Este Mundo, a veces insólito

Calendario
enero 2025
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

Sociedad

Gondwana

Gondwana

Una interpretación de la fase temprana de separación de Laurasia y Gondwana

Gondwana es el nombre que se le da a un antiguo bloque continental meridional que resultó de la partición en dos de Pangea, cuando se extendió el mar de Tethys hacia el oeste, lo que lo separó de Laurasia. Durante el Jurásico y el Cretácico Gondwana fue escindiéndose, y dio lugar a las masas continentales de las actuales Sudamérica, África, Australia, Zealandia, el Indostán, la isla de Madagascar y la Antártida, un proceso de partición y alejamiento que continuó durante el Cenozoico y permanece activo.

Historia

Fue nombrado por primera vez en 1861 por el geólogo austríaco Eduard Suess (1831-1914) por el nombre de una región del norte de la India, Gond (gondwana, en sánscrito, bosque de Gond), en la que se habían descrito secuencias sedimentarias del PérmicoTriásico que él pensó serían de un viejo continente. Luego Suess escribió sobre él llamándolo Gondwána-Land en su libro Las caras de la Tierra (Das Antlitz der Erde), publicado entre 1883 y 1901.

Historia geológica

En el Pérmico (hace más de 250 millones de años) todas las masas continentales estaban reunidas en un único supercontinente, al que llamamos ahora Pangea. Hace unos 200 millones de años ésta se había partido en dos supercontinentes: Laurasia, al norte y Gondwana, al sur. Los separaba entonces el océano Tethys, que se extendía desde el sur de Asia, por la actual cuenca del Mediterráneo, hasta la actual América, separada en dos por sus aguas, pues Norteamérica estaba unida a Europa y Sudamérica a África. Anteriormente el continente de Gondwana se fue subdividiendo en grandes bloques separados por fracturas de la litosfera continental. Esos fragmentos, continentes o subcontinentes, se dispersaron en un proceso que aún continúa, complementado ahora con una convergencia general de los continentes del norte (laurásicos) contra los del sur (gondwánicos). De este modo, Gondwana habría empujado contra los continentes boreales el geosinclinal mediterráneo, plegando los alpes euroasiáticos y provocando en ellos grandes corrimientos hacia el norte. A la vez, Norteamérica y Sudamérica confluyeron dando lugar al levantamiento del istmo de Panamá.

África, que constituía el núcleo central de Gondwana, sigue fragmentándose. En un pasado relativamente reciente se separó de Arabia, que sigue alejándose hacia el noroeste al ir ensanchándose el rift del mar Rojo. Ahora, aunque muy lentamente, se está desgajando otro fragmento del continente africano, al este del llamado Gran Valle del Rift, que es una enorme fractura que parte en la desembocadura del río Zambeze y va hasta el mar Rojo, jalonada por los lagos Malawi, Tanganica, Victoria y Rodolfo. También se desplaza muy lentamente hacia el Mediterráneo y acabará incrustándose contra los países del sur de Europa.

Reinos fitogeográficos

Engler dividió la flora mundial en 6 reinos fitogeográficos según sus endemismos de familias de plantas.

En el Cretácico se originaron las angiospermas y se diversificaron rápidamente, originándose muchos de los linajes actualmente en la categoría de familia. Hacia el norte se observan Norteamérica y Europa, hacia el sur la Antártida, Australia y la India (aquí amplificados por la deformación del mapamundi), y en el centro los continentes de África y Sudamérica.

Es importante biogeográficamente, pues explica la distribución geográfica de muchos grupos taxonómicos, que surgieron allí, y se diseminaron luego algunos a los continentes septentrionales derivados de Laurasia; o que, nacidos en Laurasia, han irrumpido luego en los continentes meridionales, como en el caso de los mamíferos placentarios que pasaron a Sudamérica y sirvió de protección a algunas especies como las placerias y koolasuchus, o la distribución actual de la flora antártica.

El supercontinente de Gondwana después de la fusión de Gondwana Occidental y Oriental como resultado de la formación del orógeno de África Oriental. Kroner y Romer (2013) postularon recientemente una prolongación continental en el norte llamada Armorican Spur, que corresponde en gran parte a la parte occidental de los Variscides europeos. El espolón armoricano podría haberse localizado mucho más al oeste, cerca del cinturón amazónico (“ubicación alternativa del espolón armoricano”). El material de dispersión del súper abanico de Gondwana del Paleozoico temprano del orógeno de África Oriental se muestra después de Meinhold et al. (2013). Encircled 1, 2 y 3 se relacionan con los modelos discutidos en el texto. Las flechas rojas muestran la dirección de la dispersión paleozoica de los terrenos derivados de Gondwana._____

Zelandia abre interrogantes sobre la división del continente Gondwana EFE 24.02.2017 – 18:44h

Tras el hallazgo de Zelandia, el verdadero reto es poder desentrañar las claves de la separación de Gondwana.

A diferencia de Zelandia, los otros restos de Gondwana, como los hallados en Mauricio, se fragmentaron bajo el Índico.

Flores

Flores

Plantas y flores espaciales (Historia)

En el año 1982, la tripulación de la estación espacial soviética Saliut 7 consiguió hacer crecer un poco de Arabidopsis, convirtiéndose así en las primeras plantas en florecer y producir semillas en el espacio. Tuvieron una vida de 40 días.15

¿Cuál fue la primera flor en el espacio?

Hace unos días el comandante de la Expedición 46 de la estación espacial internacional (ISS), (La Expedición 46 empezó tras el regreso de la Soyuz TMA-17M en noviembre de 2015 y finalizó con el regreso de la Soyuz TMA-18M el 1 de marzo de 2016. La tripulación de la Soyuz TMA-19M fue transferida entonces a la Expedición 47.12​) Scott Kelly, publicó un tuit en el que se veía la que supuestamente era la primera flor en el espacio (un ejemplar del género zinnia, por cierto). Cualquiera que sepa un poco sobre la carrera espacial sabe que esto es falso, porque ha habido decenas de experimentos con angiospermas en órbita a lo largo de las últimas décadas. Así que, como es lógico, prácticamente de forma inmediata la prensa rusa se hizo eco de la noticia y muchos medios respondieron indignados que, efectivamente, la pobre flor de Kelly no era la primera en el espacio. Ese honor le corresponde a las flores de la especie Arabidopsis thaliana plantadas por los cosmonautas Anatoli Berezovói y Valentín Lébedev en agosto de 1982 a bordo de la estación Salyut 7 (Javier Peláez lo cuenta muy bien en este artículo). Pero lo gracioso del caso es que la flor de Kelly no es que no sea la primera flor en el espacio, ¡es que ni siquiera es la primera flor en la ISS!

En la Salyut 7 Savítskaia fue recibida con unas flores de plantas arabidopsis por ser mujer, pero lo más humillante fue que sus compañeros le dieron un delantal para la primera comida en órbita a bordo de la estación. La ‘broma’, que obviamente no sentó nada bien a Savítskaia, era doblemente denigrante porque en la cultura rusa regalar un delantal a una mujer joven significa que se valoran más sus dotes de ama de casa que su aspecto físico. Para colmo, sus colegas se quejaron de que Savítskaia pasaba demasiado tiempo en la Soyuz ‘arreglándose y poniéndose guapa’. Savítskaia se llevaba especialmente mal con Serebrov, aunque tampoco despertó las simpatías de Berezovoy. Pero finalmente logró hacerse valer gracias a su duro carácter e indudable valía.

La flor de la disputa. La zinnia plantada en la ISS en el experimento Veggie (NASA/Scott Kelly).

En una fecha tan reciente como junio de 2012, el astronauta de la NASA Don Pettit también plantó flores de varias especies -incluyendo girasoles, calabacines y brócoli-, que germinaron y florecieron en la estación espacial. Uno puede entender que Scott Kelly no recuerde antiguos experimentos a bordo de estaciones espaciales soviéticas por muy comandante de la ISS que sea. Ahora bien, que se olvide de experimentos similares realizados por compañeros de la NASA en la misma estación es más extraño. Pero todo tiene su explicación.

Don Pettit en la ISS con su flor espacial (un girasol) (NASA/Don Pettit). Otra imagen de la flor espacial de Don Pettit (NASA).

La razón del despiste de Kelly -que, además de astronauta es humano y tiene derecho a equivocarse, el pobre- es que el experimento de Pettit no fue oficial, sino que se trató de una iniciativa personal. Él mismo llevó las semillas y la tierra en unas bolsas de plástico y cuidó de las plantas durante su tiempo libre. Como resultado, es de imaginar que no existe documentación oficial detallada sobre las flores de Pettit.

Invernadero improvisado de Don Pettit en 2012 con varias plantas en el segmento ruso de la ISS (NASA/Don Pettit).

Otros han defendido a Kelly esgrimiendo que las flores de la Salyut 7 no crecieron en órbita, pero este dato es incorrecto. Berezovói y Lébedev cultivaron e hicieron crecer las plantas de arabidopsis en el experimento Fiton 3 de la Salyut 7. Este pequeño invernadero había sido diseñado por el Instituto de Biología Molecular de Ucrania y en realidad era la tercera vez que viajaba al espacio. Los otros dos Fiton habían despegado previamente a bordo de las estaciones Salyut 4 y Salyut 6 con varias plantas, además de arabidopsis, una especie vegetal que fue elegida por tratarse de unas hierbas salvajes muy resistentes y por su ciclo vital de tan solo 40 días.

Anatoli Berezovói (izquierda) y Valentín Lébedev antes de despegar hacia la Salyut 7 a bordo de la Soyuz T-5.

Para evitar los problemas de anteriores misiones, en la Salyut 7 las plantas recibieron luz artificial las 24 horas del día y se incluyó una bomba de agua y ventiladores para hacer circular constantemente el aire (en ingravidez el dióxido de carbono se acumula en una zona si no hay circulación del aire). Finalmente florecieron solo tres flores (lamentablemente no he podido encontrar ninguna foto de ellas en órbita, lo que no es de extrañar teniendo en cuenta que las flores de arabidopsis son muy poco fotogénicas) que produjeron hasta doscientas semillas, de las cuales aproximadamente la mitad resultó viable. El Fiton 3 formaba parte de la instalación botánica de la Salyut 7 denominada Svetblok M (‘bloque de luz’) en la que los cosmonautas también cultivaron guisantes, naranjas, tomates, rábanos y pepinos, entre otros vegetales (solo crecieron de forma satisfactoria los guisantes y los pepinos).

Estación espacial soviética Salyut 7 (abajo se ve la Soyuz T-14 acoplada).

Ver: https://www.esascosas.com/07-salyut-7/

Pero, ¿fueron las flores de la Salyut 7 realmente las primeras en florecer en órbita? Pues no, aunque es difícil saber a ciencia cierta cuál fue exactamente la primera teniendo en cuenta el enorme número de experimentos espaciales con plantas. Como hemos visto, las arabidopsis también volaron a bordo de las estaciones Salyut 4 y Salyut 6, además de la Mir. Las fuentes no son concluyentes, pero parece que las arabidopsis de la Salyut 6 sí que llegaron a florecer a finales de los años 70. Eso sí, no experimentaron todo su ciclo vital en órbita. De hecho, ya en diciembre de 1974 la Soyuz 16 llevó en su interior varias plantas de arabidopsis como parte de un experimento biológico, aunque no hubo flores. No obstante, todas las pistas apuntan a que fue en la misión Kosmos 110, una misión no tripulada que voló en 1966 con los perros Veterok y Ugolyok en su interior, cuando aparecieron las primeras flores en órbita. Entre la varias especies vegetales que llevaba esta nave se hallaban algunos ejemplares que florecieron durante la misión (al igual que en otras posteriores como la Kosmos 1129/Bión 5 de 1979).

Eso sí, todas estas flores fueron las primeras que florecieron en el espacio, pero no las primeras a secas. Además de estos experimentos para hacer crecer plantas en órbita, varias misiones soviéticas llevaron al espacio flores ya maduras. Los experimentos más famosos fueron los de la serie Malajit (‘malaquita’). En la Salyut 6, los cosmonautas Leonid Popov y Valeri Ryumin consiguieron mantener con vida varias orquídeas del experimento Malajit 2 en 1980, aunque no produjeron semillas. Aparentemente, algunas de las plantas se recuperaron una vez en tierra a pesar de que los cosmonautas las daban por perdidas. También en esta estación se logró hacer crecer varios tulipanes dentro del marco del experimento Vazon (‘jarro’).

Experimento Malajit 2 de la Salyut 6 con flores. El cosmonauta Yuri Romanenko inspecciona un pequeño invernadero orbital.

Los experimentos con plantas en el espacio se remontan en realidad a los inicios de la carrera espacial y ya en las misiones Vostok viajaron semillas de varias especies. A largo plazo los principales factores que afectan al crecimiento de una planta en el espacio son la falta de gravedad y la radiación. Curiosamente, los experimentos demuestran que pequeñas dosis de radiación parecen fomentar el crecimiento de algunas especies, pero dosis más elevadas (por encima de 500 milirads) son, lógicamente, perjudiciales. En general, se ha demostrado que las plantas pueden crecer en órbita (hay mucha variabilidad entre las especies), pero no sin cuidados extremos.

El reciente experimento con flores zinnia de Kelly se ha llevado a cabo precisamente debido a la dificultad que presentan estas plantas para ser cultivadas, ya que son muy sensibles a las condiciones lumínicas y su ciclo de crecimiento alcanza los 80 días. Es decir, aunque las flores de Kelly no sean las primeras en el espacio, ni mucho menos, el experimento tiene bastante mérito. Estas flores han crecido en la instalación Veggie situada en el laboratorio Destiny de la ISS. En junio de 2014 Veggie produjo su primera ‘cosecha’ de lechugas y el año pasado la tripulación de la ISS fue autorizada a comer algunas de las plantas que cultivaron. Los datos de Veggie confirman los resultados de varios experimentos similares a bordo de la estación Mir (donde, por cierto, los cosmonautas también llegaron a comer varias plantas cultivadas por ellos mismos) y demuestran que los astronautas del futuro van a tener que trabajar muy duro si quieren cultivar su comida en el espacio.

El astronauta Steve Swanson de la Expedición 39 con el experimento Veggie iluminado (NASA). Scott Kelly (derecha) y Kjell Lindgren comen los frutos de su trabajo (NASA).

Referencias:

  • http://nasawatch.com/archives/2016/01/no-nasa-these-a.html
  • https://blogs.nasa.gov/letters/2012/06/29/post_1340814534271/
  • http://www.ncbi.nlm.nih.gov/pubmed/11539644
  • https://www.washingtonpost.com/news/speaking-of-science/wp/2016/01/19/nasa-astronauts-just-made-flowers-bloom-in-space-but-theyre-not-actually-the-first/
  • http://www.nasa.gov/mission_pages/station/research/news/flowers

Un jardín en el espacio

Desde el pasado 27 de marzo, el comandante Scott Kelly, de la NASA se encuentra en la Estación Espacial Internacional.

Se incorporó como parte de una misión de un año de duración en la estación, de la cual es comandante en estos momentos. Y en la misma que ahora acaba de nacer la primera flor. Y es que Kelly dirige la ejecución in situ del proyecto VEGGIE, que pretende esclarecer qué le pasa a las plantas en el espacio. Desde que comenzó, los astronautas han conseguido hacer crecer lechuga, aunque no sin algunos problemas que ha debido ajustar con el tiempo. La siguiente prueba eran las zinnias (Zinnia), plantas cuyos cuidados se parecen a los de la tomatera y que sirve como un nuevo desafío para los astronautas, quienes han de aprender a cultivar su propio jardín en el espacio.

Y aunque las zinnias también han dado problemas, la primera flor espacial ha nacido. Por desgracia, también creció moho y la planta se vio afectada por varios problemas. El propio Kelly se ha convertido, finalmente, en el “jardinero” de la ISS, decidiendo por su cuenta en más de una ocasión. Junto a los consejos de la NASA, finalmente, se han salvado varias zinnias, mientras que las que han muerto han sido congeladas para su estudio en tierra. Las zinnias han sido escogidas por ser una planta con necesidades específicas, ni demasiado difícil ni tampoco excesivamente sencilla de cultivar. Con un periodo de cosecha de entre 60 y 80 días, la zinnia requiere de tiempo y atención, lo que supone un entrenamiento en jardinería muy necesario para los astronautas del futuro.

Los astronautas de la Estación Espacial Internacional ya lograron cultivar lechugas el pasado mes de agosto (y comérselas en ensalada). También en este caso fue complicado que crecieran, con un primer lote que murió por falta de agua.

https://danielmarin.naukas.com/2017/02/11/las-cosmonautas-olvidadas/

Arabidopsis es un género de plantas herbáceas de la familia de las brasicáceas, que han sido objeto de intenso estudio en época reciente como modelos para la investigación fitobiológica. Arabidopsis thaliana fue la primera planta cuyo genoma se secuenció por completo, una tarea completada en diciembre del 2000 por el proyecto AGI (Iniciativa para el Genoma de la Arabidopsis).

Cimmeria

Cimmeria (continente)

Distribución de los continentes hace 249 millones de años en el límite PérmicoTriásico. El alargado continente de Cimmeria se desgaja de Pangea y comienza a desplazarse hacia el norte.

Cimmeria es un antiguo continente que antes de separarse formaba parte del supercontinente Pangea. Fue una placa tectónica que comprendía partes de los actuales territorios de Turquía, Irán, Afganistán, Tíbet y de las regiones de Indochina y Malasia. Pangea era un supercontinente con forma de “C” mirando hacia el este y dentro de la “C” estaba el océano Paleo-Tetis. Dos microcontinentes, que forman parte de la actual China, radicaban en el noreste bordeando el océano Paleo-Tetis. Hace alrededor de 300 millones de años, se inició una dislocación en el este que separó un delgado arco de la parte interior del brazo sur de Pangea. Este nuevo microcontinente se denomina Cimmeria y conforme se separaba, un nuevo océano comenzaba a formarse tras él, Tetis. Conforme el océano Tetis se fue ampliando, Cimmeria fue desplazándose al norte hacia Laurasia y el océano Paleo-Tetis disminuyendo.

Distribución de los continentes hace 280 millones de años, durante el Pérmico. El continente de Cimmeria se desplaza hacia el norte reemplazando el océano Paleo-Tetis por Tetis.

Según Cimmeria se desplazaba al norte, el océano Paleo-Tetis era subducido bajo Laurasia y Cimmeria, hasta que ésta finalmente colisionó con Laurasia, primero en su extremo occidental. Hace 220 millones de años Paleo-Tetis comenzó a desaparecer del todo, cerrándose de oeste a este. La colisión de los continentes alzó montañas a lo largo de la sutura, en lo que se denomina la Orogenia Cimmeriana. En su extremo oriental, Cimmeria colisionó con los microcontinentes chinos hace cerca de 200 millones años y la orogenia Cimmeriana se extendió a lo largo de toda la frontera norte de la placa. La mayoría del océano Paleo-Tetis desapareció hace 150 millones de años. Cuando el límite norte de la placa de la China colisionó con el este de Laurasia se alzaron nuevas montañas. Después de que Cimmeria colisionara con Laurasia hace alrededor de 200 millones de años (Jurásico inferior), la fosa oceánica formada al sur de Cimmeria, comenzó la subducción del océano Tetis y se crearon la arcos insulares y nuevas cadenas montañosas en la zona.

Cimmeria choca con Laurasia hace alrededor de 200-190 millones de años. Su colisión alzó montañas y la fosa oceánica de Tetis hace alrededor de 100 millones de años (Cretácico medio).

La fosa oceánica de Tetis eventualmente se extendió hacia el oeste para dividir Pangea en dos, y el creciente océano Atlántico separa el norte de Pangea, el supercontinente Laurasia, del sur, el supercontinente Gondwana. Hace alrededor de 150 millones de años, Gondwana también comenzó a fragmentarse. Los continentes de África-Arabia e India comenzaron la deriva hacia el norte con dirección a Laurasia, incluyendo Cimmeria, ahora la costa sur. África-Arabia y la India finalmente colisionaron con Asia hace 30 millones de años, reuniendo Cimmeria con sus antiguos vecinos de Gondwana y plegando el antiguo continente para formar los Alpes, Cáucaso, Zagros, Hindu Kush e Himalaya, en la denominada Orogenia Alpina.

Primer transbordador espacial

Primer transbordador espacial

STS-1

Programa del transbordador espacial

Insignia de la misión

Datos de la misión

Transbordador: Columbia

Lanzadera: 39-A

Número de tripulantes: 2

Lanzamiento: 12 de abril de 1981 6:00:03 a.m. CST (12:00:03 UTC)

Aterrizaje: 14 de abril de 1981
12:20:57 p.m. CST (18:20:57 UTC), Base de la Fuerza Aérea de Edwards, Pista 23

Duración de la misión: 2 días 6:20:53

Datos de las órbitas

Número de órbitas: 36

Altitud orbital: 166 millas náuticas (307 km)

Inclinación orbital: 40,3 grados

Distancia recorrida: 1,074 millones de millas (1,728 millones de km)

Los miembros de la tripulación John W. Young y Robert L. Crippen posan con el traje de eyección (EES) con un pequeño modelo del transbordador Espacial.

La primera misión del Transbordador Espacial, la STS-1, fue lanzada el 12 de abril de 1981, y regresó el 14 de abril. Transbordador espacial Columbia orbitó la tierra 36 veces en su misión de 54 horas y media. Fue el primer vuelo espacial tripulado de los EE.UU desde el proyecto de prueba Apolo-Soyuz el 15 de julio de 1975.

Tripulación

(1) número de vuelos espaciales hechos por cada miembro de la tripulación, hasta la fecha inclusive esta misión.

La tripulación de la STS-2 sirvió de reserva para esta misión.

Parámetros de la misión

Lo más destacado de la misión

El primer lanzamiento del transbordador espacial sucedió el 12 de abril de 1981, exactamente 20 años después del primer vuelo espacial triupulado, cuando el orbitador Columbia, con sus dos miembros de la tripulación, los astronautas John W. Young, comandante, y Robert L. Crippen, piloto, despegó de la plataforma de lanzamiento A, Complejo 39, en el centro espacial John F. Kennedy — el primero de 24 lanzamientos desde la plataforma A. Fue exactamente a las 7 a.m. EST. Dos días antes un intento de lanzamiento se abortó a causa de problemas de encendido en uno de los ordenadores de propósito general del Columbia.

No solo fue este el primer lanzamiento del transbordador espacial, sino que también marcó la primera vez que se usaron en lanzamientos triupulados los cohetes de combustible sólido en los EE.UU. También fue el primer vehículo espacial que los EE.UU. lanzaron sin un vuelo de prueba propulsado sin tripulación. El tranbordador de la misión STS-1, el Columbia, además tiene el récord del mayor tiempo empleado en la fábrica de procesamiento del transbordador (OPF) antes del lanzamiento — 610 días, fue el tiempo necesitado para el reemplazo de muchos de sus losetas de protección térmica.

Los objetivos principales de la misión del vuelo inaugural fueron verificar el sistema del transbordador en conjunto, conseguir un ascenso sin percances hasta la órbita y regresar a la tierra para aterrizar sin problemas. Todos los objetivos se cumplieron, y se comprobó la navegabilidad del transbordador como vehículo espacial.

La única carga que llevó en la misión fue un paquete de instrumentación de desarrollo del vuelo (DFI) que contenía sensores y dispositivos de medida para registrar el rendimiento del orbiter y las tensiones que ocurrieron durante el lanzamiento, acceso, vuelo orbital, descenso y aterrizaje.

En la órbita 36, después de 933.757 millas de vuelo durante 2 días, 6 horas, 20 minutos y 32 segundos. Tuvo lugar el aterrizaje en la pista 23 en la base de la Fuerza Aérea de Edwards, California el 14 de abril a las 10:21 a.m. PST.

El Columbia regresó al centro espacial John F. Kennedy desde California el 28 de abril sobre un 747, uno de los aviones portadores del transbordador.

Anomalías de la misión

STS-1 toma tierra en la Base de la Fuerza Aérea de Edwards.

Insignia de la misión

El trabajo artístico para la insignia oficial de la misión fue diseñada por el artista Robert McCall. Es una representación simbólica del transbordador. La imagen no representa las raíces del ala mostrada en el transbordador real.

Aniversario

La placa del Young-Crippen Firing Room en el Centro de control de lanzamiento del Centro espacial Kennedy.

La Yuri’s Night es una fiesta internacional que se celebra cada año el 12 de abril para conmemorar el primer humano en el espacio y el primer lanzamiento del transbordador espacial.

Como tributo al 25 aniversario del primer vuelo del transbordador, la firing room 1 en el Centro de control de lanzamiento de centro espacial John F. Kennedy fue renombrada al Young-Crippen Firing Room, dedicada al firing room que lanzó el vuelo histórico y a la tripulación de la misión STS-1.

La NASA describió la misión como: “La prueba de vuelo más valiente de la historia” [1].

Más información en: https://en.wikipedia.org/wiki/STS-1

 

 

Transbordador espacial Columbia

Transbordador Espacial Columbia

El transbordador espacial Columbia (Designación NASA: OV-102) fue el primero de los transbordadores espaciales de la NASA en cumplir misiones fuera de la Tierra. Fue lanzado por primera vez el 12 de abril de 1981, y terminó su existencia al destruirse al reingreso a la atmósfera el 1 de febrero de 2003 llevando consigo a sus siete tripulantes.

  • Primer vuelo:

12-14 de abril de 1981 (Tripulación: John W. Young y Robert Crippen).

  • Misiones notables:

STS 1 hasta el 5 en 1981-1982 fue el primer vuelo del Spacelab construido por la Agencia Espacial Europea (ESA).

STS-50, desde el 25 de junio hasta el 9 de julio de 1992, fue la primera misión de duración extendida del Transbordador Espacial.

STS-93, julio de 1999 se pone en órbita el Observatorio de Rayos X Chandra.

  • Última anomalía: Misión STS-83, 4-8 de abril de 1997. La misión fue interrumpida por los directores del transbordador debido a un problema con la célula de combustible N° 2, la cual mostraba evidencia de degradación interna de voltaje después del lanzamiento.

Última misión

Artículo principal: Accidente del transbordador espacial Columbia

Despegue del transbordador Columbia en su último vuelo.

La última misión del Columbia se designó como STS-107, y tuvo lugar entre el 16 de enero y el 1 de febrero de 2003.

En el momento del despegue, el orbitador recibió un impacto en la parte inferior del ala izquierda, provocado por el desprendimiento de un trozo de espuma de poliuretano, aislante del tanque externo.

El impacto ocurrió entre los 81-82 segundos después del lanzamiento. Según los estudios de la NASA, el fragmento tenía un tamaño de 30.000 cm³ (es decir, el tamaño de un depósito de 30 L de capacidad), y un peso de aproximadamente 1 kg, y pudo haber golpeado el ala a unos 805 km/h; la fuerza del impacto se calculó en casi una tonelada. El golpe producido en forma tangencial perforó un par de paneles detrás del borde de ataque, cerca del pozo del tren de aterrizaje. El accidente no fue percibido por los tripulantes ni tampoco durante la misión. Control de misiones, al parecer, estuvo al tanto del desprendimiento del resto, pero desestimó el alcance del evento.

El problema se materializó durante el reingreso a la atmósfera terrestre.

Debido al impacto de este fragmento se desprendieron losetas de protección térmica cerca del tren de aterrizaje; de esta manera entró el calor abrasivo del plasma que se forma durante la reentrada a la atmósfera, ocasionando la destrucción por fusión de la estructura interna del ala izquierda, lo suficientemente grande como para producir una desestabilización y desprendimiento.

Durante el reingreso, los sensores térmicos detectaron un aumento inusual de temperatura en la región del impacto. Y debido al calor, el ala finalmente se desprendió, ocasionando que el transbordador girara violentamente sobre sí mismo, deshaciéndose estructuralmente.

A las 07:59:32 hora central de Estados Unidos se perdió la comunicación con el Columbia; pocos minutos después los informativos del mundo empezaron a transmitir imágenes del transbordador desintegrándose en el aire, con lo cual se daba parte de la pérdida del transbordador (valorado en unos 2.000 millones de euros, año 2003), y el fallecimiento de sus siete astronautas.

Después de ese momento se cancelaron las misiones al espacio para revisar cuáles fueron los fallos del mismo transbordador y de los demás. Después de dos años de revisión y de supervisión a los transbordadores, se reinició su actividad con el lanzamiento del transbordador espacial Discovery.

Pangea

Pangea

Pangea (Pangaea) es el supercontinente formado por la unión de todos los continentes actuales que se cree que existió durante las eras Paleozoica y Mesozoica, antes de que los continentes que lo componían fuesen separados por el movimiento de las placas tectónicas y conformaran su configuración actual. Este nombre aparentemente fue usado por primera vez por el alemán Alfred Wegener, principal autor de la teoría de la deriva continental, en 1912. Procede del prefijo griego “pan” que significa “todo” y de la palabra en griego “gea” “suelo” o “tierra” (Γαῖα Gaĩa, Γαῖη Gaĩê o Γῆ Gễ). De este modo, quedaría una palabra cuyo significado es “toda la tierra“.

Se cree que la forma original de Pangea era una masa de tierra con forma de “C” distribuida a través del Ecuador. Ya que el tamaño masivo de Pangea era muy amplio, las regiones internas de tierra debieron ser muy secas debido a la falta de precipitación. El gran supercontinente habría permitido que los animales terrestres emigraran libremente desde el Polo Sur al Polo Norte. Al extenso océano que una vez rodeó al supercontinente de Pangea se le ha denominado Pantalasa (Panthalassa).

Se estima que Pangea se formó a finales del período Pérmico (hace aproximadamente 300 millones de años) cuando los continentes, que antes estaban separados, se unieron formando un sólo supercontinente rodeado por un único mar.

Mapa físico de Pangea basado en el de Christopher R. Scotese.

Pangea habría comenzado a fragmentarse entre finales del Triásico y comienzos del Jurásico (hace aproximadamente 200 millones de años), producto de los cambios y movimientos de las placas tectónicas. El proceso de fragmentación de este supercontinente condujo primero a dos continentes, Gondwana al sur y Laurasia al norte, separados por un mar circumecuatorial (mar de Tetis) y posteriormente a los continentes que conocemos hoy. Dicho proceso geológico de desplazamiento de las masas continentales (deriva continental) se mantiene en marcha al día de hoy.

Las líneas marcadas sobre Pangea señalan las masas de tierra que se separarían para formar los continentes actuales.

La formación de Pangea

Distribución de los continentes hace 500 millones de años durante el Cámbrico Inferior, una vez que Pannotia se fragmentase. Los tres pequeños continentes son Laurentia, Siberia y Báltica, mientras que el grande es Gondwana. El océano Proto-Tetis se localiza entre Gondwana y los pequeños continentes, el océano Khanty entre Siberia y Báltica y el océano Iapetus entre Laurentia y Báltica.

Distribución de los continentes hace 470 millones de años durante el Ordovícico Medio. Abajo, el microcontinente de Avalonia.

Distribución de los continentes hace 430 millones de años durante el Silúrico. Los pequeños continentes son Siberia y LaurentiaBálticaAvalonia (Euroamérica), mientras que el más grande es Gondwana. Ahora entre Gondwana y Euramérica se extiende el océano Rheico. Entre Euramérica y Siberia, el océano Ural sustituye al océano Khanty.

Distribución de los continentes hace 370 millones de años durante el Devónico. Al norte está situado el continente Siberia, en el medio el supercontinente de Euramérica, y al sur Gondwana. Los microcontinentes de China del Norte y China del Sur se desgajan de Gondwana y a su paso el océano Proto-Tetis es sustituido por el océano Paleo-Tetis.

Distribución de los continentes hace 300 millones de años a finales del Carbonífero. Al norte está situado el continente Siberia, en el medio el supercontinente de Euramérica, y al sur Gondwana. Al este se encuentran China del Norte y China del Sur, bordeando el océano Paleo-Tetis. Al sur, Cimmeria se desgaja de Gondwana y a su paso el océano Paleo-Tetis será reemplazado por el océano Tetis.

Rodinia, que se formó hace 1100 millones años durante el Proterozoico, fue el supercontinente del que derivaron todos los continentes subsecuentes. No se descarta la posibilidad de la existencia de supercontinentes anteriores a Rodinia, formados y desintegrados cíclicamente durante los 4.600 millones de años de existencia de la Tierra. Rodinia se fragmentó hace unos 750 millones de años y después los fragmentos volvieron a reunirse en el supercontinente Pannotia hace 600 millones de años. Pero una vez, el supercontinente único se vuelve a fragmentar. Hace 540 millones de años, sólo después de 60 millones de años de su formación, Pannotia se divide en dos fragmentos: Gondwana al sur y Proto-Laurasia, más pequeño, al norte.

El supercontinente menor, Proto-Laurasia se desplazó lejos de Gondwana a través del océano Pantalásico. Un océano nuevo se formó entre los dos continentes, el océano Proto-Tetis. Inmediatamente, Proto-Laurasia se partió en varios segmentos para crear Laurentia, Siberia y Báltica. Esta separación también propició la generación de dos océanos nuevos, el Iapetus y Khanty. Báltica permaneció al este de Laurentia, y Siberia se asentó al noreste de Laurentia.

Durante el Cámbrico, el continente independiente de Laurentia (qué posteriormente se convirtió en Norteamérica) estuvo fijo en el Ecuador, rodeado con tres océanos, el océano Pantalásico al norte y al oeste, el océano Iapetus al sur, y el océano Khanty al este. Al inicio del Ordovícico, el microcontinente de Avalonia (una masa de tierra que se convertiría en los Estados Unidos, Nueva Escocia e Inglaterra), se separó de Gondwana y comenzó su viaje hacia Laurentia.

Hacia el final del Ordovícico, Báltica chocó con Laurentia, y el norte de Avalonia chocó con Báltica y Laurentia. Entonces, Laurentia, Báltica y Avalonia se unieron para conformar al supercontinente menor de Euramérica o Laurusia, cerrando el océano Iapetus, mientras que el océano Rheico se expandió hacia la costa meridional de Avalonia. La colisión también dio lugar a la formación de los Apalaches norteños. Siberia se asentó cerca de Euramérica con el océano Khanty entre los dos continentes. Mientras todo esto estaba sucediendo, Gondwana se desplazó lentamente hacia el polo sur. Este fue el primer paso de la formación de Pangea.

El segundo paso en la formación de Pangea fue la colisión de Gondwana con Euramérica. Durante el Silúrico, Báltica ya había chocado con Laurentia para formar Euramérica. Avalonia no había chocado con Laurentia todavía, y una vía marítima entre ellos (que era un remanente del océano Iapetus) todavía se contraía al mismo tiempo que Avalonia avanzaba lentamente hacia Laurentia. Mientras tanto, Europa meridional se separó de Gondwana y comenzó a dirigirse hacia Euramérica a través del recientemente formado océano Rheico y colisionó con Báltica meridional durante el Devónico. Sin embargo, este microcontinente tan solo era una placa oceánica. El océano Khanty (el océano hermano de Iapetus), también se contrajo al mismo tiempo que un arco insular desgajado de Siberia chocó con Báltica del este (ahora parte de Euramérica). Detrás de este arco insular se estaba formando un océano nuevo, el océano Ural.

Al final del Silúrico, los microcontinentes de China del Norte y China del Sur se desgajaron de Gondwana y comenzaron a dirigirse hacia el norte a través del océano Proto-Tetis, abriendo desde el sur el océano Paleo-Tetis. En el período Devónico, Gondwana se desplazó hacia Euramérica, lo que causó que el océano Rheico se contrajera.

Al inicio del Carbonífero, el noroeste de África había tocado la costa sudeste de Euramérica, creando la porción meridional de las montañas Apalaches y las Montañas Atlas. Sudamérica se movió hacia el norte con dirección a Euramérica meridional, mientras que la porción del este de Gondwana (India, Antártida y Australia) se dirigió hacia el polo sur desde el ecuador.

China del Norte y China del Sur se encontraban en continentes independientes. Hacia la mitad del Carbonífero, el microcontinente de Kazakhstania había chocado con Siberia (el continente siberiano había sido un continente separado durante millones de años desde la fragmentación del supercontiente Pannotia). Al final del Carbonífero, el oeste de Kazakhstania chocó con Báltica, cerrando los océanos Ural y Proto-Tetis entre ellos (orogenia Uraliana), causando la formación de las montañas de los Urales y la formación del supercontinente de Laurasia. Ésta fue la fase final de la formación de Pangea.

Mientras tanto, Sudamérica había chocado con el sur de Laurentia, cerrando el océano Rheico y formando la parte sur de los Apalaches y las montañas de Ouachita. Para este tiempo, Gondwana se posicionó cerca del polo sur, y se formaron glaciares en la Antártida, la India, Australia, África meridional y Sudamérica. El bloque del norte de China chocó con Siberia al final del Carbonífero, cerrando por completo el océano Proto-Tetis.

Para el inicio del Pérmico temprano, la placa Cimmeriana se desgajó de Gondwana y se dirigió hacia Laurasia, formando un océano nuevo en su extremo meridional, el océano Tetis, y cerrando el océano Paleo-Tetis. La mayoría de las masas de tierra estaban reunidas en una sola entidad. Para el período Triásico, Pangea rotó ligeramente en dirección al sudoeste. La placa Cimmeriana todavía viajaba a través del cada vez más pequeño océano Paleo-Tetis, hasta la mitad del Jurásico. Paleo-Tetis se cerró de oeste a este, creando la orogenia Cimmeriana. Pangea parecía una “C”, con un océano dentro de la “C”, el nuevo océano Tetis. No obstante, Pangea se desunió durante el Jurásico Medio, y esta fragmentación se explica en el siguiente apartado.

La desintegración de Pangea

Hubo tres fases importantes en la desintegración de Pangea. La primera fase comenzó al principio-mitad del Jurásico, cuando en Pangea se creó una grieta que abarcaba desde el océano Tetis al este hasta el Pacífico al oeste. Esta grieta separó Norteamérica de África y produjo múltiples fallas, siendo el río Misisipi la más grande de ellas. La grieta produjo un nuevo océano, el océano Atlántico. Este océano no se abrió uniformemente, sino que el desplazamiento comenzó en el Atlántico Norte-Central; el Atlántico sur no se abriría hasta el Cretáceo. Laurasia comenzó a rotar hacia la derecha y se movió hacia el norte con Norteamérica al norte, y Eurasia al sur. El movimiento Laurasia en favor de las manecillas del reloj también condujo al cierre del océano Tetis. Mientras tanto, en el otro lado, en África, se formaron nuevas grietas a lo largo de los márgenes adyacentes de África, de Antártida y del este de Madagascar, lo que conduciría a la formación del océano Índico, que también se abriría durante el Cretáceo.

Distribución de los continentes hace 220 millones de años durante el Triásico Superior. Enla primera fase de la separación de Pangea, una grieta empieza a formarse entre el oeste y el océano Tetis.

Distribución de los continentes hace 150 millones de años durante el Jurásico Superior. Comienza la segunda fase de la separación de Pangea. Gondwana se fragmenta en África, Sudamérica, India y Antártida/Australia.

Distribución de los continentes hace 90 millones de años durante el Cretácico Superior. El océano Atlántico continúa abriéndose. La India se aleja de África y conforme se desplaza al norte va cerrando el océano Tetis y abriendo el océano Índico.

Distribución de los continentes hace 50 millones de años durante el Eoceno. Durante la tercera fase de la separación de Pangea, Norteamérica y Groenlandia se separan de Eurasia, la India colisiona con Asia, Australia se separa de la Antártida y ésta de Sudamérica.

La segunda fase importante de la desintegración de Pangea comenzó al inicio del Cretáceo (hace 150-140 millones de años), cuando el supercontinente Gondwana se dividió en cuatro continentes más pequeños (África, Sudamérica, India y Antártida/Australia). Hace cerca de 200 millones de años, el continente de Cimmeria, según lo mencionado arriba (“la formación de Pangea”), chocó con Eurasia. Sin embargo, a la vez que se producía esta colisión, se formó la nueva zona de subducción que se denomina fosa de Tetis. Esta fosa produjo la subducción de la dorsal oceánica de Tetis, responsable de la expansión del océano Tetis. Esta subducción probablemente causó que África, la India y Australia se movieran hacia el norte. Al inicio del Cretáceo, Atántica, la Sudamérica de hoy, y África, finalmente se separaron de Gondwana (es decir, se separaron de la Antártida, India y Australia), causando la apertura de un “océano Índico del sur”. En el Cretáceo medio, Gondwana se fragmentó para abrir el Océano Atlántico del sur mientras Sudamérica comenzó a moverse hacia el oeste alejándose de África. El Atlántico del sur no se desarrolló uniformemente, se separó de sur al norte como una cremallera. Así también al mismo tiempo, Madagascar y la India comenzaron a separarse de la Antártida y se movieron hacia el norte, abriendo el océano Índico. Madagascar y la India se separaron hace aproximadamente de 100 a 90 millones de años durante el Cretáceo tardío. La India continuó moviéndose hacia el norte con dirección a Eurasia a una velocidad de 15 centímetros por año (un record de movimiento tectónico), cerrando el océano Tetis, mientras que Madagascar se detuvo y encallo con la placa Africana. Nueva Zelanda y Nueva Caledonia comenzaron a moverse desde Australia hacia el este en dirección del Pacífico, abriendo el Mar del Coral y el Mar de Tasmania. Desde entonces, han sido islas independientes.

La tercera fase principal (y final) de la desintegración de Pangea ocurrió al inicio del Cenozoico (PaleocenoOligoceno). Norteamérica/Groenlandia finalmente se separó de Eurasia, abriendo el mar Noruego hace cerca de 60-55 millones de años. Los océanos Índico y Atlántico continuaron expandiéndose, cerrando el océano Tetis. Mientras tanto, Australia se separó de la Antártida y se movió rápidamente hacia el norte, así como lo hizo la India hizo hace más de 40 millones de años antes, actualmente se encuentra en curso de colisión con el este de Asia. Australia y la India se están moviendo actualmente en dirección noreste a una velocidad de 5-6 centímetros por año. La A

Pangea y los continentes Laurasia y Gondwana

 

ntártida ha estado en (o muy cerca) del polo sur desde la formación de Pangea (desde hace 280 millones de años). La India comenzó a chocar con Asia hace cerca de 35 millones de años, formando la orogenia Himalaya, finalmente cerrando con esto la vía marítima de Tetis; esta colisión aun continúa hoy. La placa africana comenzó a cambiar su dirección, del oeste al noroeste hacia Europa, mientras que Sudamérica comenzó a moverse en dirección al norte separándose de la Antártida, permitiendo por primera vez la completa circulación oceánica alrededor de Antártida, causando un rápido enfriamiento del continente y permitiendo la formación de los glaciares. Otros acontecimientos importantes ocurrieron durante el Cenozoico, incluyendo la apertura del golfo de California, el levantamiento de los Alpes, y la apertura del Mar del Japón. La desintegración de Pangea continúa hoy día, en la grieta al este de África; además, las colisiones en curso pueden indicar la creación incipiente de un nuevo supercontinente.

También se cree que Pangea antes no era un continente, sino grupos de islas situados por todo el océano que a causa de los movimientos del interior de la Tierra se juntaron.

Nave que visita un cometa

Nave que visita un cometa

ISEE-3 / ICE

Representación del artista de ICE

 

Nombres

Internacional Sun-Earth Explorer-3
Internacional Sun-Earth Explorer-C
Explorer 59

Tipo de misión: Investigación magnetosférica
ISEE-3: Sol / Tierra L 1 orbiter
ICE: 21P / GZ y Halley sobrevolando

Operador: NASA [1]

ID COSPAR: 1978-079A

SATCAT no.: 11004

Duración de la misión: Final: 18 años, 8 meses y 23 días

Propiedades de naves espaciales

Fabricante: Fairchild Industries

Lanzamiento de masa: 479 kg (1.056 lb)

Secado masivo: 390 kg (860 lb)

Dimensiones: 1.77 × 1.58 m (5.8 × 5.2 pies)

Poder: 173 W

Inicio de la misión

Fecha de lanzamiento: 12 de agosto de 1978, 15:12 UTC

Cohete: Delta 2914 # 144

Sitio de lanzamiento: Cabo Cañaveral SLC-17B

Fin de la misión

Disposición: 16 de septiembre de 2014 (se perdió contacto)

Desactivado: 5 de mayo de 1997 (contacto de rutina suspendido)

Parámetros orbitales

Sistema de referencia: Heliocéntrico

Excentricidad: 0.05

Perihelio: 0.93 AU; (139,000,000 km; 86,400,000 mi)

Afelio: 1.03 AU; (154,000,000 km; 95,700,000 mi)

Inclinación: 0.1 °

Período: 355 días

Época: 28 de marzo de 1986, 00:00 UTC

Instrumentos

La nave espacial International Cometary Explorer ( ICE ) (diseñada y lanzada como satélite internacional Sun-Earth Explorer-3 ( ISEE-3 )) se lanzó el 12 de agosto de 1978 en una órbita heliocéntrica. Era una de las tres naves espaciales, junto con el par madre / hija de ISEE-1 e ISEE-2, construido para el programa International Sun-Earth Explorer (ISEE), un esfuerzo conjunto de la NASA y ESRO / ESA para estudiar la interacción entre el campo magnético de la Tierra y el viento solar.

ISEE-3 fue la primera nave espacial en colocarse en una órbita de halo en el punto L 1 Tierra-Sol Lagrangiano.[2] Renombrado como ICE, se convirtió en la primera nave espacial en visitar un cometa, pasando por la cola de plasma del cometa Giacobini-Zinner a unos 7.800 km (4.800 millas) del núcleo el 11 de septiembre de 1985.[3]

La NASA suspendió el contacto de rutina con el ISEE-3 en 1997, e hizo breves controles de estado en 1999 y 2008.[4] [5]

El 29 de mayo de 2014, la comunicación bidireccional con la nave espacial fue restablecida por el ISEE-3 Reboot Project, un grupo no oficial[6] con el apoyo de la compañía Skycorp.[7] [8] [9] El 2 de julio de 2014, dispararon los propulsores por primera vez desde 1987. Sin embargo, los disparos posteriores de los propulsores fallaron, aparentemente debido a la falta de presurizador de nitrógeno en los tanques de combustible.[10] [11] El equipo del proyecto inició un plan alternativo para usar la nave espacial para “recopilar datos científicos y enviarla de vuelta a la Tierra”,[12] pero el 16 de septiembre de 2014, se perdió el contacto con la sonda.[13]

ISEE3 / ICE antes del inicio

ISEE-3 (International Searth E xplorer- 3 , más tarde renombrado como ICE ( International Electronic E xplorer)) es una nave espacial estadounidense utilizada entre 1978 y 1997 para estudiar la tierra, el sol y los cometas. Estuvo activo y en 1985 hizo la primera aproximación a un cometa y tomó medidas pero no tomó ninguna fotografía.

Programa ISEE

A partir de 1977, la NASA y la ESA lanzaron tres satélites con el nombre “International Sun-Earth Explorer” (ISEE, en alemán, por ejemplo: International Sun y Earth Explorer). Ya en 1977, los dos primeros despegaron juntos en una órbita terrestre. El objetivo era el estudio del campo magnético de la tierra.

Misión principal

Sin embargo, lo más destacado del programa ISEE fue la nave espacial ISEE-3 (también “ISEE-C” y “Explorer 59”, estadounidense con participación europea). Esta sonda fue tomada el 12 de agosto de 1978 con un cohete Delta 2914 en una órbita de halo alrededor del punto de Lagrange (también Librationspunkt) L 1 , a 1,5 millones de km de la Tierra, traído. Desde aquí, ISEE-3 debería explorar la interacción del campo magnético de la Tierra con el Sol.

Misiones extendidas

Cuando la visita del cometa de Halley era inminente en 1986, la NASA y la ESA decidieron por primera vez una misión conjunta. Cada una de las dos agencias espaciales debe enviar una sonda. Pero debido a los recortes presupuestarios, la sonda de la NASA fue cancelada en 1981 (la sonda europea fue Giotto). Para no dejar el campo a los europeos, Rusia y Japón en el estudio del cometa, la NASA buscó un reemplazo rentable. ISEE-3 era una sonda que tenía un equipo adecuado a bordo. La sonda fue sacada de su órbita de Halo alrededor de L 1 y dirigida más allá de la Tierra y la Luna en algunas complejas maniobras de asistencia por gravedad (swing-by). A partir de entonces, la sonda tenía la velocidad suficiente para abandonar el campo de gravedad de la Tierra. La sonda pesada de 480 kg recibió un nuevo nombre: “International Cometary Explorer” (ICE, en alemán, por ejemplo: International Comet Explorer).

En el camino a 1P/Halley voló el 11 de septiembre de 1985 por la cola del cometa Giacobini-Zinner.

Más tarde, ISEE-3 proporcionó medidas de apoyo para la sonda solar Ulysses.

Historia

Trayectoria ISEE-3 / ICE

  • ISEE-3 lanzado el 12 de agosto de 1978.
  • La sonda alcanzó órbita alrededor del punto L 1 el 20 de noviembre de 1978.
  • El 10 de junio de 1982, ISEE-3 comenzó las maniobras que llevaron a la salida de la órbita L 1 el 1 de septiembre de 1982.
  • La primera maniobra de “asistencia gravitatoria” en la Luna tuvo lugar el 16 de octubre de 1982, otros el 30 de marzo, el 23 de abril, el 27 de septiembre y el 22 de diciembre de 1983, después de lo cual el ISEE-3 abandonó el campo gravitatorio de la Tierra. Dos veces, el 8 de febrero y el 30 de junio de 1983, la sonda también había pasado el punto L 2 (alejado del sol).
  • El 11 de septiembre de 1985, el ahora ICE llamó sonda a 7.800 km de distancia sobre el cometa Giacobini-Zinner.
  • Por otro lado, ICE solo hizo una pequeña contribución a la observación del cometa de Halley. La sonda se ubicó en marzo de 1986 a 31 millones de km del cometa, por lo que se pudo obtener poca información útil.
  • En la década de 1990, el ICE apoyó la sonda solar europea-estadounidense Ulysses.
  • El 5 de mayo de 1997, la sonda fue abandonada.

Resultados

ISEE-3/ICE fue pionera en muchos sentidos: fue la primera sonda estadounidense con participación europea, luego estándar. Fue la primera sonda en órbita alrededor de L 1 y también la primera en las cercanías de L 2 , desde las posiciones estándar de 1990 para las sondas. Y ella fue la primera sonda que sobrevoló un cometa. Este sobrevuelo te confirmó. a., que los cometas consisten principalmente en hielo de agua, pero también de gases, moléculas orgánicas y polvo.

Regreso 2014

Con motivo del retorno cerca de la Tierra por ISEE-3 / ICE en 2014 [2] en septiembre de 2008, la Red de Espacio Profundo se alineó con la posición del satélite y se encontró que la sonda todavía está en funcionamiento y se enviaron datos de telemetría. Su análisis mostró que 12 de los 13 instrumentos todavía están en funcionamiento y hay suficiente combustible a bordo para alcanzar un nuevo objetivo. Sin embargo, la NASA no tiene posibilidad de enviar señales a la sonda, ya que los transmisores requeridos para este propósito en la Red de Espacio Profundo fueron desmantelados en 1999 y la reconstrucción sería demasiado costosa. Los días 1 y 2 de marzo de 2014, los radioaficionados lograron recibir el transmisor de baliza de la sonda en el observatorio Bochum. Se pensó instalar un transmisor allí para la comunicación con la sonda a fin de enviarlos a una trayectoria adecuada para futuros experimentos científicos.[5]

Otros proyectos, basados ​​en el Proyecto de recuperación de imagen Lunar Orbiter (LOIRP), también intentan establecer contacto con la sonda utilizando datos históricos. [6] El 29 de mayo de 2014, Space College informó que la comunicación bidireccional podría establecerse a través del Observatorio de Arecibo.[7] Space College planea ponerlos en órbita para continuar su uso allí.[8]

Vista del artista de las diversas fases de trayectoria de las misiones ISEE-3 (amarillo, rojo) y ICE (verde, azul), crédito de imagen: NASA 12)

El 2 de julio de 2014 tuvo éxito – después de la última maniobra de la sonda el 2 de febrero de 1987 – para reactivar los motores y para usar una corrección de auto-rotación de 19.16 a 19.76 revoluciones por minuto previamente, que ahora nuevamente dentro de el umbral de tolerancia de los parámetros de la misión original (19.75 ± 0.02).[9] [10] [11] Por otro lado, los intentos iniciales para corregir el rumbo debido a problemas con los motores fallaron, ya que probablemente el gas nitrógeno, que empuja el combustible fuera de los tanques, se ha apagado.[12] [13] [14]

Desde entonces, ISEE-3 ha estado en órbita alrededor del Sol y no estará cerca de la Tierra hasta agosto de 2029. Algunos de los experimentos a bordo podrían ser activados y transmitir datos de medición. El 16 de septiembre de 2014, se perdió el contacto por radio con ISEE-3. Se supone que la sonda ha cambiado al modo seguro debido a una potencia insuficiente. La razón del corte en la fuente de alimentación es la mayor distancia al sol, ya que la sonda no se mueve a una distancia uniforme del sol. [16]

Estructura de la sonda

Descripción más detallada: → Programa ISEE / ICE # ISEE 3

La nave espacial ICE es una forma cilíndrica en forma de barril cubierta por paneles solares. Cuatro antenas largas sobresalen equidistantes alrededor de la circunferencia de la nave espacial, que abarca 91 metros (299 pies).[41] Tiene una masa seca de 390 kg (860 lb) y puede generar una potencia nominal de 173 vatios.

Carga útil

ICE tiene 13 instrumentos científicos para medir plasmas, partículas energéticas, ondas y campos. [2] [15] A partir de julio de 2014, se sabía que cinco eran funcionales. No tiene una cámara o sistema de imágenes. Sus detectores miden partículas de alta energía tales como rayos X y gamma, viento solar, plasma y partículas cósmicas. Un sistema de manejo de datos reúne los datos científicos y de ingeniería de todos los sistemas en la nave espacial y los formatea en una secuencia en serie para la transmisión. La potencia de salida del transmisor es de cinco vatios.

Carga útil científica y experimentos

  • Experimento de plasma de viento solar, falló después del 26 de febrero de 1980
  • Vector Magnetómetro de helio
  • Experimento de rayos cósmicos de baja energía, diseñado para medir iones energéticos solares, interplanetarios y magnetosféricos
  • Experimento de rayos cósmicos de energía media, 1-500 MeV / n, Z = 1-28; Electrones: 2-10 MeV
  • Experimento de rayos cósmicos de alta energía, H a Ni, 20-500 MeV / n
  • Instrumento de onda de plasma
  • Experimento de Protones de Baja Energía, también conocido como el Espectrómetro de Anisotropía de Partículas Energéticas (EPAS), diseñado para estudiar la aceleración del protón solar de baja energía y los procesos de propagación en el espacio interplanetario
  • Electrones y núcleos de rayos cósmicos
  • Instrumento de rayos X y electrones, para proporcionar una cobertura continua de los rayos X de erupción solar y ráfagas de rayos gamma cósmicos transitorios
  • Experimento de mapeo de radio, 30 kHz – 2 MHz, para mapear las trayectorias de las explosiones solares tipo III
  • Experimento de composición de plasma
  • Telescopio Espectrómetro de Isótopos Pesados
  • Experimento de estudios solares basados ​​en tierra

Cultura popular

  • En el cómic xkcd del 3 de marzo de 2014, se hizo referencia a ICE. [19]
  • Varios medios [20] [21] informaron en 2014 que la visita al cometa Giacobini-Zinner fue iniciada por uno de los diseñadores de misión de ISEE-3 por iniciativa propia.

Misión original: International Sun / Earth Explorer 3 (ISEE-3)

ISEE-3 no lleva cámaras; en cambio, sus instrumentos miden partículas energéticas, ondas, plasmas y campos.

ISEE-3 originalmente operaba en una órbita de halo alrededor del punto Lagrangiano L 1 Sol-Tierra, 235 radios de la Tierra sobre la superficie (alrededor de 1.5 millones de km, o 924,000 millas). Fue el primer objeto artificial colocado en el llamado “punto de libración”, que entró en órbita allí el 20 de noviembre de 1978,[2] demostrando que tal suspensión entre campos gravitacionales era posible. Gira a 19.76 rpm alrededor de un eje perpendicular a la eclíptica, para mantenerlo orientado para sus experimentos, para generar energía solar y para comunicarse con la Tierra.

Los propósitos de la misión fueron:

  • investigar las relaciones solar-terrestres en los límites más externos de la magnetosfera de la Tierra;
  • examinar en detalle la estructura del viento solar cerca de la Tierra y la onda de choque que forma la interfaz entre el viento solar y la magnetosfera de la Tierra;
  • para investigar los movimientos y mecanismos que operan en las láminas de plasma; y,
  • para continuar la investigación de los rayos cósmicos y las emisiones de las erupciones solares en la región interplanetaria cerca de 1 UA.

Segunda misión: International Cometary Explorer

Después de completar su misión original, ISEE-3 fue re-encargado de estudiar la interacción entre el viento solar y una atmósfera cometaria. El 10 de junio de 1982, la nave espacial realizó una maniobra que la eliminó de su órbita alrededor del punto L 1 y la colocó en una órbita de transferencia. Esto implicó una serie de pasajes entre la Tierra y el punto lagrangiano L2 Sol-Tierra, a través de la magnetocola de la Tierra.[14] Quince maniobras propulsoras y cinco asistencias de gravedad lunar dieron como resultado que la nave espacial fuera expulsada del sistema Tierra-Luna y dentro de una órbita heliocéntrica. Su último y más cercano paso sobre la Luna, el 22 de diciembre de 1983, fue solo 119,4 km (74 mi) sobre la superficie lunar; después de este pase, la nave espacial fue rediseñada como Explorador cometario internacional (ICE).[15]

Encuentro de Giacobini-Zinner

Su nueva órbita lo puso por delante de la Tierra en una trayectoria para interceptar al cometa Giacobini-Zinner. El 11 de septiembre de 1985, la nave pasó a través de la cola de plasma del cometa.[15]

Halley encuentro

ICE transitó entre el Sol y el Cometa Halley a fines de marzo de 1986, cuando otras naves espaciales estaban cerca del cometa en sus misiones de encuentro de cometas a principios de marzo. (Esta “Armada Halley” incluía a Giotto, Vega 1 y 2, Suisei y Sakigake.) ICE voló por la cola; su distancia mínima al núcleo del cometa era de 28 millones de kilómetros (17,000,000 millas).[16] En comparación, la distancia mínima de la Tierra al cometa Halley en 1910 fue de 20,8 millones de kilómetros (12,900,000 millas).[17]

Misión heliosférica

Una actualización de la misión ICE fue aprobada por la NASA en 1991. Define una misión heliosférica para ICE que consiste en investigaciones de eyecciones de masa coronal en coordinación con observaciones en tierra, estudios continuos de rayos cósmicos y la sonda Ulysses. Para mayo de 1995, ICE estaba siendo operado bajo un ciclo de trabajo bajo, con cierto apoyo de análisis de datos del proyecto Ulysses.

Fin de la misión

El 5 de mayo de 1997, la NASA finalizó la misión ICE, dejando solo una señal de operador operando. La tasa de bits del enlace descendente ISEE-3 / ICE fue nominalmente de 2048 bits por segundo durante la primera parte de la misión, y de 1024 bit / s durante el encuentro del cometa Giacobini-Zinner. La velocidad de bits se redujo sucesivamente a 512 bit / s (el 9 de diciembre de 1985), 256 bit / s (el 5 de enero de 1987), 128 bit / s (el 24 de enero de 1989) y finalmente a 64 bit / s ( el 27 de diciembre de 1991). Aunque todavía está en el espacio, la NASA donó la nave al Museo Smithsonian.[18]

En enero de 1990, ICE estaba en una órbita heliocéntrica de 355 días con un afelio de 1,03 UA, un perihelio de 0,93 UA y una inclinación de 0,1 grado.

Contacto adicional

En 1999, la NASA estableció un breve contacto con ICE para verificar su señal de portadora.

El 18 de septiembre de 2008, la NASA, con la ayuda de KinetX, ubicó a ICE utilizando la Red de espacio profundo de la NASA después de descubrir que no se había apagado después del contacto de 1999. Una verificación de estado reveló que todos menos uno de sus 13 experimentos todavía funcionaban, y todavía tenía suficiente propelente para 150 m/s (490 pies/s ) de Δv.

Se determinó que era posible reactivar la nave espacial en 2014,[19] cuando volvió a acercarse a la Tierra, y los científicos discutieron el reutilizar la sonda para observar más cometas en 2017 o 2018. [20]

Reiniciar el esfuerzo

Algún tiempo después de que el interés de la NASA en el ICE disminuyó, otros se dieron cuenta de que la nave espacial podría ser dirigida para pasar cerca de otro cometa. Un equipo de ingenieros, programadores y científicos comenzó a estudiar la viabilidad y los desafíos involucrados.[9]

Después de varios intentos a partir de 2014, algunos en parte positivos, con cooperación de diversos Organismos, y recogida de fondos, mediante crowdsourcing, y la implicación de varios institutos y técnicos espaciales, incluso con la aprobación de la NASA, que no participó directamente, se supendieron los contactos y actividades con la nave.

La nave espacial ISEE-3 en configuración de vuelo (crédito de imagen: JHU/APL, Ref. 3)

Trayectoria de transferencia de ISEE-3 a la órbita de halo (crédito de imagen: JHU/APL)

Vista isométrica de la órbita del halo ISEE-3 alrededor del punto L1 de Sun-Earth (crédito de la imagen: JHU / APL, Ref. 3)

El sistema del telescopio de partículas de baja energía en ISEE-3 (crédito de imagen: Imperial College, Londres)

Foto del espectrómetro isotópico solar (crédito de la imagen: NASA / JPL)

Farquhar (izquierda) con su hija Patricia y su esposa Bonnie frente al ISEE-3 en 1978 (www.npr.org).

Cometa 21P/Giacobini-Zinner

21P/Giacobini-Zinner

El 21P/Giacobini-Zinner1​ es un cometa cuyo período es de 6,621 años. Las características de su órbita respecto de la órbita terrestre hacen que, de cada dos revoluciones, una de ellas sea favorable para su observación, ya que el cometa pasa entonces relativamente cerca de la Tierra. Esa circunstancia ocurre el 9 o 10 de octubre y entonces se observa la lluvia de meteoros de las Giacobínidas o Dracónidas (llamadas así porque su radiante u origen aparente se sitúa en la constelación del Dragón). El cometa recibe este nombre por sus descubridores, Michel Giacobini y Ernst Zinner, quienes lo avistaron por primera vez el 20 de diciembre de 1900.

El 11 de septiembre de 1985 se convirtió en el primer cometa en ser visitado por una nave espacial: la sonda ICE/ISEE 3.2

Elementos orbitales

Euramérica

Euramérica

Euramérica en el Devónico.

Euramérica o Laurusia (también conocido como continente de las Viejas Areniscas Rojas) fue un antiguo supercontinente creado en el Devónico como resultado de la colisión entre los cratones Laurentia y Báltica (Orogenia Caledoniana).

Euramérica se convirtió en una de las partes principales del supercontinente Pangea durante el Pérmico. En el Jurásico, cuando Pangea se fragmentó en dos continentes, Gondwana y Laurasia, Euramérica formaba parte de Laurasia. En el Cretácico, Laurasia se dividió en los continentes Norteamérica y Eurasia. El cratón de Laurentia se convirtió en una parte de Norteamérica, mientras que Báltica se convirtió en una parte de Eurasia.

 

Reconstruction of Euramerica

El paleocontinente Euramrica

Euramerica (a veces conocido como Laurussia) se formó durante el Silurian con la unión de dos continentes anteriores, Laurentia (Norteamérica cratónica) y Baltica (Rusia europea, Escandinavia, partes de Europa Central y la mayoría de las Islas Británicas). La mayor parte de la masa terrestre de Euramerican (noreste de Canadá, Groenlandia y la mayor parte de Báltica) a menudo se ha referido como el “Viejo Continente de Arenisca Roja”.

Hay dos grandes reconstrucciones competitivas de los continentes paleozoicos. Ambos están de acuerdo en general con respecto a la forma, orientación y posición ecuatorial de Euramerica. Sin embargo, difieren dramáticamente en las posiciones y orientaciones de Gondwana (incluyendo América del Sur, África, India, Europa del Sur, Antártida y Australia). Por ejemplo, Dalziel et. Alabama. (1994) proponen un Gondwana en el que África central se encuentra en el Polo Sur y el noroeste de América del Sur colisiona oblicuamente con el este de América del Norte. El Gondwana propuesto por Scotese y McKerrow (1990) no se encuentra tan al sur y las áreas más cercanas a Euramerica incluyen el noroeste de África y el suroeste de Europa. Una investigación más reciente de Streel et. Alabama. (2000) basados ​​en distribuciones palinomorfas indicaron que Euramerica se encontraba a una latitud ligeramente inferior a la generalmente aceptada en las reconstrucciones anteriores.

Las reconstrucciones de paleocontinentes anteriores a la ruptura de Pangea (comenzando en el Triásico) son sustancialmente más difíciles que las reconstrucciones para el Mesozoico y el Cenozoico. Radioisotópico Las rocas formadas a través del esparcimiento del lecho marino son el método más confiable de posicionamiento de los continentes, pero no existen fondos marinos sustanciales más antiguos que el Triásico. En consecuencia, los científicos deben confiar en paleomagnetismo, similitudes de formaciones geológicas y organismos fósiles entre continentes. El paleomagnetismo solo produce paleolatitudes y las lecturas pueden ser conflictivas, mientras que las similitudes en organismos y formaciones geológicas están sujetas a múltiples interpretaciones. No debería sorprender que las reconstrucciones difieran.

La orogenia acadia es una característica geológica destacada de Euramerica durante el Devónico. Comenzó durante el Devónico medio y se centró en Nueva Inglaterra y las provincias marítimas del este de Canadá. Al parecer, se extendió al suroeste de Alabama a finales del Devónico o principios del Carbonífero. Las explicaciones sobre la causa de la orogenia de Acadia varían, pero la mayoría de las teorías implican algún tipo de colisión continental. En cualquier caso, estas montañas una vez impresionantes se han reducido enormemente por la erosión; los vestigios aún son visibles en Nueva Inglaterra y Canadá, pero la extensión sur se encuentra bajo la llanura costera atlántica moderna.

 

Satélite GPS

Satélite GPS

OPS 5111

El OPS 5111

Datos de la misión

Misión: OPS 5111

Nave Espacial: GPS Block I

Lanzadera: Atlas E/F SGS-1, 64F1

Masa: 759 kg2

Rampa de lanzamiento: Vandenberg SLC-3E1

Lanzamiento: 22 de febrero de 1978, 23:44 UTC

Final del paseo espacial: 17 de julio de 1985

Duración de la misión: 5 años (planificado) 7 12 años (logrado)

Datos de las órbitas

Apogeo: 20 291 km3

Perigeo: 20 075 km3

Período: 718 minutos3

Inclinación orbital: 63,3 grados3

OPS 5111, también conocido como Navstar 1, NDS-1, GPS I-1 y GPS SVN-1, fue un satélite de navegación estadounidense lanzado en 1978 como parte del programa para el desarrollo del Sistema de posicionamiento global. Fue el primer satélite GPS y uno de los once satélites de demostración del bloque I.2

OPS 5111 fue lanzado a las 23:44 UTC el 22 de febrero de 1978 con un cohete portador Atlas E/F y una etapa superior SGS-1. El Atlas usado tenía el número de serie 64F y fue originalmente construido como un Atlas F.1​ El lanzamiento tomo lugar en el Space Launch Complex 3E en Vandenberg Air Force Base,4​ y colocó al OPS 5111 en una órbita de transferencia. El satélite se elevó en Órbita circular intermedia usando un motor de apogeo Star-27.2

El 11 de abril de 1978, OPS 5111 estuvo en órbita con un perigeo de 20 075 kilómetros (12 474 mi), un apogeo de 20 291 kilómetros (12 608 mi), un periodo orbital de 718 minutos y una inclinación de 63,3 grados del Ecuador.3​ El satélite estaba destinado a funcionar por 5 anos y una masa de 758 kg.2​ Emitió la señal PRN 04 en la constelación de demostración de GPS, y fue retirado del servicio el 17 de julio de 1985.

Designator id: 1978-020A

Descripción del satélite OPS 5111 (NAVSTAR 1): El Sistema de Posicionamiento Global (GPS) fue desarrollado por el Departamento de Defensa de los EE. UU. Para proporcionar capacidades de navegación las 24 horas para todo tipo de condiciones meteorológicas para las fuerzas militares terrestres, marítimas y aéreas. Desde su implementación, el GPS también se ha convertido en un activo integral en numerosas aplicaciones e industrias civiles en todo el mundo, incluidos los usos recreativos (por ejemplo, navegación, aviones, caminatas), seguimiento de flotas de vehículos corporativos y topografía. GPS emplea 24 naves espaciales en órbitas circulares de 20.200 km inclinadas a 55 grados. Estos vehículos se colocan en aviones de 6 órbitas con cuatro satélites operacionales en cada avión.

Las primeras once naves espaciales (Bloque GPS 1) se usaron para demostrar la viabilidad del sistema GPS. Estaban estabilizados en 3 ejes, apuntando hacia el nadir usando ruedas de reacción. Los paneles solares duales suministraron más de 400 W. Tenían comunicaciones de banda S (SGLS) para control y telemetría y UHF cross-link entre naves espaciales. Fueron fabricados por Rockwell Space Systems, tenían 5.3 m de ancho con paneles solares desplegados y tenían una vida útil de diseño de 5 años. A diferencia de los satélites operativos posteriores, la nave espacial GPS Block 1 se inclinaba a 63 grados.

Bloque GPS 1 Bloque GPS 1 Crédito: USAF Satélite de navegación estadounidense. Los satélites prototipo del Bloque 1 del GPS formaron el sistema de Demostración GPS y fueron seguidos por el sistema operativo del Bloque 2.

AKA: Sistema de Posicionamiento Global; Navstar. Estado: Operacional 1978. Primer lanzamiento: 1978-02-22. Último lanzamiento: 1985-10-09. Número: 11. Masa bruta: 759 kg (1,673 lb). Alcance: 5,30 m (17,30 pies).

La nave espacial estaba estabilizada en 3 ejes, apuntando hacia el nadir usando ruedas de reacción. Conjuntos solares duales suministrados a más de 400 vatios (EOL) y baterías de NiCd cargadas. Las comunicaciones S-Band (SGLS) se usaron para control y telemetría. Un canal UHF proporcionó enlaces cruzados entre naves espaciales. Se utilizó un sistema de propulsión de hidracina para la corrección orbital. La carga incluye dos señales de navegación de banda L a 1575.42 MHz (L1) y 1227.60 MHz (L2)

Los satélites del bloque I cuestan $ 20 millones cada uno. En 1974, se le otorgó a Rockwell un contrato para construir 8 satélites. Una enmienda al contrato de 1978 agregó 4 satélites adicionales. Esto se modificó posteriormente en 1981 para que el duodécimo satélite se produzca como el primer modelo de calificación GPS Bloque 2.

Electric System: 0.40 average kW.

Avalonia

Avalonia

Geological History of Jamestown, Rhode Island

El área ahora conocida como Jamestown se formó hace más de 565 millones de años, como parte de un microcontinente llamado Avalonia (etiquetado como el arco volcánico de Avalonian en este bosquejo del hemisferio sur).

El arco Avaloniano se formó como un archipiélago volcánico fuera de África y América del Sur, en un momento en que se unieron como parte de Gondwana, parte de la cual se muestra en este boceto. En ese momento, la mayoría de las masas de tierra del mundo estaban al sur del ecuador. ¡El área que ahora es el desierto del Sahara se encuentra sobre el polo sur! Gondwana evolucionó después de la ruptura de Rodinia, un supercontinente anterior. Otros continentes importantes, que entonces estaban ubicados en el hemisferio norte, eran Siberia y el norte de China. Los expertos debaten si Laurentia estuvo en contacto con Sudamérica en este momento. Los que creen que lo fueron, llaman al continente más grande Pannotia. En cualquier caso, hace unos 540 millones de años Laurentia (proto América del Norte) y Báltica (proto Europa Occidental) se alejaron de Gondwana.

Rhode Island y los estados de Nueva Inglaterra no fueron las únicas masas terrestres que emergieron del arco de Avalonian. En el bosquejo anterior, J marca la ubicación aproximada de Jamestown. EW indica la parte de Avalonia que se convirtió en el sur de Irlanda, Inglaterra y Gales, Ib muestra Iberia (España y Portugal) y Ar Armorica y Bohemia. Una porción del arco ahora es parte de Marruecos. Las partes futuras de Nueva Escocia, New Brunswick y Newfoundland, así como la mayor parte de Nueva Inglaterra, se encuentran en el exterior de Florida (etiquetada F en el mapa). La porción del arco que se convirtió en parte de las Carolinas se encuentra a la derecha de Jamestown, en la costa de lo que hoy es Venezuela, en América del Sur.

Casi al mismo tiempo que Laurentia y Baltica se alejaron de Gondwana, el contenido de oxígeno del aire se estabilizó cerca de la concentración actual.

Las formas de vida oceánicas comenzaron a explotar en complejidad y diversidad a partir de hace alrededor de 545 millones de años. Esta “Explosión Cámbrica” ​​resultó en una gran variedad de invertebrados que incluyen gusanos, almejas, artrópodos, corales y esponjas.

Laurentia se muda de Gondwana

500 mya: The Avalonian Arc grows while Laurentia, Siberia and Baltica move away from Gondwana

Avalonia se mueve hacia América del Norte

Comenzando hace unos 500 millones de años, Avalonia se desplazó hacia el norte y el oeste, lejos de África y hacia Laurentia (Proto Norteamérica). La mayor parte de Laurentia estaba cubierta por mares tropicales poco profundos en los que se encontraron especies de trilobites y equinodermos que evolucionaban rápidamente. Laurentia incluía no solo la parte central de los Estados Unidos actuales, sino gran parte de Canadá, México y Groenlandia.

Los movimientos de las diversas masas de tierra se muestran a continuación. Los dibujos se derivan de las vistas del proyecto Paleomap. (Mapas tectónicos de placas y animaciones de deriva continental de CR Scotese, el sitio del Proyecto PALEOMAP contiene una gran cantidad de datos y ofrece servicios educativos gratuitos. La versión en pdf de la página principal del sitio PALEOMAP es para referencia rápida. Consulte (www.scotese.com) para los enlaces y servicios más actualizados.

J marca la ubicación aproximada de Jamestown en estos dibujos. Se puede acceder a las vistas completas del mundo, comentarios y enlaces relacionados a través de los enlaces de subtítulos.

Mientras Avalonia viajaba a través del Océano Japeto, la vida a su alrededor estaba evolucionando. Aparecieron peces sin mandíbulas, celentéreos, artrópodos, cefalópodos, peces con mandíbulas y arrecifes de coral.

About 435 million years ago, Avalonia docked with Baltica. Ambos se movían al norte y al oeste, en cursos de colisión con Laurentia.

515 million years ago

458 million years ago

425 million years ago

 

Building New England
The Taconic and Acadian Orogenies

Hace unos 450 millones de años, un arco de pequeñas islas colisionó con Proto North America, agregando una franja de tierra al este del Hudson River Valley.
Hace unos 425 millones de años, Avalonia colisionó con Proto Norteamérica, criando a los Apalaches del Norte y sumando el resto de Nueva Inglaterra.

Or, go directly to any Geological History page:

Introduction and Summary: 565 Million Years of Jamestown’s Geological History

Prelude: The Earth’s first 4 billion years – forming Proto North America, Rodinia, Gondwana

Avalonia: Rhode Island was once part of a micro-continent called Avalonia

Acadian Orogeny: Avalonia collides with the mainland of Proto North America (Laurentia)

Alleghenian Orogeny: North America collides with Africa, forming Pangaea

The Atlantic Forms: Pangaea breaks up, the Atlantic forms, the Appalachians erode

Glaciation: Glaciers form and rework the land

The Holocene Epoch: Post-glacial Rhode Island – rising seas – the time of modern man

Building the Northern Appalachians: Significant event summaries with links to more information

Guide to Bedrock in and around Jamestown and Narragansett Bay

Additional Information and References

Jamestown RI – Rhode Island Visitor Information Home Page

This page updated 2016.  Direct questions and comments on this site to Webmaster

Alcanzar el espacio interestelar

Alcanzar el espacio interestelar

Voyager 1

Modelo de ingeniería de una de las sondas Voyager

Información general

Organización: NASA/JPL

Contratos principales: Jet Propulsion Laboratory

Estado: Activo

Sobrevuelo: Júpiter; Saturno

Fecha del sobrevuelo: 5 de marzo de 1979
12 de noviembre de 1980

Fecha de lanzamiento: 5 de septiembre de 1977, 12:56:00 UTC

Vehículo de lanzamiento: Titan IIIE

Sitio de lanzamiento: Cabo Cañaveral LC-41

Vida útil: transcurren 41 años, 3 meses y 4 días

Aplicación: Sonda interplanetaria e interestelar

Masa: 721,9 kg

Potencia: 420 W

NSSDC ID: 1977-084A

Sitio web

voyager.jpl.nasa.gov

Júpiter visto desde la Voyager 1.

La Voyager 1 es una sonda espacial robótica de 722 kilogramos, lanzada el 5 de septiembre de 1977, desde Cabo Cañaveral, Florida. Sigue operativa en la actualidad, prosiguiendo su misión extendida que es localizar y estudiar los límites del sistema solar, incluyendo el cinturón de Kuiper y más allá, así como explorar el espacio interestelar inmediato, hasta fin de misión. El 25 de agosto de 2012, a poco más de 19 000 millones de kilómetros del Sol o 122 UA, la sonda dejó atrás la heliopausa, siendo la primera en alcanzar el espacio interestelar.1 Su misión original era visitar Júpiter y Saturno.

Fue la primera sonda en proporcionar imágenes detalladas de los satélites de esos planetas.2​ A una distancia de 141 unidades astronómicas (21 093 318 000 km) del Sol, en junio de 2018,3​ es la nave espacial más alejada de la Tierra y la única en el espacio interestelar, pero aún sin salir del sistema solar, quedándole unos 17 702 años aproximadamente para salir a la nube de Oort. Entrará en esta en unos 300 años aproximadamente. La Voyager 1 es actualmente el objeto hecho por el humano más alejado de la Tierra, viajando a la segunda mayor velocidad relativa de la Tierra y el Sol entre las sondas espaciales, después de la Rosetta (que viajó a unos 108.000Km/h entre noviembre de 2009 y agosto de 2014).

A pesar de que su hermana Voyager 2 fue lanzada dieciséis días antes, no se espera que rebase a la Voyager 1. Tampoco la misión New Horizons a Plutón, a pesar de que fue lanzada de la Tierra a una velocidad superior a la de las dos Voyager, ya que durante el curso de su viaje, la velocidad de la Voyager 1 fue incrementada debido a tirones gravitacionales asistidos. La actual velocidad de New Horizons es mayor que la de la Voyager 1, pero cuando New Horizons llegue a la misma distancia del Sol a la que la Voyager 1 se encuentra ahora, su velocidad se calcula que será de 13 km/s, mientras que la de la Voyager 1 que es de 17 km/s.2

Voyager 1 tiene una trayectoria hiperbólica, y ha alcanzado velocidad de escape, lo que significa que su órbita no regresará al sistema solar interior. Junto con la Pioneer 10, Pioneer 11, Voyager 2 y la New Horizons, Voyager 1 es una sonda interestelar.

Ambas sondas han sobrepasado su tiempo de vida calculado en un principio. Cada sonda obtiene su energía eléctrica de tres RTG, (generador termoeléctrico de radioisótopos), de los cuales se espera que estén generando suficiente energía para que las sondas estén en comunicación con la Tierra hasta por lo menos el año 2025.2

Planificación y lanzamiento

Trayectoria de las Voyager.

Lanzamiento de la Voyager 1.

La sonda fue lanzada el 5 de septiembre de 1977 desde el Centro Espacial Kennedy de la NASA en Cabo Cañaveral a bordo de un cohete Titan IIIE.

Un defecto de quemado de combustible de la segunda fase del cohete hizo, en principio, temer a los técnicos que la sonda no llegase a Júpiter. Sin embargo, la fase superior Centauro permitió compensar este defecto.

A pesar de haber sido lanzada después de su gemela Voyager 2, la Voyager 1 alcanzó Jupiter dos meses antes que su compañera,4​ y, siguiendo una trayectoria más rápida, llegó nueve meses antes a Saturno.5

Desarrollo de la misión

La atmósfera de Júpiter fotografiada desde la Voyager 1.

Júpiter

Imagen de la actividad volcánica de Ío.

Voyager 1 realizó sus primeras fotografías de Júpiter en enero de 1979 y alcanzó su máximo acercamiento el 5 de marzo de 1979 a una distancia de 278 000 km. En su misión a Júpiter realizó 19 000 fotografías, en un periodo que duró hasta abril.4

Debido a la máxima resolución permitida por tal acercamiento, la mayor parte de las observaciones acerca de los satélites, anillos, campo magnético y condiciones de radiación de Júpiter fueron tomadas en un periodo de 48 horas alrededor de dicho acercamiento.

Para fotografiar el planeta Júpiter, la NASA optó por el Sistema Bicolor Simplificado del inventor mexicano Guillermo González Camarena, que era más simple en cuanto a electrónica que el sistema norteamericano NTSC, para una misión a tan larga distancia.

Se acercó a 18 640 km del satélite Io de Júpiter y pudo observar por primera vez actividad volcánica fuera de la Tierra, algo que pasó inadvertido para las Pioneer 10 y 11. El descubrimiento fue realizado por la ingeniera de navegación Linda A. Morabito durante un examen de una fotografía varias horas después del sobrevuelo.4

Saturno

Acelerada por el campo gravitatorio de Júpiter, alcanzó Saturno el 12 de noviembre de 1980, acercándose a una distancia de 124 200 km. En esta ocasión descubrió estructuras complejas en el sistema de anillos del planeta y consiguió datos de la atmósfera de Saturno y de su mayor satélite natural, Titán, del que pasó a menos de 6500 km.5​ Debido al descubrimiento de atmósfera en este satélite, los controladores de la misión decidieron que la Voyager 1 hiciera una mayor aproximación a esta luna, sacrificando así las siguientes etapas de su viaje, Urano y Neptuno, que fueron visitadas por su gemela Voyager 2.

Este segundo acercamiento a Titan aumentó el impulso gravitatorio de la sonda, alejándola del plano de la eclíptica y poniendo fin a su misión planetaria.

La Tierra y la Luna fotografiadas por la Voyager 1 el 18 de septiembre de 1977. La imagen fue procesada para equilibrar la luminosidad de ambos cuerpos.

En los límites del sistema solar

El 17 de febrero de 1998 a las 23:10 (hora europea), la Voyager 1 se encontraba a 10 400 000 000 km de la Tierra, récord establecido diez años antes por la sonda Pioneer 10.

En septiembre de 2004, la Voyager 1 alcanzó una distancia de 14 000 millones de kilómetros (93,2 UA, 8700 millones de millas o 13 horas luz) del Sol y es por lo tanto el objeto más lejano construido por el humano. El 15 de agosto de 2006 la sonda Voyager 1 alcanzó la distancia con respecto al Sol de 100 UA, esto es, casi 15 000 millones de kilómetros.

Se aleja con una velocidad de 3,6 unidades astronómicas (29 minutos-luz) por año del Sol, lo que corresponde a 17 km/s. Medidas exactas apuntan a que la velocidad disminuye muy lentamente de forma imprevista. Las causas de este frenado son objeto de diversas controversias.

En una declaración de prensa, el 24 de mayo de 2005 la NASA declaró que la Voyager 1 había alcanzado, como primer objeto construido por el humano, la zona llamada frente de choque de terminación, y continuará viajando por la región conocida como heliofunda, la última frontera del sistema solar, próxima a la heliopausa.

Un punto azul pálido (Pale Blue Dot). Puede observarse la Tierra como un punto de luz situado en la parte central de la imagen. La fotografía fue tomada por el Voyager 1 en febrero de 1990 a una distancia de seis mil millones de kilómetros de la Tierra.

Al viajar muy distante del Sol, para su funcionamiento la Voyager 1 recibe su energía de tres generadores termoeléctricos de radioisótopos (RTG), que convierten el calor de la desintegración radiactiva del plutonio en electricidad, en lugar de los paneles solares utilizados en otras muchas sondas para viajes interplanetarios. Se estimó que la energía generada por esta pila nuclear bastaría para alimentar los principales sistemas hasta el año 2025. Los datos de degradación del RTG muestran que se ha conservado en mejor estado de lo previsto, por lo que la duración debería ser mayor.6

La Voyager 1 lleva consigo en su viaje espacial uno de los dos discos con sonidos de la Tierra Sound of Earth.

El 31 de marzo de 2006, operadores de radio amateur del AMSAT en Alemania rastrearon y recibieron ondas de radio provenientes del Voyager 1 usando una antena parabólica de 20 m (66 pies) en la ciudad de Bochum, con una técnica de integración larga. Los datos fueron comparados y verificados contra los datos de la estación en Madrid, España de la Red del espacio profundo. Se cree que este es el primer intento exitoso de localización del Voyager 1 por aficionados.

En mayo del 2008, el Voyager 1 estaba en 12.45° declinación y a 17 125 horas de ascensión recta, en dirección de la constelación de Ofiuco.7

Misión interestelar

Posición de las sondas interestelares lanzadas desde la Tierra. Voyager I no será adelantada por ninguna sonda lanzada hasta ahora.

Ambas sondas Voyager tendrán suficiente energía para operar hasta el año 2025.8

AÑO-DÍA Término de sus funciones científicas
2007-032 Se apaga el Subsistema de Plasma (PLS). En 2007-013 se apaga el calentador de este instrumento.
2008-015 Apagado del experimento de Radioastronomía Planetaria (PRA)
~FIN 2010 Apagado de la plataforma de escaneado y las observaciones UV
~2015* Terminan las operaciones con la cinta de datos (DTR)
~2016 Terminan las operaciones con los giroscopios
~2020 Se inicia el apagado selectivo de instrumentos

* Las operaciones con la cinta de datos están sujetas a la capacidad de recibir datos a 1,4 kbps a través de la DSN (Red de espacio profundo), pudiendo alargarse en caso de usar una futura red con más sensibilidad.

** No antes de esta fecha.

El 7 de julio de 2009 la Voyager 1 estaba a 109,71 UA (16 414 millones de kilómetros) del Sol, cuando cruzó el frente de choque de terminación entrando en la heliofunda, la zona terminal entre el sistema solar y el espacio interestelar, una vasta área donde la influencia del Sol cede ante las radiaciones de otros cuerpos lejanos de la galaxia. A esta distancia, las señales del Voyager 1 tardaban más de catorce horas en alcanzar el centro de control en el Jet Propulsion Laboratory en La Cañada Flintridge, California.

Desde el 8 de abril de 2011, a 17 490 millones de kilómetros del Sol,9​ detectó un cambio en el flujo de partículas por la cercanía del fin de la heliosfera, que resulta ser ovalada. Los científicos saben que es así debido a la forma en que se comportaba el viento solar al paso de la Voyager.

Esta corriente de partículas cargadas forma una burbuja alrededor nuestro sistema solar conocido como la heliosfera. El viento se desplaza a velocidad “supersónica” hasta que cruza con una onda de choque llamado choque de terminación.

A este punto, el viento disminuye drásticamente su velocidad y se calienta en una región llamada la heliopausa. La Voyager ya determinó que la velocidad del viento en su ubicación presente se ha reducido a cero. Esto significa que Voyager ya alcanzó la región donde el viento solar empieza a dar vuelta sobre sí mismo mientras se estrella contra las partículas del espacio interestelar.

El 14 de junio de 2012 la NASA anunció que la Voyager 1 ha informado de un marcado aumento en la detección de partículas cargadas del espacio interestelar, que normalmente son desviadas por los vientos solares dentro de la heliosfera. Esto es considerado como el borde del sistema solar a una distancia de 120,07 UA (17 860 millones de kilómetros) de la Tierra, ya la sonda comienza a entrar en el espacio interestelar.10

El 12 de septiembre de 2013 los científicos de la NASA alcanzaron un consenso basándose en las observaciones que mostraron una brusca disminución de electrones por metro cúbico desde el 25 de agosto de 2012, cuando ésta se redujo hasta 0,08 electrones, quedando dentro de las estimaciones que los modelos actuales predicen para más allá del sistema solar, que estaría entre 0,05 y 0,22 electrones por metro cúbico. De esta manera, la Voyager 1 se convierte en el primer objeto creado por el humano en superar la heliopausa y adentrarse en el espacio interestelar.11

El 28 de noviembre de 2017 los científicos de la NASA consiguieron corregir la actitud de la trayectoria de la sonda gracias a los propulsores TCM (de «maniobra de corrección de trayectoria») que son iguales que los propulsores de actitud en tamaño y capacidad y están en la parte trasera de la sonda. Desde que la Voyager 1 pasó por Saturno, 37 años antes, no se habían vuelto a usar. La reorientación pudo hacerse mediante pulsos de 10 milisegundos; una maniobra de precisión sobre todo teniendo en cuenta que las señales de control tardaron 19 horas y 35 minutos en llegar a la sonda. 12

El 23 de febrero de 2017 a 20 916 millones de kilómetros (137,747 UA, o sea, 38 h 14 min horas-luz de la Tierra), la sonda se dirige al centro de nuestra galaxia, la Vía Láctea, dejando el espacio dominado por la influencia de nuestro Sol desde el 25 de agosto de 2012 y entrando así en el espacio entre las estrellas, el espacio interestelar.13

El 4 de diciembre de 2017 la NASA informó que el equipo de técnicos del VOYAGER 1, trabajando con los propulsores TCM (de corrección de trayectoria), lograron reorientar la antena de alta ganancia hacia la Tierra. Con este procedimiento se espera incrementar la vida útil de la sonda hasta, por lo menos, el año 2025. Desde su lanzamiento, en 1977, estas correcciones de la posición de la nave respecto a la Tierra se hacían con los impulsores de control de actitud, pero estos se han degradado con el paso del tiempo y el continuo uso. Los propulsores TCM, en cambio, estaban inactivos desde hace 37 años, oportunidad en que se utilizaron para maniobrar la nave y apuntar con precisión los instrumentos hacia los planetas estudiados.

Enlaces externos