue adelante con un objetivo más ambicioso: convertirse en el primer artefacto humano que aterriza en la cara oculta de la Luna.
Vista de la Chang’e-3 en la superficie lunar desde el rover Yutu (http://moon.bao.ac.cn).
Los motivos de la casi cancelación de la Chang’e 4 hay que buscarlos, por un lado, en el tremendo éxito de la Chang’e 3. La Chang’e 3 completó todos los objetivos de la misión al primer intento y, a pesar de que la corta vida útil de Yutu fue un poco decepcionante, ciertamente es casi imposible imaginar una misión similar que lo pueda hacerlo mejor. El segundo motivo tiene que ver con las próximas misiones lunares que China planea lanzar durante los próximos años.
La Chang’e 4 tendrá un diseño similar a la Chang’e 3 (Research in Astronomy and Astrophysics).
China sitúa la ‘Chang’e 4’ en la cara oculta de la Luna
El éxito de la misión supone un paso más en el ambicioso programa espacial del país asiático
Pekín 3 ENE 2019 – 09:33 CET
China ha logrado por primera vez en la historia alunizar una nave en la cara oculta de la Luna. La sonda Chang’e 4, que fue lanzada el 8 de diciembre, tocó el suelo del satélite este jueves a las 10.26 hora local, según informó la Administración Nacional del Espacio de China. El éxito del alunizaje, que no se anunció de forma oficial hasta aproximadamente dos horas después de haberse producido, supone un hito más para el ambicioso programa espacial del país asiático, aún lejos del de Estados Unidos en financiación pero convertido en una prioridad absoluta para las autoridades chinas.
MÁS INFORMACIÓN
La nave no tripulada ya había entrado en órbita lunar elíptica durante el pasado domingo, con el punto más cercano al astro a unos 15 kilómetros de su superficie y el más lejano a unos 100 kilómetros, según informó la Administración Nacional del Espacio de China. Desde entonces se buscó el momento idóneo para posar la sonda en la superficie lunar, porque la parte no visible del astro tiene periodos de día y noche que duran unos 14 días terrestres y se necesitaba la luz solar para que tanto el módulo de aterrizaje como el vehículo móvil de exploración funcionaran como estaba previsto.
Entretanto, los ingenieros verificaron el buen funcionamiento de la sonda y del satélite Queqiao, que sirve de enlace para comunicar este vehículo explorador con la Tierra. El hecho de que la comunicación con la sonda no pueda ser directa —la propia masa de la Luna lo impide— es uno de los principales obstáculos técnicos de la misión. Finalmente la sonda tocó superficie sin problemas en el cráter Von Kárman, de 186 kilómetros de diámetro, situado en la cuenca Aitken (en el Polo Sur), que a su vez es uno de los mayores cráteres de impacto conocidos en el sistema solar y uno de los más antiguos de la Luna. “Se ha abierto un nuevo capítulo en la exploración lunar por parte del hombre”, dijo la agencia espacial china en un comunicado.
El objetivo de la sonda Chang’e 4 es principalmente analizar la composición del terreno y el relieve de la zona, lo que podría dar pistas sobre los orígenes y evolución del satélite. Esa cara lunar, invisible desde la Tierra, es muy distinta de la que sí conocemos. Si la cara vista muestra “mares” llanos de basalto y relativamente pocos cráteres, el otro lado está lleno de éstos y su composición parece diferente. La misión china podría recabar datos sobre la evolución y la geología de esta área desconocida del satélite.
Recreación del vehículo lunar de la sonda ‘Chang’e-4’. Administración Nacional Espacial
La nave china ha completado así un nuevo hito de la exploración espacial.
La primera imagen tomada por la sonda Chang’e 4 en el momento del alunizaje en la cara oculta de la Luna. Administración Nacional del Espacio de China AP
La nave es hermana de la Chang’e 3, que en 2013 aterrizó en la cara visible de la Luna con el explorador lunar Yutu a bordo. La misión se consideró un éxito, aunque Yutu (que significa liebre de jade en mandarín) apenas logró recorrer 110 metros antes de que sus sistemas fallaran sin reparación posible.
En este caso, ha precisado el responsable del programa de exploración lunar chino, Wu Weiren, en una rueda de prensa en agosto, el vehículo espacial se ha diseñado con una “mayor adaptabilidad” a los terrenos abruptos. El artefacto, según Wu, es “el más ligero del mundo de su tipo”, con 140 kilos de peso. Aunque se había anunciado que su nombre se decidiría por votación popular en octubre, hasta el momento no se ha hecho público el apodo con el que se conocerá a este vehículo. Sí se ha dado a conocer que tiene seis ruedas y está dotado de una cámara panorámica, radar y un espectrómetro de imágenes infrarrojas, entre otros equipos.
La nave espacial, a su vez, cuenta también con cámaras para grabar el alunizaje y las imágenes del terreno, y un espectrómetro de baja frecuencia. La Administración del Espacio de China ya ha publicado las primeras fotografías enviadas por la sonda durante el alunizaje.
La misión, además de analizar los datos de la superficie lunar, también incluirá otros experimentos científicos. Chang’e 4 lleva a bordo huevos de gusano de seda, semillas de patata y de flores para observar la germinación, crecimiento y respiración en las condiciones de baja gravedad en la superficie lunar.
Módulo chino comienza a recorrer lado oscuro de la Luna y envía primeras imágenes
Yutu-2, el robot de la sonda espacial Chang’e 4, se desprendió con éxito de su nave nodriza.
“Conejo de Jade-2” (Yutu-2 en chino) se desprendió de la sonda espacial china Ghang’e 4, que este jueves había sido la primera nave espacial en aterrizar en el denominado lado oscuro de la Luna.
El vehículo lunar comenzó su recorrido por la desconocida superficie lunar este viernes, según indicó la Administración Espacial Nacional de China (CNSA) la agencia del gigante asiático, que señaló que esta hazaña era “un gran paso para el pueblo chino”.
El módulo de exploración Yutu-2 circuló por la superficie lunar a las 14.22 hora GMT, unas 12 horas después del alunizaje de la sonda Chang’e-4, indicó la agencia.
La CNSA divulgó una foto tomada por la sonda en la que se ven dos rampas y el vehículo lunar partiendo, pero no precisó cuán lejos llegó el mismo.
Fotografía tomada por el Chang’e-4 que muestra el rover Yutu-2 en la cara oculta de la luna el 3 de enero de 2019. Los científicos chinos se muestran optimistas tras el éxito del primer alunizaje de la historia en la cara oculta de la Luna. Foto: EFE
Esta es la segunda vez que China envía un módulo para explorar la superficie lunar después del Yutu en 2013, que permaneció activo durante 31 meses.
La separación del vehículo de la sonda fue sin contratiempos, dijo Wu Weiren, miembro del equipo que desarrolló el proyecto.
“Aunque este fue un pequeño paso para el rover (vehículo todoterreno), creo que es un gran paso para el pueblo chino”, dijo en una entrevista difundida por el canal CCTV.
Ninguna sonda ni ningún módulo de exploración se había posado nunca antes en la superficie de la cara oculta de la Luna.
Uno de los mayores desafíos es lograr comunicarse con el robot lunar. Como la cara oculta de la Luna está orientada en sentido opuesto a la Tierra, no hay una “línea de visión” directa para transmitir señales, salvo que se instale un repetidor.
La foto del módulo fue enviada a través del satélite Queqiao, que fue lanzado a la órbita lunar en mayo para poder comunicar desde la Tierra con la sonda y el módulo.
El Chang’e-4 llevará a cabo estudios sobre radiofrecuencias bajas, el cultivo de tomates en otros planetas y los recursos minerales, entre otras cosas.C
Maqueta que muestra a Chnag’e 4 (derecha) y el rover Yutu.
La Cháng’é 4 en la cara oculta. Destacan las antenas del experimento de radioastronomía de baja frecuencia (Xinhua).
La primera imagen panorámica de la cara oculta de la Luna
La sonda ‘Chang’e 4’ envía imágenes nunca vistas y fotografía al robot que circulará por la superficie del satélite para estudiar sus características
La sonda china Chang’e-4 sigue enviando imágenes desde la cara oculta de la Luna. Este viernes, la agencia espacial china, la CNSA, publicó una panorámica de 360 grados elaborada a partir de fotografías tomadas por una cámara del módulo de aterrizaje. La misma agencia publicó un intercambio de fotos entre el robot explorador y el módulo de aterrizaje, que se retrataron la una a la otra. Según contaba la agencia de noticias china Xinhua, esas imágenes aparecieron en una gran pantalla del Centro de Control Aeroespacial de Beijing, mostrando la bandera nacional de China en ambas ante el panorama desolado lleno de cráteres en el lado lejano de la Luna.
La sonda Chang’e 4 grabó en vídeo su llegada a la Luna CNSA | ATLAS
Pese a que todavía tiene que llevar a cabo observaciones de radioastronomía o experimentos biológicos, China ha anunciado hoy mismo que la misión Chang’e-4, con la que se realizó el primer alunizaje suave en la cara oculta de la Luna, ha sido un completo éxito.
La sonda Chang’e-4 llegó a nuestro satélite el pasado 3 de enero. Tocó tierra en el sur de la Luna, dentro del cráter Von Karman en la Cuenca de Aitken en el Polo Sur. El robot explorador Yutu-2 comenzó a recorrer la cara oculta de la Luna ese mismo día, aunque después se puso en modo de hibernación para soportar la radiación solar que golpea con fuerza la Luna durante sus días, que duran 13 días terrestres y medio. En esos momentos, la temperatura supera los 100 grados centígrados. El jueves reanudó su trabajo.
Imagen de 360 grados tomada por la sonda china Chang’e 4 en la cara oculta de la Luna. CNSA
El principal objetivo de la sonda Chang’e 4 es analizar la composición del terreno y el relieve de la zona, lo que podría dar pistas sobre los orígenes y evolución del satélite. Esa cara lunar, invisible desde la Tierra, es muy distinta de la que conocemos. Si la cara vista muestra mares llanos de basalto y relativamente pocos cráteres, el otro lado está lleno de estos y su composición parece diferente. La misión china podría recabar datos sobre la evolución y la geología de esta área desconocida del satélite.
La misión, además de analizar los datos de la superficie lunar, también incluirá otros experimentos científicos. Chang’e 4 lleva a bordo huevos de gusano de seda, semillas de patata y de flores para observar la germinación, crecimiento y respiración en las condiciones de baja gravedad de la superficie lunar.
China consigue que brote la primera planta en La Luna
Una semilla de algodón brota en la Luna, a bordo de la sonda china Chang’e 4 / Foto: Efe
Una semilla de algodón, llevada a la Luna por la sonda china Chang’e 4, ha sido la primera en brotar en el satélite natural de la Tierra, según científicos de un miniexperimento de biosfera a bordo de la misión. Después de realizar el primer aterrizaje en la cara oculta del satélite, la misión Chang’e 4 de China se ha convertido también en pionera en el primer mini experimento de biosfera en la Luna.
La misión nació con el objetivo de realizar tareas de observación astronómica de radio de baja frecuencia, análisis de terreno y relieve, detección de composición mineral y estructura de la superficie lunar poco profunda, así como la medición de la radiación de neutrones y átomos naturales para estudiar el medio ambiente en esta zona del satélite. Para ello, transporta un pequeño vehículo que recorrerá el terreno para grabar, documentar y definir la geología extraterrestre. Pero de todas estas pruebas, quizá, la más intrigante es la biológica: a través de un artefacto mecanizado pretenden cultivar semillas vegetales que quedarán depositadas en un contenedor sellado, un experimento avalado por 28 universidades chinas y que podría abrir la veda al nacimiento de los primeros seres vivos en la Luna.
Las imágenes enviadas por la sonda, que se han difundido en cadenas chinas de televisión, mostraron que un brote de algodón había crecido bien, aunque no se encontraron otras plantas creciendo. Entre las semillas que transportaba la nave se encontraban algodón, colza, patata y arabidopsis, así como huevos de mosca de la fruta y algunas levaduras, para formar una minibiosfera simple, según un equipo liderado por científicos de la Universidad de Chongqing. Las plantas generarían oxígeno y alimento para que otros seres vivos “consuman”. La drosophila melanogasters, como consumidores, y la levadura, como descomponedores, generarían dióxido de carbono al consumir oxígeno para la fotosíntesis de las plantas. Además, la levadura puede descomponer los residuos de plantas y drosophila melanogasters y crecer, y también puede servir como alimento de drosophila melanogasters.
Con este círculo, se forma una mini biosfera compuesta por productores, consumidores y descomponedores. El desarrollo y la preparación del módulo biológico fueron realizados por el Equipo de Investigación de Biología Espacial en la Escuela de Ciencias de la Vida de la Universidad de Chongqing.
Montículos de Gol Chegortay
Montículos de Gol Chegortay
La detección de dos bastante grandes montículos de tiempo escita en las fuentes del río Gantsmodny Gol sugirió que en otros valles, más o menos anchas, con la fuente de la parte central del macizo montañoso del Altai mongol, se puede esperar para detectar similar o quizá grupo de enterramiento aún más monumental. Por lo tanto, se tomó la decisión: para explorar toda la parte de montaña valle Chegortay Gol, desde la zona del río en Delüün Somone y hasta la fuente en la frontera con China. El tema de interés científico – Evaluación de la distribución rango de tiempo montículos Pazyryk, así como la búsqueda de excepcional tamaño (“reales”) montículos escitas.
Sin embargo, sobre la base del objetivismo científico, debe reconocerse que la expedición “Ariana mongola” hizo un descubrimiento verdaderamente único en las partes altas del río Chegortai-Gol. Aparentemente, se descubrió uno de los túmulos de diez rayos más grandes conocidos por la ciencia. El diámetro de esta compleja estructura de entierro es de 78.5 m, y la longitud de la circunferencia a lo largo del contorno exterior de la valla es de 263.3 m. El montículo tiene una increíble arquitectura y sorprendente potencia y belleza. La altura del cono, de acuerdo con nuestras mediciones, es de 2,8 m (en la antigüedad el montículo era, sin duda, mucho más alto).
Barrow se encuentra a una distancia de 2,5 km al oeste del lago Chegortay Nuur forma como resultado de la partición de lecho del río sedimentos Chegortay Gol y material detrítico, desplazados durante el movimiento de morrena glacial. Se compone de un material heterogéneo: bloques redondos de ribera, piedra triturada y guijarros relativamente poco profundos de tamaño mediano. El espacio entre los diez rayos no está pellizcado. Los llamados “golpes de cerca”: el ancho de 4.5 a 5 metros, plegados de enormes rocas, el tamaño de algunos alcanza los 0.8-0.9 m.
En este montículo, la expedición encontró causas físicas extrañas e inexplicables con el fenómeno de una aguja de brújula “apresurada”. Determinar incluso la dirección aproximada al norte de un rayo resultó ser una cuestión difícil.
El ancho de las pistas (rayos) del montículo es de 1,4 m en promedio. Aparentemente, los rayos tenían inicialmente el mismo ancho, pero con el tiempo, algunos fragmentos de rayos fueron enterrados por la arena.
En la foto: previamente desconocido para la ciencia “real” montículo escita en la parte alta del río Chegotay-Gol. Foto: Boris Rezvantsev.
El montículo toma la parte más activa en la construcción del koshar por la población kazaja local. El daño a la arquitectura del montículo de tal, continuando muchas docenas de años de actividad, es enorme.
El montículo, por supuesto, estaba rodeado de pequeños paneles solares, círculos de sacrificio. En la actualidad, de todos sus probables conjuntos anteriores solo hay dos, e incluso aquellos están medio desmontados en el material de construcción por personas.
Parece poco probable que este montículo sea único: aparentemente, en el valle Chegortai-Gol todavía hay complejos cercanos en arquitectura. El montículo está en una terraza baja del río formada por depósitos a largo plazo de arena gruesa. En la proyección del montículo, el pico de la montaña, que se asemeja a un castillo medieval, se ve en las fuentes del Chegortai-Gol.
Aproximadamente a 3-4 km del enorme montículo solar arriba mencionado se encuentra un gran túmulo real, la morfología tradicional. Las características particulares curiosas de este montículo incluyen un cuadrado, que está tejido a ganchillo por una roca de piedra grande y mediana, situada a la salida del rayo norte del montículo. La estructura de la valla también es interesante: se compone de tres filas de grandes rocas densamente desplazadas, el espacio entre el cual se rellena con una piedra pequeña y mediana.
Un cuadrado de piedra del rayo norte tiene dos piedras de referencia, una grande y negra, que se encuentra en la esquina noreste de la plaza, lejos del montículo, y otra es más pequeña, colocada verticalmente como un lápiz, blanca. Ambas piedras están perfectamente ubicadas exactamente en el rayo norte del montículo, en general con el rayo, una dirección idealmente precisa hacia el norte.
El montículo se encuentra en una gran terraza de estribaciones, en la margen derecha del río Chegortai-gol, a unos 6-7 km del lago Chegortai-Nuur.
El espacio entre los rayos del montículo no está lleno de una piedra. Barrow en sí tiene una altura relativamente pequeña – alrededor de 1,2-1,3 m tienen una muy cuidadosamente -. En el corazón de grandes bloques de granito, redondeados, el espacio entre las puso mucho más superficial guijarros negros redondeados.
La plataforma superior, la plataforma del montículo, tiene 5 o 6 pequeñas depresiones de forma redonda o irregular. Las huellas de saquear el montículo no son perceptibles. En general, el túmulo funerario está mucho mejor preservado que el enorme túmulo solar cerca del lago Chegortai-Gol y, al parecer, comprende en menor medida a la población local en la construcción del koshar.
Las coordenadas en el mapa son aproximadas.
Fuentes de información: http://izvestia-soigsi.ru; http://rusplt.ru
http://mongolija.upese.lt/index.php/en/mongolian-altai-rivers
Coche en el espacio
Coche en el espacio
Tesla Roadster de Elon Musk
Lanzamiento
El coche fue lanzado el 6 de febrero de 2018 durante el primer lanzamiento del Falcon Heavy en una órbita elíptica alrededor del Sol.17 El primer segmento de la órbita es similar a un Órbita de transferencia de Hohmann a Marte. Aun así, debido a que el lanzamiento se realizó fuera de la ventana de lanzamiento (abril–mayo 2018) para Marte, el Roadster no encontrará Marte en su afelio. Incluso si el lanzamiento hubiera ocurrido en tiempo correcto, ni el Roadster ni la etapa superior del Falcon Heavy están diseñados para operar en espacio interplanetario, careciendo de propulsión, capacidad para maniobrar y comunicaciones necesarios para entrar en órbita a Marte. Según Musk, el coche puede quedar a la deriva por el espacio por un billón de años.
El coche inicialmente logró una órbita de aparcamiento de la Tierra, todavía unido a la segunda etapa del Falcon Heavy. Después de una fase costera de seis horas más larga de lo normal a través de los cinturones de Van Allen (un requerimiento de la Fuerza Aérea de los Estados Unidos para insertar satélites de inteligencia pesados en una órbita geoestacionaria), la segunda etapa fue re encendida para lograr velocidad de escape.1819201 El coche llevó tres cámaras, que transmitieron en vivo imágenes del coche.2122
Si bien los primeros automóviles en el espacio fueron los Lunar Roving Vehicle del Programa Apolo, el Roadster es el primer coche de consumo masivo en el espacio.23
El Tesla Roadster de Elon Musk es un automóvil privado que ha sido adaptado como simulador de masa para el vuelo inaugural del cohete Falcon Heavy. El vehículo es un Roadster de primera generación producido en 2009 por Tesla, un fabricante de automóviles eléctricos estadounidense co-fundado por el propio Musk.
El 1 de diciembre de 2017, Musk anunció vía Twitter que SpaceX, una empresa de la cual es el CEO y propietario, lanzaría el automóvil en el vuelo de inaugural de su nuevo lanzador de cargas pesadas, el Falcon Heavy, a principios de 2018. Tres semanas después, se publicaron imágenes del automóvil siendo montado en el adaptador de cargas del lanzador previo encapsulamiento por la cofia.
El coche se encuentra en una órbita elíptica alrededor del Sol que pasa por el cinturón de asteroides.1 El primer segmento de la órbita es similar a una Órbita de transferencia de Hohmann a Marte. Aun así, el coche no va a sobrevolar por Marte ni se introducirá en una órbita alrededor de él.234
La licencia para el lanzamiento fue emitida por el regulador del Gobierno federal de los Estados Unidos, la Oficina de Transporte Espacial Comercial, el 2 de febrero de 2018.5
Última imagen transmitida por el Tesla Roadster, se aprecia a Starman y la tierra
Objetivos
Los vuelos de prueba suelen llevar simuladores de masa como bloques de acero o de concreto. Esto parecía increíblemente aburrido. Y por supuesto, todo lo aburrido es terrible, especialmente las empresas, por lo que decidimos enviar algo inusual, algo que nos haga sentir emociones. La carga será un Tesla Roadster, que reproducirá Space Oddity, durante un viaje de mil millones de años en una órbita elíptica marciana.
Elon Musk anunciado la carga del vuelo inaugural del Falcon Heavy.6
El Roadster de Elon Musk, cuando todavía era usado personalmente, en las oficinas de SpaceX
Debido al riesgo que implica el lanzamiento de un nuevo cohete, Elon Musk declaró que pretendía lanzar la “cosa más tonta podemos imaginar” en el cohete nuevo, pero la carga exacta no era conocida hasta el anuncio del Roadster.78 Inicialmente, se creía que el anuncio era un broma, pero muchos empleados de SpaceX y el propio Musk confirmaron que dicha carga era cierta.9 El 22 de diciembre de 2017, Musk publicó fotos del vehículo antes del encapsulamiento. El automóvil se encuentra instalado en una posición inclinada por encima del adaptador de cargas para tener en cuenta la distribución de masa.10 El 5 de febrero de 2018, Musk publicó en su cuenta de Instagram imágenes del automóvil, donde se aprecia un muñeco apodado Starman (en homenaje a la canción de David Bowie) que lleva puesto un traje espacial de SpaceX.11 Una versión de miniatura de la carga también puede ser observado en el tablero del vehículo.12
Además del falso astronauta, el sistema de sonido a bordo el coche reprodujo la canción Space Oddity de David Bowie. En la guantera del coche hay una copia de la novela Guía del autoestopista galáctico, junto a toalla y un cartel que dice Don’t Panic, ambos son símbolos de la serie Guía del autoestopista galáctico.1314 Una copia de la serie de la Fundación de Isaac Asimov1516en un disco de almacenamiento de datos ópticos 5D fue incluida desde la Arch Mission Foundation
Falcon Heavy despega con el Tesla Roadster el 6 de febrero de 2018
El cohete, de 70 metros de alto y con capacidad para transportar más de 66 toneladas, despegó a las 15:45 hora local (20:45 GMT) de la plataforma LC-39A de dicho centro de la NASA, la misma de la que despegaron los cohetes de las misiones Apolo con destino a la Luna (1961-1972).
Órbita del coche
Vista de la cabina del coche, se aprecia la frase Don’t Panic, referencia a Guía del autoestopista galáctico
El Falcon Heavy dejó en órbita el Tesla Roadster de Elon Musk
Falcon Heavy logró poner en órbita el Tesla, tal como estaba planeado. Es cierto que el auto viajará más allá de lo previsto, tal como lo explicó Musk, pero esto no es un problema para el emprendedor.
El creador de Tesla pudo probar que el triple cohete funciona. Falcon Heavy permite transportar cargas más pesadas que cualquier otro cohete operativo en la actualidad y a un tercio del costo.
Es un hito importante dentro de la carrera espacial y un negocio redituable para Musk. Seguramente habrá que hacer ajustes en futuros lanzamientos pero no puede dejar de ser considerado un éxito.
La imagen de la trayectoria planificada para el Falcon Heavy que compartió Elon Musk con sus seguidores
La idea era que el vehículo llegara a una distancia de 400 millones de kilómetros en dirección a la órbita de Marte. Sin embargo, el auto irá más allá de lo esperado.
Según publicó Musk en su cuenta de Twitter, ahora la nave se dirige hacia el Cinturón de asteroides, una región del sistema solar que se encuentra entre las órbitas de Marte y Júpiter. Esto ocurrió porque uno de los cohetes se apartó de la trayectoria planeada.
El creador de Space X y Tesla publicó en Twitter que la carga se encuentra en el Cinturón de asteroides
El poderoso Falcon Heavy es una combinación de tres Falcon 9, el cohete que Space X utiliza para orbitar satélites y transportar elementos a la Estación Espacial Internacional. Cuenta con 27 motores y tiene 70 metros de alto.
Dos de los cohetes propulsores laterales del Falcon Heavy-que ya habían sido utilizados en otros lanzamientos- volvieron a Tierra después del despegue a Cabo Cañaveral, tal como estaba esperado.
El cohete central, en cambio, no aterrizó en la plataforma flotante que estaba preparada para este fin. Luego de dejar la carga en órbita, cayó a una distancia de 100 metros de ese objetivo, en el Océano Atlántico y ya no podrá ser reutilizado.
Esto no significa un fracaso para Musk. Antes de esta misión, el millonario aclaró que solo era una prueba y que pensaba que había grandes chances de que el Falcon Heavy completo explotara durante el despegue. Sin embargo esto no ocurrió.
En el asiento del piloto en el vehículo estará “Starman”, un muñeco con traje de astronauta, con una mano al volante. Al momento de despegar, le acompañará la canción “Space Oddity” de David Bowie.
https://cnnespanol.cnn.com/2018/02/10/tesla-elon-musk-espacio-cohete-falcon-heavy-spacex/
Mientras tanto, Starman sigue su viaje cósmico ajeno a las confabulaciones terrestres en una órbita elíptica alrededor del Sol. Lamentablemente, no podremos ver más fotos de su periplo, nítidas o no, porque las cámaras del coche solo tenían batería para 12 horas de vuelo.
¿Por qué la imagen del Tesla en el espacio parece un fake?
Si alguien te enseñara hace unas semanas la foto del descapotable de Elon Musk surcando el cosmos, probablemente pensarías que se trata de un montaje. No solo por lo surrealista de la estampa, sino porque las propiedades del espacio hacen que los contornos y colores se vean distintos que sobre la Tierra.
Al cohete Falcon Heavy de la empresa Space X se le considera el más potente del mundo después del mítico Saturno V de las misiones Apolo de la NASA. Pero la popularidad de la formidable nave, lanzada al espacio esta semana desde Cabo Cañaveral (en Florida), se vio pronto eclipsada por la singularidad de su carga: un Tesla Roadster descapotable de color rojo.
A Elon Musk, el visionario detrás de la compañía, se le ha ocurrido la brillante idea de enviar al cosmos su flamante coche eléctrico. Aunque el destino del vehículo, conducido por un muñeco apodado Starman y con David Bowie como banda sonora, era Marte, su propietario ha admitido que se ha pasado y que se dirige actualmente al cinturón de asteroides.
Como no podía ser de otra manera, la noticia y las fotos del descapotable con la Tierra de fondo publicadas por Space X han desencadenado todo un aluvión de desternillantes memes. Pero a las imágenes ni siquiera les hace falta un montaje tan elaborado para parecer “ridículas e imposibles”, como las califica el propio Musk. Han sido tomadas por las cámaras que viajan a bordo del vehículo, pero, si no conocieras su historia, probablemente pensarías que son producto de Photoshop.
Distorsión espacial
El máximo responsable de Space X ha atribuido la extraña apariencia de su descapotable cósmico a la influencia de su actual entorno. Dice que, en el espacio, los colores se ven raros porque “no hay oclusión atmosférica” y “todo parece demasiado nítido”.
Por muy esperpénticas que puedan ser sus ideas, Musk está en lo cierto. Pero solo en parte. Las tonalidades se perciben distintas fuera de la Tierra: ganan nitidez. Pero el efecto óptico no parece tener mucho que ver con oclusiones atmosféricas —un fenómeno meteorológico que relacionado con el choque de masas de aire frías y calientes—, sino que más bien se debe a las propiedades del espacio y de la capa gaseosa que recubre nuestro planeta.
Los múltiples medios por los que puede viajar la luz, ya sea el aire, el agua o el vacío, presentan diferentes índices de refracción que modifican la trayectoria de las ondas de distinta manera. Por eso, los rayos luminosos de colores no se ven igual en todas estas sustancias.
Además, cuando las ondas de luz atraviesan la atmósfera, encuentran en su camino abundantes partículas de polvo, hollín y humo y diminutas gotitas de agua. Incluso en la misma capa de aire pueden variar propiedades como la temperatura y la densidad; por eso en la cima del Everest es menos denso que al nivel del mar.
Todos estos factores pueden modificar la forma en que los colores se ven en la Tierra. Al chocar con partículas constantemente, la luz va cambiando de dirección, de manera que las imágenes que vemos parecen más borrosas, menos definidas. En el espacio, sin embargo, no hay nada que modifique la trayectoria de la luz o bloquee su paso. Es por eso que las imágenes tomadas por satélites y por el telescopio espacial Hubble se ven más nítidas que las de los observatorios terrestres.
Según el científico Rick Sachleben, de la Sociedad Estadounidense de Química, estas son las causas más probables que explican por qué las imágenes del Tesla parecen falsas. Lo que no sabemos, al menos de momento, es a qué se refería Musk con su explicación sobre la oclusión atmosférica.
El descapotable rojo de Elon Musk se dirige hacia la Tierra
Paula Dumas, 20 de noviembre de 2018 a las 16:53
El descapotable rojo de Elon Musk se dirige hacia la Tierra
El descapotable rojo de Elon Musk, con el muñeco ‘Starman’ al volante, ya vuelve hacia la Tierra. El Tesla, que fue lanzado en febrero al espacio a bordo de un gigantesco cohete Falcon, de la compañía SpaceX, en su órbita por el Sistema Solar ahora avanza de nuevo hacia nuestro planeta, según informa la web whereisroadster.com, que se nutre de los datos ofrecidos por al Laboratorio de Propulsión a Chorro (JLP) de la Nasa. Y se prevé que pase cerca de la Tierra, a tan solo 0,275 unidades astronómicas, el 30 de marzo de 2021.(Así ha sido el triste final del ‘coche espacial’ Tesla Roadster enviado al espacio exterior )
Ahora mismo, viaja a una velocidad de 14,08 km/s y ya ha recorrido una distancia equivalente a haber conducido por todas las carreteras del mundo 17,1 veces, según lavanguardia.(El SpaceX de Tesla Roadster incluirá 10 cohetes para su super aceleración )
Desde que zarpó al espacio, Starman, el muñeco situado en el asiento del piloto y llamado así en homenaje a David Bowie, ya ha escuchado ‘Space Oddity’ unas 77.587 veces en una oreja y ‘Is there Life on mars?’, 104.545 veces en la otra. El coche vagará por los confines del sistema solar durante los próximos mil años o hasta que la radiación solar lo desintegre por completo.
Gannarve Stone Ship
Gannarve Stone Ship, Suecia
El barco de piedra de Gannarve en La parroquia de Fröjel, al sur de Klintehamn, Gotland, Suecia, es de finales de la Edad del Bronce. La mayoría de los 29 metros de largo y 5 metros fueron destruidos con el paso del tiempo y pocos bloques de popa y proa habían sobrevivido. Sin embargo, fue reconstruido en 1959 después de un estudio arqueológico de los alrededores / piedras y lo que se ve hoy es un barco completamente reconstruido. Según se informa, había otro barco aquí, pero hoy no queda rastro de lo mismo.
Image from Flickr is by access.denied
Source of info: Swedish Wikipedia (English Translation)
La tumba de Gannarve está delineada por grandes piedras erguidas que forman la forma de un barco. Se ha construido al final de la Edad del Bronce, alrededor de 1100 – 500 a. C. La tumba mide 29 metros de largo y 5 metros de ancho. Es solo una de las aproximadamente 350 tumbas con forma de barco en la isla. En la mayoría de los casos, solo se ha descubierto un entierro en cada tumba. Cuando estas personas fueron enterradas, era una costumbre incinerar a los muertos en una pira. Después de la cremación, los huesos fueron triturados y lavados antes de colocarlos en una urna.
Hubo una vez dos tumbas en forma de bote aquí en Gannarve. Uno de ellos fue víctima del arado hace mucho tiempo. La tumba existente fue casi destruida de la misma manera. Solo las piedras madre se mantuvieron cuando los arqueólogos comenzaron a excavar el monumento en 1959. La excavación descubrió marcas de suelo de todas las piedras removidas debajo de la turba. En consecuencia, la reconstrucción de toda la tumba no fue demasiado difícil.
Había muchas piedras grandes al lado de la tumba, y es muy posible que varias de las piedras utilizadas alguna vez pertenecieran a la tumba original.
Cuerpo más pequeño orbitado
Cuerpo más pequeño orbitado
Recogida de muestras y traídas a la Tierra
OSIRIS-REx
Imagen artística de la sonda al momento de recolectar la muestra.
La OSIRIS-REx es una sonda espacial de la NASA cuyo objetivo es alcanzar el asteroide Bennu, recoger una muestra del material de su superficie y volver a la Tierra para que esta muestra sea analizada.1 Fue lanzada el 8 de septiembre de 2016 desde cabo Cañaveral.2
El nombre es el acrónimo de Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer.3
La sonda llegó al asteroide el 3 de diciembre de 20184, lo cartografiará y analizará durante varios meses y, aproximadamente en julio de 2020, empezará la recogida de muestras por medio de un brazo retráctil que alcanzará la superficie del asteroide.5 El brazo de la sonda tocará la superficie y eyectará un chorro de nitrógeno gaseoso para arrastrar porciones de regolito que serán capturadas por un filtro y guardadas dentro de la Cápsula de Retorno de Muestras. El cargamento de nitrógeno es suficiente como para realizar tres intentos en los cuales se pretende obtener un mínimo de 60 gramos y un máximo de 2 kilogramos de material del asteroide. El contacto entre la sonda y el asteroide durará apenas cinco segundos por intento. Después de obtener las muestras la sonda emprenderá el camino de vuelta a la Tierra en marzo de 2021 y llegará a nuestro planeta en septiembre de 2023, separando la cápsula de retorno de muestras para que aterrice mediante el accionamiento del paracaídas. La sonda posteriormente seguirá en una órbita heliocéntrica.16
La sonda posee tres cámaras. Una de ellas de largo alcance llamada PolyCam, obtendrá imágenes del asteroide desde una distancia de 2 millones de kilómetros, también imágenes de alta resolución del lugar del que sea obtenida la muestra.3
Reproducir contenido multimedia
Un cohete Atlas V despega en el Complejo de Lanzamiento Espacial 41 de la Fuerza Aérea en Cabo Cañaveral. La misión es enviar la sonda espacial OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, por sus siglas en inglés). Esta será la primera misión de Estados Unidos para coger muestras de un asteroide y obtener al menos 60 gramos de material de la superficie, para luego traerlas a la Tierra para su posterior estudio.
La segunda cámara, llamada MapCam, hará una cartografía de todo el asteroide con imágenes en color. Adicionalmente documentará fragmentos y rocas que estén en la órbita del asteroide.3
La tercera cámara, llamada SamCam, documentará el momento en que el brazo de la sonda realice la maniobra de obtención de material de la superficie.3
Además del análisis de la muestra, la sonda tiene el objetivo de estudiar el asteroide, obteniendo datos sobre el origen del sistema solar, y por otro lado tener mayores datos sobre asteroides que tienen posibilidad de estrellarse contra la Tierra para evitarlo o mitigar sus efectos.3
El coste de la sonda es de aproximadamente 800 millones de dólares (unos 675 millones de euros), y pertenece al programa New Frontiers de la NASA (la tercera sonda de este programa).6
Obtención de la muestra
Posición del asteriode y los planetas interiores en julio de 2020 cuando la sonda entre en contacto con el objetivo.
La maniobra de obtención de la muestra se realizará de la siguiente manera: la sonda describirá una órbita de acercamiento al asteroide, de forma que tenga la misma dirección que el movimiento de rotación de dicho cuerpo y realizando una cuarta órbita, momento en el que se acercará a la superficie. El brazo estará desplegado en todo momento, apuntando siempre en dirección al asteroide. En cuanto el brazo toque la superficie se producirá la obtención de la muestra y la sonda se alejará de manera inmediata en dirección casi vertical respecto al asteroide.7
Cuando se produzca el contacto, un resorte en el brazo amortiguará la inercia del golpe, posándose sobre la superficie la esponja que obtendrá la muestra. En ese momento se accionará el chorro de nitrógeno que arrastrará material del asteroide hasta los filtros. Las muestras tomadas abarcarán aproximadamente 26 cm2 de la superficie del asteroide.7
Cuando concluya la obtención, la sonda se alejará con un empuje de 0,7 m/seg y solo cuando esté a una distancia segura se enviarán los datos y se evaluará la maniobra, que será grabada en su totalidad por la cámara SAMCAM. Si se obtiene una cantidad menor de 60 g de material, se podrá planificar una nueva maniobra hasta un máximo de tres intentos en total.7
Datos técnicos
La sonda tiene una masa al lanzamiento de 2110 kg, de los cuales 1230 corresponde al combustible. El cuerpo de la sonda mide aproximadamente tres metros, sin embargo, con los paneles solares desplegados su envergadura total es mayor de seis metros. Dichos paneles son capaces de generar entre 1226 y 3000 vatios de potencia.6
La sonda cuenta con los siguientes instrumentos:
OLA: un altímetro láser para cartografiar el asteroide en tres dimensiones.8
OTES: un espectrómetro para realizar análisis químico mineral.9
OVIRS: un espectrómetro para identificar agua y compuestos orgánicos.10
REXIS: un espectrómetro de rayos X para hacer un mapeo general de los elementos en la superficie del asteroide.11
La nave OSIRIS-REx de la NASA despide 2018 batiendo récords
- El asteroide Bennu se va a convertir en el cuerpo más pequeño que se haya orbitado por una nave espacial
- Además, dicha órbita será la más cercana de un cuerpo planetario descrita por un artefacto fabricado por el ser humano
28.12.2018 | actualización 15:53 horas
Representación de la sonda OSIRIS-REx sobre el asteroide Bennu. NASA
La nave OSIRIS-REx de la NASA tiene prevista una inserción orbital alrededor del asteroide Bennu este 31 de diciembre que batirá sendos récords en la historia de las misiones espaciales.
Este primer paso fue uno de los cinco sobrevuelos de los polos y el ecuador de Bennu que OSIRIS-REx realizó durante su Estudio Preliminar del asteroide. Ya en su aproximación, la nave detectó agua en el asteroide, aunque su objetivo final será recoger muestras del suelo y traerlas a la Tierra para su estudio.
La sonda OSIRIS-REx de la NASA entró en la órbita del pequeño asteroide Bennu
La agencia espacial estadounidense dijo que la órbita marca “un salto para la humanidad” porque ninguna nave espacial ha “circulado tan cerca de un objeto espacial tan pequeño, uno con la gravedad apenas suficiente para mantener un vehículo en una órbita estable”
1 de enero de 2019
Una sonda de la NASA estableció un nuevo hito el lunes en exploración cósmica al entrar en órbita alrededor de un asteroide, Bennu, el objeto más pequeño en ser rodeado por una nave espacial.
La sonda, llamada OSIRIS-REx, es la primera misión estadounidense en ser diseñada para visitar un asteroide y devolver una muestra de su polvo a la Tierra.
La nave espacial no tripulada de 800 millones de dólares fue lanzada hace dos años desde Cabo Cañaveral, Florida, y llegó el 3 de diciembre a su destino, a unos 110 millones de kilómetros de distancia.
El lunes, después de estudiar detenidamente el asteroide durante varias semanas, la nave espacial disparó sus propulsores para ponerse en órbita alrededor de Bennu a las 2:43 pm (19H43 GMT).
El asteroide mide unos 500 metros de diámetro.
“Entrar en órbita alrededor de Bennu es un logro increíble que nuestro equipo ha estado planeando durante años”, aseguró Dante Lauretta, investigador principal de OSIRIS-REx en la Universidad de Arizona, en Tucson.
La NASA dijo que la órbita marca “un salto para la humanidad” porque ninguna nave espacial ha “circulado tan cerca de un objeto espacial tan pequeño, uno con la gravedad apenas suficiente para mantener un vehículo en una órbita estable”.
La nave espacial está orbitando a Bennu a una milla de su centro.
UN imagen de Bennu tomada por OSIRIS Rex el 2 de diciembre desde una distancia de 24 km. (NASA/Goddard/University of Arizona via REUTERS)
La nave espacial Rosetta de la Agencia Espacial Europea orbitó un cometa en mayo de 2016, pero a una distancia mayor de unas cuatro millas del centro del cometa 67P/Churyumov-Gerasimenko.
Bennu tiene una fuerza de gravedad de solo cinco millonésimas tan fuerte como la de la Tierra, dijo la NASA.
Cada órbita de OSIRIS-REx tomará 62 horas.
El plan es que OSIRIS-REx orbite Bennu hasta mediados de febrero, utilizando un conjunto de cinco instrumentos científicos para mapear el asteroide en alta resolución para ayudar a los científicos a decidir con precisión dónde realizar el muestreo.
Luego, en 2020, alcanzará con su brazo robótico y tocará el asteroide en una maniobra que Rich Kuhns, el gerente del programa OSIRIS-REx con Lockheed Martin Space Systems en Denver, describió como un “delicado high-five (choque de manos)”.
OSIRIS-REx, la nave “minera” de la NASA, ha llegado al asteroide Bennu: no es una roca cualquiera y nos traerá un pedacito
El estudio de los planetas es tan útil como interesante pero no sólo éstos pueden aportar información de gran valor científico. Como vecinos también tenemos un gran número de asteroides y ahora OSIRIS-REx ha llegado a Bennu, uno de éstos, pero no uno cualquiera.
La nave ha completado así un viaje de unos dos años desde que se lanzase el día 8 de septiembre de 2016. No se trata de una de esas sondas que morirá por la ciencia como Cassini, sino que su regreso es muy importante ya que nos ha de traer de vuelta una muestra de ese particular asteroide al que ya ha conocido de cerca.
Un viaje de ida y vuelta y un asteroide “especial”
Los asteroides son rocas de tamaño, forma y movimiento variable, sin atmósfera, cola o algún otro elemento propio de cometas o planetas. Pero pese a su aspecto yermo resultan ser un objetivo interesante para lo de siempre: conocernos mejor a nosotros mismos, o mejor dicho a nuestro origen, el del sistema solar y el de la Tierra.
¿Por qué entonces viajar hasta Bennu y no hasta cualquier otro? Porque aunque haya tantos asteroides muchos de ellos no se conocen bien a nivel de superficie y composición, y al final pocos, muy pocos, pasan los filtros que sólo Bennu logró pasar:
- Proximidad: Bemmu está relativamente cercano a la Tierra, lo cual en este caso era aún más importante al tratarse de una misión de ida y vuelta.
- Órbita: Bennu se mueve de manera circular y no orbita irregularmente como otros asteroides, lo cual sería más inseguro para la misión.
- Tamaño: cuanto más grande sea el asteroide, mejor, ya que los más pequeños rotan más deprisa y suelen proyectar materiales que podrían dañar a la sonda.
- Composición química: como decíamos antes el objetivo es conocer mejor la historia del sistema solar y la Tierra, y por este motivo la composición química reducía los candidatos a doce (a los que se les conoce dicha composición), y de ésos sólo cinco eran propicios para tomar muestras al ser ricos en carbono, lo cual es importante de cara a encontrar moléculas orgánicas. De éstos se eligió Bennu porque estaba más estudiado, de modo que se tenía más certeza de que su superficie fuese conveniente para aterrizar y recoger muestras.
Ahora se encuentra a unos 19 kilómetros de la superficie de Bennu para realizar una exploración preliminar del cuerpo celeste, aproximándose hasta unos 7 kilómetros, con lo que se podrá redefinir la masa, la tasa de giro y la forma del asteroide. Esto servirá para determinar los sitios potenciales para la toma de muestras: 60 gramos de regolitos (es decir, rocas y polvo sobre una superficie inalterada).
60 gramos de récord para la NASA
El principio y el fin de nuestros tiempos siguen siendo dos de los pedales de aceleración que sugieren nuevas misiones espaciales, como es el caso de ésta. La idea es no sólo intentar conocer mejor la formación de planetas, sino también poder determinar con mejor grado qué ocurriría si un asteroide impactase en la Tierra.
Por otro lado está la presencia de ciertos componentes y lo que ya planteamos hace unos meses con esa “fiebre del oro” que parece estar renaciendo más allá de la exoesfera. Los asteroides contienen componentes orgánicos, agua y metales entre otros, lo cual se mira con ojos con sed de exploración y desarrollo económico por parte de numerosas empresas.
Si todo va bajo lo previsto OSIRIS-REx orbitará Bennu el 31 de diciembre a unos 492 metros, con lo cual el asteroide pasará a ser el objeto más pequeño orbitado jamás por un vehículo de construcción humana. Y si finaliza la misión volviendo sano y salvo en septiembre de 2023, será la primera misión estadounidense en tomar muestras de un asteroide y devolverlas a la Tierra, así como recoger la muestra más grande desde la era Apollo.
Imagen | NASA/Goddard/Universidad de Arizona
OSIRIS-REx tomó esta imagen de Bennu cuando se encontraba a 80 km. (Crédito: NASA/Goddard/University of Arizona)
Serie de imágenes tomadas por la nave espacial OSIRIS-REx que muestran a Bennu en una rotación completa desde una distancia de 80 km. La cámara PolyCam de la nave obtuvo los 36 fotogramas de 2,2 milisegundos en un período de cuatro horas y 18 minutos. / NASA’s Goddard Space Flight Center/University of Arizona
Después de viajar por el espacio durante más de dos años y recorrer más de 2.000 millones de kilómetros, la nave espacial OSIRIS-Rex de la NASA ha llegado este lunes a su destino: el asteroide Bennu.
Ahora la nave pasará más un año estudiando el asteroide con cinco instrumentos (el sistema OCAMS de tres cámaras, el altímetro láser OLA y tres espectrómetros: OTES, OVIRS y REXIS) para estudiar y cartografiar este objeto, así como para seleccionar una ubicación segura y científicamente interesante (donde se detecte material orgánico, por ejemplo) para poder recoger una muestra.
En julio de 2020 la nave recogerá una muestra del asteroide para traerla a la Tierra en el año 2023.
La recogida de al menos 60 gramos de regolito (material de tierra y rocas) del asteroide está prevista para el 4 de julio (fiesta nacional en EE UU) de 2020, una operación delicada que durará tan solo 5 segundos. Si todo va bien, la nave tomará la muestra de Bennu y la traerá a la Tierra en 2023.
De momento OSIRIS-REx se sitúa a unos 19 kilómetros de la superficie del asteroide, pero cuando realice los sobrevuelos previstos alrededor de las regiones polares y ecuatoriales del objeto se acercará hasta los 7 kilómetros.
Este 31 de diciembre la nave comenzará a girar en torno a Bennu, momento en que este pequeño asteroide de 492 metros de años se convertirá en el objeto más pequeño que haya orbitado nunca una nave espacial.
Visión de la nave OSIRIS-REx según se acercaba a Bennu durante la fase final de su viaje. Desde el 17 de agosto hasta el 27 de noviembre, la cámara PolyCam lo fotografió casi diariamente mientras viajaba 2,2 millones de kilómetros hacia el asteroide. Las imágenes finales se obtuvieron a una distancia de unos 65 km. Durante este período, OSIRIS-REx completó cuatro maniobras que redujeron su velocidad desde aproximadamente 491 m/s a 0,04 m/s con respecto a Bennu, por lo que la velocidad de aproximación es más lenta al final del video. / NASA’s Goddard Space Flight Center/University of Arizona
Análisis de Bennu y más allá
Los principales objetivos científicos de la misión son confirmar las estimaciones de masa y velocidad de giro de Bennu, además de generar un modelo más preciso sobre su forma. Los datos también servirán para determinar los sitios potenciales para recolectar las muestras.
Pero más allá de estos resultados, la información que facilite OSIRIS-REx ayudará a los científicos a investigar cómo se formaron los planetas y comenzó la vida, así como para mejorar nuestra comprensión de los asteroides que podrían impactar contra la Tierra.
Los asteroides son restos de los bloques de construcción que formaron planetas como el nuestro y pudieron llevar los ingredientes para la vida. Bennu y otros cuerpos similares contienen recursos naturales como agua, compuestos orgánicos y metales. En el futuro, la exploración espacial y el desarrollo económico podrían llegar a depender de los asteroides para conseguir este tipo de material.
En julio de 2020 la nave OSIRIS-REx rozará durante cinco segundos el asteroide Bennu para tomar una muestra. / NASA’s Goddard Space Flight Center
LA NAVE OSIRIS-REX BATE DOS RÉCORDS EN NOCHEVIEJA
Pocas horas antes de que la nave New Horizons se acercara al cuerpo más lejano explorado hasta ahora, otra sonda de la NASA registraba durante la Nochevieja dos récords, a 110 millones de kilómetros de la Tierra. El 31 de diciembre, la nave OSIRIS-REx consiguió entrar en la órbita del asteroide Bennu (de unos 490 metros de diámetro), convirtiéndose en la nave que orbita el mundo más pequeño.
Al situarse a sólo 1,75 kilómetros de distancia del asteroide, se ha convertido también en la nave que más se acerca de forma controlada a un objeto celeste. El récord hasta ahora lo ostentaba la misión Rosetta, de la Agencia Espacial Europea (ESA), que en mayo de 2016 estuvo a siete kilómetros de la superficie del cometa 67P/Churyumov-Gerasimenko.
Pero la parte más emocionante de la misión de OSIRIS-REx está por llegar. Su objetivo es tomar muestras de este asteroide en 2020 y mandarlas de vuelta a la Tierra, donde se espera que lleguen en septiembre de 2023.
Plaza de Avebury
Plaza de Avebury
“Plaza secreta”
Descubierta bajo el círculo de piedra de Avebury
Los arqueólogos han encontrado un impresionante y aparentemente único monumento cuadrado debajo del famoso círculo de piedra de Avebury en Wiltshire.
Una reconstrucción del Círculo Interior del Sur [Crédito: Dr. Mark Gillings / Universidad de Leicester]
El Patrimonio de la Humanidad de la UNESCO, construido a lo largo de varios cientos de años en el tercer milenio aC, contiene tres círculos de piedra, incluyendo el círculo de piedra más grande de Europa, que tiene 330 metros de ancho.
Un equipo de investigación liderado por la Universidad de Leicester y la Universidad de Southampton utilizó una combinación de la encuesta de resistencia del suelo y el radar de penetración del suelo para investigar el círculo de piedra.
Su trabajo fue financiado por el Consejo de Investigación de Artes y Humanidades (AHRC) y apoyado por el National Trust, así como por arqueólogos de la Universidad de Cambridge y Allen Environmental Archaeology.
El Dr. Mark Gillings, Director Académico y Lector de Arqueología en la Escuela de Arqueología y Historia Antigua de la Universidad de Leicester, dijo: “Nuestra investigación ha revelado megalitos desconocidos en el famoso círculo de piedra de Avebury. Hemos detectado y mapeado una serie de piedras prehistóricas que posteriormente fueron ocultadas y enterradas, junto con las posiciones de otros probablemente destruidos durante los siglos XVII y XVIII. En conjunto, éstos revelan un monumento megalítico cuadrado llamativo y al parecer único dentro de los círculos de Avebury que tiene el potencial de ser una de las estructuras más tempranas en este sitio notable.
El trabajo de resistencia del suelo es llevado a cabo por arqueólogos de la Universidad de Leicester en el sitio del círculo de piedra en Avebury [Crédito: Dr. Mark Gillings / Universidad de Leicester]
Avebury ha sido objeto de considerable interés arqueológico desde el siglo XVII. El descubrimiento de nuevos megálitos dentro del monumento fue por lo tanto una gran sorpresa, señalando la necesidad de más investigaciones arqueológicas de este tipo en el sitio. La encuesta se llevó a cabo dentro del Círculo Interior del Sur, contenida dentro del banco y la zanja y el colosal Círculo de Piedra Exterior del Avebury henge.
Las excavaciones realizadas aquí por el arqueólogo y magnate de la mermelada Alexander Keiller en 1939 demostraron la existencia de un curioso ajuste angular de pequeñas piedras colocadas cerca de un solo gran montante conocido desde el siglo XVIII como el Obelisco. Desafortunadamente, el estallido de la guerra dejó esta característica solamente parcialmente investigada.
Dr Joshua Pollard de la Universidad de Southampton dijo: “Nuestro cuidadoso programa de encuesta geofísica ha completado finalmente el trabajo iniciado por Keiller. Se ha demostrado la línea de piedras que identificó fue un lado de un cuadrado de megalitos de unos 30 metros de ancho y encerrando el Obelisco. También son visibles las líneas cortas de antiguas piedras que irradian de esta plaza y se conectan con el Círculo Interior del Sur. Los círculos megalíticos son bien conocidos desde la época en que se construyó Avebury durante el Neolítico tardío (III milenio aC), pero los ajustes megalíticos cuadrados de esta escala y complejidad son muy inusuales”.
El plano reconstruido del Círculo Interior del Sur que muestra las posiciones de los recién descubiertos.
Piedras de pie en azul [Crédito: Dr. Mark Gillings / Universidad de Leicester]
El Dr. Nick Snashall, arqueólogo de National Trust en Avebury, dijo: “Este descubrimiento ha sido casi ochenta años en la fabricación, pero ha sido bien vale la pena esperar. La conclusión de la obra iniciada por Keiller en los años 30 ha revelado un tipo enteramente nuevo del monumento en el corazón del círculo de piedra prehistórico más grande del mundo, usando técnicas que él nunca soñó. Y va a mostrar cuánto más todavía se revelará en Avebury si hacemos las preguntas correctas. “
Los arqueólogos que emprendieron la obra piensan que la construcción del cuadrado megalítico podría haber conmemorado y monumentalizado la ubicación de una casa neolítica temprana -quizás parte de un asentamiento fundacional- posteriormente utilizada como punto central del Círculo Interior del Sur. En el momento de la excavación en 1939 la casa fue considerada erróneamente por Keiller para ser una carreta medieval del carro.
Si resultó correcto, puede ayudar a entender los inicios del notable complejo de monumentos de Avebury, y ayudar a explicar por qué fue construido donde estaba.
El equipo de investigación está compilando su investigación en un documento para la publicación académica.
You can access a full technical report here http://www2.le.ac.uk/departments/archaeology/people/academics/gillings
Read more at https://archaeologynewsnetwork.blogspot.com/2017/06/secret-square-discovered-beneath.html#7kjekFb0m28Wp0jK.99
Anteriores estudios de resistencia de suelo en el cuadrante sudoriental de Avebury. Imagen incorpora datos © Crown Copyright/base de datos derecho 2012. Un servicio de Ordnance Survey/EDINA suministrado.
Debe estar conectado para enviar un comentario.