Sociedad
Primera sonda a Júpiter
Primera sonda a Júpiter
Galileo (sonda espacial)
Galileo en el Centro Espacial Kennedy en Cabo Cañaveral.
Información general
Organización: NASA
Fecha de lanzamiento: 18 de octubre de 1989
Aplicación: Sonda de Júpiter
Propiedades
Fabricante:
Jet Propulsion Laboratory
Messerschmitt-Bölkow-Blohm
General Electric
Hughes Aircraft Company
masa
Orbiter: 1.884 kg
Lander: 339 kg
Generación de energía
Orbitador: GTR
Lander: Batería
Masa de carga útil
Fecha de lanzamiento: De 18 de octubre de 1989 , 16:53:40 UTC
Vehículo de lanzamiento: Atlantis ( STS-34 )
Lugar de lanzamiento: El Centro Espacial Kennedy , LC-39B
Destino: Júpiter
Fecha de inserción orbital: 08 diciembre de 1995 , 01:16 GMT
Fecha de aterrizaje
Lander: 07 de diciembre de de 1995 , 22:04 GMT
Lugar de aterrizaje
Lander: 06 ° 05’N 04 ° 04’W
Decadencia
Orbitador: 21 de setiembre de 2003 , 18:57:18 UTC
Galileo fue una nave espacial estadounidense no tripulado lanzado por la NASA para estudiar el planeta Júpiter, sus lunas y otros cuerpos celestes del Sistema Solar. Lleva el nombre del astrónomo italiano Galileo Galilei, que consistía en un orbitador y un sonda atmosférica y fue lanzado al espacio el 18 de octubre de 1989, de la tierra ‘s órbita, llevado por el transbordador espacial Atlantis en la misión STS-34. Él entró en la órbita de Júpiter el 7 de diciembre de 1995, después de un período de seis – viaje del año a través del espacio asistida por la gravedad de Venus y de la Tierra, la primera nave espacial en orbitar el planeta gigante. También lanzó la primera sonda para el planeta (Júpiter), que transmite datos a partir de su ambiente antes de ser destruido en el descenso por la presión y el calor, sin hacer contacto con tierra firme.[1]
En su largo viaje a Júpiter, Galileo hizo nuevos descubrimientos en el camino, envió gran cantidad de datos sobre las lunas de Júpiter Io, Europa, Calisto y Ganímedes y observó la colisión del cometa cometa Shoemaker-Levy 9 en julio de 1994. A pesar de los problemas sufrido en su antena, se llevó a cabo el primer sobrevuelo de un asteroide, el 951 Gaspra y descubrió la primera “luna” de un asteroide, dáctilo, alrededor de 243 Ida.[1]
Los datos enviados habilitadas nuevo conocimiento de la composición de la atmósfera y las nubes de de Júpiter amoniaco también fueron asignadas, posiblemente creado por el flujo de las capas internas de la atmósfera. El volcánica Io y su interacción con la gravedad y la atmósfera Júpiter también se registraron. Las observaciones permitieron a los satélites también apoyan la teoría de la existencia de un océano líquido bajo la superficie congelada Europa e indicaron la posibilidad de agua salada en las capas superficiales y Calixto Ganimedes, mostrando el último tiene un campo magnético. Las pruebas también se recogió una exosfera por Europa, Ganímedes y Calisto. Galileo también mapea el alcance y la estructura de la magnetosfera Jupiter y encontró que la delgada sistema de anillo alrededor del planeta está formada por el polvo resultante de los impactos sufridos por cuatro pequeñas lunas interiores.[1]
El 21 de septiembre de 2003, después de 14 años en el espacio y ocho de ellos orbitando el sistema joviano, la misión fue cerrada con la sonda espacial siendo deliberadamente sacada de la órbita y lanzada a la atmósfera de Júpiter a una velocidad de 48 km / s, desintegrando si la caída en el fin de proteger las lunas de Júpiter, principalmente de Europa, una posible contaminación con bacterias de la tierra, ya que se cree que en Europa hay un océano debajo de la costra de hielo que puede llevar a la vida.[2] .
El 11 de diciembre de 2013, la NASA anunció, en base a estudios de los datos transmitidos por Galileo más de una década anterior, los cuales fueron detectados minerales de arcilla – específicamente filosilicatos – a menudo asociada con la materia orgánica en la superficie helada de Europa. Según los científicos, la presencia de estos minerales debe haber sido causado por la colisión de un asteroide o un cometa con el satélite.[3]
La sonda Galileo
Resultados científicos
La sonda Galileo constituyó la primera navegación in situ de la atmósfera de un planeta gigante. Entre los resultados más destacados obtenidos se encontró que la atmósfera joviana contenía una proporción mayor de elementos pesados como carbono, nitrógeno, neón y otros. Este resultado parecía contradecir la mayoría de modelos de formación del planeta que predecían una proporción de estos elementos parecidos a la del Sol. El enriquecimiento en elementos pesados obligó a revisar estos modelos en profundidad. Por otro lado, la sonda fue incapaz de encontrar una alta proporción de oxígeno (en forma de vapor de agua en la atmósfera joviana). Al parecer la sonda penetró en una región particularmente activa meteorológicamente, que pudo falsear los resultados globales de las medidas de volátiles, sustancias como el agua que pueden condensar y formar nubes en la atmósfera de Júpiter.
Características técnicas de la sonda
La sonda pesaba unos 320 kg y medía aproximadamente 1,3 m. La sonda estaba protegida por un escudo térmico capaz de soportar las altas temperaturas producidas en la entrada en la atmósfera superior de Júpiter a velocidades de hasta 69 km/s (250 000 km/h),2 mayores que la velocidad de escape. Tras la fase inicial de frenado aerodinámico la sonda expulsó el escudo térmico y prosiguió su descenso frenada por un paracaídas. Se enviaron datos durante aproximadamente unos 50 minutos a lo largo de un descenso de más de 150 km. Finalmente, a presiones en torno a 22 bar se perdió la comunicación con la sonda. Esta fue previsiblemente destruida por las altas presiones y temperaturas de la atmósfera más profunda.
El diseño artístico de la sonda volar Io, a su antena de alta ganancia completamente abierta.
El orbitador Galileo
Principales resultados científicos
Galileo ha contribuido sustancialmente al mayor conocimiento que tenemos del planeta Júpiter y su sistema de anillos y lunas. En particular, las estructuras observadas en la superficie helada de Europa sugieren la existencia de un océano subsuperficial de agua líquida, con importantes connotaciones astrobiológicas.1
Instrumentos y carga científica
Esquema general de los diferentes instrumentos a bordo de la nave Galileo.
El orbitador Galileo contaba con un gran conjunto de instrumentos científicos.3
- Sistema de detección de polvo (Dust Detector Subsystem, DDS). Detector de partículas de polvo. Estudios del ambiente poco denso de la magnetosfera.
- Detector de partículas energéticas (Energetic Particles Detector, EPD). Detector de iones y partículas de alta energía también para el estudio de la magnetosfera de Júpiter.
- Espectrómetro ultravioleta (Ultraviolet Spectrometer / Extreme Ultraviolet Spectrometer, UVS/EUV). Análisis espectral de la atmósfera de Júpiter.
- Contador de iones pesados (Heavy Ion Counter, HIC)). Destinado a captar y estudiar rayos cósmicos y otras partículas de alta energía.
- Magnetómetro (MAG). Medidas del campo magnético de Júpiter.
- Espectrómetro en el infrarrojo cercano (Near-Infrared Mapping Spectrometer, NIMS).
- Subsistema de plasma (PLS).
- Fotopolarímetro radiométrico (Photopolarimeter-Radiometer, PPR).
- Sistema medida del plasma (Plasma Wave Subsystem, PWS).
- Cámara principal: Solid State Imager (SSI). Un dispositivo CCD de 800×800 pixeles capaz de obtener imágenes de alta resolución en el rango visible del espectro de 0,4 a 1,1 micras.
Problemas técnicos de la misión
- Fallo de la antena principal. La antena principal no logró desplegarse por un problema de congelación del lubricante del mecanismo de apertura. La misión tuvo que hacer uso de una antena secundaria limitando considerablemente su capacidad de enviar datos y reduciendo extensamente el número de observaciones que se pudieron realizar.
- Fallo de la cinta de almacenaje de datos. Galileo contaba con una cinta magnética de almacenaje de datos de 109 MB. En ella se almacenaban los resultados de las observaciones para su posterior envío a la Tierra. Al fallar la antena principal este sistema se volvió vital para el éxito de la misión. La cinta falló en diferentes ocasiones, teniendo que sacrificarse parte de los datos en algunas observaciones y cierta capacidad de la cinta.
Trayectoria y calendario de la misión
Llegada de la misión Galileo a Júpiter.
- Lanzamiento: 18 de octubre de 1989
- Sobrevuelo de Venus: 10 de febrero de 1990. Distancia: 16000 km
- Primer sobrevuelo de la Tierra: 8 de octubre de 1990. Distancia: 960 km.
- Sobrevuelo del asteroide Gaspra, 29 de octubre de 1991.
- Segundo sobrevuelo de la Tierra, 8 de diciembre de 1992. Distancia: 305 km.
- Sobrevuelo del asteroide Ida, 28 de marzo de 1993. Distancia: 2400 km. Este sobrevuelo descubre Dactyl, un satélite natural de Ida, el primer satélite de un asteroide descubierto.
- Impacto del cometa Shoemaker-Levy 9 en Júpiter. Observaciones desde el espacio entre el 16 y el 22 de julio de 1994.
- La sonda Galileo se separa del Orbitador el 13 de julio de 1995. La sonda penetra en la atmósfera de Júpiter el 7 de diciembre de ese mismo año.
- Comienzo de la misión orbital, 11 órbitas elípticas destinadas a acercarse a satélites específicos y al planeta.
- Final de la misión inicial. 7 de diciembre de 1997. Dado el considerable éxito de la misión en el estudio de los satélites jovianos, se decide extender la misión otros dos años y llamar a esta fase Galileo Europa Mission (GEM).
- La misión se prolonga una vez hasta el 2001 para coincidir con la misión Cassini/Huygens.
- Diciembre del 2000. Observaciones conjuntas por Galileo y Cassini/Huygens.
- Ante el temor de que el orbitador pudiera caer en un futuro lejano sobre el satélite galileano Europa se decide enviar la nave en colisión con el planeta Júpiter. El 21 de septiembre del 2003 la misión Galileo finaliza sumergiéndose en la inmensa atmósfera de Júpiter.
Antecedentes
Galileo comenzó a ser construido por el Jet Propulsion Laboratory en 1977, incluso antes de la puesta en marcha de la misión de la Voyager 1 y Voyager 2. Inicialmente llamado Júpiter Orbiter sonda Galileo fue bautizado en 1978.[4] Los primeros planes llamaban a ser colocado en la órbita de la nave espacial Columbia en enero de 1982, pero los retrasos en el desarrollo del transbordador espacial terminaron permitiendo más tiempo para el desarrollo de propia sonda. Con la puesta en marcha del programa de transbordadores funcionando sin problemas, Galileo tenía su lanzamiento programado para 1984 pero finalmente retrasa hasta 1985 y después de 1986.[5]
Galileo (negro) a bordo del Atlantis listo para su lanzamiento hacia Júpiter. Se le atribuye, el pequeño cohete Etapa superior de inercia (blanco).
Una vez la espacionave estaba listo, su lanzamiento fue programado inmediatamente para 1986 en STS-61-G Atlantis, después también cancelado. El cohete a utilizar sería la etapa superior de inercia, pero fue cambiado a los Centaur y de nuevo a la SIU después de la tragedia del Challenger . [5] El Centaur, impulsado por hidrógeno líquido, pondría Galileo en un camino directamente a Júpiter, pero de nuevo la misión fue otra vez pospuesto debido a la brecha de operaciones en Estados Unidos en el espacio causado por el accidente del Challenger y de la investigación. Los nuevos protocolos de seguridad fueron introducidos y como resultado el uso del Centaur en el transbordador fue prohibido forzando a Galileo a volver al Inertial Upper Stage, de menor potencia y movido a combustible sólido.
En 1987, fue reprogramado luego la misión de utilizar varias maniobras de asistencia gravitatoria llamado “Veega” o “Venus Tierra Tierra asistencia gravitatoria”, utilizando la gravedad de la Tierra y Venus como un empuje para poner en marcha el barco con más velocidad a Júpiter. Después de todos los contratiempos y retrasos técnicos, Galileo fue finalmente liberado de la bodega de carga STS-34 Atlantis el 18 de octubre de 1989, más de diez años después del inicio de su desarrollo.[6]
Sobrevuelos y sistema joviano
El primer cuerpo celeste a ser sobrevolado fue el planeta Venus, el 10 de febrero de 1990, a una distancia de 16.106 km. Allí se ganó un empuje de 8.030 kmh en la velocidad y la vuelta a la Tierra dos veces, la primera el 8 de octubre de 1990, 960 km, antes de dirigirse al asteroide 951 Gaspra, que volar a 1600 km en 29 de octubre de 1991. Volvió a sobrevolar la Tierra el 8 de diciembre de 1992 a 300 km de distancia, ganando otros 3,7 km / s en velocidad acumulada. Luego continuó en órbita hacia el asteroide 243 Ida, que voló el 28 de agosto , 1993 a 2410 kilómetros. Fue durante este sobrevuelo que Galileo descubrió la pequeña dáctilo, la primera vez que se descubrió una “luna” de un asteroide.[7]
En julio de 1994, en camino de Júpiter, Galileo fue perfectamente posicionado para ver y transmitir a las imágenes de la Tierra de la colisión del cometa Shoemaker-Levy 9 con el planeta gigante, mientras que la planta – telescopios basados sólo podían ver las marcas de golpes en la superficie de Júpiter, según sea necesario todavía mantienen largos movimientos de rotación a la ubicación correcta del espacio.
Después de expulsar la pequeña sonda atmosférica hacia el planeta el 13 de julio de 1995, [8] que entró en la órbita de Júpiter, a las 00:27 UTC del 8 de diciembre de 1995, el primer objeto construido por el hombre para lograr tal hazaña.[9]
La principal misión de la sonda fue estudiar el sistema joviano, Júpiter y sus satélites, por dos años. Ella viajó alrededor del planeta gigante en elipses alargadas, teniendo cada órbita alrededor de dos meses para terminar. Las diferentes distancias alcanzados en estas órbitas permitieron que el Galileo fotografiar muestras de diferentes partes de la extensa magnetosfera de Júpiter. Las órbitas fueron planeadas para incluir sobrevuelos a pequeñas distancias de las mayores lunas. Al final de esta primera misión el 7 de diciembre de 1997, Galileo comenzó a realizar bajo – sobrevuelos de Europa e Io, el más cercano de ellos a 180 km volar el 15 de octubre de 2001. El entorno de radiación en las proximidades de la volcánica Io causaron problemas en los instrumentos de Galileo, haciendo que estos sobrevuelos al satélite fueran reprogramados para la parte final de la misión, cuando la pérdida de la sonda podría ser más aceptable.
Las cámaras de Galileo fueron desactivadas el 17 de enero de 2002 tras sufrir daños irreparables causados por la radiación. ingenieros de la NASA han logrado reactivar alguna grabación de datos electrónicos y ella continuó a enviar algo de material científico para finalmente ser deorbitada y arrojados en la atmósfera de Júpiter, después de hacer una última medición de la masa de Amaltea , cuando voló. [9]
En toda la misión, orbitó Júpiter 34 veces, Calixto 8, Ganimedes 8, Europa 11, Io 7, Amalthea 1 y recorrió un total de 4.631.778.000 km entre su lanzamiento de la Tierra y su impacto final en la capa atmosférica del planeta. [10]
Características
Instrumentos
- SSI – S Olid s tate I Mager
Cámara CCD con una resolución de 800×800 píxeles. Su óptica está diseñado como un Cassegrain telescópica . El sensor CCD estaba protegido por un escudo antirradiación, algo fundamental para poder operar en la rigurosa magnetosfera del sistema joviano. Yo tenía una masa de 29,7 kg, consume en promedio 15 W de potencia. [11]
- NIMS – N oído: I nfrared apping M S pectrometer
Espectrómetro con una longitud de onda mayor que la SSI operado en infrarrojo . Él tenía un telescopio añadido con una abertura de 229 mm. El espectrómetro utilizaba una rejilla para dispersar la luz recogida por el telescopio. Pesaba 18 kg y utilizaba en promedio 12 vatios de energía. [12]
- UVS / EUV – U V ARL iolet pectrometer S / E Xtreme T v ARL espectrómetro iolet
Espectrómetro de operar con la visión ultravioleta . El telescopio acoplado en el UVS tenía una abertura de 250 mm y recogía la luz del punto de observación. Ambos instrumentos UVS / EUV utilizan una rejilla – como palabra-de-lobo para dispersar esta luz recogida para el análisis espectral. Los dos instrumentos juntos pesaban 9,7 kg y usaban 5,9 vatios de energía. [13]
- PPR – P p hoto olarimeter- R adiometer
Tenía siete bandas de radiometría . Uno de ellos tenía ningún filtro y absorber toda la radiación solar y térmica. El instrumento suministraba mediciones de la temperatura atmosférica de Júpiter y de sus satélites. Pesaba 5 kg. [14]
- DDS – UST D D S etector ubsystem
Equipo utilizado para medir masa, carga eléctrica y velocidad de partículas en el sistema joviano. La velocidad de estas pequeñas partículas podía medirse en un alcance de 1-70 km / s. Estos datos ayudaban a descubrir el origen y la dinámica del polvo en la magnetosfera. Pesaba 4,2 kg. [15]
- EPD – y artículos nergetic D P etector
Equipo diseñado para medir para medir el número de partículas y la energía de los iones y electrones en exceso de 20 keV utilizando detectores de silicio sólido. Estas mediciones ayudaban a comprender cómo estas partículas conseguían su energía y cómo las transportaban a través de la magnetosfera de Júpiter. Pesaba 10,5 kg. [16]
- ICH – I H en C eavy ounter
Este instrumento fue una versión modernizada y reenvasado de algunas partes de las misiones del sistema cósmico Ray reservas de vuelo de Voyager . La HIC detectado usando pesada batería de iones de silicio monocristalino, todas las sustancias atómicas que alcanzan entre el carbono y el níquel . El HIC y el EUV dividían las líneas de transmisión y así también dividían el tiempo de observación. Pesaba 10,5 kg y una potencia media de 2,8 vatios. [17]
- MAG – Mag netometer
El MAG de Galileo usaba dos conjuntos de tres sensores. Estos tres sensores permiten la medición de tres componentes ortogonales del espectro del campo magnético a la vez. Pesaba 7 kg. [14]
- PLS – asma Pl S ubsystem
El subsistema de plasma utiliza siete campos de visión para recoger las partículas cargadas para el análisis de masa y energía. Estos campos de visión cubiertos casi cualquier ángulo entre 0 y 180, desplegando desde el eje de rotación ; la rotación de la nave llevaba este campo de visión a un círculo completo. El PLS pesaba 13,2 kg y funcionaba en una corriente eléctrica de 3,9 vatios. [18]
- PWS – P W AVE S Lasma ubsystem
Una antena dipolo de media onda se utilizó para estudiar los campos eléctricos mientras plasmas mientras que dos antena magnética bobina de la investigación de los campos magnéticos. La antena dipolo se monta en la punta de la lanza del magnetómetro . mediciones casi simultánea de los espectros de los campos eléctricos y magnéticos realizados por las antenas, han permitido ondas electrostáticas fueron distinguidos ds ondas electromagnéticas . El PLS pesaba 7.1 kg. [19]
La sonda atmosférica.
La pequeña sonda llevada por Galileo fue construida para penetrar lo máximo posible en la pesada y calcinante atmósfera de Júpiter y transmitir datos a la Tierra. Con un peso de 339 kg, fue de 1,43 m de diámetro y fue lanzado directamente a la superficie del planeta el 13 de julio de 1995, cuando Galileo era todavía cinco meses para ir en órbita y 80 millones de kilómetros de Jupiter,[20] a una velocidad del 47,8 km/s sin frenado más tarde con sus instrumentos protegidos de la temperatura extrema y alta presión atmósfera de Júpiter por un escudo térmico que pesa más de 100 kg. La densa presión encontrada hizo que fuese naturalmente frenada para una velocidad subsónica menos de dos minutos de penetrar la alta atmósfera del planeta, debido a las fuerzas de desaceleración 230 veces mayores que la existente en la gravedad terrestre.[8]
Considerado más difícil la entrada en la atmósfera ha intentado, la sonda tuvo que soportar una fuerza de 230 g [21] y su escudo térmico 152 kg casi la mitad del peso total de la sonda perdió 80 kg hasta el momento de la pérdida completa de contacto. Construido con materiales ultra-especializados, tales como el carbono fenólico, para probarlo NASA construyó un laboratorio especial donde simula la cantidad de calor y presión para ser enfrentado similar a convectivo calentamiento de la reentrada de una ojiva ICBM combinado con calor por radiación una bola de fuego termonuclear. Poco después de la entrada, donde temperaturas encontradas dos veces que mide la superficie de la sol,[21] y penetrar en la capa superior de la atmósfera, el tubo abrió su paracaídas 2,5 m de altura y el escudo térmico protector expulsado, que cayó en el interior del planeta.
Durante los 156 km de la pendiente en la que se envían los datos se recogieron 58 min de información sobre el entorno de ubicación.[22] Sólo cuando dejó de transmitir la presión excede de 23 atmósferas y la temperatura del aire alcanzó 156ºC. Estos datos fueron transmitidos a Galileo en el camino del planeta y de allí a la Tierra. Cada uno de los dos transmisores de banda ancha de datos científicos casi idénticos transmitidos a 128 bits de por segundo. Ella se lleva seis instrumentos: [23]
- Instrumentos de estructura atmosférica para medir la presión, la temperatura y la deceleración
- Un espectrómetro de masa neutra
- Un interferómetro abundancia de helio para los estudios de la composición atmosférica
- A nefelómetro para la ubicación de las nubes y la observación de partículas de la nube
- Un radiómetro neto de flujo para medir la variación de arriba a abajo la radiación electromagnética a diferentes altitudes
- Un instrumento para medir las emisiones de radio y un rayo con unas partículas de energía detector
Arte describiendo la entrada de la sonda en Júpiter, con los paracaídas activados y el escudo térmico expulsado.
La cantidad de datos devueltos superó los 3,5 megabites. La sonda dejó de transmitir antes de que la línea de comunicación con Galileo fuera cortada. La causa más probable de la interrupción de la transmisión era sobrecalentamiento , que los sensores indican antes de la pérdida de la señal final.
La atmósfera en que la sonda bajó era más caliente y turbulenta de lo esperado. Fue completamente destruida a medida que caía a través de las capas de hidrógeno molecular por debajo de la parte superior de las nubes de Júpiter. El paracaídas debe haber sido el primero en derretir, unos 30 minutos después de la entrada; [24] Después de 40 minutos fue de los componentes de tiempo de aluminio en caída libre en el medio de una atmósfera de hidrógeno líquido crítico. La estructura de titanio debe haber permanecido aproximadamente 6 y una horas y media antes de la desintegración completa. Debido a la alta presión, las gotas restantes de la sonda de metal deben ser vaporizados de manera que su temperatura crítica se alcanza y se mezcla con metálico de hidrógeno líquido en el interior del planeta gigante.
Se descubrió que la atmósfera joviana tiene menos de la mitad de helio esperada; los datos tampoco confirmaron la teoría de las tres capas de nubes en el planeta. De las informaciones previstas, ella detectó menos radios, menos agua, pero más turbulencia que lo imaginado, con vientos de hasta 530 km / h. Ninguna superficie sólida fue detectada durante su viaje descendente de 156 km antes de ser destruida.[8]
Galileo en el espacio
La Luna y sus cráteres
El asteroide Ida
Ida en color
Calisto en color
Europa
Una mancha roja de Júpiter
La gran mancha de Júpiter
Impacto del cometa Shoemaker-Levy 9 con Júpiter
Laramidia
Laramidia
Laramidia (a la izquierda), hace unos 100 millones de años
Laramidia fue una isla continente que existió durante el Cretácico Superior (99,6–66 Ma), cuando el mar interior occidental dividía el continente norteamericano en dos. Durante el Mesozoico, Laramidia era una isla separada de Appalachia por el mencionado mar, que se fue reduciendo y acabó por retirarse hacia el golfo de México y la bahía de Hudson. Las masas terrestres se unieron para formar Norteamérica.
Su nombre fue acuñado por J. David Archibald en 1996,1 en homenaje a la ciudad de Laramie (Wyoming), situada en lo que fue la antigua isla.
Geografía
Laramidia se extiende desde la moderna Alaska hasta México.2 La zona es rica en fósiles de dinosaurios: tiranosáuridos, dromeosáuridos, troodóntidos, hadrosáuridos, ceratopsianos (entre ellos el Kosmoceratops y el Utahceratops3), paquicefalosaurios y titanosaurianos saurópodos son algunos de los grupos de dinosaurios que vivieron en este área.
Se han encontrado fósiles de vertebrados en toda la región, desde Alaska hasta Coahuila.3456
Fauna
Desde la edad Turoniense del Cretácico Superior hasta el principio del Paleoceno, Laramidia estuvo separada de Appalachia por el mar interior occidental. Como resultado, durante ese tiempo la fauna evolucionó de forma distinta en cada isla. Las condiciones geológicas fueron en general favorables a la conservación de fósiles en Laramidia, haciendo del oeste de los Estados Unidos una de las zonas más productivas de fósiles del mundo. Se conoce poco de la biodiversidad en Appalachia durante el Cretáceo, ya que existen pocos depósitos de fósiles en la región, debido a que muchos de ellos quedaron destruidos durante las glaciaciones del Pleistoceno. No obstante, existen lechos de fósiles en lo que fue el continente de Appalachia que aún no han sido descubiertas.
En la Norteamérica del Cretáceo, los predadores dominantes eran los Tiranosaurios, grandes terópodos con cabezas proporcionalmente enormes diseñadas para arrancar la carne de sus presas. En Laramidia, la cúspide de la cadena alimentaria terrestre estaba ocupada por los terópodos tiranosáuridos como el Tyrannosaurus rex, el Nanuqsaurus,7 el Daspletosaurus, el Teratophoneus, además de los terópodos Albertosaurinae como el Albertosaurus y el Gorgosaurus. Todos pertenecen a la familia de los tiranosáuridos, aunque no son contemporáneos. Los fósiles de tiranosáuridos presentan grandes cabezas y piernas, que contrastan con las proporcionalmente pequeñas patas delanteras. Los dientes que poseen los miembros de esta familia son comparables a clavos de ferrocarril y eran capaces de infligir graves daños en sus presas.
Otro grupo de dinosaurios común en Norteamérica eran los hadrosáuridos. El registro fósil muestra una gran variedad de ejemplares de hadrosaurio en Laramidia.
Hay otras diferencias entre las faunas de las dos masas insulares. En Laramidia seguía habiendo saurópodos en el Cretáceo, cuando aparentemente ya se habían extinguido en Appalachia. Sin embargo, parece que los nodosáuridos eran más abundantes en Appalachia. Los nodosaurios eran grandes dinosaurios acorazados herbívoros, similares al armadillo. En Laramidia eran escasos, y solo se han encontrado restos de géneros especializados como el Edmontonia y el Panoplosaurus.
Tripulación pasa más de un año en órbita
Tripulación pasa más de un año en órbita
Soyuz TM-4
Este artículo es sobre la nave espacial. Para la expedición que lanzó, ver Mir EO-3.
SATCAT no.: 18699
Duración de la misión: 178 días, 22 horas, 54 minutos, 29 segundos.
Órbitas completadas: ~ 2,890
Propiedades de la nave espacial
Tipo de nave espacial: Soyuz-TM
Fabricante: NPO Energia
Misa de lanzamiento: 7,070 kilogramos (15,590 lb)
Personal
Tamaño de la tripulación: 3
Lanzamiento
Vladimir Titov
Musa manarov
Anatoli Levchenko
Aterrizaje
Anatoly Solovyev
Viktor Savinykh
Aleksandr Aleksandrov
Señal de llamada: Okean (océano)
Comienzo de la misión
Fecha de lanzamiento: 21 de diciembre de 1987, 11:18:03 UTC
Cohete: Soyuz-U2
Sitio de lanzamiento: Baikonur 1/5
Fin de misión
Fecha de aterrizaje: 17 de junio de 1988, 10:12:32 UTC
Lugar de aterrizaje: 180 kilómetros (110 millas) al SE de Dzhezkazgan
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: Tierra baja
Perigeo: 337 kilómetros (209 millas)
Apogeo: 357 kilómetros (222 millas)
Inclinación: 51.6 grados
Período: 91.5 minutos
Atracando con MIR
Soyuz TM-4 fue la cuarta nave tripulada que atracó en la estación espacial Mir. Fue lanzado en diciembre de 1987 y llevó a los dos primeros miembros de la tripulación de la tercera expedición de larga duración, Mir EO-3. Estos miembros de la tripulación, Vladimir Titov y Musa Manarov, permanecerían en el espacio por poco menos de 366 días, estableciendo un nuevo récord de vuelos espaciales. El tercer astronauta lanzado por Soyuz TM-4 fue Anatoli Levchenko, quien regresó a la Tierra una semana después con la tripulación restante de Mir EO-2. Levchenko era un piloto prospectivo para el transbordador espacial soviético Buran. El propósito de su misión, llamada Mir LII-1, era familiarizarlo con el vuelo espacial.[1]
Fue la cuarta nave espacial Soyuz TM lanzada (una de las cuales no estaba tripulada), y al igual que otras naves espaciales Soyuz, fue tratada como un bote salvavidas para la tripulación de la estación mientras estaba atracado. En junio de 1988, a mitad del EO-3, Soyuz TM-4 se cambió por Soyuz TM-5 como bote salvavidas de la estación. La misión que cambió la nave fue conocida como Mir EP-2, y tenía una tripulación de tres personas.[2]
Tripulación
Posición Equipo de lanzamiento
Comandante Vladimir Titov
Mir EO-3
Tercer vuelo espacial Anatoly Solovyev
Mir EP-2
Primer vuelo espacial
Ingeniero de vuelo Musa manarov
Mir EO-3
Primer vuelo espacial Viktor Savinykh
Mir EP-2
Tercer y último vuelo espacial
Investigación cosmonauta Anatoli Levchenko
Mir LII-1
Solo vuelo espacial Aleksandr Aleksandrov
Mir EP-2
Solo vuelo espacial
Titov y Manarov fueron miembros de la misión de larga duración Mir EO-3, y regresaron a la Tierra poco más de un año después, en Soyuz TM-6. Levchenko, por otro lado, regresó a la Tierra aproximadamente una semana después en Soyuz TM-3.
En junio de 1988, Soyuz TM-4 aterrizó la tripulación de tres hombres de Mir EP-2, después de su estancia de 9 días en la estación; ese equipo incluía al segundo astronauta búlgaro Aleksandr Panayotov Aleksandrov.[2]
Personal de reserva
Posición Personal
Comandante Aleksandr Volkov
Ingeniero de vuelo Aleksandr Kaleri
Investigación cosmonauta Aleksandr Shchukin
Puntos destacados de la misión
4to vuelo espacial tripulado a Mir. Manarov y Titov (conocidos por su letrero como “Okeans”) reemplazaron a Romanenko y Alexandrov. Anatoli Levchenko fue un cosmonauta en el programa de transbordadores Buran. Levchenko regresó con Romanenko y Alexandrov en Soyuz TM-3.
Antes de partir Mir, Romanenko y Alexandrov demostraron el uso de equipos de EVA a los Okeans. Los Okeans realizaron experimentos biológicos, incluido el aparato de crecimiento de cristales biológicos Aynur, que instalaron en Kvant-1. Las cuadrillas combinadas realizaron un simulacro de evacuación, con la computadora Mir simulando una emergencia.[3]
Titov y Manarov realizaron parte de un estudio en curso de galaxias y grupos de estrellas en la parte ultravioleta del espectro utilizando el telescopio Glazar en Kvant. La encuesta requería fotografía con tiempos de exposición de hasta 8 min. Incluso pequeños movimientos de cosmonautas podrían sacudir el complejo. Esto produjo imágenes borrosas de imágenes astronómicas, por lo que todos los movimientos de los cosmonautas tuvieron que detenerse durante las exposiciones.
Tripulación de la Soyuz TM-4
Tripulación de reserva, de la Soyuz TM-4
Vuelo
Lanzamiento desde el cosmódromo de Baikonur; aterrizaje 202 km al sureste de Dzheskaskan.
Después de un vuelo en solitario de dos días, Soyuz TM-4 se acopló con el Mir el 23 de diciembre de 1987. Vladimir Titov y Musa Manarov se convirtieron en el tercer equipo residente de Mir.
Musa Manarov y Vladimir Titov viajaron a Mir a bordo del Soyuz TM-4 junto con el piloto de prueba Anatoli Levchenko. Soyuz TM-4 maniobró a través de órbitas de 168 x 243 km, 255 x 296 km y 333 x 359 km antes de atracar con Mir a las 12:51 UTC del 23 de diciembre de 1987. Anatoli Levchenko regresó a la tierra a bordo de Soyuz TM-3 junto con el Mir-2 de la tripulación.
El Soyuz TM-4 con el equipo de Mir-3 a bordo llegó a Mir el 23 de diciembre de 1987. Antes de partir de Mir, el equipo de Mir-2 de Yuri Romanenko y Aleksandr Aleksandrov demostró el uso del equipo de EVA para el equipo de Mir-3. El equipo de Mir-3 realizó experimentos biológicos, incluido el aparato de crecimiento de cristales biológicos Aynur, que instalaron en Kvant. Las cuadrillas combinadas realizaron un simulacro de evacuación, con la computadora Mir simulando una emergencia.
Soyuz TM-3 partió el 29 de diciembre de 1987 y la tripulación se estableció para su misión de un año. El 30 de diciembre de 1987, Soyuz TM-4 voló al puerto delantero de Mir, y lo despachó para el próximo carguero Progress. El progres 34 llegó a Mir y permaneció atracado desde el 23 de enero de 1988 hasta el 4 de marzo de 1988. Mientras tanto, Vladimir Titov y Musa Manarov realizaron parte de un estudio en curso de galaxias y grupos de estrellas en la parte ultravioleta del espectro usando el telescopio Glazar en Kvant. La encuesta requería fotografía con tiempos de exposición de hasta 8 minutos. Incluso pequeños movimientos de cosmonautas podrían sacudir el complejo. Esto produjo imágenes borrosas de imágenes astronómicas, por lo que todos los movimientos de los cosmonautas tuvieron que detenerse durante las exposiciones.
El 12 de febrero de 1988, los cosmonautas comenzaron los preparativos para un EVA para reemplazar y aumentar los paneles solares de Mir. Probaron sus trajes de EVA del 23 de febrero de 1988 al 25 de febrero de 1988.
La primera caminata espacial se realizó el 26 de febrero de 1988 (4h 25m). El 15 de febrero de 1988, Vladimir Titov y Musa Manarov se sometieron a un curso de actualización en el arte de cambiar las secciones de la matriz solar al ver una cinta de video de sus propias sesiones de práctica antes del vuelo en el Hydrolaboratory. El 19 y 23 de febrero de 1988 inspeccionaron sus trajes espaciales Orlan-DM. En esta fecha, abrieron uno de los cuatro puertos de atraque radiales en el compartimiento de transferencia de Mir mientras no estaban en comunicación con el TsUP, prepararon su sitio de trabajo en la base de la matriz solar instalada por los cosmonautas Mir-2 en junio de 1987 y reemplazaron Una de las cuatro secciones de la matriz. Esto implicó “colapsar” el brazo extensible inferior para plegar y cerrar las dos secciones de la matriz solar unidas a él. La nueva sección era, como la que reemplazó, formada por ocho hojas de células solares. Sin embargo, el compuesto de carbono-plástico reemplazó al metal en la nueva sección, y seis de las hojas utilizaron células solares mejoradas que produjeron tanta energía como ocho hojas convencionales, mientras que resisten mejor los rigores del espacio. Las dos hojas restantes fueron instrumentadas y reemplazables independientemente, proporcionando un sitio de prueba para nuevos materiales de células solares. Los cosmonautas se mantuvieron en los reposapiés mientras trabajaban, continuando las pruebas de restricción de EVA iniciadas en Mir-2. Reubicaron el brazo extensible, desplegando la nueva sección y exponiéndola a la luz solar. Para redondear el EVA , Musa Manarov y Vladimir Titov regresaron a lo largo del módulo Kvant para inspeccionar la antena de encuentro en el Progress 34 (fue tarde en la apertura), el exterior de Mir televisado y la nave espacial Soyuz TM-4 para beneficio de los ingenieros En la Tierra, y reemplazó los casetes de exposición espacial.
El 17 de marzo de 1988, los cosmonautas estudiaron los efectos del ruido producido por los fanáticos y otros equipos en sus alojamientos como parte del experimento de Akustika . Durante el mismo período, un portavoz soviético declaró que el polvo y los olores de Mir molestaban a los cosmonautas.
El Progreso 35 llegó y permaneció acoplado a Mir del 25 de marzo de 1988 al 5 de mayo de 1988. A fines de marzo y principios de abril, Vladimir Titov y Musa Manarov instalaron y probaron un nuevo sistema de telefax y equipo no especificado para mejorar las comunicaciones entre Mir y la Tierra. Durante mayo, una partícula que los soviéticos identificaron como un pedazo de escombros espaciales volaron un cráter en una ventana Mir de dos paneles. El área dañada tenía 6-8 mm de ancho.
El Progreso 36 llegó y atracó en el puerto de popa de Mir desde el 15 de mayo de 1988 hasta el 5 de junio de 1988. Fue reemplazado por el Soyuz TM-5 el 9 de junio de 1988 hasta el 17 de junio de 1988. Esto llevó a la estación a un cosmonauta búlgaro. Debido al fracaso de la Soyuz 33, Bulgaria fue el único aliado soviético de Europa del Este que no ha tenido un ciudadano que visitó una estación espacial soviética. El cosmonauta de investigación búlgaro Aleksandr Aleksandrov utilizó casi 2,000 kg de equipo entregados por los cargueros Progress para realizar 46 experimentos en el programa Shipka durante su estadía. El equipo visitante dejó a bordo del Soyuz TM-4, dejando el Soyuz TM-5 fresco como un bote salvavidas. El 18 de junio de 1988, la tripulación del Mir-3 voló desde el puerto de popa al puerto de Mir, dejando el puerto de popa listo para el próximo carguero Progreso.
Ambos cosmonautas salieron de la estación espacial nuevamente el 30 de junio de 1988 (5 h 10 m) por un EVA no ensayado. El telescopio de rayos X TTM holandés-británico-soviético conjunto causó problemas poco después del lanzamiento del módulo Kvant en abril de 1987, por lo que los ingenieros propusieron y recibieron la aprobación de un EVA para reemplazar su detector. El telescopio TTM no fue diseñado para el servicio de EVA. Algunas herramientas para la reparación fueron desarrolladas por científicos holandeses y soviéticos y entregadas por el equipo de Soyuz TM-5. Antes de salir, Vladimir Titov y Musa Manarov recibieron una charla de familiarización de investigadores británicos que ayudaron a diseñar y construir el detector. Durante el EVA los investigadores holandeses de TTM estuvieron presentes en el TsUP. Los cosmonautas cortan 20 capas de aislamiento térmico para alcanzar el detector de 40 kg (88 lb). Como no había puntos de apoyo o asideros en el lugar de trabajo, se turnaron para trabajar mientras el otro lo sostenía. Más clips mantuvieron el detector en su lugar de lo esperado. Tres tornillos bloqueados en su lugar con resina los tiraron fuera de la línea de tiempo; tuvieron que raspar uno con una hoja de sierra antes de que girara, y el esfuerzo requerido para girar los tornillos los obligó a descansar varias veces. Después de que los cosmonautas lograron el 70 por ciento de la tarea, una herramienta especial “clave” para quitar una abrazadera de bronce se rompió. Antes de que dejaran de estar en contacto con la radio, el TsUP les dio a los cosmonautas 15 minutos para quitar la pinza con otras herramientas. Cuando se restableció la comunicación, Vladimir Titov y Musa Manarov informaron que se habían rendido y habían regresado a la escotilla del compartimiento de transferencia. Antes de ingresar a la esclusa de aire, midieron las ubicaciones de los accesorios para que un reposapiés se usara en una próxima caminata espacial soviético-francesa. Dos especialistas franceses monitorearon esta parte de la EVA en el TsUP. El traje Orlan-DM de Vladimir Titov le dio una falsa señal de “baja ventilación” causada cuando la humedad interfirió con un sensor. Este EVA marcó el último uso del traje espacial Orlan-DM.
El progreso 37 llegó y permaneció atracado en el puerto de popa de Mir desde el 20 de julio de 1988 hasta el 12 de agosto de 1988. A fines de julio de 1988, el satélite de relevo de Altair / SR Kosmos 1897 fue trasladado de su estación para apoyar el vuelo de prueba del transbordador Buran del 14 de noviembre., 1988.
El Soyuz TM-6 llegó el 31 de agosto de 1988. Su tripulación tenía un maquillaje único, con un Comandante (Vladimir Lyakhov) que había sido entrenado para volar un Soyuz TM-solo en el caso de que fuera necesario enviar un barco de rescate para recuperar dos cosmonautas. de Mir , ningún ingeniero de vuelo , y dos cosmonautas de investigación sin experiencia. Una de ellas fue Valeri Polyakov, quien permanecería a bordo de Mir con Vladimir Titov y Musa Manarov para monitorear su salud durante los últimos meses de su estadía de un año planificada. El otro fue el cosmonauta Abdul Mohmand, de Afganistán. El programa experimental de Abdul Mohmand estuvo dominado por una serie de observaciones de Afganistán, llamadas Shamshad. Vladimir Lyakhov y Abdul Mohmand dejaron su nueva nave espacial atracada en Mir como un bote salvavidas y regresaron a bordo del Soyuz TM-5. Durante el regreso a la Tierra, Soyuz TM-5 sufrió un problema combinado de software de computadora y sensor, que retrasó su reingreso en 24 horas.
El 8 de septiembre de 1988, la tripulación del Mir-3 voló Soyuz TM-6 desde la popa hasta la tripulación de Mir . El progreso 38 se acopló y permaneció en el puerto de popa del 12 de septiembre de 1988 al 23 de noviembre de 1988.
El tercer EVA se realizó el 20 de octubre de 1988 (4h 12m). Una segunda reparación de TTM EVA se estableció originalmente para el 5 de julio de 1988, pero se pospuso para permitir más preparación. El 9 de septiembre de 1988, Progress 38 entregó siete nuevas herramientas y los primeros trajes espaciales Orlan-DMA. Orlan-DMA fue una actualización del modelo de corta duración Orlan-DM (1985-1988), que en sí mismo fue una actualización de Orlan-D (1977-1985). Al igual que los modelos Orlan anteriores, Orlan-DMA retuvo la escotilla de entrada trasera distintiva incorporada en su torso de aleación de aluminio duro. Se utilizaron un cordón y un asa de bloqueo para cerrar y sellar la escotilla trasera. El sistema de soporte vital de Orlan-DMA se activa cuando el asa se bloquea en su lugar. El Orlan-DMA pesó 105 kg (231 lb) completamente cargado y 90 kg (198 lb) vacío. La mochila integral mide 1.19 m (3.9 ft) de largo y 48 cm (18.9 in) de ancho. El traje tenía una presión de operación máxima de 40 kilopascales (5.8 psi) y una presión mínima de 26.2 kilopascales (3.8 psi). La duración típica de EVA fue de 6 a 7 horas, en comparación con las 5 horas del Orlan-DM. Al igual que los trajes Orlan-D y Orlan-DM anteriores, Orlan-DMA tenía vejigas dobles de caucho de poliuretano, una dentro de la otra. La vejiga interna se inflaba solo si se perforaba la capa primaria. Un cartucho de hidróxido de litio reemplazable absorbió el dióxido de carbono exhalado. Al igual que los modelos Orlan anteriores, la bata de ropa de refrigeración líquida Orlan-DMA tenía una cubierta integral para la cabeza. La comunicación de voz se realizó mediante el sistema Korona, que incluía dos micrófonos, dos auriculares y transceptores y amplificadores de respaldo primario y de respaldo. La antena de Korona estaba incrustada en la capa exterior del traje. La mejora principal de Orlan-DMA fue su paquete adicional de radio y batería para que el traje sea autónomo. Tanto Orlan-D como Orlan-DM se basaron en una conexión umbilical con la estación espacial para su electricidad y comunicaciones, y para suministrar a la tierra telemetría en cosmonauta y salud. El paquete adicional se introdujo gradualmente durante 1990 para que Orlan-DMA se pudiera usar con la unidad de maniobra SPK “Ikar”, el equivalente soviético de la MMU de EE. UU. Sin embargo, para esta y las tres EVA siguientes, las demandas estaban vinculadas a Mir por la misma electricidad y comunicaciones / telemetría que se utilizaron con Orlan-DM. Valeri Polyakov (que llegó con Soyuz TM-6) permaneció sellado en el módulo de descenso Soyuz TM-6 durante el EVA. El Soyuz fue atracado en el frente de la estación. Tanto el compartimento de transferencia Mir como el módulo orbital Soyuz TM-6 se despresurizaron para ampliar el espacio disponible en la esclusa de aire (el módulo central Mir tenía menos espacio en la esclusa de aire que Salyut 6 o Salyut 7). Un científico británico acompañado por un equipo de noticias de la televisión británica supervisó el EVA desde el TsUP . Vladimir Titov y Musa Manarov dejaron uno de los puertos de atraque del compartimiento de transferencia con un nuevo detector para el telescopio de rayos X TTM en Kvant. El viejo detector no fue diseñado para ser reemplazado, pero el nuevo tenía ayuda para el manejo y sujetadores grandes que se operaban fácilmente con guantes EVA . El detector se deslizó en su lugar con dificultad, pero la reparación aún requirió una hora menos de lo esperado. Vladimir Titov y Musa Manarov luego instalaron un sistema especial de retención de pies para el EVA soviético-francés programado para diciembre de 1988. La restricción se diseñó y fabricó en el suelo utilizando las medidas que realizaron durante su EVA de febrero de 1988.
Soyuz-TM 7 llegó a Mir el 28 de noviembre de 1988 en la misión franco-soviética Aragatz con el cosmonauta francés Jean-Loup Chrétien (en su segunda misión a una estación espacial soviética) y los cosmonautas soviéticos Aleksandr Volkov y Sergei Krikalyov. Esto aumentó la población de Mir a seis. Según Sergei Krikalyov, este era el “peor escenario” en lo que se refiere a la multitud en la estación. No solo había más cosmonautas de lo habitual a bordo de Mir ; La estación también estaba llena de equipos y suministros de soporte vital entregados por los cargueros Progress para la misión conjunta franco-soviética. El hacinamiento se agravó porque no había un puerto de atraque libre para un carguero Progress. Por lo tanto, la tripulación no podía usar un Progreso como ‘despensa’ o ‘sala de almacenamiento’ para la estación. El gran manifiesto de experimentos conjuntos, en su mayoría experimentos médicos y tecnológicos elegidos para apoyar el proyecto de transporte Hermes de la Agencia Espacial Europea liderada por Francia, afectó el suministro de electricidad de Mir . La masa total de los experimentos fue de 580 kg.
El 9 de diciembre de 1988, Jean-Loup Chrétien y Aleksandr Volkov despresurizaron el adaptador de acoplamiento multipuerto y salieron de Mir (6h 00m). Jean-Loup Chrétien fue el primero en salir. Instaló pasamanos y luego unió el bastidor experimental Enchantillons de 15,5 kg a los pasamanos mediante resortes y ganchos. También conectó cables eléctricos que van desde el bastidor a la fuente de alimentación de Mir . Enchantillons realizó cinco experimentos tecnológicos con aplicaciones al programa de transbordadores de Hermes. Aleksandr Volkov y Jean-Loup Chrétien luego armaron el experimento ERA de 240 kg. Colocaron un soporte a los pasamanos en el tronco que unía la unidad de acoplamiento multipuerto a la parte de diámetro pequeño del compartimiento de trabajo. Después de resolver problemas con los cables que conectan la ERA a un panel de control dentro de Mir , conectaron la estructura de ERA plegada a un brazo de soporte en la plataforma. La estructura fue diseñada para desplegarse y formar una estructura plana de seis lados de 1 m de profundidad por 3,8 m de ancho. Desde el interior de Mir, Sergei Krikalyov ordenó que la estructura se desarrollara, pero fue en vano. Aleksandr Volkov luego pateó ERA , causando que se desplegara adecuadamente. De acuerdo con Sergei Krikalyov, sacar la ERA al exterior ayudó a aliviar los problemas de hacinamiento.
Otros trabajos incluyeron la observación de la Tierra y experimentos en los campos de las ciencias de los materiales, la meteorología, la tecnología espacial, la fisiología, la psicología, las ciencias médicas y la investigación astronómica, utilizando el aparato de investigación Marija. La tripulación realizó más de 2000 experimentos.
La nave espacial Soyuz está compuesta de tres elementos unidos de extremo a extremo: el módulo orbital, el módulo de descenso y el módulo de instrumentación / propulsión. La tripulación ocupó el elemento central, el Módulo de Descenso. Los otros dos módulos se eliminan antes de volver a ingresar. Se queman en la atmósfera, por lo que solo el Módulo de Descenso regresó a la Tierra.
Después de arrojar dos tercios de su masa, la Soyuz alcanzó la Interfaz de entrada, un punto a 400,000 pies (121,9 kilómetros) sobre la Tierra, donde la fricción debida al engrosamiento de la atmósfera comenzó a calentar sus superficies externas. Con solo 23 minutos para el final antes de que aterrice en las llanuras cubiertas de hierba de Asia central, la atención en el módulo se dirigió a disminuir la velocidad de descenso.
Ocho minutos más tarde, la nave espacial recorría el cielo a una velocidad de 755 pies (230 metros) por segundo. Antes de tocar tierra, su velocidad se redujo a solo 5 pies (1,5 metros) por segundo, y aterriza a una velocidad aún menor que esa. Varias características a bordo aseguran que el vehículo y la tripulación aterricen de manera segura y con relativa comodidad.
Cuatro paracaídas, desplegados 15 minutos antes del aterrizaje, redujeron drásticamente la velocidad de descenso del vehículo. Dos paracaídas pilotos fueron los primeros en ser lanzados, y una rampa de madera adjunta al segundo siguió inmediatamente después. El drogue, que mide 24 metros cuadrados (258 pies cuadrados) en área, redujo la velocidad de descenso de 755 pies (230 metros) por segundo a 262 pies (80 metros) por segundo.
El paracaídas principal fue el último en emerger. Es el canal más grande, con una superficie de 10,764 pies cuadrados (1,000 metros cuadrados). Sus arneses cambiaron la actitud del vehículo a un ángulo de 30 grados con respecto al suelo, disipando el calor, y luego lo cambiaron nuevamente a un descenso vertical recto antes de aterrizar.
La rampa principal redujo la velocidad de la Soyuz a una velocidad de descenso de solo 24 pies (7,3 metros) por segundo, lo cual es todavía demasiado rápido para un aterrizaje cómodo. Un segundo antes del aterrizaje, dos juegos de tres motores pequeños en la parte inferior del vehículo dispararon, disminuyendo la velocidad del vehículo para suavizar el aterrizaje.
Después de casi un año en el espacio, Musa Manarov y Vladimir Titov regresaron con Soyuz TM-6. Se desacoplaron el 21 de diciembre de 1989, pero el software revisado que se instaló como resultado del aborto de la Soyuz TM-5 sobrecargó la computadora de la nave espacial. El aterrizaje previsto para las 06:48 fue abortado. Se usó un programa de software de respaldo y el módulo orbital Soyuz se retuvo a través de retrofire. La tripulación finalmente aterrizó a salvo el 21 de diciembre de 1988.
Nota
Anatoli Levchenko aterrizó el 29 de diciembre de 1987 a las 09:15:36 UTC con la nave espacial Soyuz TM-3 (compañeros de tripulación: Yuri Romanenko y Aleksandr Aleksandrov).
Fotos / Gráficos
Appalachia
Appalachia (Mesozoico)
Appalachia (derecha), hace 100 millones de años
En el Mesozoico (de 252 a 66 millones de años atrás), Appalachia, llamada así por los montes Apalaches, era una masa insular separada de Laramidia al oeste por el mar interior occidental. Este mar acabó por estrecharse y retirarse hacia el golfo de México y la bahía de Hudson, lo que permitió que las islas se uniesen formando el continente de Norteamérica al emerger las montañas Rocosas.
Desde la edad Turoniense del Cretácico Superior hasta el principio del Paleoceno, Appalachia estuvo separada del resto de Norteamérica. Al estar aislada, su fauna se desarrolló de forma muy distinta a los tiranosauroideos, ceratopsianos y anquilosaurios que dominaron la fauna del oeste americano, la isla continente de Laramidia. Debido a la cantidad de depósitos fosilíferos que aún no se han descubierto y a que la mitad de las formaciones fósiles de Appalachia quedaron destruidas durante la glaciación cuaternaria, se sabe poco de la vida animal de este antiguo territorio. Además, la falta de interés que despierta Appalachia ocasiona que muchos fósiles encontrados en la zona no hayan sido estudiados y sigan catalogados en los géneros erróneos que se les asignaron en la época de Edward Cope y Charles Marsh. Muchas de las formaciones fósiles que no fueron destruidas por la glaciación siguen eludiendo el estudio paleontológico. No obstante, algunos yacimientos fósiles como los de Navesink, Ellisdale, Mooreville Chalk, Demopolis Chalk, Black Creek y Niobara nos han dado una somera idea de este olvidado mundo paleontológico.
Dinosaurios
Al final del Cretáceo, los predadores dominantes en Norteamérica eran los tiranosauroideos, grandes terópodos con cabezas proporcionalmente enormes diseñadas para arrancar la carne de sus presas. Los Tiranosaurios también dominaban Appalachia, pero en lugar de los gigantescos Gorgosaurios y Albertosaurios, los principales predadores de esta isla eran los Driptosaurios, más pequeños. También se han descubierto en Appalachia fósiles y dientes de dromeosáuridos, la mayor parte coincidentes con los de Velociraptor y Saurornitholestes,1 la mayoría en estados del sur como Carolina del Norte, Carolina del Sur, Alabama, Misisipi y Georgia.2
Otro grupo de dinosaurios común en Appalachia fueron los hadrosáuridos. Mientras que el registro fósil muestra una sorprendente variedad de formas de hadrosaurios en Laramidia, en Appalachia hay una diversidad mucho menor, debido probablemente al gran número de yacimientos fósiles que aún no se conocen. En la formación de Navesink y en Nueva Escocia (Canadá) se han encontrado restos de Lambeosaurinae similares al Coritosaurio, aunque todavía no se ha podido explicar cómo podrían haber llegado los lambeosaurines a Appalachia. Algunos científicos teorizan con la formación de un puente terrestre en cierto momento del Campaniense.3
Otra diferencia entre las faunas de Laramidia y Appalachia la constituyen los nodosáuridos. Este grupo de grandes anquilosaurios herbívoros similares al armadillo eran escasos en Norteamérica a finales de Cretáceo, y se limitaban a formas como el Edmontonia, el Denversaurio y el Panoplosaurio, quizás a causa de la competencia con los anquilosáuridos.
En la formación Tal Heel (Carolina del Norte) se ha encontrado un Leptoceratópsido ceratopsiano del Campaniense, lo que representa el primer hallazgo de un dinosaurio de este tipo en Appalachia. Este especimen posee una mandíbula superior larga, fina y curvada hacia abajo, que sugiere una estrategia alimentaria especializada, otro ejemplo de especiación en un entorno insular.6
En varios lugares de Appalachia se han encontrado restos de aves, la mayoría marinas, como Hesperornithes, Ichthyornis y Enantiornithes. Especialmente interesantes son los restos de un posible litornítido en Nueva Jersey,78 que representaría un claro ejemplo de paleognato Neornithes del Cretáceo Superior.
Otros animales prehistóricos
El yacimiento de fósiles de Ellisdale presenta un amplio panorama de la fauna prehistórica de Appalachia. Entre los lisanfibios, hay rastros de sirénidos, como el gran Habrosaurus, la salamandra Parrisia, Hylidae (ranas arborícolas), posibles representantes de Eopelobates y Discoglossus, que muestran una gran similitud con las faunas europeas, pero aparte del Habrosaurio, que también se encuentra en Laramidia, existe un alto grado de endemismo, indicador de la carencia de intercambios con otras masas terrestres a lo largo del Cretáceo Superior.9 Hay que señalar que en Appalachia no se han descubierto restos fósiles de serpientes.
En el yacimiento de Ellisdale también se encuentran fósiles de varios mamíferos. Los más comunes son los multituberculados ptilodontoideos, como los Mesodma, Cimolodon y ciertas especies de grandes mamíferos. La diversidad de ptilodontoideos en la zona, además de su temprana aparición respecto a otras especies locales del Cretáceo Superior, hace pensar que evolucionaron en Appalachia.1011 También se han hallado Metatheria, como un Alphadon,11 un estagodóntido,12 y un herpetotérido.13
Tripulación visita dos estaciones espaciales
Tripulación visita dos estaciones espaciales
Soyuz T-15
SATCAT no.: 16643
Duración de la misión: 125 días, 56 segundos
Órbitas completadas: 1,980
Propiedades de la nave espacial
Tipo de nave espacial: Soyuz-T
Fabricante: NPO Energia
Masa de lanzamiento: 6,850 kilogramos (15,100 libras)
Tripulación
Tamaño de la tripulación: 2
Miembros
- Leonid Kizim (Comandante)
- Vladimir Solovyov (Ingeniero de vuelo)
Señal de llamada: Mayak (Beacon)
Comienzo de la misión
Fecha de lanzamiento: 13 de marzo de 1986, 12:33:09 UTC
Cohete: Soyuz-U2
Sitio de lanzamiento: Baikonur 1/5
Fin de misión
Fecha de aterrizaje: 16 de julio de 1986, 12:34:05 UTC
Lugar de aterrizaje: 55 kilómetros (34 millas) al NE de Arkalyk
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: Tierra baja
Perigeo: 331 kilómetros (206 millas)
Apogeo: 366 kilómetros (227 millas)
Inclinación: 51.6 grados
Período: 91.5 minutos
Atracando con Mir
Puerto de acoplamiento: Núcleo delantero
Fecha de acoplamiento: 15 de marzo de 1986, 13:38:42 UTC.
Fecha de desacoplamiento: 5 de mayo de 1986, 12:12:09 UTC.
Acoplamiento con salyut 7
Puerto de acoplamiento: En popa
Fecha de acoplamiento: 6 de mayo de 1986, 16:57:52 UTC.
Fecha de desacoplamiento: 25 de junio de 1986, 14:58:00 UTC.
Atracando con Mir
Puerto de acoplamiento: Núcleo delantero
Fecha de acoplamiento: 26 de junio de 1986, 19:46:07 UTC.
Fecha de desacoplamiento: 16 de julio de 1986, 09:09:50 UTC.
Duración de la misión: 125 días
Soyuz T-15 (en ruso: Союз T-15, Union T-15) fue una misión tripulada a las estaciones espaciales Mir y Salyut 7 y fue parte del programa Soyuz. Marcó el vuelo final de la nave espacial Soyuz-T, la tercera generación de la nave espacial Soyuz, que estuvo en servicio durante siete años desde 1979 hasta 1986.[1] Esta misión marcó la primera vez que una nave espacial visitó y atracó con dos. Estaciones espaciales en la misma misión. Fue la última misión realizada en una nave de ese tipo (reemplazada por el modelo Soyuz TM) y la primera misión lanzada hacia la estación espacial Mir.
La tripulación llegó a la estación Mir el 15 de marzo, pasando 51 días en ella, durante los cuales recibieron la visita de dos cargueros automáticos Progress.1 El 5 de mayo partieron de la estación Mir hacia la estación Salyut 7 en su Soyuz T en un viaje de un día de duración y realizando el primer viaje de una misma nave entre dos estaciones espaciales. En la Salyut 7 llevaron a cabo un par de actividades extravehiculares y recogieron diversos experimentos y muestras de materiales. El 25 de junio los cosmonautas se desacoplaron de la Salyut 7 y realizaron el viaje de vuelta a la Mir. La cápsula de reentrada devolvió a los cosmonautas a la Tierra el 16 de julio.
Puntos destacados de la misión
Soyuz T-15 fue tanto la primera expedición a Mir como la última a Salyut 7.
Vuelo a Mir
Debido a la presión del lanzamiento de Mir a tiempo para el 27º Congreso del Partido Comunista, los planificadores de la misión se quedaron sin la nave espacial Soyuz-TM más nueva o cualquiera de los módulos planeados para lanzar a la estación al principio. Se decidió lanzar una Soyuz-T más antigua como Soyuz T-15 en una misión doble para Mir y Salyut 7.[2]
Leonid Kizim y Vladimir Solovyov atracaron por primera vez en la estación espacial Mir el 15 de marzo de 1986 después de su lanzamiento el 13 de marzo. Los planes para Mir pretendían que solo la Soyuz-TM más nueva se acoplaría con el puerto delantero de Mir, dejando el puerto de popa libre para que llegara la nave espacial Progress. Sin embargo, el Soyuz-T más antiguo no estaba equipado con el sistema de aproximación Kurs utilizado en el puerto frontal de Mir, sino solo con el antiguo sistema de aproximación Igla utilizado para el puerto de popa de Mir. Por lo tanto, el Soyuz T-15 tuvo que acercarse al puerto de popa de Mir y luego maniobrar manualmente alrededor de la estación para atracar manualmente en el puerto delantero. A 20 km, el sistema Igla del Soyuz T-15 adquirió su contraparte en el puerto de popa de Mir. A 200 metros, el sistema de Igla se apagó y la tripulación maniobró manualmente alrededor de la estación para atracar en el puerto delantero. Para este enfoque manual, se utilizó el mismo buscador de rango láser que para el acoplamiento Soyuz T-13 con la estación de Salyut 7 no cooperativa en 1985.
Durante su estancia de casi 55 días en Mir, la tripulación descargó dos naves Progress , que se lanzaron después de su llegada. La misión se diseñó principalmente para probar los sistemas de la nueva estación espacial, ya que se había lanzado con poco equipo científico, la mayoría de los cuales tendrían que esperar el lanzamiento de módulos adicionales. A pesar de que el nombre de Mir significa literalmente “Paz”, los funcionarios estadounidenses durante este tiempo acusaron a la Unión Soviética de realizar experimentos militares en sus estaciones espaciales supuestamente civiles. Después del regreso de los cosmonautas a la Tierra, Leonid Kizim en una conferencia de prensa oficial declaró que Mir no estaba siendo usado para ningún propósito militar y que “Estados Unidos nos está acusando de este tipo de acción para justificar sus propios planes para extender las armas de carrera hacia el espacio”. Sin embargo, la Administración Reagan no reiteró estas afirmaciones para no tener un impacto negativo en la reunión cumbre planificada de 1987 entre el presidente Ronald Reagan y el líder soviético Mikhail Gorbachev.[3]
La tripulación se traslada a Salyut 7
En preparación para el viaje a Salyut 7, la tripulación cargó el Soyuz T-15 con sus pertenencias personales, plantas cultivadas en Mir y otros artículos. En ese momento, Salyut 7 aún estaba 4000 km por delante de Mir en una órbita más baja. Por lo tanto, el 4 de mayo, Mir se redujo en 13 km para acelerar el enfoque de Salyut 7 y conservar el limitado suministro de combustible de Soyuz T-15 para la transferencia. El 5 de mayo de 1986, 12:12:09 UTC, se desacoplaron de Mir para su viaje a Salyut 7; en este momento, la distancia entre las dos estaciones espaciales se había reducido a 2500 km debido a la maniobra de Mir. Después de un cruce de 29 horas, Soyuz T-15 atracó con Salyut 7 el 6 de mayo a las 16:57:52 UTC. [1]
Experimentos en Salyut 7
El equipo anterior en Salyut 7, Salyut 7 EO-4, había sido asignado para realizar experimentos con TKS-4 (Kosmos 1686). Sin embargo, el comandante Vladimir Vasyutin se había enfermado y la tripulación tuvo que regresar prematuramente a la Tierra. Por lo tanto, no pudieron realizar EVA, lo que habría tenido implicaciones para el programa Mir. Después de llegar a Salyut 7, el equipo de Soyuz T-15 realizó dos EVA y recopiló resultados de experimentos, aparatos experimentales y muestras de materiales para finalizar el trabajo del equipo anterior.[4] [5]
El primer EVA fue el 28 de mayo, cuando los miembros de la tripulación salieron para recuperar los experimentos de exposición espacial y probar el dispositivo Ferma-Postroital (“viga-constructor”). Un bote de despliegue convirtió un cartucho de viga doblada en una viga de 15 metros en solo unos minutos. La viga se retrajo invirtiendo el proceso al final del EVA. Este primer EVA duró 3 horas y 50 minutos. El segundo EVA consistió en viga y experimentos de soldadura. El 31 de mayo, Kizim y Solovyov conectaron dispositivos de medición a la parte superior de la viga retraída, luego la volvieron a extender con el objetivo de estudiar su rigidez. Luego utilizaron una pistola de electrones para soldar varias de las articulaciones de la viga. Este segundo EVA duró cinco horas.
Vuelo en ferry de regreso a Mir
La tripulación extrajo 20 instrumentos con una masa total de 350 a 400 kg de Salyut 7 antes de regresar a Mir. Mir maniobró dos veces de nuevo entre el 24 y el 25 de junio, elevó ligeramente su órbita y se acercó a Salyut 7. El 25 de junio, Soyuz T-15 se desacopló de Salyut 7 para comenzar su viaje de 29 horas de regreso a Mir, al que regresaron el 25. –26 de junio.
El 3 de julio, Kizim superó el récord de Valeri Ryumin por el tiempo que pasó en el espacio. El 6 de julio, se convirtió en el primer humano en pasar un año completo en el espacio, entre varias misiones. La tripulación pasó sus últimos 20 días en Mir realizando observaciones de la Tierra.
Mientras tanto, entre el 19 y el 22 de agosto, los motores en Kosmos 1686 impulsaron a Salyut 7 a una altura orbital promedio récord de 475 km para impedir el reingreso. Sin embargo, la resistencia atmosférica tuvo su efecto, y la estación volvió a ingresar en América del Sur 55 meses después. Se encontraron piezas de Salyut 7 y Kosmos 1686 en Argentina.
Soyuz T-15 fue la última misión en utilizar la nave espacial Soyuz-T , debido a su reemplazo por Soyuz-TM .
Para más información: http://www.spacefacts.de/mission/english/soyuz-t15.htm
Mauritia
Mauritia (continente)
El continente perdido bajo el océano Índico 04/02/2017
Aparece un nuevo continente bajo la isla de Mauricio.
Mauritia pertenece al desaparecido súper continente de Gondwana.
El zircón ha permitido constatar que el nuevo continente tiene millones de años.
Mauritia, situado en el océano Índico.
Mauritia es un pequeño continente prehistórico que múltiples científicos de distintas universidades del mundo indican (aportando sus estudios) haber descubierto en el océano Índico, situado bajo las islas Mauricio y la isla Reunión.1
Un «micro continente» prehistórico, disimulado bajo una espesa capa de lava, que se encuentra a miles de metros de profundidad en el océano Índico. El descubrimiento de este fragmento de continente ha sido bautizado como Mauritia. Este pequeño continente se desprendió hace unos 60 millones de años de Madagascar en el momento en que esa gran isla derivaba en dirección a la formación de la actual India.
Se estima que la formación de los continentes está asociada a menudo a columnas eruptivas, haciendo que durante el proceso (deriva continental) algunos pedazos de esas masas continentales se pierdan.2
Descubrimiento
El continente Mauritia, que científicos, pincipalmente de la Universidad de Oslo que lidera el geólogo Trond H. Torsvik, junto con otros de la Universidad del Witwatersrand y de la Universidad de Liverpool, es el que admiten haber descubierto bajo el océano Índico, siendo un pequeño continente prehistórico.
Estiman que en los últimos 65,5 millones de años se formó en sus mesetas un conjunto de cadenas volcánicas, lo que originó la realización de múltiples estudios. Observando la inversión de la gravedad, se ha descubierto que el suelo del continente es anormalmente espeso.3
Los científicos analizaron arena de las playas de las Islas Mauricio, donde encontraron pequeños cristales de silicato de circonio, formado hace de millones de años, mucho más antiguo que cualquier otra roca en la isla, llegando a la existencia tras múltiples estudios de una masa de tierra a la que han llamado Mauritia.4
Localización
Según indican en sus estudios, Mauritia ocupó la zona donde ahora se encuentra el archipiélago Mascareñas y la meseta adyacente, al este de Madagascar y sudoeste del océano Índico, y actualmente 12°10′49″N 61°10′1″O se extiende en un arco hasta el norte de las islas Seychelles, situándose los restos del antiguo continente desgarrado bajo las islas Mauricio y la Isla Reunión. (ver imagen en referencias)5 6
Fomación y respaldo
Proponen que el pequeño continente se fragmentó tras separarse de Madagascar, formando una línea de cordillera en medio del océano Índico. Durante el periodo de hace 83,5 y 61 millones de años, que produjo la apertura de la cuenca ceada en Mascareñas, hizo que se desprendiese de Madagascar. Fue hundido casi al mismo tiempo que la masa de tierra que actualmente conocemos como la India comenzó a moverse hacia el norte de Madagascar. Indican que la reconstrucción del movimiento de la placa y la gravedad hallada en el terreno respaldan su teoría, estimando que las Seychelles son un fragmento superviviente del continente perdido.7 8
Hace más de 200 millones de años existió un súper continente llamado Gondwana y que albergaba lo que hoy conocemos como África, América del Sur, Antártida, India y Australia. Este lugar de la Tierra contenía rocas de 3,600 millones de años, pero todo el terreno se dividió debido al movimiento de las placas tectónicas. Aún queda mucho por investigar pero, sin ninguna duda, estos científicos no están dando palos de ciego.
La Tierra logra sorprender a los científicos constantemente en cada una de sus investigaciones. Ahora, estos científicos afirman haber descubierto un nuevo continente que se encuentra sumergido bajo la isla Mauricio, en el Océano Índico. Parece ser que se trata de un resto de la separación del súper continente Gondwana, un hecho que ocurrió ya hace 200 millones de años.
El equipo científico, formado por el geólogo Lewis Ashwal, de la Universidad el Witwatersand en Sudáfrica; por Michael Wiedenbeck, del Centro de Investigación Alemán de Geociencias, y por Trond Torsvik, de la Universidad de Oslo en Noruega, han estudiado el proceso de ruptura de los continentes para poder comprender la historia de este nuevo pedazo de tierra que ha aparecido en el Índico.
Restos del súper continente Gondwana aparecen bajo la isla de Mauricio.
Gracias a esto han llegado a la conclusión de que este pedazo de corteza de tierra que han hallado parece ser una pequeña parte del continente antiguo que desapareció en el momento en el que se formó el Océano Índico, al separarse África, la India, Australia y la Antártida. Viajó desde la isla de Madagascar hasta el punto en el que se encuentra en la actualidad.
Ahora bien, ¿Cómo se ha llegado a la conclusión de que pertenece al viejo continente? Pues porque Lewis, Michael y Trond han descubierto que un mineral, llamado zircono, se encuentra en las rocas que han surgido de la lava de las últimas erupciones volcánicas. Estos restos son demasiado antiguos como para pertenecer a la isla de Mauricio.
El resistente proceso geológico del zircono hace posible que estos pueden fecharse con gran precisión.
El zircono son minerales que están producidos en granitos de los continentes y que son muy resistentes al proceso geológico, además de que pueden fecharse con gran precisión. Esto es lo que ha permitido a los científicos averiguar de dónde procedían estos restos rocosos que contienen trazas de uranio, torio y plomo.
La cuestión es que esta no es la primera vez que aparecen zircones de miles de millones de años en una isla. Ya en el año 2013 se encontraron rastros de este mineral en la arena de la playa. No obstante, este trabajo recibió muchas críticas, nada positivas, que aseguraban que el viento era el causante de esta aparición y no la tierra. Aún así, este grupo de científicos sigue insistiendo en que debajo de algunas islas, en este caso la isla de Mauricio, existen restos del antiguo continente.
De este modo, Ashwal ha sugerido que hay existen aún muchas piezas sin investigar de varios tamaños de este continente desconocido ahora llamado Mauritia. Lo que sí que tienen claro estos investigadores es que se trata de los restos del súper continente Gondwana.
Otra información en:
https://www.nature.com/scitable/blog/labcoat-life/the_violent_history_of_mauritia
Ubicación de Mauritia, formando un arco desde Mauricio hasta Seychelles. Fuente: researchgate.net
Ashwal y sus colegas han descubierto que un mineral, el zircono, se encuentra en rocas arrojadas por lava durante las erupciones volcánicas. Los restos de este mineral eran demasiado antiguos para pertenecer a la isla de Mauricio.
“La Tierra está formada por dos partes: los continentes, que son viejos y los océanos, que son jóvenes“. En los continentes se encuentran rocas de más de cuatro mil millones de años, pero no hay nada parecido en los océanos, Es donde se forman nuevas rocas “, explica Ashwal. “Mauricio es una isla, y no hay roca de más de nueve millones de años en la isla, sin embargo, al estudiar las rocas de la isla, hemos encontrado zircones que son tan viejos como tres mil millones de años“.
Los zircones son minerales que se producen principalmente en granitos de los continentes. Contienen trazas de uranio, torio y plomo, y debido al hecho de que sobreviven muy bien al proceso geológico, contienen un rico registro de procesos geológicos y pueden fecharse con gran precisión.
“El hecho de que hayamos encontrado zircones de esta edad demuestra que en Mauricio existen materiales de la corteza terrestre mucho más antiguos, que sólo pudieron originarse en un continente”, dice Ashwal.
El microcontinente de Mauritia
Mauritia debe su nombre a las islas donde fue descubierto: las Islas Mauricio. Sin embargo, su extensión va mucho más allá, ocupando el archipiélago de las Mascareñas y su meseta adyacente, formando un arco desde las Islas Mauricio y las Islas Reunión, en el extremo sur, hasta el norte de las Islas Seychelles en su extremo septentrional.
Durante el periodo Triásico, Mauritia formaba parte del extenso continente de Gondwana, hasta la separación de la India y Madagascar, cuando finalmente Mauritia fue sumergido en el océano, hace unos 85 millones de años.
Pero, ¿qué diferencia a Mauritia del resto de áreas bajo el nivel del mar? Aquí es donde los investigadores de las universidades de Oslo, Liverpool y Witwatersrand han arrojado algo de luz al respecto.
Todo empezó con un estudio que tenía por objetivo comprobar la hipótesis de que las islas volcánicas pueden mostrar evidencias de la existencia de continentes perdidos. Las Islas Mauricio eran un destino perfecto, ya que son relativamente jóvenes, y por lo tanto el espesor geológico de la isla es menor; esto haría más factible encontrar restos que atestiguasen la presencia de otra naturaleza que no fuese volcánica, como así sucedió.
Los científicos hallaron minerales de zircón, uno de los más abundantes de la corteza continental, con una edad de más de 9 millones de años. Esto probaría que el magma de las Islas Mauricio se abrió paso a través de un antiguo continente, y no directamente desde el fondo oceánico, es decir, la corteza oceánica. Este último caso sería, por ejemplo, el de las Islas Canarias.
Sin embargo, la polémica llegó cuando se dieron cuenta de que el equipo de extracción contenía restos de zircón de otros lugares en los que fueron empleados los aparatos, lo que restaba validez a las pruebas encontradas, y contaminaba el área de muestreo.
Pocos años después, algunos miembros del equipo regresaron a las islas para recoger nuevas muestras de dos playas diferentes a la anterior, y los resultados obtenidos ratificaron la hipótesis inicial, apuntando que el zircón encontrado era mucho más longevo que las lavas de las Islas Mauricio, coincidiendo con las edades de los ya conocidos minerales continentales de Madagascar, Seychelles y la India.
Aun así, lejos de despejar las dudas, algunos expertos, como el geólogo Jérome Dyment, afirmaron que se mantenían escépticos ante este descubrimiento, pues las muestras de zircón pudieron ser transportadas por otros medios hasta las islas, como resultado de la acción antropológica. De hecho, el propio Dyment señalaba que si existiesen pruebas reales de un antiguo microcontinente bajo las Islas Mauricio, ya habrían sido descubiertas por los integrantes del experimento franco-alemán (denominado RHUM-RUM) que se llevaba a cabo en las Islas Reunión, y que se encargaban de estudiar el manto terrestre en ese lugar.
No obstante, para Conall Mac Niocaill, geólogo de la Universidad de Oxford, no existe una fuente natural de zircón en Mauricio, y resulta bastante improbable que el mineral haya llegado a las islas por otros medios, naturales o humanos. Así pues, la conclusión más obvia según Mac Niocaill, es que las erupciones volcánicas arrastraron el zircón desde las profundidades hasta la superficie de las islas, donde la lava se solidificó, albergando los minerales de zircón.
Como apunte final, la teoría del geólogo Mac Naiocaill ha demostrado ser cierta, pues un nuevo estudio publicado en la revista británica Nature Communications reconoce la existencia del zircón en las rocas volcánicas, de hasta 3.000 millones de años; y no sólo en la arena de las playas, por lo que esto despeja cualquier atisbo de duda acerca del origen del zircón, y demuestra que Mauritia fue uno de las piezas que formó Gondwana, pero que fue sumergido casi por completo en las aguas del Océano Índico.
Primer globo en otro planeta
Primer globo en otro planeta
Vega 1 y 2
Las Vega 1 y Vega 2 son dos sondas espaciales lanzadas por la URSS en 1984 para cubrir una serie de objetivos, entre ellos la exploración de Venus (sobrevuelos y aterrizaje de dos sondas) y la del cometa Halley (sobrevuelos).
Los objetivos
La misión para estas sondas soviéticas era doble ya que debían realizar un sobrevuelo de Venus y otro (el primero) del cometa 1P/Halley. Para realizar los objetivos se prepararon dos naves idénticas, Vega 1 y Vega 2, que fueron lanzadas el 15 y el 21 de diciembre de 1984 respectivamente.
Primer globo en otro planeta, voló al menos 11.600 km, flotando a una altura de unos 54 km y realizaron transmisiones por alrededor de 46 horas
Tras llevar una sonda de descenso hasta las proximidades de Venus el 11 de junio (Vega 1) y el 15 de junio (Vega 2) de 1985, las sondas cambiaron su rumbo usando la fuerza de la gravedad del planeta y tomando la dirección hacia el cometa Halley para interceptarlo en marzo de 1986.
La primera nave llegó hasta el Halley el 6 de marzo de 1986 con una velocidad relativa entre ambos cuerpos de 77.7 km/s. A pesar de que la sonda tenía una precisión de 100 km, la posición relativa con respecto al núcleo solo podría ser estimada cuando se encontrara a unos pocos miles de kilómetros del cometa. Esto, junto a problemas con los sistemas de protección del polvo hizo que las distancias de sobrevuelo quedaran finalmente a 10.000 km para la primera nave. La segunda nave llegó hasta el Halley el 9 de marzo de 1986.
Vega 1
Características técnicas
Otros nombres de la misión: 1984-125A, Venera-Halley 1, 15432
Nombre de la sonda y globo de descenso: 1984-125E, Vega 1 Balloon Aerostat, Vega 1 Lander, 15858
Aparato de sonda y aterrizaje de sonda del sistema solar Vega (modelo)
Nombres: Venera-Halley 1
Tipo de misión: Ciencia planetaria, incluyendo sonda de aterrizaje y atmosférica
Operador: Academia Soviética de Ciencias
- 15432
- 15858
- 15859
Duración de la misión: ~ 2 días (globo)
Propiedades de naves espaciales
Astronave: 5VK No. 901
Tipo de nave espacial: 5VK
Fabricante: NPO Lavochkin
Lanzamiento de masa: Nave espacial: 4,920 kg (10,850 lb); Globo: 21.5 kg (47 lb)
Masa de aterrizaje: 1,520 kg (3,350 lb)
Inicio de la misión
Fecha de lanzamiento: 15 de diciembre de 1984, 09:16:24 UTC
Cohete: Proton 8K82K
Sitio de lanzamiento: Baikonur 200/39
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: Tierra baja
Semieje mayor: 6,558 kilómetros (4,075 mi)
Excentricidad: 0.03080
Perigeo: 159 kilómetros (99 millas)
Apogeo: 202 kilómetros (126 mi)
Inclinación: 51.5 °
Período: 88 minutos
Sobrevuelo de Venus
Enfoque más cercano: 11 de junio de 1985
Distancia: ~ 39,000 kilómetros (24,000 mi)
Sonda atmosférica de Venus
Componente de nave espacial: Globo Vega 1
Entrada atmosférica: 02:06:10, 11 de junio de 1985
Vender de Venus
Componente de nave espacial: Vega 1 Descent Craft
Fecha de aterrizaje: 03:02:54, 11 de junio de 1985
Lugar de aterrizaje: 42′ E ° N 177,7 ° E (al norte de Aphrodite Terra)
Sobrevuelo de 1P / Halley
Enfoque más cercano: 6 de marzo de 1986
Distancia: ~ 10,000 km (6,200 mi)
Vega 2
Características técnicas
Otros nombres de la misión: 1984-128A, Venera-Halley 2, 15449
Nombre de la sonda y globo de descenso: 1984-128E, Vega 2 Balloon Aerostat, Vega 2 Lander, 15856
Fecha de lanzamiento: 21 de diciembre de 1984
Hora de lanzamiento: 09:13:52 GMT
Masa seca en órbita: 2500 kg
Las naves
Las naves estaban estabilizadas en los tres ejes y su principal estructura eran los paneles solares, una antena de alta ganancia, una plataforma automática para apuntar los instrumentos que tenía que visualizar constantemente el núcleo del cometa. Esta plataforma podía moverse +/- 110 grados y +/- 40 grados en dos direcciones perpendiculares con una precisión de 5 minutos de arco y una estabilidad de 1 minuto de arco por segundo.
Llevaban una cámara de ángulo ancho y otra de ángulo estrecho, un espectrómetro de tres canales y uno en infrarrojo. Otros experimentos se encontraban en el cuerpo principal de las naves con la excepción de dos magnetómetros montados en un brazo extensible de dos metros y varios sensores de plasma y analizadores de ondas de plasma que estaban en otro brazo de 5 metros. La carga científica pesaba un total de 125 kg y podía enviar los datos a nuestro planeta a una velocidad de 65 kbps en el modo de telemetría rápida durante el encuentro. Además tenía otro modo lento para la fase de crucero.
Los datos científicos del encuentro con el cometa se obtuvieron desde 2,5 horas antes del sobrevuelo hasta media hora después de la máxima aproximación, con varios periodos de adquisición de datos durante 2 horas antes y después de estas fases. Los instrumentos de plasma y de polvo obtenían datos de manera continua y eran almacenados en la memoria de la sonda que tenía una cinta grabadora con una capacidad de 5 megabits.
Las naves llevaban un escudo térmico para protegerse de los impactos del polvo que estaba formado por múltiples capas de un grosor de 100 micrómetros a 20 centímetros de las naves, junto a un escudo de 1 mm de aluminio a 5 centímetros de las naves. La mitad de las sondas Vega era el módulo dedicado al cometa Halley y la otra mitad para los equipos de descenso a Venus. La carga científica total era de 144.3 kg.
El módulo de descenso a Venus
El aterrizador de las Vega 1 y 2 era idéntico al de las misiones Venera 9 hasta la Venera 14 y por lo tanto tenía objetivos similares como el estudio térmico de la atmósfera y de la corteza del planeta. El aterrizador estaba formado por una semiesfera aislada y a presión con absorbedores de choque en un anillo deformable de aterrizaje. En la parte superior esta un disco que servía para realizar el aerofrenado y que también servía como reflector para la antena cilíndrica de comunicaciones que estaba sobre el.
El lander estaba protegido durante la fase de crucero y la entrada atmosférica en Venus por una esfera de protección térmica de 240 centímetros de diámetro, que constaba de dos partes unidas aunque no herméticas.
Instrumentación
Además de los instrumentos de temperatura y presión, la sonda portaba una espectrómetro ultravioleta (ISAV) para medir los componentes menores de la atmósfera, un higrómetro (VM-4) para medir la concentración de H2O, un analizador de aerosoles (IPF), un espectrómetro analizador del tamaño de las partículas (ISAV-A) y otros instrumentos para la determinación de la composición química de la fase condensada: un cromatógrafo de gases (Sigma 3), un espectrómetro de rayos-X (BDRP-AM25) para observar la fluorescencia de los granos, un espectrómetro de masas (de malaquita) para medir la composición química de los granos y las gotas. El espectrómetro de rayos-X separaba los granos de acuerdo a sus tamaños usando un dispositivo láser, mientras el espectrógrafo de masas los separaba según su tamaño usando un separador aerodinámico inercial.
Tras el aterrizaje, se recogía una pequeña muestra cerca de la sonda utilizando un taladrador y era analizado por el espectrómetro de rayos gamma (GS-15-SCV) y un espectrómetro de fluorescencia de rayos-X. El espectrómetro ultravioleta, el espectrógrafo de masas y los instrumentos de medición de temperaturas y presiones fueron desarrollados en cooperación entre investigadores soviéticos y franceses. Los datos recogidos fueron retransmitidos a la sonda Vega 1 y reenviados a la Tierra.
La misión a Venus
El aterrizador se separó de la sonda Vega 1 dos días antes de llegar a Venus y entró en la atmósfera del planeta en una trayectoria inclinada sin realizar maniobras de ningún tipo, como se había hecho en las misiones Venera anteriores. El aterrizador entró en la atmósfera de Venus el 11 de junio de 1985 a las 01:59:49 GMT a una velocidad de 10,75 km/s con un ángulo de entrada de 18,23 grados. El paracaídas piloto fue desplegado a las 02:00:27 GMT (38 segundos después de entrar en la atmósfera) a una altura de 65 kilómetros de la superficie y el paracaídas principal fue abierto 11 segundos más tarde a 64,5 km de altura. En ese instante se desprendió el hemisferio de protección superior y el inferior 4 segundos más tarde a 64,2 km de altura.
El hemisferio superior contenía el sistema para el despliegue del balón aerostático. El paracaídas fue soltado a las 02:09:37 a 47 km de altura sobre la superficie. Tras esto el aterrizador estaba diseñado para usar el aerofrenado contra la densa atmósfera del planeta, con sistemas dispositivos de fricción para minimizar las vibraciones y el giro y proporcionar estabilidad. A una altura de 18 kilómetros un golpe mecánico de origen desconocido (posiblemente debido a una válvula que se soltó en el compartimiento superior) accionó el contacto de un acelerómetro lo que causó el despliegue temprano del taladro del suelo del espectrómetro de rayos-X por fluorescencia. Debido a esto fue imposible usarlo una vez en tierra. Un sistema toroidal similar a los usados en Venera 13 y 14 fue usado para absorber parte del choque en el aterrizaje.
La nave Vega 1 tocó tierra a las 03:02:54 GMT el 11 de junio de 1985 a 7,5 ºN y 177,7 ºE en la zona norte del este de Aphrodite Terra. La altitud en el lugar del aterrizaje fue de 0,6 km sobre el radio medio del planeta. En ese lugar la presión llegó a las 95 atmósferas terrestres y la temperatura de 466 °C. El balón midió ráfagas de viento descendentes de 1 m/s y vientos horizontales de hasta 240 km/h.
La Vega 2 tocó tierra a las 03:00:50 GMT el 15 de junio de 1985 a 8.5° S y 164.5° E, en la zona este de Aphrodite Terra. La altitud en el lugar del aterrizaje fue de 0,1 km sobre el radio medio del planeta. En ese lugar la presión llegó a las 91 atmósferas terrestres y la temperatura de 736 K. Transmitió durante 56 minutos.
Globos Aerostáticos
Además de las sondas de aterrizaje, las naves desplegaron cada una un balón aerostático que portaba instrumentos en un compartimiento sellado y a presión constante. Estos globos fueron soltados a una altura de 54 kilómetros desde el hemisferio superior de protección térmica y constaban con un paracaídas en dos etapas que luego era desplegado y luego inflado.
Cada uno de los globos de 3,4 metros de diámetro portaba una masa de 25 kg. Una carga de 5 kg estaba suspendida 12 metros por debajo del globo. Esta primera fase de la misión se llevaba a cabo a unos 50 km de altura, justo en medio de la capa más activa de la atmósfera de Venus.
Los datos de estos globos fueron enviados directamente hacia la Tierra durante las 47 horas de misión (las baterías tenían una duración máxima de 60 horas). Los instrumentos debían medir las temperaturas, presiones, velocidad vertical de los vientos, visibilidad (densidad y tamaño de los aerosoles), niveles de luz y detección de rayos. Para seguir la nave se usó interferometría de base amplia y se pudo conocer los movimientos del globo y obtener datos de la velocidad de los vientos. Este seguimiento se hizo con 6 antenas en territorio soviético y otras 12 por todo el mundo (coordinadas por Francia y la DSN de la NASA). Tras dos días y 9.000 kilómetros, los globos entraron en la cara diurna de Venus y explotaron por calentamiento debido al Sol.
Sonda del globo Vega en exhibición en el Centro Udvar-Hazy de la Institución Smithsonian
La cápsula Vega 1 Lander / Balloon entró en la atmósfera de Venus (125 km de altitud) a las 2:06:10 UT (hora de la Tierra recibida, hora de Moscú 5:06:10 a.m.) el 11 de junio de 1985 a aproximadamente 11 km / s. Aproximadamente a las 2:06:25 UT, el paracaídas conectado a la tapa de la nave de aterrizaje se abrió a una altitud de 64 km. La tapa y el paracaídas se lanzaron 15 segundos después a 63 km de altitud. El paquete del globo fue sacado de su compartimiento por paracaídas 40 segundos después a 61 km de altitud, a 8.1 grados N, 176.9 grados este. Un segundo paracaídas se abrió a una altitud de 55 km, 200 segundos después de la entrada, extrayendo el globo enrollado. El globo se infló 100 segundos después a 54 km y el paracaídas y el sistema de inflado se descartaron. El lastre se descartó cuando el globo alcanzó aproximadamente 50 km y el globo flotó de nuevo a una altura estable entre 53 y 54 km, unos 15 a 25 minutos después de la entrada.
La altura estable promedio fue de 53,6 km, con una presión de 535 mbar y una temperatura de 300-310 K en la capa media, más activa del sistema de nubes de tres niveles de Venus. El globo se desplazó hacia el oeste en el flujo de viento zonal con una velocidad promedio de aproximadamente 69 m / s (248 km / h) a una latitud casi constante. La sonda cruzó el terminador de noche a día a las 12:20 UT del 12 de junio después de atravesar 8500 km. La sonda continuó funcionando durante el día hasta que la transmisión final se recibió a las 00:38 UT del 13 de junio desde 8.1 N, 68.8 E después de una distancia total de 11.600 km o alrededor del 30% de la circunferencia del planeta. No se sabe cuánto más viajó el globo después de la comunicación final. [2]
Misión Halley
Después de sus encuentros, las naves nodrizas de Las Vegas utilizaron la gravedad de Venus, también conocida como ayuda de gravedad, para interceptar el cometa de Halley.
La misión al Halley
Tras su encuentro con el planeta Venus, la sonda Vega 1 continuó su viaje para interceptar al cometa Halley. Vega 1 realizó su mayor aproximación al núcleo del Halley el 6 de marzo a tan sólo 8.890 kilómetros de distancia. El examen intensivo del cometa se realizó durante las tres horas alrededor del momento de mayor aproximación y se midieron los parámetros físicos del núcleo como las dimensiones, la forma, la temperatura y las propiedades de la superficie, así como la estructura y dinámica de la coma y la composición del gas cerca del núcleo, así como el tamaño y distribución de masas de las partículas en función a la distancia del núcleo y su interacción con el viento solar.
Las primeras imágenes llegaron el 4 de marzo y fueron usadas para guiar con más precisión a la sonda europea Giotto. Las primeras imágenes mostraron dos áreas brillantes en el cometa, lo que inicialmente fue explicado como un doble núcleo. Las áreas brillantes alrededor después resultaron ser dos chorros que salían del cometa. Las imágenes también mostraron un núcleo oscuro con una temperatura entre 26 y 126 °C mucho más cálido de lo esperado para un cuerpo helado. La conclusión fue que una delgada capa cubría al núcleo helado del cometa.
Las imágenes obtenidas por la sonda mostraron un núcleo de unos 14 kilómetros de largo y con un periodo de rotación de unas 53 horas. El espectrómetro de masas del polvo detectó materiales con una composición similar a los meteoritos denominados condritas carbonaceas y además detectó clatratos helados.
Vega 1 hizo su aproximación más cercana el 6 de marzo a alrededor de 8,889 kilómetros (a las 07:20:06 UT) del núcleo. Tomó más de 500 imágenes a través de diferentes filtros mientras voló a través de la nube de gas alrededor del coma. Aunque la nave espacial fue golpeada por el polvo, ninguno de los instrumentos fue desactivado durante el encuentro.
El examen intensivo de datos del cometa cubrió solo las tres horas de aproximación más cercana. Estaban destinados a medir los parámetros físicos del núcleo, como dimensiones, forma, temperatura y propiedades de superficie, así como a estudiar la estructura y dinámica del coma, la composición del gas cerca del núcleo, la composición de las partículas de polvo y distribución de masa como funciones de la distancia al núcleo y la interacción del cometa- viento solar.
Las imágenes de Vega mostraron que el núcleo tenía unos 14 km de largo con un período de rotación de aproximadamente 53 horas. El espectrómetro de masas de polvo detectó material similar a la composición de meteoritos de condritas carbonáceas y también detectó hielo de clatrato.
Después de sesiones de imágenes subsiguientes los días 7 y 8 de marzo de 1986, Vega 1 se dirigió al espacio profundo. En total, Vega 1 y Vega 2 devolvieron unas 1500 imágenes del cometa Halley. Vega 1 se quedó sin propelente de control de actitud el 30 de enero de 1987, y el contacto con Vega 2 continuó hasta el 24 de marzo de 1987.
Vega 1 se encuentra actualmente en órbita heliocéntrica, con perihelio de 0.70 UA, afelio de 0.98 UA, excentricidad de 0.17, inclinación de 2.3 grados y período orbital de 281 días.
La sonda espacial soviética ‘Vega 1’ manda las primeras fotografías del núcleo del cometa Halley
Moscú 7 MAR 1986
El cometa Halley tiene un núcleo sólido de unos cuatro kilómetros de diámetro, mientras que las partículas de polvo de su cola -más densa de lo que en un principio se había pensado- tienen un tamaño 1.000 veces mayor que las del humo del tabaco. La estación automática soviética Vega 1 atravesó ayer la envoltura de gas y polvo del cometa a una distancia de 9.000 kilómetros de su núcleo, y realizó por primera vez investigaciones científicas en directo sobre este cuerpo celeste, según anunció en Moscú la plana mayor de los equipos investigadores de los nueve países participantes en el proyecto internacional Venus-Cometa Halley.
Los periodistas congregados en Moscú para asistir al 27º Congreso del Partido Comunista de la URSS (PCUS) pudieron contemplar ayer las primeras imágenes tomadas por la estación Vega 1; en primer lugar, las hechas el 4 de marzo a una distancia de 14 millones de kilómetros Y, posteriormente, las enviadas ayer desde unos 8.000 ó 9.000 kilómetros. Las fotografías tomadas ayer fueron realizadas en el curso de una sesión de tres horas de mediciones científicas filmaciones. La utilización de diversos filtros permitió obtener imágenes en color del cometa y su núcleo, éste de color rojo por tratarse de un núcleo caliente del que emana luz. Según datos telemétricos, los sistemas de a bordo de la estación planetaria conservan su capacidad de trabajo y funcionan normalmente después de haber atravesado la envoltura de gas y polvo del cometa.
Nueve países
El resultado de las observaciones permitirá, una vez analizadas, determinar la trayectoria de desplazamiento del cometa. Los datos así obtenidos serán entregados a la Agencia Espacial Europea para su empleo en la aproximación de la sonda europea Giotto, el próximo día 13, a solo 500 kilómetros del núcleo del cometa. Los nueve países participantes -URSS, Austria, Bulgaria, Hungría, República Democrática Alemania, Polonia, Francia, República Federal de Alemania y Checoslovaquia- han hecho posible que ayer se pudieran obtener imágenes de gran definición del núcleo del cometa, al tiempo que se realizaban mediciones de la temperatura y de otras características físico-químicas del Halley. Asimismo, se analizó la composición química del gas y del polvo que componen el cometa, se investigaron los campos electromagnéticos en sus alrededores y los procesos físicos que se operan en su envoltura gaseosa.
Las fotografías ahora obtenidas sirven al hombre para ver por primera vez el núcleo de un cometa, debido a que los gases y el polvo impedían su exploración desde la Tierra. Los científicos se mostraron ayer altamente satisfechos de la exactitud de sus previsiones así como de la forma en que se está desarrollando la investigación.
Los investigadores se muestran confiados en que este proyecto pueda servir para aportar datos acerca de la evolución de la Tierra en sus -primeros 1.000 millones de años de existencia. La utilización pacífica del espacio se puso ayer como contrapunto a la militarización que, en opinión de los científicos soviéticos, propugna Estados Unidos.
El polvo que rodea el cometa está distribuido de forma irregular, según se expuso ayer. “Llega en oleadas”, explicó uno de los numerosos científicos presentes en la conferencia de prensa, quienes prefirieron no adelantar datos sobre su composición, en espera de un análisis aún más detallado. El plasma y el gas están fragmentados; no poseen una estructura molecular regular, añadieron.
Los experimentos continuarán durante el fin de semana, con la aproximación, a menor distancia del núcleo del cometa, de la nave Vega 2, gemela de la Vega 1.
Zelandia
Zelandia (continente)
Topografía de Zealandia. Las líneas que se marcan al norte,al noreste y al suroeste lejos de Nueva Zelanda no son consideradas parte del continente. Tampoco Australia, Fiyi ni Vanuatu.
El continente de Zealandia, también llamado Zelandia,1 Tasmantis o continente de Nueva Zelanda, es un continente casi sumergido que se hundió después de separarse de Australia, hace 60-85 millones de años, y de la Antártida hace 130-185 millones de años.2 Se acabó de sumergir hace aproximadamente 23 millones de años34 y la mayor parte está hundida (alrededor del 93 %) bajo el océano Pacífico.
Tiene un área de 4 900 000 km²,5 es más grande que Groenlandia o la India y más de la mitad del tamaño de Australia. Es excepcionalmente largo y estrecho, desde Nueva Caledonia al norte hasta más allá de las islas subantárticas de Nueva Zelanda por el sur. Nueva Zelanda es la porción más grande del continente sobre el nivel del mar, seguida de Nueva Caledonia.
Zealandia, ¿el continente oculto de la Tierra?
La enorme masa terrestre, formada por Nueva Zelanda y otras islas, está en su mayor parte sumergida
Puede que un continente entero haya pasado desapercibido a nuestros ojos. Un grupo de geólogos asegura que se encuentra sumergido en el suroeste del Océano Pacífico, una amplísima extensión de terreno bajo el agua de la que sobresalen Nueva Zelanda, Nueva Caledonia y otras islas, y que tiene entidad suficiente para ser considerada una masa continental separada, a la que llaman Zealandia. La propuesta aparece publicada en la revista GSA Today, de la Sociedad Geológica de América.
Zealandia cubre 4,9 millones de km cuadrados, de los cuales el 94% están bajo el agua. El equipo del Instituto de Investigación GNS Science de Nueva Zelanda cree que se trata de una entidad geológica claramente distinta, ya que cumple con todos los criterios aplicados a los otros continentes, como la elevación del terreno por encima de los alrededores, una geología distintiva, un área bien definida y una corteza más gruesa que la que se encuentra en el fondo del océano. Abarca Nueva Zelanda, Nueva Caledonia, Isla Norfolk y la Isla de Lord Howe.
No es la primera vez que Zealandia se propone como continente. El asunto ha sido objeto de debate desde hace dos décadas, pero los autores del último trabajo están cada vez más convencidos de su existencia.
La razón geológica
Si esta propuesta fuera aceptada por la comunidad científica, Zealandia se convertiría en el séptimo continente según el modelo tradicional que incluye Europa, Asia, América, África, Oceanía y la Antártida. Hay otros modelos que dependen del área cultural: « ¿Son América del Norte y América del Sur continentes verdaderamente independientes con su conexión a través del istmo de Panamá? ¿Dónde y por qué se pueden distinguir Europa, África y Asia teniendo en cuenta la Península del Bósforo y del Sinaí?», se preguntan los investigadores. Ellos sugieren una razón geológica para dividir los continentes, de forma que sean grandes áreas identificables que yacen sobre la corteza continental. Este razonamiento es lo que les lleva a pensar que Zealandia también debería tener su propia identidad. Según ellos, uno solo tiene que mirar un mapa barimétrico para apreciar la cuestión.
Zelandia abre interrogantes sobre la división del continente Gondwana EFE 24.02.2017 – 18:44h
Tras el hallazgo de Zelandia, el verdadero reto es poder desentrañar las claves de la separación de Gondwana.
A diferencia de Zelandia, los otros restos de Gondwana, como los hallados en Mauricio, se fragmentaron bajo el Índico.
Zelandia Ubicación del continente perdido de Zelandia, donde se ubica Nueva Zelanda. GSA
El nombre de Gondwana comienza a ser popular para el público. Un antiguo supercontinente del que, poco a poco, se van conociendo nuevos detalles bajo las aguas, como la existencia de Zelandia, aunque ahora el verdadero reto es “poder desentrañar las claves de su separación”.
El último hallazgo, publicado esta semana, fue la identificación de Zelandia bajo las aguas entre Australia, Nueva Caledonia y Nueva Zelanda, que formaba parte del territorio sumergido del gran Gondwana junto a otros fragmentos subacuaticos hallados en islas Mauricio (océano Índico), y en el Mar de Tasman (Pacífico Sur).
Todos esos fragmentos “eran parte de Gondwana que incluyen (en su parte visible) a África, Antártica, India, Sudamérica y Australia”, explicó a Efe, Nick Mortimer, autor de un reciente artículo en la revista de la Sociedad Geológica de Estados Unidos (GSA, en inglés).
Mortimer, quien trabaja en el centro de investigación geocientífica de Nueva Zelanda (GNS, en inglés), consideró que si bien en la actualidad ya se conoce casi la totalidad el territorio sumergido de Gondwana, el verdadero reto es poder desentrañar las claves de su separación.
“Es importante resolver cómo y por qué se dividió este continente, hay varias teorías pero esperamos que ciertamente Zelandia contribuya a entender esto dado a que fue a parar debajo del agua”, agregó Mortimer.
Zelandia, cuyo nombre fue propuesto por primera vez por el geofísico Bruce Luyendyk en 1995, abarca unos 4,9 millones de kilómetros e incluye a Nueva Zelanda y Nueva Caledonia, aunque el 94 por ciento de su territorio se encuentra bajo el océano Pacífico.
El nuevo descubrimiento representaba el 5 % de Gondwana y estuvo unido al este de Australia y a la Antártica Occidental hasta que esa porción de tierra comenzó a subdividirse hace entre 100 a 85 millones de años, es decir más tarde que el resto del continente.
“Esa parte de la corteza de Gondwana se estiró por un período de tiempo de unos 15 millones de años y al hacerlo se adelgazó y se dividió. De esta manera las partes se difundieron y en ese proceso Zelandia y Antártica Occidental quedaron debajo del océano”, precisó el geólogo.
Por el contrario, “la mayoría de los continentes formados a partir de Gondwana no sufrieron ese proceso de estiramiento y adelgazamiento y se quedaron en las alturas y sobre el nivel del agua”, agregó Mortimer, al remarcar que esto es uno de los aspectos en que se centrarían las investigaciones futuras.
Zelandia tras la separación atravesó por diferentes fases de deformación intracontinental hasta acabar con la actual forma y localización, pero no se desintegró.
“Que un continente pueda estar tan sumergido pero no fragmentado hace que sea útil y geodinámicamente provocador para el análisis de la cohesión y desintegración de la corteza continental”, según el estudio de Mortimer, en el que participaron la neozelandesa Universidad Victoria, el Servicio Geológico de Nueva Caledonia y la Universidad de Sídney.
A diferencia de Zelandia, cuyo grosor de la corteza varía de 10 a 30 kilómetros, los otros restos de Gondwana, como los hallados recientemente en Mauricio, se fragmentaron bajo el Índico.
El descubrimiento de estos pedazos, que fue publicado a principios de mes en la revista británica Nature Communications, se produjo a partir del hallazgo sobre la superficie de la isla de unos minerales denominados zircones de hace 3.000 millones de años.
Sus descubridores creen que son parte de una pequeña pieza de Gondswana que se rompió desde la isla de Madagascar, cuando África, la India, Australia y la Antártica se separaron.
De acuerdo con los resultados de este estudio en Mauricio, la ruptura no implicó “una simple división del supercontinente Gondwana”, sino más bien una “fragmentación compleja que tuvo lugar con fragmentos de corteza continental de tamaños variables dejados a la deriva dentro de la cuenca del océano Índico en evolución”.
Arranca la expedición al continente oculto de Zelandia
Un barco de perforación partirá desde Australia para buscar evidencias de la gran masa sumergida que una vez formó parte de la Antártida
Alrededor de Nueva Zelanda hay una masa de corteza terrestre de la mitad del tamaño de Australia. Es el continente llamado Zelandia, y lo que lo hace diferente de otros es que más del 90% de su territorio está sumergido. Esto es lo que creen un grupo de geólogos, que en febrero anunciaron su particular hipótesis y que ahora van a embarcarse en una expedición de perforación oceánica decididos a desentrañar los secretos de ese continente oculto.
Un total de 30 investigadores partirán el 27 de julio en la expedición, auspiciada por la National Science Foundation (NSF), para buscar pistas sobre la historia de Zelandia. Los participantes navegarán desde Townsville, Australia, a bordo del Joides Resolution, uno de los buques de perforación científica más sofisticados del mundo. Alcanzarán profundidades de 300 a 800 metros para recoger del fondo marino muestras completas de sedimentos depositados durante millones de años. Esas evidencias fósiles servirán a los científicos para armar un registro detallado del pasado del continente, que en un pasado estuvo unido a la Antártida.
«Hace aproximadamente 100 millones de años, la Antártida, Australia y Zelandia formaban un continente», dice Gerald Dickens, geocientífico de la Universidad de Rice y científico jefe de la expedición. «Hace unos 85 millones de años, Zelandia se separó por su cuenta, y por un tiempo, el fondo marino entre él y Australia se extendía a ambos lados de una cresta oceánica que separaba a ambos».
Movimiento de placas
Los movimientos relativos de Zelandia y Australia se deben a la tectónica de placas, el movimiento constante de las secciones entrelazadas de la superficie de la Tierra. La expedición examinará un cambio masivo en el movimiento de placas que ocurrió hace unos 50 millones de años en dirección a la enorme Placa del Pacífico, al noreste de Zelandia, lo que provocó el levantamiento de Nueva Zelanda por encima de la línea de flotación y el desarrollo de un nuevo arco de volcanes. La investigación también puede responder a preguntas sobre la forma en que el clima de la Tierra ha evolucionado en los últimos 60 millones de años.
Si Zelandia fuera aceptado como continente por la comunidad científica, se convertiría en el séptimo, según el modelo tradicional que incluye Europa, Asia, América, África, Oceanía y la Antártida. Hay otros modelos que dependen del área cultural, pero los investigadores sugieren una razón geológica para dividir los continentes, de forma que sean grandes áreas identificables que yacen sobre la corteza continental. Este razonamiento es lo que les lleva a pensar que Zelandia también debería tener su propia identidad. Sea así o no, las respuestas a los misterios de Zelandia pronto podrían ser reveladas.
El desconocido y misterioso continente que se esconde debajo de Nueva Zelanda
(Foto: Nature/GSA)
Ubicación de Zelandia.
Paseo espacial mujer astronauta de EE.UU.
STS-41-G
Primer paseo espacial de una astronauta de EE.UU.
STS-41-G. ERBS durante la implementación
Tipo de misión: Despliegue satélite Imágenes de radar
Operador: NASA
SATCAT no.: 15353
Duración de la misión: 8 días, 5 horas, 23 minutos, 33 segundos
Distancia recorrida: 5,293,847 kilómetros (3,289,444 mi)
Órbitas completadas: 133
Propiedades de naves espaciales
Astronave: Space Shuttle Challenger
Lanzamiento de masa: 110,120 kilogramos (242,780 lb)
Masa de aterrizaje: 91,746 kilogramos (202,266 lb)
Masa de carga útil: 8,573 kilogramos (18,901 lb)
Tripulación
Tamaño de la tripulación: 7
Miembros:
Robert L. Crippen
Jon A. McBride
Kathryn D. Sullivan
Sally K. Ride
David C. Leestma
Paul D. Scully-Power
Marc Garneau
EVAs: 1
EVA duración: 3 horas, 29 minutos
Inicio de la misión
Fecha de lanzamiento: 5 de octubre de 1984, 11:03:00 UTC
Sitio de lanzamiento: Kennedy LC-39A
Fin de la misión
Fecha de aterrizaje: 13 de octubre de 1984, 16:26:33 UTC
Lugar de aterrizaje: Kennedy SLF Runway 33
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: Tierra baja
Perigeo: 351 kilómetros (218 mi)
Apogeo: 391 kilómetros (243 mi)
Inclinación: 57.0 grados
Período: 92.0 min
Época: 7 de octubre de 1984 [1]
Abajo (De izquierda a derecha) Jon A. McBride, Piloto, Sally K. Ride, Kathryn D. Sullivan y David C. Leestma, Especialistas de Misión. Arriba (LR) Paul D. Scully-Power, Especialista en carga útil; Robert L. Crippen, comandante, y Marc Garneau, especialista canadiense en carga útil. La réplica de un pin de astronauta dorado cerca de McBride significa unidad.
Programa de transbordador espacial
← STS-41-D
STS-51-A →
STS-41-G fue el 13 ° vuelo del programa Space Shuttle de la NASA y el sexto vuelo del transbordador espacial Challenger. Challenger lanzó el 5 de octubre de 1984 y realizó el segundo transbordador en el Centro Espacial Kennedy el 13 de octubre. Fue la primera misión del transbordador para llevar una tripulación de siete personas, incluyendo el primer equipo con dos mujeres (Sally Ride y Kathryn Sullivan), el primer EVA estadounidense que involucra a una mujer (Sullivan), la primera persona de origen australiano en viajar al espacio y el primer astronauta con barba (Paul Scully-Power) y el primer astronauta canadiense (Marc Garneau).
STS-41-G fue la tercera misión del transbordador en llevar una cámara IMAX a bordo para documentar el vuelo. Las imágenes de la película de la misión (incluyendo EVA de Sullivan y David Leestma) aparecieron en la película de IMAX, The Dream is Alive .
Equipo
Posición | Tripulante |
Comandante | Robert L. Crippen Cuarto y último vuelo espacial |
Piloto | Jon A. McBride Solo vuelo espacial |
Especialista de Misión 1 | Kathryn D. Sullivan Primer vuelo espacial |
Especialista de Misión 2 | Sally K. Ride Segundo y último vuelo espacial |
Especialista de Misión 3 | David C. Leestma Primer vuelo espacial |
Especialista de carga útil 1 | Paul D. Scully-Power Solo vuelo espacial |
Especialista de carga útil 2 | Marc Garneau, CSA Primer vuelo espacial |
Equipo de respaldo
Posición | Tripulante |
Especialista de carga útil 1 | Robert E. Stevenson Primer vuelo espacial |
Especialista de carga útil 2 | Robert Thirsk, CSA Primer vuelo espacial |
Paseo espacial
- Leestma y Sullivan – EVA 1
- EVA 1 Inicio: 11 de octubre de 1984
- EVA 1 Fin: 11 de octubre de 1984
- Duración: 3 horas, 29 minutos
Asignaciones de asiento de tripulación
Asiento [2] | Lanzamiento | Aterrizaje | Los asientos 1-4 están en la cubierta de vuelo. Los asientos 5-7 están en el Middeck. |
S1 | Crippen | Crippen | |
S2 | McBride | McBride | |
S3 | Sullivan | Leestma | |
S4 | Paseo | Paseo | |
S5 | Leestma | Sullivan | |
S6 | Scully-Power | Scully-Power | |
S7 | Garneau | Garneau |
Resumen de la misión
El 5 de octubre de 1984, Challenger se lanzó desde el Centro Espacial Kennedy a las 7:03 a.m. EDT, marcando el inicio de la misión STS-41-G. A bordo había siete tripulantes, la tripulación de vuelo más grande que alguna vez haya volado en una sola nave espacial en ese momento. Incluyeron al comandante Robert L. Crippen, haciendo su cuarto vuelo de transbordador y segundo en seis meses; el piloto Jon A. McBride; tres especialistas de misión: David C. Leestma, Sally K. Ride y Kathryn D. Sullivan, y dos especialistas en carga útil, Paul Scully-Power y Marc Garneau, el primer ciudadano canadiense en servir como miembro de la tripulación del transbordador, así como el primer canadiense en el espacio. La misión también marcó la primera vez que dos mujeres astronautas volaron juntas.
Sullivan se convirtió en la primera mujer estadounidense en caminar en el espacio cuando ella y Leestma realizaron un EVA de 3 horas el 11 de octubre, demostrando el Sistema de reabastecimiento orbital (ORS) y probando la viabilidad de repostar satélites en órbita.
Nueve horas después del despegue, el brazo del robot RMS desplegó el satélite de presupuesto de radiación terrestre (ERBS) de 5.087 libras (2.307 kg) desde la bahía de carga útil, y sus propulsores a bordo lo impulsaron a una órbita de 350 millas (560 km) sobre la Tierra . ERBS fue el primero de los tres satélites planificados diseñados para medir la cantidad de energía recibida del Sol y re-irradiada al espacio. También estudió el movimiento estacional de la energía desde los trópicos a las regiones polares .
Otra actividad importante de la misión fue la operación del Shuttle Imaging Radar-B (SIR-B). El SIR-B formaba parte del paquete de experimentos OSTA-3 en la bahía de carga, que también incluía la cámara de gran formato (LFC) para fotografiar la Tierra, otra cámara llamada MAPS que medía la contaminación del aire y un experimento de identificación y localización de características llamado ARCHIVO, que consistía en dos cámaras de TV y dos cámaras fijas de 70 mm.
Imagen de muestra tomada con el SIR-B en Canadá.
El SIR-B era una versión mejorada de un dispositivo similar volado en el paquete OSTA-1 durante STS-2. Tenía un conjunto de antenas de ocho paneles que miden 35 pies por 7 pies (11 m por 2 m). Funcionó durante todo el vuelo, pero se encontraron problemas con la antena de la banda K u del Challenger, y por lo tanto, gran parte de los datos debieron registrarse a bordo del orbitador en lugar de transmitirse a la Tierra en tiempo real como se planeó originalmente.
La especialista en cargas útiles Scully-Power, una empleada del Laboratorio de Investigación Naval de los EE. UU., Realizó una serie de observaciones de oceanografía durante la misión. Garneau realizó una serie de experimentos patrocinados por el gobierno canadiense, llamados CANEX, que estaban relacionados con la ciencia médica, atmosférica, climática, de materiales y robótica. También se utilizaron varios cartuchos de GAS, que cubren una amplia variedad de pruebas de materiales y experimentos de física.
Más tarde se hizo un reclamo de que el centro soviético de pruebas láser Terra-3 se utilizó para rastrear a Challenger con un láser de baja potencia el 10 de octubre. Supuestamente, esto causó el mal funcionamiento del equipo a bordo y el cegamiento temporal de la tripulación, lo que provocó una protesta diplomática de los EE. UU.[3] Sin embargo, esta historia ha sido completamente negada por los miembros de la tripulación.[4]
Durante la misión de 8 días, 5 horas, 23 minutos y 33 segundos, Challenger recorrió 3,289,444 millas (5,293,847 km) y completó 132 órbitas. Aterrizó en el Centro de aterrizaje del transbordador en el Centro Espacial Kennedy – convirtiéndose en la segunda misión de transbordador para aterrizar allí – el 13 de octubre de 1984, a las 12:26 p.m. EDT.[5]
La misión STS-41-G fue descrita más adelante en detalle en el libro Oceans to Orbit: La historia del primer hombre en el espacio de Australia, Paul Scully-Power del historiador del espacio Colin Burgess.
Insignia de la misión
Las trece estrellas completas en el campo azul de la bandera de EE. UU. De la insignia de la misión simbolizan la designación numérica del vuelo en la secuencia de misión del Sistema de Transporte Espacial (las 17 estrellas en el campo negro indicaban la designación original del vuelo como STS-17). Los símbolos de género se colocan al lado del nombre de cada astronauta, y se coloca un icono de bandera canadiense junto al nombre de Garneau.
Llamadas de despertador
La NASA comenzó una tradición de tocar música para los astronautas durante el programa Gemini , y primero utilizó la música para despertar a un equipo de vuelo durante el Apollo 15 . Cada pista es especialmente elegida, a menudo por las familias de los astronautas, y generalmente tiene un significado especial para un miembro individual de la tripulación, o es aplicable a sus actividades diarias. [6]
Día de vuelo | Canción | Artista / Compositor |
Dia 2 | “Flashdance: qué sensación” | Irene Cara |
Día 3 | “Tema de Rocky “ | Bill Conti |
Kathryn D. Sullivan
Nombre de nacimiento: Kathryn Dwyer Sullivan
Nacimiento: 3 de octubre de 1951: Paterson, Estados Unidos
Nacionalidad: Estadounidense
Educada en
- Universidad de California, en Santa Cruz
- Universidad de Dalhousie (Doc. en Geología; hasta 1978)
Información profesional
Ocupación
Astronauta y geóloga
Cargos ocupados
- Under Secretary of Commerce for Oceans and Atmosphere (2014–2017)
Empleador
Miembro de
- Academia Estadounidense de las Artes y las Ciencias
- Asociación Estadounidense para el Avance de la Ciencia
Distinciones
- Salón de la Fama de las mujeres de Ohio
- Women in Aviation, International
- United States Astronaut Hall of Fame (2004)
- Rachel Carson Award (2016)
Kathryn Dwyer Sullivan (Nueva jersey, Estados Unidos, 3 de octubre de 1951) es una geóloga y astronauta estadounidense de la NASA. Ha sido tripulante en tres misiones de transbordadores espaciales y fue la primera mujer estadounidense en caminar en el espacio, el 11 de octubre de 1984. Es la Under Secretary of Commerce for Oceans and Atmosphere y Administradora de la Administración Nacional Oceánica y Atmosférica (NOAA)1 después de ser confirmada por el Senado de los Estados Unidos el 6 de marzo de 2014. El mandato de Sullivan finalizó el 20 de enero de 2017, con la toma de posesión del presidente Donald Trump. Después de completar su servicio en el NOAA, fue designada como la Cátedra Charles A. Lindbergh de Historia Aeroespacial en el Museo Nacional del Aire y el Espacio de la Institución Smithsonian en 2017,2 y también se desempeñó como miembro principal en el Instituto de Política Potomac Estudios.
Biografía
Kathryn Sullivan nació en Paterson, Nueva Jersey, y se graduó en 1969 en la Escuela Secundaria William Howard Taft en el distrito de Woodland Hills en Los Ángeles, California. Realizó un Bachelor of Science de ciencias de la Tierra de la Universidad de California, en Santa Cruz en 1973, y un doctorado en Ciencias en Geología por la Universidad de Dalhousie, en 1978. Mientras estuvo en Dalhousie, participó en varias expediciones oceanográficas para estudiar los suelos de los océanos Atlántico y Pacífico.31
En 1988, Sullivan se unió a la Reserva Naval de los Estados Unidos como oficial de oceanografía, y se jubiló con el rango de capitán en 2006. Ha sido científica jefe de la Administración Nacional Oceánica y Atmosférica. Antes de unirse a la NASA trabajó en Alaska como oceanógrafa.31
Carrera en la NASA
Fue seleccionada por la NASA en enero de 1978, y se convirtió en astronauta en agosto de 1979. Sus tareas de apoyo al Shuttle desde entonces incluyen: desarrollo de software; lanzamiento y aterrizaje de fotógrafo perseguidor de plomo; Prueba de orbiter y carga, pago y soporte de lanzamiento en el Centro Espacial Kennedy, Florida; actividad extravehicular (EVA), equipo de apoyo de traje espacial para varios vuelos y comunicadora de cápsula (CAPCOM) en control de misiones para varias misiones del Shuttle. Veterana de tres vuelos espaciales, Sullivan voló como especialista en misión en la STS-41G, la STS-31 y la STS-45. Sullivan fue la primera mujer estadounidense en realizar una actividad extravehicular (EVA), durante la misión STS-41-G.34
Después de dejar la NASA en 1993, se desempeñó como presidenta y CEO del COSI Columbus, un centro de ciencias interactivo en Columbus, Ohio y como directora del Centro Battelle de la Universidad Estatal de Ohio para la Política de Educación en Matemáticas y Ciencias, así como asesora científica voluntaria de COSI. Bajo su liderazgo, COSI fortaleció su impacto en la enseñanza de las ciencias en el aula y su reputación nacional como innovadora de recursos de aprendizaje práctico basados en la investigación. Fue nombrada para el Consejo Nacional de Ciencias por el presidente George W. Bush en 2004.3
En 2009, Sullivan fue elegida por tres años como presidenta de la Sección de Interés General en Ciencia e Ingeniería de la Asociación Estadounidense para el Avance de la Ciencia.
En enero de 2011, la Casa Blanca envió al Senado la nominación de Sullivan por el presidente Barack Obama para ser secretaria de comercio adjunto. Fue nominada por primera vez en diciembre de 2010, pero debido a que el Senado no aprobó su nominación y un grupo de otros se envió a fines de diciembre, la Casa Blanca reiteró las solicitudes formales.
El 4 de mayo de 2011, fue confirmada por el consentimiento unánime del Senado de los Estados Unidos, y designada por el Presidente Obama para ocupar el cargo de Subsecretario de Comercio para Observación y Predicción Ambiental y Administrador Adjunto de la Administración Nacional Oceánica y Atmosférica.1 Fue nombrada Subsecretaria de Comercio interino de Océanos y Atmósfera y Administrador interino de la NOAA el 28 de febrero de 2013,8 y fue confirmada por el Senado como Subsecretaria de Comercio para Océanos y Atmósfera y Administrador del NOAA el 6 de marzo de 2014.1
Laurasia
Laurasia
Mapa de Pangea con Laurasia y Gondwana.
Continente histórico
Formado: 1,071 Mya (Proto-Laurasia) 253 Mya
Tipo: Supercontinente geológico
Hoy parte de
- Europa (sin Balcanes )
- Asia (sin India )
- Norteamérica
Continentes más pequeños
Placa tectonica
Laurasia (/ l ɪ r eɪ ʒ -, – ʃ i ə /)[1] fue el más septentrional de los dos supercontinentes (el otro es Gondwana) que formó parte del supercontinente Pangea hace alrededor de 335 a 175 millones de años (Mya). Se separó de Gondwana 215 a 175 Mya (comenzando en el último período Triásico) durante la desintegración de Pangea, derivando más al norte después de la división.
El nombre combina los nombres de Laurentia, el nombre dado al cratón norteamericano, y Eurasia. Según lo sugerido por el nombre geológico, Laurasia incluyó la mayoría de las masas de tierra que conforman los continentes actuales del hemisferio norte, principalmente Laurentia, Baltica, Siberia, Kazakhstania, y los cratones del norte de China y este de China.
Aunque Laurasia es conocido como un fenómeno Mesozoico, hoy se cree que los mismos continentes que formaron la Laurasia posterior también existieron como un supercontinente coherente después de la desintegración de Rodinia hace unos 750 millones de años. Para evitar confusiones con el continente mesozoico, esto se conoce como Proto-Laurasia. Se cree que Laurasia no se rompió antes de que se recombinara con los continentes del sur para formar el supercontinente precámbrico tardío de Pannotia, que permaneció hasta el Cámbrico temprano. Laurasia se ensambló, luego se rompió, debido a las acciones de la tectónica de placas, la deriva continental y la expansión del lecho marino.
Desintegración y reforma
Durante el Cámbrico, Laurasia se localizó en gran parte en latitudes ecuatoriales y comenzó a separarse, con el norte de China y Siberia a la deriva en latitudes más al norte que las ocupadas por continentes durante los 500 millones de años anteriores. Por el Devónico, el norte de China se encontraba cerca del Círculo Polar Ártico y se mantuvo como la tierra más septentrional del mundo durante la Era de Hielo del Carbonífero hace entre 300 y 280 millones de años. Sin embargo, no existe evidencia para ninguna glaciación carbonífera a gran escala de los continentes del norte. En este período frío, se reincorporó a Laurentia y Baltica con la formación de las Montañas Apalaches y grandes depósitos de carbón, que se encuentran en regiones como Virginia Occidental, Gran Bretaña y Alemania.
Siberia se desplazó hacia el sur y se unió a Kazakhstania, una pequeña región continental que se cree que fue creada durante el Silúrico por extensos volcanismos. Cuando estos dos continentes se unieron, Laurasia estaba casi reformada, y para el comienzo del Triásico, el cratón de China Oriental se había unido a la reconstrucción de Laurasia cuando colisionó con Gondwana para formar Pangea. El norte de China se convirtió, a medida que se desplazaba hacia el sur desde las latitudes cercanas al Ártico, el último continente en unirse a Pangea.
División final
Hace unos 200 millones de años, Pangea comenzó a romperse. Entre el este de América del Norte y el noroeste de África, se formó un nuevo océano: el Océano Atlántico, aunque Groenlandia (unida a América del Norte) y Europa todavía estaban unidas. La separación de Europa y Groenlandia ocurrió hace unos 55 millones de años (al final del Paleoceno). Laurasia finalmente se divide en los continentes, y luego recibe el nombre de Laurentia (ahora Norteamérica) y Eurasia (excluido el subcontinente indio).
Diversas representaciones del supercontinente Laurasia
Representación “animalística” de Gondwana y Laurasia.
Evolución desde Pangea a la actualidad.
Debe estar conectado para enviar un comentario.