Sociedad
Aguada Fénix
Aguada Fénix
Zona arqueológica de Aguada Fénix
Localización administrativa
País: México
División: Tabasco
Municipio: Balancán
Localidad: Balancán
Historia
Época: Período Preclásico
Cultura: Maya
Construcción: año 3000 al 800 a. C.?
Constructor: Mayas de Tabasco
Ocupantes: Mayas
Hallazgos y descubrimiento
Arqueológicos: Cerámica, vasijas, huesos de animales, hachas de jade.
Paleontológicos: Entierros humanos
Otros materiales: Plataformas de tierra y arcilla
Descubrimiento: 2017 (Takeshi Inomata)
Excavaciones: 2017, 2018, 2019
Arqueólogos: Takeshi Inomata
Gestión: Instituto Nacional de Antropología e Historia
Vista aérea de Aguada Fénix
Aguada Fénix es un yacimiento arqueológico de la cultura maya localizado en el municipio de Balancán en el estado mexicano de Tabasco. Fue descubierto en el año 2017 y es considerado el lugar que albergó la ciudad maya más antigua encontrada hasta la fecha, ya que los estudios de radiocarbono indican que esta ciudad maya fue construida en el año 1,000 a. C., colocándola antes de Ceibal y Cuello.
Asimismo, en Aguada Fénix, se localizó la construcción monumental maya más antigua y más grande jamás encontrada, consistente en una enorme plataforma de arcilla de cerca de 1400 m de largo, 400 m de ancho y 15 m de altura.1
Actualmente el sitio se encuentra en etapa de exploración e investigación por lo que se encuentra cerrado al público.
Descubrimiento
El descubrimiento de esta importante y antigua población maya fue realizado por el antropólogo Takeshi Inomata, profesor de la Universidad de Arizona y líder del equipo de científicos en el año 2017 quienes exploraban la zona donde se han encontrado otras construcciones mayas, cuando localizaron la parte sur de la plataforma.1
La detección de esta estructura fue posible gracias a la utilización de una nueva tecnología llamada Light Detection and Ranging (Lidar) que, a través de láser, permite obtener un mapa preciso de los sitios rápidamente, lo que permitió detectar la enorme plataforma, que al ser tan grande vista desde la superficie parece una parte del paisaje natural.1
En el sitio se han detectado 7 etapas constructivas principales, cinco de las cuales fueron realizadas entre los años 1,000 y 800 a. C.2
Objetos descubiertos
Excavaciones realizadas en algunas partes de la estructura revelaron varios objetos que habían pertenecido a la civilización y que habían estado ocultos por siglos. Entre ellos, localizaron varios objetos decorativos y de carácter religioso o funcional, desde vasijas de barro, hachas de jade, hasta piedras talladas con formas de animales.1
Ofrendas y entierros
Hasta el momento, en Aguada Fénix se han encontrado cuatro ofrendas. Una de ellas es el entierro de un individuo, del que no se sabe sexo ni edad debido a la mala conservación del esqueleto, y que fue colocado de rodillas.2
Descripción del sitio
En Aguada Fénix, se han descubierto 21 centros ceremoniales todos con orientación norte-sur y en forma rectangular. La plataforma principal tiene una configuración llamada Patrón Formativo Medio del Usumacinta, conformado por una estructura de forma rectangular delimitada por montículos en sus cuatro costados, con un montículo en forma de “E” al centro y una plataforma oriental alargada de la cual salen 9 calzadas hacia diversos puntos de la ciudad. Se han detectado también versiones más pequeñas del complejo, que miden menos de 400 metros de longitud.2
Período de construcción
Las investigaciones realizadas con pruebas de radiocarbono indicaron que esta ciudad maya fue construida entre los años 1000 y 800 antes de Cristo, lo que la coloca como la edificación maya más antigua de la que se tiene registro, siendo una de las primeras pruebas que demuestran el paso que dio la civilización maya del nomadismo a un estilo de vida sedentario, y marca el inicio de la construcción de las ciudades-estado mayas.1
La construcción antigua más grande del mundo
La estructura principal es una meseta artificial de entre 10 y 15 metros de altura y de 1400 metros de largo por 400 de ancho, lo que le da un volumen de 3,8 millones de metros cúbicos, superior al de la Pirámide de La Danta, en El Mirador, Guatemala que tiene un volumen de 2,8 millones de metros cúbicos y a la Gran Pirámide de Guiza en Egipto la cual tiene un volumen de 2,6 millones de metros cúbicos,1 lo que convierte a esta plataforma en la construcción antigua más grande del mundo.3
La estructura construida con arcilla, algo inusual entre los mayas, tiene nueve calzadas que salen desde la plataforma, y se piensa que pudo haber servido para la práctica comunitaria de rituales.1 Se cree que los rituales posiblemente involucraron procesiones en las calzadas y la reunión de una gran cantidad de personas en la plaza rectangular. Era un lugar de reunión para la comunidad, lo que probablemente los motivó a construirlo.4
Abandono
Por motivos todavía desconocidos, el sitio fue abandonado por sus habitantes alrededor del año 750 a. C., y no se volvió a construir nada sobre el terreno, por lo que con el paso del tiempo fue cubierto por la selva, y posteriormente, desde mediados del siglo XX el área se usó para actividad ganadera.1
Importancia del descubrimiento
La importancia de Aguada Fénix radica en que siempre se creyó que la civilización maya se había desarrollado mucho tiempo después que los olmecas, sin embargo, ahora en Aguada Fénix se demuestra que prácticamente fueron culturas contemporáneas.12
Igualmente, gracias a las investigaciones, se sabe que este sitio arqueológico corresponde a un momento de cambio grande para la sociedad maya. Ya que antes de su construcción, los mayas eran nómadas y no usaba la cerámica. Vivían de la caza, de la pesca, y del cultivo del maíz. Sin embargo, a partir de la construcción de Aguada Fénix, se demuestra que empezaron a usar la cerámica y se volvieron sedentarios.5
El descubrimiento del sitio de Aguada Fénix cambia la teoría que se tenía sobre el desarrollo de la civilización maya y el desarrollo de la sociedad humana en general.
Ahora, el Lidar saca a la luz este importante centro de reunión junto al río Usumacinta, en la frontera entre México y Guatemala.
De hecho, el rastreo ha permitido descubrir un total de 21 centros ceremoniales en la zona.
La meseta principal de Aguada Fénix fue levantada a través del relleno de arcilla y tierra, así como restos de cerámicas, y se calcula que alcanzó este tamaño (en concreto, 1.413 metros de largo por 399 de ancho) hacia el año 800 antes de Cristo, según revelan las dataciones mediante carbono 14 de algunos restos arqueológicos localizados sobre el terreno. Aguada Fénix tiene lo que parecen “alas cuadradas unidas a los lados este y oeste de esta meseta le da una forma general estrecha y cruciforme”, dice el estudio.
Figuras halladas en el yacimiento de Aguada Fénix, México.
El área central domina otros cinco complejos menores, múltiples estructuras rectangulares y depósitos artificiales, y limita al este con humedales del sistema fluvial del río Usumacinta.
Además, nueve calzadas se extienden desde la meseta. Las vías norte y sur están conectadas con ella por grandes rampas. La calzada tiene una longitud de 6,3 km, con complejos menores a ambos lados. Al oeste aparece otra gran meseta de 390 por 270 metros y entre 15 y 18 de altura respecto a su alrededor; se ubica 1,7 kilómetros al oeste de la meseta principal.
Construcción faraónica
En la construcción participaron probablemente “miles de personas”, opina Inomata, pero posiblemente después de construirse la inmensa plataforma se reunían allí “únicamente para usos rituales, y luego volvían a sus lugares de residencia”.
Hacia el año 1.000 aC, la población maya combinaba en su alimentación la caza y la pesca con el cultivo de maíz a pequeña escala. “No eran completamente sedentarios y no usaban cerámica. Alrededor del 1000 A.C. o un poco antes comenzaron a utilizarla y a desarrollar asentamientos sedentarios. Creo que esto implicó un gran cambio en la forma en que la gente interactuaba entre sí. A medida que se asentaban y hacían más agricultura de maíz, tuvieron que negociar nuevos conceptos de uso o derechos de propiedad de tierras y propiedades. En este momento, el gran proyecto de colaboración de la construcción dio una nueva identidad de una comunidad. Probablemente [Aguada Fénix] era el monumento para todos. Más tarde, los grandes edificios mayas fueron principalmente para los gobernantes y las élites”, analiza el antropólogo.
Inicio de las prospecciones arqueológicas
En el lugar se han hecho por ahora unas pocas prospecciones arqueológicas, con una profundidad de hasta 7’5 metros, en las que se descubrió “un denso depósito de cerámica, huesos y conchas que cubrían que parece ser anterior a la construcción de la meseta”, explica el artículo que hoy se publica.
El equipo tiene el objetivo ahora de profundizar “en el área alrededor de la plataforma para investigar cómo vivía la gente durante este período”, detalla Inomata, para quien el lugar, hoy dedicado al pasto de la ganadería, podría ser atractivo para el turismo en el futuro, “pero puede no parecer tan impresionante como las altas pirámides para los no arqueólogos”.
Aguada Fénix guarda ciertas similitudes con el centro olmeca de San Lorenzo, de cronología similar y situado a unos 330 kilómetros de distancia. Pero en el centro maya no parece que existieran las desigualdades sociales que sí había en el imperio olmeca.
Aguada Fénix y otros complejos ceremoniales del mismo período sugieren la importancia “del trabajo comunal” en el desarrollo inicial de la civilización maya, dicen los investigadores.
Figuras halladas en el yacimiento de Aguada Fénix, México.
“En los sitios olmecas de San Lorenzo y La Venta hay una escultura de piedra de cabeza colosal que representa a gobernantes y enormes tronos de piedra. No hay tales cosas en Aguada Fénix. Creemos que aquí no había gobernantes como esos sitios olmecas” explica Inomata.
“Aguada Fénix es más similar a otros sitios mayas posteriores en términos de cerámica, etc. Pero Aguada Fénix y la región olmeca deben haber tenido contacto directo entre sí. En lugar de tener una influencia directa de la zona olmeca, había patrones más complejos de interacción entre varias regiones. La civilización Maya probablemente se desarrolló a través de estas comunicaciones”, añade el investigador.
Tradicionalmente, los arqueólogos pensaban que la cultura maya estaba organizada en una desigualdad social, en la que las élites organizaban los grandes proyectos de construcción. “Pero Aguada Fénix muestra que las grandes construcciones se hicieron en ausencia de una élite poderosa. Aunque probablemente hubo algunos líderes que jugaron papeles centrales en la planificación y organización de tales trabajos, el factor principal fue la participación voluntaria de la gente en tales construcciones. Esto nos dice el potencial de la colaboración humana que no necesariamente requiere un gobierno centralizado”, concluye Inomata en entrevista con La Vanguardia. “No es como las pirámides posteriores que simbolizaron el poder de los gobernantes. Aguada Fénix fue posiblemente más bien el símbolo del logro comunitario”.
Aguada Fénix – una vista desde el noreste a la plataforma principal MFU con el Grupo E en el centro y una cuadrícula rectangular de edificios secundarios (Alfonsobouchot bajo CC BY-SA 4.0)
La principal plataforma MFU en Aguada Fénix es el edificio maya más antiguo y masivo. La plataforma es de 1413 m de largo y 399 m de ancho. A una altura de unos 15 m, destronó la famosa pirámide de La Danta en El Mirador (Petón, Guatemala), considerada hasta la fecha como la pirámide maya más grande (72 m de altura) y la estructura sur más masiva de Mesoaméricas (con un volumen de 2.600.000 m3 le da a Tlachihualtepetl una gran pirámide de Cholula, que 3es la pirámide más masiva de las tierras de 4.450 m). El volumen de la plataforma en Aguada F?nix, incluyendo los recursos disponibles, se estimó en 3 200 000-4,40.000 m 33. Su diseño requirió entre 10 y 13 millones de días de trabajo.
El edificio maya más antiguo
Las huellas humanas más antiguas, descubiertas bajo la plataforma central MFU en Aguada Fenix, fueron lanzadas alrededor de 1200 a.C. al final de la era pre-polérica temprana. Sin embargo, la construcción de la plataforma comenzó un poco más tarde, alrededor de 1100-1050 BC. Cerca de 1000 a.C. la plataforma tenía 6 m de altura. La estructura terminó 800-750 a.C., por lo que tomó 250-350 años. Desde el período central, las víctimas de rehenes también provienen del eje central del Grupo E, cerca de la plataforma oriental. Los depósitos NR3, NR4, NR7, NR8 y NR9 que datan de 850 a.C. contenían piedra verde, incluyendo jadeit y cerámica.
Esquema de complejos de MFU en Aguada Fenix (izgato) y Buenavista (derecha)
(Figura. P.A. Trze-niowski CC BY-NC)
Los pilares del Universo
En depósitos NR7-9 también fechados por 850 a.C., los artefactos fueron dispuestos en forma de quinkunk, un símbolo que denota el eje del universo y cuatro direcciones cardinales. El depósito NR10, fechado 900 B.C., contenía artefactos de arcilla pintados de rojo, pero imitando la forma de ejes votivos de piedra verde (por ejemplo, jade, malachite, serpentina), dispuestos en forma de un quinkunksu. El más interesante, hasta ahora, ha sido el depósito No. 11, fechado 900 a.C. En los quinquitos de las conchas, allí se colocó un tinte: azul, verde y amarillo. Más tarde Maya, colores similares simbolizaban los lados del mundo. Gente de Aguada Fenix, de acuerdo. 900 d.C., por lo tanto, sabían de los quinkunks de piedra verde, así como de lo que tal forma simboliza, pero en ese momento no tenían acceso a minerales como jade.
Sitios ceremoniales descubiertos en Aguada Fénix revelan vínculos entre las culturas mayas y olmecas
El descubrimiento de 500 sitios ceremoniales en Tabasco y Veracruz, es uno de los principales hallazgos arqueológicos de los últimos años. El sitio Aguada Fénix que se localiza en Tabasco arroja nuevas y relevantes interpretaciones sobre el estilo de vida de las antiguas sociedades que habitaron Mesoamérica.
Erupción del monte Pelée
Erupción del monte Pelée – 1902
La erupción de 1902 del Monte Pelée fue una erupción volcánica en la isla de Martinica en el Arco Volcánico de las Antillas Menores del Caribe oriental, que fue una de las erupciones más mortíferas de la historia registrada. La actividad eruptiva comenzó el 23 de abril como una serie de erupciones freáticas desde la cumbre del monte Pelée. En cuestión de días, el vigor de estas erupciones superó todo lo observado desde que los europeos colonizaron la isla. Luego la intensidad disminuyó durante algunos días hasta principios de mayo, cuando las erupciones freáticas volvieron a aumentar. Los relámpagos cubrieron las nubes de la erupción y los vientos alisios arrojaron cenizas sobre las aldeas del oeste. Cayeron fuertes cenizas, que en ocasiones provocaron una oscuridad total. Algunos de los residentes afectados entraron en pánico y se dirigieron a la seguridad percibida de asentamientos más grandes, especialmente Saint-Pierre, a unos 10 km (6,2 millas) al sur de la cumbre de Pelée. Saint-Pierre recibió su primera caída de ceniza el 3 de mayo.[3]
Columna de erupción el 27 de mayo de 1902.
Volcán: Monte Pelée
Fecha de inicio: 23 de abril de 1902[1]
Fecha final: 5 de octubre de 1905[1]
Coordenadas: 14°48′27″N 61°10′03″W
Impacto: Aproximadamente 29.930 muertes; La erupción más mortífera del siglo XX.[2]
El monte Pelée permaneció relativamente tranquilo hasta la tarde del 5 de mayo, cuando una corriente de lodo arrasó un río en el flanco suroeste del volcán, destruyendo un ingenio azucarero. El flujo masivo sepultó a unas 150 personas y generó una serie de tres tsunamis al llegar al mar. Los tsunamis arrasaron la costa y dañaron edificios y barcos. Las explosiones se reanudaron la noche del 5 de mayo. A la mañana siguiente, partes de la columna de erupción se volvieron incandescentes, lo que significa que el carácter de la erupción había cambiado. Las erupciones freáticas finalmente habían dado paso a erupciones magmáticas cuando el magma llegó a la superficie. Estas erupciones continuaron durante el día y la noche siguientes.[3]
Una breve pausa fue rota por una tremenda erupción alrededor de las 8:00 am del 8 de mayo. Una oleada piroclástica (una nube de partículas de lava incandescentes suspendidas por gases abrasadores y turbulentos) se desplazó a la velocidad de un huracán por el flanco suroeste del volcán y llegó a Saint-Pierre a las 8:02 am. Escapar de la ciudad era prácticamente imposible. Casi todos los habitantes de la ciudad propiamente dicha (unas 28.000 personas) murieron, quemados o enterrados por la caída de mampostería. Las cenizas calientes provocaron una tormenta de fuego, alimentada por edificios destrozados e innumerables barriles de ron. Un superviviente dentro de la ciudad era un prisionero despistado que fue encerrado en una celda subterránea sin ventanas y luego fue descubierto por los trabajadores de rescate.[4] Los únicos supervivientes fueron unas pocas decenas de personas atrapadas dentro de los márgenes de la nube, que sufrieron graves quemaduras.[3]
La actividad explosiva del 20 de mayo provocó otras 2.000 muertes mientras los rescatistas, ingenieros y marineros llevaban suministros a la isla. Una poderosa erupción el 30 de agosto generó un flujo piroclástico que provocó la muerte de más de 800 personas. La erupción continuó hasta octubre de 1905.
Antes de la erupción
El monte Pelée (montaña pelada) es un volcán que domina la isla con una altura en la actualidad de 1397 ms.n.m. En 1902 la altura era mucho mayor.
Antes de la erupción de 1902, ya a mediados del siglo XIX, había signos de una mayor actividad de fumarolas en el cráter Étang Sec (Estanque Seco) cerca de la cumbre.[5] Las erupciones freáticas relativamente menores que ocurrieron en 1792 y 1851 fueron evidencia de que el volcán estaba activo y potencialmente peligroso. Los indígenas caribes estaban conscientes de la actividad volcánica de la montaña debido a erupciones anteriores en la antigüedad.
La isla de Martinica y la localización de la erupción, “Le Petit Journal”, 1902.
Las erupciones comenzaron el 23 de abril de 1902. A principios de abril, los excursionistas notaron la aparición de vapores sulfurosos que emanaban de las fumarolas cercanas a la cima de la montaña. Esto no se consideró importante, ya que en el pasado habían aparecido y desaparecido fumarolas. El 23 de abril se produjo una ligera lluvia de cenizas en las laderas sur y oeste de la montaña, junto con actividad sísmica. El 25 de abril la montaña arrojó una gran nube que contenía rocas y cenizas desde su cima, donde se encontraba la caldera Étang Sec. El material expulsado no causó daños importantes. El 26 de abril los alrededores quedaron cubiertos de ceniza volcánica procedente de una explosión; Las autoridades públicas todavía no ven ningún motivo de preocupación.
El 27 de abril, varios excursionistas subieron a la cima de la montaña y encontraron Étang Sec lleno de agua, formando un lago de 180 m (590 pies) de ancho. Había un cono de escombros volcánicos de 15 m (50 pies) de alto construido en un lado, alimentando el lago con un flujo constante de agua hirviendo. Se escucharon sonidos que se parecían a un caldero con agua hirviendo desde las profundidades del subsuelo. El fuerte olor a azufre se extendía por toda la ciudad, a 6,4 kilómetros del volcán, provocando malestar a personas y caballos. El 30 de abril, la Rivière des Pères y el río Roxelane crecieron, arrastrando rocas y árboles desde la cima de la montaña. Los pueblos de Prêcheur y Sainte-Philomène recibieron un flujo constante de ceniza.
A las 23:30 horas del 2 de mayo, la montaña produjo fuertes explosiones, terremotos y una enorme columna de denso humo negro. Cenizas y piedra pómez de grano fino cubrieron toda la mitad norte de la isla. Las explosiones continuaron a intervalos de 5 a 6 horas. Esto llevó al periódico local Les Colonies a posponer indefinidamente un picnic en la montaña previsto inicialmente para el 4 de mayo.[cita necesaria] Los animales de granja comenzaron a morir de hambre y sed, ya que sus fuentes de agua y alimentos estaban contaminadas con cenizas.
El sábado 3 de mayo, el viento empujó la nube de cenizas hacia el norte, aliviando la situación en Saint-Pierre. Al día siguiente, la lluvia de ceniza se intensificó y se cortó la comunicación entre Saint-Pierre y el distrito de Prêcheur. La nube de ceniza era tan densa que los barcos costeros temían atravesarla. Muchos ciudadanos decidieron huir de la ciudad, llenando al máximo las líneas de los vapores. El área estaba cubierta con una capa de fina ceniza blanca parecida a la harina.
El lunes 5 de mayo, la actividad pareció disminuir, pero alrededor de la 1:00 pm el mar retrocedió repentinamente unos 100 m (330 pies) y luego volvió, inundando partes de la ciudad, y apareció una gran nube de humo al oeste de la montaña. Una pared del cráter Étang Sec se derrumbó e impulsó una masa de agua hirviendo y lodo (un lahar) hacia el río Blanche, inundó la planta azucarera de Guérin y enterró a unas 150 víctimas a una profundidad de 60 m (200 pies) a 90 m (300 pies) de barro. Refugiados de otras zonas se apresuraron a llegar a Saint-Pierre. Esa noche, las perturbaciones atmosféricas desactivaron la red eléctrica, hundieron la ciudad en la oscuridad y aumentaron la confusión.
Mapa de las zonas afectadas por las erupciones. En gris oscuro la primera erupción y en gris claro, la segunda.
Al día siguiente, alrededor de las 02:00, se escucharon fuertes sonidos desde las profundidades de la montaña. El miércoles 7 de mayo, alrededor de las 04:00 horas, la actividad aumentó; las nubes de ceniza provocaron numerosos relámpagos volcánicos alrededor de la cima de la montaña, y ambos cráteres brillaron de color naranja rojizo en la noche. A lo largo del día, la gente iba abandonando la ciudad, pero más gente del campo intentaba encontrar refugio en la ciudad, aumentando su población en varios miles. Los periódicos seguían afirmando que la ciudad estaba a salvo. La noticia de la erupción del volcán Soufrière en la cercana isla de San Vicente tranquilizó a la población, que creía que era una señal de que la presión interna del Monte Pelée estaba aliviando. Sin embargo, el capitán Marina Leboffe, de la barca Orsolina, abandonó el puerto con sólo la mitad de su cargamento de azúcar cargado, a pesar de las protestas de los transportistas, ante la negativa de las autoridades portuarias y bajo amenaza de arresto. A muchos otros civiles se les negó el permiso para salir de la ciudad.[6] El gobernador Louis Mouttet y su esposa permanecieron en la ciudad. Por la tarde, los temblores del Monte Pelée parecieron calmarse nuevamente.
Fase climática
Evacuados en Rue du Pavé, Fort-de-France después de la erupción de 1902
El jueves 8 de mayo por la mañana, el operador de telégrafos del turno de noche enviaba los informes sobre la actividad del volcán al operador de Fort-de-France , afirmando que no había novedades importantes; su última transmisión a las 07:52 fue “Allez”, entregando la línea al operador remoto. Al segundo siguiente, la línea telegráfica se cortó. La ladera superior de la montaña se abrió y una densa nube negra salió disparada horizontalmente. Una segunda nube negra rodó hacia arriba, formando una gigantesca nube en forma de hongo y oscureciendo el cielo en un radio de 80 km (50 millas). Posteriormente se calculó que la velocidad inicial de ambas nubes era de más de 160 km (100 millas) por hora.[7] La oleada piroclástica horizontal abrazó el suelo y descendió a toda velocidad hacia la ciudad de Saint-Pierre, pareciendo negra y pesada, brillando desde dentro. Consistía en vapor sobrecalentado y gases y polvo volcánicos, con temperaturas superiores a los 1.075 °C (1.967 °F). En menos de un minuto alcanzó y cubrió toda la ciudad, encendiendo instantáneamente todo lo combustible. El barco de reparación de cables, CS Grappler, que flotaba en alta mar, fue incendiado y hundido por la marejada, con la pérdida de todos sus tripulantes.[8]
Siguió una ráfaga de viento, esta vez hacia la montaña. Luego llegó un aguacero de media hora de lluvia fangosa mezclada con cenizas. Durante las siguientes horas, se cortó toda comunicación con la ciudad. Nadie sabía qué estaba pasando, ni quién tenía autoridad sobre la isla, ya que el gobernador era inalcanzable y se desconocía su estatus.
Hay testigos anónimos de la erupción, probablemente supervivientes de los barcos en el momento de la erupción. Un testigo dijo que “la montaña explotó en pedazos; no hubo ninguna advertencia”, mientras que otro dijo que “era como una refinería de petróleo gigante”. Uno dijo: “la ciudad desapareció ante nuestros ojos”. El área devastada por la nube piroclástica cubrió aproximadamente 21 km2 (8 millas cuadradas), y la ciudad de Saint-Pierre fue la más afectada por los daños.
En el momento de la erupción, Saint-Pierre tenía una población de aproximadamente 28.000 habitantes, que se había engrosado con refugiados de las explosiones menores y los flujos de lodo emitidos por primera vez por el volcán. La leyenda cuenta anteriormente que de los 30.000 habitantes de la ciudad, sólo hubo dos supervivientes: Louis-Auguste Cyparis, un delincuente recluido en una celda subterránea de la cárcel de la ciudad por herir a un amigo con un machete, y Léon Compère-Léandre, un hombre que vivía en las afueras de la ciudad. En realidad, hubo varios supervivientes que lograron salir de los límites de la zona de la explosión.[cita necesaria] Muchos de estos supervivientes sufrieron graves quemaduras y algunos murieron más tarde a causa de sus heridas. Algunos se dirigieron a Le Carbet, justo al sur de Saint-Pierre, detrás de una cresta que protegía esa ciudad de lo peor del flujo piroclástico; Los supervivientes fueron rescatados en la playa por funcionarios de Martinica.[9]
Restos de San Pedro
Compère-Léandre declaró lo siguiente cuando se le preguntó sobre su supervivencia:
Sentí que soplaba un viento terrible, la tierra empezó a temblar y el cielo de repente se oscureció. Me di vuelta para entrar a la casa, subí con gran dificultad los tres o cuatro escalones que me separaban de mi habitación, y sentí que me ardían los brazos y las piernas, también el cuerpo. Me dejé caer sobre una mesa. En ese momento otros cuatro buscaron refugio en mi habitación, llorando y retorciéndose de dolor, aunque sus prendas no mostraban señales de haber sido tocadas por las llamas. Al cabo de diez minutos, una de ellas, la joven Delavaud, de unos diez años, cayó muerta; los demás se fueron. Me levanté y fui a otra habitación, donde encontré al padre Delavaud, todavía vestido y acostado en la cama, muerto. Estaba morado e inflado, pero la ropa estaba intacta. Enloquecido y casi vencido, me tiré en una cama, inerte y esperando la muerte. Mis sentidos volvieron a mí tal vez al cabo de una hora, cuando vi el techo ardiendo. Con fuerzas suficientes, con las piernas sangrando y cubiertas de quemaduras, corrí hacia Fonds-Saint-Denis, a seis kilómetros de Saint-Pierre.[6]
Una mujer, una empleada doméstica, también sobrevivió al flujo piroclástico pero murió poco después.[cita necesaria] Dijo que lo único que recordaba del evento fue un calor repentino. Murió poco después de ser descubierta. Un tercer superviviente fue Havivra Da Ifrile, una niña de 10 años que había remado hasta refugiarse en una cueva.[10] Entre las víctimas se encontraban los pasajeros y tripulaciones de varios barcos atracados en Saint-Pierre.
Restos del Roraima antes de hundirse
Se cree que un barco de vapor de pasajeros, el Roraima, desaparecido el 26 de abril, quedó envuelto por las cenizas de una explosión preliminar. Sin embargo, llegó al puerto de Saint-Pierre a las 06:30, poco antes de la erupción, y fue incendiado por el flujo piroclástico. Posteriormente se hundió; sus restos todavía están presentes frente a la costa de Saint-Pierre. Veintiocho miembros de su tripulación y todos los pasajeros excepto dos (un niño y su enfermera criolla) murieron a causa de la nube.[6]
Alivio
Aproximadamente a las 12:00, el gobernador en funciones de Martinica envió el crucero Suchet para investigar lo sucedido y el buque de guerra llegó a la ciudad en llamas alrededor de las 12:30. El intenso calor hizo retroceder a los grupos de desembarco hasta cerca de las 15:00, cuando el capitán desembarcó en la Place Bertin, la plaza arbolada y con cafés cerca del centro de la ciudad. No había ningún árbol en pie; los troncos desnudos, chamuscados y desnudos, yacían boca abajo, arrancados de raíz. El suelo estaba lleno de muertos. El fuego y un hedor sofocante impidieron una exploración más profunda de las ruinas en llamas.
14 de mayo de 1902 restos de víctimas
Vistas de St. Pierre, ruinas (¿Ludger Sylbaris a la izquierda?)
Mientras tanto, algunos supervivientes habían sido rescatados del mar por pequeñas embarcaciones; eran marineros que habían caído al agua por el impacto de la explosión y que habían estado aferrados a los restos del naufragio durante horas. Todos resultaron gravemente quemados. En el pueblo de Le Carbet, protegido de la nube de fuego por un alto promontorio en el extremo sur de la ciudad, hubo más víctimas, también gravemente quemadas; pocos de ellos vivieron más de unas pocas horas.[cita necesaria]
El área de devastación cubrió unos 20 km2 (10 millas cuadradas). Dentro de esta zona, la aniquilación de vidas y propiedades fue total; afuera había una segunda zona claramente definida donde hubo víctimas, pero los daños materiales fueron menores, mientras que más allá había una franja en la que la vegetación estaba quemada pero se salvaban las vidas. Muchas víctimas estaban en actitudes indiferentes, con rasgos tranquilos y reposados, lo que indicaba que la explosión los había alcanzado sin previo aviso; otros estaban contorsionados por la angustia.[cita necesaria] La ropa había sido arrancada de casi todas las víctimas atropelladas al aire libre. Algunas casas quedaron casi pulverizadas; Era imposible incluso para aquellos familiarizados con la ciudad identificar los cimientos de los puntos de referencia de la ciudad. La ciudad ardió durante días. Grupos de saneamiento penetraron gradualmente en las ruinas para deshacerse de los muertos mediante la quema; El entierro no fue posible debido al número de muertos. Miles de víctimas yacían bajo un sudario de cenizas, amontonadas en pilas de metros de profundidad, apelmazadas por las lluvias; muchos de estos cuerpos no fueron recuperados durante semanas y pocos fueron identificables.
Estados Unidos rápidamente ofreció ayuda a las autoridades de Martinica. El 12 de mayo, el presidente estadounidense Theodore Roosevelt ordenó a los Secretarios de Guerra, Marina y Tesoro que iniciaran medidas de ayuda de inmediato.[11] Varios barcos estadounidenses fueron enviados a la isla a toda prisa, a saber, el crucero Cincinnati, que se encontraba en Santo Domingo; el Dixie, un carguero reconvertido que transportaba raciones, suministros médicos y médicos del ejército;[4] y el remolcador Potomac de la Armada en San Juan, Puerto Rico. El presidente Roosevelt pidió al Congreso una asignación inmediata de 500.000 dólares para asistencia de emergencia a las víctimas de la calamidad. El Presidente dijo: “Una de las mayores calamidades de la historia ha caído sobre nuestra vecina isla de Martinica… La ciudad de St. Pierre ha dejado de existir… El gobierno de Francia… nos informa que Fort-de-France y toda la isla de Martinica siguen amenazadas, por lo que solicitan que, con el fin de rescatar a las personas que se encuentran en peligro de muerte y amenazadas de hambre, el gobierno de los Estados Unidos envíe lo antes posible los medios para transportarlas. de la isla asolada.” El Congreso de Estados Unidos votó a favor de 200.000 dólares de asistencia inmediata y convocó audiencias para determinar qué suma mayor podría ser necesaria cuando se pudiera conocer la naturaleza completa del desastre. En un llamamiento a fondos públicos, el Presidente autorizó a los administradores de correos a recibir donaciones para socorrer a las víctimas; un comité nacional de ciudadanos destacados se hizo cargo del fletamento de los barcos de suministro.
Canadá, el Reino Unido, Alemania, Francia, Italia, Dinamarca, Japón, Rusia y el Vaticano también ofrecieron ayuda.
Actividad posterior
La columna volcánica del monte Pelée
El 20 de mayo, una segunda erupción similar a la primera tanto en tipo como en fuerza destruyó lo que quedaba de Saint-Pierre, matando a 2.000 rescatistas, ingenieros y marineros que llevaban suministros a la isla.[12] Durante una poderosa erupción el 30 de agosto, un flujo piroclástico se extendió más al este que los flujos del 8 y 20 de mayo. Aunque no fue tan poderoso como las dos erupciones anteriores, el flujo piroclástico del 30 de agosto golpeó Morne Rouge, matando al menos a 800 personas,[13] Ajoupa-Bouillon[14] (250 muertes),[13] y partes de Basse-Pointe (25 víctimas mortales) y Morne-Capot, matando a 10.[13] Un tsunami causó algunos daños en Le Carbet.[14] Hasta la fecha, esta fue la última erupción fatal del Monte Pelée.[13]
A partir de octubre de 1902, una gran columna de lava creció desde el suelo del cráter Étang Sec, alcanzando un ancho máximo de aproximadamente 100 a 150 m (300 a 500 pies) y una altura de aproximadamente 300 m (1000 pies). Llamada “Aguja de Pelée” o “Torre de Pelée”, crecía en altura hasta 15 m (50 pies) por día, con más o menos el mismo volumen que la Gran Pirámide de Egipto. Se volvió inestable y se derrumbó en un montón de escombros en marzo de 1903,[15] después de 5 meses de crecimiento.
La erupción finalmente terminó el 5 de octubre de 1905.[1]
Efectos
El estudio de las causas del desastre marcó el inicio de la vulcanología moderna con la definición y el análisis del peligro volcánico más mortífero: los flujos y oleadas piroclásticas, también conocidos como nuées ardentes (fr: nubes ardientes). Las erupciones de tipo similar se conocen ahora como “erupciones de Peléan“. Entre los que estudiaron el monte Pelée se encontraban Antoine Lacroix y Angelo Heilprin. Lacroix fue el primero en describir el fenómeno nuée ardente (flujo piroclástico). [16] [17]
La destrucción causada por la erupción de 1902 fue rápidamente publicitada por los medios de comunicación modernos.[cita necesaria] Llamó la atención del público y de los gobiernos sobre los peligros y peligros de un volcán activo.
Esta erupción ha sido considerada una de las más violentas del siglo XX, solo siendo superada por las del monte Pinatubo en 1991, Volcán Santa María en 1902 y el monte Santa Helena en 1980. En muchos aspectos, los hechos se asemejan a los de Pompeya en el año 79.
Saint Pierre antes de la erupción (1902)
El vapor mixto SS Roraima anclado frente St. Pierre días antes de la erupción (al fondo, el Monte Pelée).
Aguja de lava formada después del cataclismo, fotografiada antes de su desmoronamiento.
Nube ardiente o flujo piroclástico fatal en descenso sobre St. Pierre.
Calle de St. Pierre después de la erupción.
Nube piroclástica sobre los restos de St.Pierre fotografiada el 6 de junio de 1902.
Ruinas de St.Pierre fotografiadas después del cataclismo de 1902.
Un hombre contemplando varias víctimas muertas durante la explosión.
Lorenz Fries
Lorenz Fries
Retrato de Lorenz Fries en una obra de 1523.
Lorenz Fries, latinizado Laurentius Phrisius (n. ca. 1490; m. 1531/32 en Metz12) fue un médico, astrólogo y geógrafo del Sacro Imperio Romano Germánico. Su obra más conocida fue el Spiegl der Artzny (“Espejo de la Medicina”), con ocho ediciones publicadas entre 1518 y 1557. También tuvo un papel relevante en la vulgarización y popularización de la obra geográfica de Martin Waldseemüller.
Carrera médica inicial
Portada de la edición de 1532 del Spiegel der Artzney.
Lorenz Fries nació hacia 1490, probablemente en Metz o quizás en Mühlhausen. Su apellido ha sido escrito de múltiples maneras: Fries, Friess, Frisius, Phrisius, Phryes, Phrijsen; él mismo se llamó “Laurentius Phryesen” en la portada de su libro más famoso.3 No se tienen datos ciertos sobre su educación, aunque se cree que pudo estudiar medicina en las universidades de Viena, Piacenza, Padua o Montpellier.4
Hacia 1516 se asentó en la ciudad alsaciana de Colmar, atendiendo a enfermos en el monasterio de San Agustín. Ese mismo año publicó su primer libro, una breve obra en latín sobre la sífilis, del cual no se conserva ninguna copia. En 1518 publicó un nuevo libro sobre la sífilis, en el que explicó el novedoso tratamiento mediante esencia de guayaco, un árbol caribeño traído por los españoles a Europa diez años antes.4 En el mes de septiembre de 1518 salió de la imprenta de Johann Grüninger en Estrasburgo la que sería la obra médica más conocida de Fries, el Spiegl der Artzny (“Espejo de la Medicina”), un libro de remedios caseros inspirado de Hipócrates, Galeno y Avicena y escrito en alemán que tuvo siete ediciones más hasta 1546.5
En 1519, Fries se mudó a Estrasburgo, tras un breve paso por Friburgo. En la imprenta de Grüninger publicó un tratado sobre manantiales. Poco después adquirió la ciudadanía al casarse con una mujer local, Barbara Thun. También se apuntó al gremio Zur Steltz.6
Actividad cartográfica
En Estrasburgo, Fries empezó a colaborar en obras de geografía y cosmografía. Sus iniciales, LF, aparecen en un mapamundi incluido en una edición del Polyhistor de Solino, publicada en 1520. El mapa es una reducción del gran planisferio mural de 1507 de Martin Waldseemüller, y durante mucho tiempo se consideró el mapa más antiguo con el topónimo “América”.7 No está claro cuál fue el papel de Fries en la elaboración de este mapa, ya que su título lo atribuye a Petrus Apianus. La intervención de Fries parece confirmada sin embargo por una pequeña línea de texto que, cerca de la isla Española, dice que allí hay guayaco, el remedio contra la sífilis publicitado por Fries.8
El impresor Grüninger le confió a Fries la preparación del texto y algunos mapas de una edición de la Geografía de Ptolomeo. Para los mapas y sus textos, Fries se inspiró en gran medida en obras de Waldseemüller. En el mapa de Tierra Santa, sin embargo, Fries cambió radicalmente la descripción: en vez del “iste terra est fertil” (“esta tierra es fértil”) de Waldseemüller, afirmó que Palestina era “estéril y sin cultivar”. El texto de Fries fue reproducido en 1535 en otra edición de la Geografía, a cargo del médico aragonés Miguel Servet. Se ha afirmado que uno de los argumentos con los que Calvino logró condenar a muerte a Servet fue esta afirmación sobre la esterilidad de la Tierra Santa, si bien algunos historiadores lo consideran un bulo.9 La Geografía de Fries fue publicada en 1522 por Johann Koberger. Se conservan muy pocos ejemplares y ello sugiere que se vendió mal, quizás debido a los numerosos errores de imprenta.7
El siguiente gran proyecto geográfico del dúo Grüninger – Fries fue una edición reducida del planisferio mural de Waldseemüller titulado Carta Marina, de 1516. Fries se encargó de traducir la mayoría del texto del mapa al alemán y, sobre todo, escribió un libro titulado Uslegung der Mercarthen que se vendía junto con el mapa y explicaba cómo usarlo. Además el Uslegung incluía descripciones de ciudades y países de todo el mundo.10 El libro fue publicado en 1525, pocos meses antes de que Fries abandonase Estrasburgo para siempre. Se supone que el mapa también salió al mercado ese año, aunque los dos ejemplares completos que se conservan son reediciones posteriores, de 1530 y 1531.7 La Carta Marina de Fries era de menor calidad cartográfica y artística que la de Waldseemüller pero su menor tamaño y el hecho de estar escrita en el lenguaje del pueblo llano la hicieron mucho más popular que la original.11
Astrología y persecución
Fries, como muchos médicos del Renacimiento, consideraba a la astrología una herramienta imprescindible de la medicina. Por ello, Fries publicó un tratado sobre cómo usar el astrolabio para calcular los días críticos de una enfermedad (1522), horóscopos para cada nuevo año (al menos entre 1524 y 1530) así como un libro titulado “Breve defensa de la Astrología” (1520), en respuesta a la condena de la astrología realizada poco antes por Martín Lutero.12 Esta última obra convirtió a Fries en blanco de las sátiras de autores protestantes. Tanto Fries como su editor, Grüninger, se encontraron cada vez más perseguidos en Estrasburgo, ya que el gobierno de la ciudad se había apuntado firmemente a las tesis de Lutero. La presión condujo a Fries a renunciar a su ciudadanía el 11 de mayo de 1525 y mudarse a Metz y luego a Colmar. En esa ciudad acogió unos años más tarde a otro médico católico, Paracelso, que huía de los protestantes de Basilea.10
Últimos años
Tras abandonar Estrasburgo, Fries ya no volvió a trabajar en obras geográficas. Sí publicó un par de libros más sobre medicina, uno de ellos sobre la enfermedad denominada sudor inglés (Sudoris anglici exitialis, 1529).13 También tuvo una fuerte controversia con Paracelso.13
Se desconoce la fecha exacta de fallecimiento de Fries pero debió ser hacia 1531.13
Tabula Terra Nova de 1513
De Lorenz Fries – UTA Libraries Cartographic Connections: map / texto, Dominio público, https://commons.wikimedia.org/w/index.php?curid=114780070
Mapamundi de la Geografía de 1522
De Ptolemy – " Early and Fine Printed Atlases" world maps, largely inspired from an earlier map by Martin Waldseemüller., Dominio público, https://commons.wikimedia.org/w/index.php?curid=51556151
1522
Tabu Nova Partis Aphri de 1522-1535
De Lorenz Fries – UTA Libraries Cartographic Connections: map / texto, Dominio público, https://commons.wikimedia.org/w/index.php?curid=112955264
Asia central en la Geografía de 1535
De Ptolemy; Johannes Regiomontanus; Wilibald Pirkheimer – BL Ruderman Antique Maps, Dominio público, https://commons.wikimedia.org/w/index.php?curid=51453882
Navegación de Cadamosto en el Uslegung
De Lorenz Fries – Bayerische Staatsbibliothek (BSB), Dominio público, https://commons.wikimedia.org/w/index.php?curid=38078176
Presunto Mapa de Lorenz Fries
Por imisiego en octubre 23, 2013
En mayo de 2011, en el Congreso anual de la Australian and New Zealand Map Society, el anticuario holandés Frederik Muller presentó un Mapa de su colección que, según sus investigaciones, sería obra desconocida del médico y cartógrafo Lorenz Fries, realizado antes de 1525 y destinado a la edición de la Geografía de Ptolomeo que publicó en ese mismo año el prestigioso impresor de Estrasburgo Johan Grüninger, en colaboración con el no menos famoso editor de Nuremberg, Anton Koberger. Lorenz Fries fue el continuador y difusor de la obra cartográfica de Martin Waldseemüller, dentro de un ambicioso proyecto divulgador en el que participaron humanistas como Willibald Pirckheimer y artistas como Alberto Durero. El mapa en cuestión, titulado Tabula Moderna Alterius Hemisphaerii, tiene sin duda el inconfundible “estilo” de los grabados xilográficos desarrollados entre 1507 y 1530 en dichas imprentas para varias ediciones de la Geografía de Ptolomeo, pero resulta “extraño” porque representa el Océano Pacífico en una supuesta fecha (1525) en la que la información disponible sobre esta zona y la que pudo llegar a estas ciudades de Europa central, parece a todas luces insuficiente para haber permitido esta representación. No han faltado críticas al respecto.
Reproducción del mapa “Tabula Moderna Alterius Hemisphaerii”, atribuido al cartógrafo Lorenz Fries (latinizado como Laurentius Phrisius), donde se representa el océano Pacífico. Se trata del primer mapa dedicado al océano Pacífico, donde aparecen todos los territorios comprendidos entre la línea de demarcación de Tordesillas y la longitud de las islas Molucas, situadas al Este del antimeridiano defendido por España en las juntas de Badajoz (1524). Sería también el mapa más antiguo conocido que representa Méjico como país. El autor Lorenz Fries, realizó también los mapas para las ediciones de la Geographia de Ptolomeo de 1522, 1525, 1535 y 1541, que tomó de la edición de Waldseemüller publicada en Estrasburgo en 1513, reduciéndolos de formato. El manuscrito original fue adquirido por el anticuario holandés Frederick Muller en 2009 en Sudamérica. La investigación de Muller presenta pruebas de su elaboración en esa fecha propuesta anterior a 1525: la datación del papel por el método del carbono 14, el análisis de la tinta empleada o la marca de agua del papel. Otros aspectos cartográficos permitirían adscribirlo a Fries y, concretamente, a un manuscrito preparado para tallar la plancha de madera que debía aparecer en la edición de Estrasburgo de 1525: el estilo del mapa, en típica proyección trapezoidal “donis”; el número del mapa (51) que correspondería a un mapa adicional que finalmente no se publicó en esa edición de Ptolomeo (1525), que contiene 50 mapas; los espacios dejados en blanco, tanto en el mapa como en el reverso, para incluir motivos xilográficos y letra capitular; el estilo de redacción del texto en el reverso, similar al de otras tábulas modernas de Fries. La información a partir de la que se realizó el mapa procede de Pedro Mártir de Anglería (1516), la segunda Carta de Hernán Cortés (1522) y la carta de Maximiliano Transilvano (1523) principalmente, además de posible información oral procedente de supervivientes de la nao Victoria. En 2009 se subastó en Sotheby’s otro manuscrito, aparentemente de la misma mano, estilo y propósito, con el título de “Tabula Moderna Tartarie”, que reforzaría la idea de la autenticidad del “mapa moderno del otro hemisferio”, al ser de origen totalmente diferente al adquirido por Muller y conocido en el Reino Unido desde hace más de 40 años, y que tampoco resultaría finalmente incluido en la edición de Estrasburgo de 1525.
Pirámide etrusca de Bomarzo
Pirámide etrusca de Bomarzo, en Italia
Bomarzo es una pequeña comuna en la provincia de Viterbo, en la región italiana de Lacio.
La región de Bomarzo fue una vez parte de la región histórica de Etruria, en la que los misteriosos etruscos dominaron desde alrededor del año 700 a.C. hasta el 400 a.C. Durante ese tiempo, construyeron una curiosa estructura de roca volcánica en el denso bosque de Bomarzo. Hoy en día, los locales se refieren a esa estructura como la «pirámide etrusca de Bomarzo«.
Los empinados escalones, una variedad de plataformas, celdas rectangulares y canales, que pasan en ángulos inusuales, adornan la pared frontal de la pirámide de Bomarzo. Los expertos sugieren que fue construida alrededor del siglo 7 a.C. como un altar de sacrificio. Si así fuese, entonces estaríamos ante el altar de roca más grande de Europa.
Descubrimiento de la pirámide de Bomarzo
La pirámide etrusca en Bomarzo es un descubrimiento relativamente nuevo. Dos arqueólogos locales la encontraron en la primavera de 1991, pero la noticia de su descubrimiento recibió poca respuesta y permaneció desconocida para el mundo. Posteriormente, en 2008, Salvatore Foschi, un residente de Bomarzo con una gran pasión por la historia local, decidió investigar y dar a conocer la pirámide etrusca.
¿Cómo es una pirámide etrusca?
A primera vista, el monumento de piedra etrusca en pendiente se asemeja a los artefactos mayas de las selvas de Belice y México. Y aunque su nombre sugiere una forma de pirámide, como la egipcia, técnicamente no es una pirámide. La piedra está triangulada hacia atrás solo en un lado, mientras que el resto del altar tiene ángulos casi rectos.
Los constructores etruscos esculpieron un misterioso megalito de una enorme roca gris de toba volcánica, o «peperino». Su longitud es de unos 17 metros, 8 metros en su punto más ancho y 10 metros de altura. Tres escaleras empinadas cubren la superficie frontal. En la parte inferior de las escaleras hay 20 escalones que conducen a dos altares secundarios. Las otras dos escaleras comienzan más arriba y tienen 9 y 10 escalones respectivamente. Conducen al altar mayor en la cima del acantilado. Sin duda, esta es una de las pirámides más inusuales del mundo.
¿Quiénes eran los etruscos?
Villanova precedió a los etruscos y fueron los fundadores de la cultura etrusca. Desde alrededor del año 1000 a.C. parece que ganaron una notable presencia en la península italiana. Este grupo prefirió las colinas altas para sus aldeas y muchas de aquellas aldeas se convirtieron posteriormente en fuertes ciudades etruscas.
Los etruscos fueron muy activos en el comercio en todo el Mediterráneo debido a sus habilidades marítimas. Eran guerreros hábiles y crueles, e incluso los romanos adoptaron algunos vehículos militares etruscos. Además, bellas obras de arte, cerámica, arquitectura y estructuras metálicas de alta tecnología eran marcas comerciales de la cultura etrusca. Ellos conquistaron gran parte de la península italiana desde la parte centro-norte hasta el sur de Italia, hasta llegar a Salerno. Sin embargo, su grandeza no duró mucho. Después de todo, en el siglo I a.C. los romanos conquistaron y devoraron a los etruscos, y casi todos los vestigios de su cultura.
Propósito de la pirámide etrusca de Bomarzo
La pirámide de Bomarzo pudo haber realizado varias funciones a lo largo del tiempo. El objetivo exacto no está claro. Sin embargo, muchos expertos creen que el megalito sirvió como altar de ritos religiosos paganos. Por esta razón, el hito recibió el apodo de «Piedra del Predicador». Se cree que en la civilización etrusca, todos los aspectos de la vida giraban en torno a un gran panteón de dioses. Entre ellos se encontraba el dios del inframundo, el dios del sol y el dios de la vegetación. Con tantos dioses, la veneración y las ceremonias religiosas eran un trabajo de tiempo completo. La vida etrusca estaba llena de rituales, incluidos los sacrificios de animales y personas.
La pirámide etrusca de Bomarzo es un descubrimiento relativamente nuevo. Dos arqueólogos locales llamados Giovanni Lamoratta y Giuseppe Maiorano lo encontraron en la primavera de 1991. Pero la noticia de su descubrimiento recibió poca fanfarria y permaneció desconocido para el mundo. Luego, en 2008, Salvatore Fosci , un residente local de Bomarzo apasionado por la historia local, decidió descubrir la pirámide etrusca. Cuando el abuelo de Fosci sirvió como una especie de custodio de este bosque, lo llamaron Sasso del Predicatore (“Piedra del Predicador”) o simplemente la “Piedra con escalones”. Las historias que su abuelo y su padre contaron sobre la piedra inspiraron a Salvatore a encontrarla y quitarle las raíces y la vegetación. De esta manera, haría accesible al mundo esa parte asombrosa de su historia.
¿Cómo es la pirámide etrusca?
A primera vista, el monumento de piedra etrusco inclinado recuerda a los artefactos mayas de las selvas de Belice y México. Aunque su nombre sugiere la forma de una pirámide, como las de Egipto, técnicamente no es una pirámide. La roca está triangular inversamente en un solo lado, mientras que el resto del altar muestra ángulos casi rectos.
Los constructores etruscos tallaron el misterioso megalito en una enorme roca gris de toba volcánica o “peperino”. Mide unos 53 pies de largo, 24 pies en su punto más ancho y 30 pies de alto. Tres empinadas escaleras cubren la fachada frontal. En la escalera inferior hay 20 escalones que conducen a dos altares menores. Las otras dos escaleras comienzan más arriba en la estructura y tienen nueve y diez escalones respectivamente. Estos conducen al altar mayor en la cima de la roca. A lo largo del borde angular, también hay un canal distinto que se divide en dos canales. Estos viajan hasta el fondo de la roca. Los cubículos esparcidos por las caras frontal y lateral pueden haber tenido postes de cerca o velas votivas.
Una vista de los canales y dos altares menores de la pirámide etrusca de Bomarzo.
¿Quiénes eran los etruscos?
Los villanovanos precedieron a los etruscos y fueron los fundadores de la cultura etrusca. Aproximadamente desde el año 1000 a. C., parecen haber desarrollado una presencia destacada en la península italiana. Este grupo prefería las colinas altas para sus aldeas, y muchas de esas aldeas se convirtieron más tarde en fuertes ciudades etruscas.
Los etruscos disfrutaron de una abundancia de comercio en el mar Mediterráneo como resultado de sus habilidades marineras. Eran guerreros expertos y feroces, e incluso los romanos adoptaron algunas de las formaciones de batalla etruscas. Además, el hermoso arte, la cerámica, la arquitectura y la orfebrería muy avanzada eran marcas registradas de la cultura etrusca. Conquistaron una gran parte de la península italiana desde el centro-norte hasta el sur de Italia hasta Salerno. Sin embargo, su fortuna no duraría. Finalmente, aproximadamente en el siglo I a. C., los romanos conquistaron y absorbieron a los etruscos y casi todos los vestigios de su cultura.
Propósito de la pirámide etrusca de Bomarzo
La Pirámide de Bomarzo puede haber cumplido diferentes funciones a lo largo del tiempo. El propósito preciso no está claro. Sin embargo, muchos expertos creen que el megalito actuaba como altar para ritos religiosos paganos. Por esta razón, el sitio recibe el sobrenombre de “Piedra del Predicador”.
Mark Cartwright de la Enciclopedia de Historia Antigua explica en su entrada sobre la civilización etrusca que todos los aspectos de la vida giraban en torno a un gran panteón de dioses. Entre ellos, había un dios del inframundo, un dios del sol y un dios de la vegetación. El dios principal era Tin, mientras que el dios que surgió de la tierra y les trajo su texto religioso, la disciplina etrusca (ahora perdida), era Tages.
Con tal multitud de dioses, la veneración y las ceremonias religiosas eran un trabajo de tiempo completo. La vida etrusca estaba llena de rituales como el sacrificio de animales y humanos, la lectura de presagios del tiempo o de las aves y la predicción del futuro mirando las entrañas o los órganos internos.
Sacrificio ritual
Aunque es posible que nunca estemos seguros de lo que ocurrió en la pirámide de Bomarzo, los sacrificios de humanos y/o animales en aras de la veneración o propiciación de las deidades eran una práctica común en todo el mundo antiguo. La sangre era un elemento muy potente durante los ritos religiosos etruscos y podía dar la inmortalidad a las almas muertas. Hay varias representaciones de sacrificios en las tumbas etruscas.
Una de las autoridades más respetadas del mundo sobre los antiguos etruscos, Nancy de Grummond, indica que aunque “los eruditos se han mostrado reacios a creer que los etruscos practicaban sacrificios humanos. . . Las recientes excavaciones realizadas por la Universidad de Milán (dirigidas por M. Bonghi Jovino y G. Bagnasco Gianni) en la monumental zona sagrada del Pian di Civita de Tarquinia han demostrado de una vez por todas que los sacrificios humanos eran efectivamente practicados por los etruscos, a través de la descubrimiento de una serie de entierros en este contexto no funerario, de bebés, niños y adultos” (de Grummond, AIA).
Drenaje de fluidos en los templos
Para los etruscos, era responsabilidad de los vivos proporcionar a los muertos el “sustento” necesario para la inmortalidad. En una tumba inusual en Tarquinia, un niño fue inhumado en lugar de cremado. Las deformidades de su cráneo indicaban que probablemente padecía epilepsia, que era una “enfermedad divina”. Por lo tanto, sus ataques fueron mensajes divinos directamente de los dioses. Cerca del niño había un altar con un canal para los líquidos del sacrificio que desembocaba directamente en un hueco en la tierra. Esto alude a una ceremonia ritual de culto posiblemente en nombre de Tages, la deidad juvenil que surgió de la tierra para proporcionar las escrituras religiosas. (Heimbuecher).
La pirámide etrusca de Bomarzo también contiene canales que pueden haber proporcionado un drenaje eficiente de líquidos durante los sacrificios rituales.
Ceremonias como los sacrificios de animales, el derramamiento de sangre en la tierra y la música y la danza solían tener lugar fuera de los templos construidos en honor de dioses concretos.
Marcos Cartwright
Otras teorías
Sin duda, los etruscos habrían considerado sagrado el altar. La pirámide se encuentra en dirección noroeste. Aquí es donde los etruscos creían que vivían los dioses del inframundo. El dios etrusco Satre también reside en la “región noroeste oscura y negativa”. Satre provocaría el pánico en la población al arrojar rayos a las profundidades de la Tierra.
Finestraccia (Ventana Fea)
Una talla de piedra que parece una silla se encuentra en la entrada de Finestraccia.
A medida que avanzas hacia la pirámide, encontrarás una llamativa estructura de piedra en el lado izquierdo del camino. Los expertos creen que alguna vez sirvió como tumba etrusca y que luego se convirtió en vivienda. Se desconoce la edad exacta de esta tumba, sin embargo, puede datar alrededor del siglo VII a. C., al igual que la pirámide. Quizás recibió el sobrenombre de Ventana Fea debido a las proporciones imprecisas de las aberturas y la puerta de la tumba. Además, un agujero en la esquina superior izquierda de la tumba puede ser o no una característica natural.
Las ventanas proporcionaban aire fresco al habitante de esta tumba excavada en la roca.
La Finestraccia originalmente tenía dos plantas. El piso inferior contenía la tumba y el sarcófago. El nivel superior constaba de viviendas o zona de almacenamiento.
La zona de la tumba de Finestraccia.
Desastre del Urquiola
Desastre del Urquiola
Coordenadas: 43°22′00″N 8°23′00″O
Localización
País: España
Datos generales
Tipo: petrolero
Histórico
El desastre del Urquiola fue un derrame de petróleo en Galicia provocado por el hundimiento del buque petrolero Urquiola en 1976.
El petrolero Urquiola fue protagonista, el 12 de mayo de 1976, de una de las peores catástrofes ecológicas acaecidas en España. Ese día, el buque petrolero, portando una carga de petróleo para la empresa Petrolíber, sufrió un accidente a la entrada de la ría del Burgo en Galicia, cuando quedó embarrancado al encallar contra una aguja rocosa existente a la entrada del mismo que estaba mal señalizada, según afirmó posteriormente un práctico del puerto. Aunque en ese accidente el buque no sufrió grandes daños y su capitán pidió la entrada a puerto, la Comandancia de Marina tomó la decisión de sacarlo a alta mar para alejarlo a 200 millas de la costa.
En las maniobras para su alejamiento el barco sufrió más daños y en el quinto intento de rescate se incendió y explotó. El capitán murió intoxicado al quedarse a bordo hasta el último momento. El vertido de unas 100.000 toneladas de crudo que portaba anegó las rías de Betanzos, Ferrol y Ares.
El 4 de mayo de 1982, el Parlamento aprobó una iniciativa para que la Junta de Galicia solicitara al Gobierno español el pago de indemnizaciones a los pescadores afectados por la catástrofe. Estos comenzaron a percibirlas en 1986 finalizando los últimos pagos en noviembre de 1992. En 1985 una Sentencia del Tribunal Supremo dictaminó que el costo total para las arcas públicas del desastre fue de más de 7000 millones de pesetas.1
El petrolero Urquiola
El Urquiola fue un buque petrolero de bandera española de 276,54 metros de eslora, 39,07 de manga y 15,19 de calado. Construido por Astilleros Españoles, en su factoría de Sestao (Vizcaya) fue botado en junio de 1973, tenía un peso muerto de 111.225 toneladas.2 Estando asegurado en 1.280 millones de las pesetas de entonces. La propulsión consistía en un motor principal de 25.000 BHP (Brake Horse Power, caballos efectivos de potencia al freno), cuatro generadores auxiliares para la potencia electrica del buque y tres calderas (una de generación de vapor a través de los gases de escape); podía alcanzar una velocidad máxima de 15 nudos. Llevaba tres turbo bombas que le permitían efectuar la descarga de crudo del buque en un plazo de 24 horas.
La tragedia
A las 08:20 horas del 12 de mayo de 1976 en la maniobra de entrada al Puerto de La Coruña, para efectuar la descarga en su refinería, toca unos bajos no señalados en las cartas. Ya con el barco detenido y una vez analizadas las averías, la Comandancia de Marina ordenó al Urquiola salir a la mar, lo que se produce a las 09:15 horas del mismo día. La maniobra se realiza por el mismo canal de la entrada, lo que sumado a que por la avería ocasionada en la maniobra de entrada, que le aumentaba el calado de proa en 2,5 metros, vuelve a tocar en la misma “aguja” causándole averías irreversibles que hacen que, tras una explosión registrada horas más tarde, arda por completo, consumiéndose con las llamas parte de su carga y vertiendo al mar otra parte causando una gran marea negra. Días más tarde con la ayuda del petrolero Camporraso, se trasiega al mismo el resto de la carga que todavía quedaba en su interior, en una operación bastante controvertida en su momento debido a su falta de seguridad.
Se hizo responsable de la tragedia al capitán del buque, Francisco Eduardo Rodríguez Castelo (único fallecido en la tragedia que murió de forma heroica tras las explosiones posteriores). Los tribunales lo exculparon, dando la razón a su familia, ya que ni la carta estaba actualizada y la Autoridad de Marina le obligó a ciabogar y salir por el mismo canal, con más calado por el agua embarcada tras la primera colisión, y con la marea más baja, por lo que la varada final fue inevitable.
Antecedentes de la tragedia
Entre los años 1953 y 1956 se levantó la carta n.º 9290, que se consideró la más idónea para acceder al puerto de La Coruña y fue la utilizada en la derrota del petrolero Urquiola veinte años más tarde.
Con la entrada en servicio de la refinería coruñesa (Petrolíber), en 1964, los petroleros que accedían al puerto de La Coruña fueron cada vez mayores, acentuando este hecho que, a partir del cierre del Canal de Suez en 1967, comenzaron a hacerse enormes. La Comandancia de Marina de La Coruña había sido notificada de la existencia de agujas por un buzo en 1967, y por una filial de Dragados y Construcciones en 1971. Según algunas fuentes, dos petroleros (se mencionan el Santiago y el Ildefonso Fierro) habían sufrido incidentes en ese mismo lugar aunque no tuvieron mayores consecuencias. En 1974 el capitán del Magdalena del Mar dio parte a la Comandancia sobre la existencia de la aguja rocosa que había detectado en el sonar de su barco.
Ante la posible existencia de agujas rocosas sin identificar se planteó, en 1976, realizar un nuevo levantamiento para hacer una nueva carta náutica aunque se mantiene el uso de la canal “N” para el acceso a la refinería. El Urquiola había usado, antes del accidente, este canal dieciséis veces para entrar cargado y sin novedad en “casi” todas las condiciones de marea.
Explosión y vertido
Tras el primer roce con el fondo a las 08:20 horas del 12 de mayo, y tras un primer informe de daños se detectó una entrada de crudo mezclado con agua en la cámara de bombas; se informó además que a la altura del 1E (contiguo al 1C) salía crudo al exterior, inundación en el cofferdam de proa, y a popa estribor, una pequeña pérdida de fuel al mar. Pasada una hora la situación estaba estabilizada con el petrolero adrizado y hocicado de proa unos 2,5 metros por la inundación del cofferdam y, por lo que se deduce, cuando menos del 1E. Con unos 18 metros de calado, desde el propio buque se informó a la Comandancia que era inconveniente (más bien imposible) acceder a la terminal, aunque con la sala de máquinas y la casi totalidad de los tanques de carga intactos, se podría de fondear, extender una barrera, trasegar a otro petrolero parte de la carga hasta reducir el calado y terminar el trabajo atracados al pantalán.
Hacia las 09:15 la Comandancia de Marina ordenó al Urquiola salir a la mar, con obligación de hacerlo “por el mismo canal por el que había entrado”. Semejante medida pretendía salvaguardar la ría de un desastre ecológico. Con su sobrecalado y habiendo bajado la marea 35 cm, a las 09:33, tras un choque, un enorme ruido y una fuerte vibración, el barco quedó súbitamente detenido en una situación muy próxima a donde había tocado fondo al entrar. Inmediatamente se ordenó “para” y se probó a dar avante y atrás, el buque estaban irremisiblemente trincados al fondo; días después los buceadores de la compañía de salvamento encontrarían un desgarrón en el casco de unos 60 metros de largo por 0,5 de ancho. Tras el impacto se produjo una escora de unos 10º a estribor y la proa se hundió hasta los escobenes, la brecha abierta afecto a algunos tanques de carga comenzando el vertido del crudo.
Tras evacuar a la tripulación, y tan sólo con el capitán Castelo y el práctico Sánchez Lebón a bordo, hacia las 13:53, se produjo una explosión, seguida de un pavoroso incendio. Ambos se arrojaron al mar sin poder ser rescatados por las embarcaciones. El práctico llegó a nado a la Cala del Canabal. El cadáver del capitán aparecería quemado y cubierto de petróleo dos días después.
Marea negra
Tras la explosión inicial se produjo un incendio de crudo que arrasó al petrolero durante dos días; afortunadamente, la ligereza de la carga permitió que casi sus tres cuartas partes ardieran en una descomunal hoguera o se evaporaran sin más. En su extinción definitiva tendrían una actuación destacada el CASI de Ferrol y el remolcador de la Armada RA-1.
Una vez estabilizada la situación, el petrolero Camporraso se amarró a boyas a cien metros escasos del casco del petrolero siniestrado y con la intervención del buque de salvamento holandés Smit Lloyd 106, se trasegó unas 7.700 toneladas de crudo que le quedaban a bordo. Esta operación fue criticada por falta de seguridad. Otras 4500 toneladas fueron recogidas a flote o en las playas, pero la carga restante se extendió por las rías de Ferrol, Ares y Betanzos arruinando la pesca durante una temporada; para desgracia de la fauna marina, entre 10.000 y 15.000 toneladas fueron tratadas en la mar con dispersantes y otras 2.000 quedaron pegadas a la costa reforzando el negro de los percebes.
El honor del capitán Castelo
Para el difunto capitán al principio todo fueron elogios: a los siete días de su muerte ya se le había concedido una Cruz del Mérito Naval a título póstumo y a los veinte la Medalla de Oro del Mérito Social Marítimo, pero posteriormente una sentencia de acuerdo con la Ley Penal y Disciplinaria de la Marina Mercante, hace “directamente responsable” del mismo al capitán, al jefe de máquinas y al 1º oficial, y subsidiariamente al 3º oficial y al 1º oficial de máquinas del Urquiola.
En 1979 el Ministerio de Defensa denegó por transcurso de plazo la indemnización solicitada por la viuda de Castelo y esta acudió a tribunales llegando el caso a la Sala Cuarta del Tribunal Supremo, que declaró probado que la muerte de Castelo se había producido a consecuencia de una sucesión de acontecimientos ocasionados por el mal funcionamiento de la Administración. En su Sentencia de 18 de julio de 1983 la Sala puntualizó que ello había acontecido
…sin que en esta serie encadenada de acontecimientos interviniera culpa o negligencia del citado capitán, que cumplió en todo momento con los deberes de su cargo de manera irreprochable y con tal dedicación y heroísmo que perdió su vida por su fidelidad a las tradicionales virtudes de los hombres de la mar y de su profesión de capitán de la Marina Mercante, a la cual honró en conducta ejemplar compartida por el práctico…
La sentencia sentó las bases para que las compañías aseguradoras ejercieran acción de regreso contra el Estado, que hubo de indemnizarlas en virtud de otra Sentencia del Supremo de fecha 6 de marzo de 1985. Posteriormente se erigió un monumento en un lugar de la ciudad de La Coruña, próximo al de la tragedia, dedicado al fallecido capitán Castelo.
El buque tras el accidente
Los restos del Urquiola, tras ser reflotados, fueron trasladados al puerto de Ferrol donde se desguazó la proa y se reutilizó la parte de popa, que tenía la sala de máquinas casi intacta, que fue usada en el buque bulkcarrier Argos botado en 1983.3 Esta nave pasó en 1988 a la Naviera Vizcaína con el nombre de Urduliz. El 29 de agosto de 1983 el Urduliz tuvo un incidente con el portaaviones nuclear de la armada de EE. UU. Dwight D. Eisenhower en el puerto de Hampton Roads cuando estaba esperando turno para cargar carbón en Norfolk.
En 1984 el Urduliz cambió de armador pasando a E.N. Elcano con el nombre de Castillo de Quermensó y pabellón de Bahamas estando en activo hasta el año 2002 que fue desguazado en Bangladés.
La confusión interesada
Desde el primer momento, las autoridades marítimas causantes de la desgracia se dedicaron a desviar y confundir a la opinión pública. Tres días después del accidente, el ministro de Obras Públicas afirmaba en La Voz de Galicia que el accidente del Urquiola es totalmente ajeno al puerto coruñés. Algo más tarde, el 26 de mayo, ahora en El Ideal Gallego, el contralmirante director del Instituto Hidrográfico de la Marina declaraba: Es improbable la existencia de una piedra desconocida en el canal. Al día siguiente, en el mismo diario, el contralmirante que ejercía de director general de Navegación apostillaba: Yo no creo demasiado en esa aguja misteriosa. Pudo haber acontecido una pequeña explosión interna que originase el boquete.
Con el fin de justificar la decisión de alejar el buque, que fue la verdadera causa de la catástrofe, se mintió y manipuló a una opinión pública inexperta repitiendo una y otra vez que, de otra forma, el buque podría haber explotado en la refinería de La Coruña causando decenas de muertos.
El informe del instructor del caso
Como el código de Justicia Militar aplicable entonces permitía juzgar a un muerto, se abrió consejo de guerra para determinar las responsabilidades del caso. La Armada nombró un juez instructor encargado de la Causa 106/76, instruida con motivo de la varada del petrolero Urquiola en la Bahía de la Coruña. El designado fue el capitán de navío (CN) Isidro Fontenla Roji, quien realizó un trabajo extenso y asombroso: 1052 folios por las dos caras, más 83 folios con el Resumen de los hechos, más un montón de documentos anexos. Las bochornosas conclusiones a que llega el informe, terminado dos años después del accidente, todavía despiertan indignación. Una a una fueron desmentidas por la sentencia del Tribunal Supremo de 18 de julio de 1983.
Isidro Fontenla no estuvo a la altura de las circunstancias. No supo ver que tenía en sus manos el accidente marítimo de la Transición y redactó un informe sesgado y parcial, de puro y duro estilo franquista, que seguramente (¿No había ocurrido siempre así en los cuarenta años de gobierno del general Franco?) él creyó incontestable e indiscutible. También ahí se equivocó. El informe era simplemente patético, hasta el punto de que la Administración ni siquiera lo tuvo en cuenta durante el proceso en el Tribunal Supremo.
Por un lado, el instructor consideró incompetente y errónea la navegación que el buque realizaba al entrar en puerto, así como las reacciones de la dotación ante el accidente. Tirando de diccionario de sinónimos, el informe arremete contra los oficiales y el capitán del buque y concluye que el accidente les produjo (repare el lector en el etcétera final):
Incoherencias, indecisiones, impresiones, titubeos, contradicciones, errores, desconocimientos, equivocaciones, confusiones, precipitaciones, desaciertos, dudas, incertidumbres, nervios, sustos y miedos, etc.
Por el contrario, las actuaciones de la Comandancia de Marina se presupusieron correctas o, más simplemente, ni siquiera se examinaron, como tampoco se tomaron en consideración los hechos que claramente demostraban su responsabilidad. Se ignoraron las denuncias previas al accidente acerca de la existencia de bajos no señalizados en el canal, a pesar de que constaban de forma fehaciente, y, sobre todo, no se analizó si la orden de salir a la mar de inmediato tenía algún sentido, qué se perseguía con ella, qué beneficios hubiera podido acarrear y por qué se adoptó sin oír previamente al capitán del buque. En realidad, se contempló sólo una parte del siniestro, la que tuvo lugar antes de tocar fondo, lo cual dejaba fuera a las autoridades y ponía el foco en el buque, el capitán y la tripulación. Lo demás, cuanto sucedió a partir de ese momento, se ignoró por completo. Algo similar se hizo años después cuando el AEGENA SEA embarrancó frente a la Torre de Hércules y lo mismo hicieron los redactores del informe de la Comisión Permanente de Investigación de Siniestros Marítimos en el naufragio del PRESTIGE.
Unos meses después del accidente del URQUIOLA, el Instituto Hidrográfico de la Marina oficialmente reconoció la existencia en el canal, no de una sino de nueve agujas como la que rajó el casco del Urquiola. Conociendo ese dato, el instructor incluyó en su informe una serie de comentarios bochornosos acerca del concepto de canal y enfilación y sobre el valor de las cartas náuticas.
Para rematar su informe, el instructor recomendó someter al capitán y oficiales del buque a un consejo de guerra:
… por infracción de medidas de seguridad, de acuerdo con el artículo 62 de la Ley Penal y Disciplinaria de la Marina Mercante, resultan directamente responsables el capitán del Urquiola, don Francisco Rodriguez Castelo, el Jefe de Máquinas, don Angel Urizar Aramburu y el Primer Oficial de Puente don Eugenio Tesouro Fernandez, así como subsidiariamente el Tercer Oficial de Puente don Miguel Angel Gomez Peña y el Primer Oficial de Máquinas don José Caamaño Dominguez.
No satisfecho con empapelar a tanta gente, el informe proponía también (folios 1120 a 1124) el enjuiciamiento, en aplicación de los artículos 315 y 317 del Código de Justicia Militar y de los artículos 453 y 457, 462 y 463 del Código Penal Común, de diversos periódicos («El Correo Español», «La Gaceta del Norte», la «Hoja del Lunes» de La Coruña), de algunos oficiales del URQUIOLA que habían realizado declaraciones en medios de comunicación comentando sus experiencias, de un profesor de la Escuela de Náutica de La Coruña por la misma razón, (declaraciones la mar de moderadas y cargadas de razón) y de los firmante del libro URQUIOLA, la verdad de una catástrofe, los tres marinos que dirigían entonces la organización de SLMM. Y ya puestos, afirma sobre la prensa toda que, de sus informaciones, incluso gráficas, se deduce en general una clara tendencia hostil a la administración en sus autoridades. Por ello se estima como conveniente la aplicación de lo dispuesto en el artículo 465 del Código Penal Común reclamando la oportuna satisfacción.
El URQUIOLA entraba perfectamente por el canal del Este o de Seixo Blanco y las agujas no señalizadas se encontraban en pleno canal. El CN Fontenla sabía perfectamente todo esto. Tan sólo su obcecación por no reconocer la culpabilidad de sus compañeros de armas y superiores le llevó a conclusiones tan disparatadas, ridículas y lesivas para los profesionales de la marina mercante.
La sentencia del Tribunal Supremo que selló el caso
Tras el indulto, la viuda del capitán solicitó al Tribunal Supremo una declaración expresa de que su marido había actuado con total profesionalidad, lo que permitió al más alto órgano judicial sentenciar que los hechos que se dejan probados acreditan que el fallecimiento del Capitán del Urquiola se produjo a consecuencia de una sucesión temporal de acontecimientos que se inició con el primer choque de la quilla de dicho barco ocasionada por el anormal funcionamiento del servicio público de cartografía marina y de información sobre el mar y litoral y culminó con dicho fallecimiento, que pudo haber sido evitado con el funcionamiento normal del servicio público de ordenación, seguridad y salvamento marítimos, sin que en esa serie encadenada de acontecimientos interviniera culpa o negligencia del citado Capitán. (TST de 18 de julio de 1983).
La misma sentencia califica duramente la decisión de la autoridad de marina de alejar el buque después de su primera tocada de fondos, una orden apresurada, incompetente, irrazonable y absurda.
Ello llevó a que, finalmente, el Estado español fuera condenado a indemnizar tanto al armador del buque por la pérdida de éste, como a los propietarios del crudo derramado.
Para entonces, los cargos responsables se habían jubilado y desde luego nadie dentro de la burocracia marítima tomó nota del mal que se había causado, a saber, adoptar una política de alejamiento del riesgo sin análisis ni reflexión ninguna. Veintiséis años después, ante una situación en esencia idéntica, la avería del PRESTIGE, la Administración demostraría que no había aprendido nada de la experiencia del URQUIOLA.
El día que llovió petróleo en A Coruña LA OPINIÓN
Primera explosión en el Urquiola frente al puerto de A Coruña. Imagen extraída de http://fotosdelpasado-jm.blogspot.com
El petrolero Urquiola recién construido en la ria de Bilbao. Imagen extraída de https://www.grijalvo.com
Humareda del Urquiola en A Coruña. Imagen extraída de http://fotosdelpasado-jm.blogspot.com
El capitán y el practico se arrojan al mar desde una altura de 15 metros, el capitán apareció muerto dos días después y el practico consiguió alcanzar la costa de Mera después de nadar la distancia de 2 kilómetros durante 3 horas.
Se produjo una pavoroso incendio que lleno de una negra humareda los cielos de A Coruña, Betanzos, Ares y Ferrol, arrojando al mar toneladas de crudo que tiñeron de negro nuestras costas por un largo periodo de tiempo.15 toneladas de crudo fueron tratadas con dispersantes y 2.000 toneladas pasaron a formar parte del paisaje costero gallego.
Imagen de la ciudad de La Coruña bajo el humo del Urquiola. Imagen extraída de http://fotosdelpasado-jm.blogspot.com
Pietro Coppo
Pietro Coppo
El mapa del mundo de Pietro Coppo (1520)
Pietro Coppo (1469/70 – 1555/56; latín : Petrus Coppus) fue un italiano geógrafo y cartógrafo que escribió una descripción del mundo entero conocido en el siglo XVI, acompañado de un conjunto de mapas dispuestos sistemáticamente, uno de los primeros rutters y también una descripción precisa de la Istria península de, acompañada de su primer mapa regional.
Vida
Pietro Coppo nació en Venecia y estudió con Marcus Antonius Coccius Sabellicus. También estuvo profundamente influenciado por la Historia Natural de Plinio.[1] Después de varios viajes por Italia y el Mediterráneo y un período de seis años que pasó en Creta,[2] en 1499 se trasladó a Izola debido a sus obligaciones laborales como escribano municipal, donde se casó con Colotta di Ugo de una rica familia Izola. Estuvo activo en la vida pública de la localidad, donde ejerció como notario, y también la representó en varias ocasiones ante el Dogo de Venecia.[3]
De toto orbe
El trabajo principal de Coppo fue la descripción, acompañada de un atlas de 22 mapas, de todo el mundo conocido, titulado De toto orbe. Fue escrito en cuatro volúmenes desde 1518 hasta 1520 y también incluía el contorno de la costa de las Américas, un secreto militar en ese momento,[3] pero permaneció inédito.[4] Las dos muestras conservadas de la obra se conservan en Bolonia ( Biblioteca comunale dell’Archiginnasio) y en París ( Bibliothèque nationale de France).[5]
En todo el mundo
Desde 1524 hasta 1526, Coppo preparó una versión abreviada de De toto orbe bajo el título De Summa totius Orbis. Este trabajo contenía 15 mapas grabados en madera dispuestos sistemáticamente, llamados Tabulae (“tablas”), para ser publicados en un libro, representando así el primer “moderno” atlas, aunque esta distinción se otorga convencionalmente a Abraham Ortelius.[6] Se ha conservado en tres copias, conservadas en Venecia, París y Piran. Solo el manuscrito de Piran contiene los mapas.[7]
Portolano
En 1528 publicó la obra Portolano, una de las primeras rutinas del mundo. Aunque no se conserva en su totalidad (probablemente debido al uso frecuente), sus copias se han conservado en Piran, Parish y Londres (el Museo Británico).[2]
Del sito de l’Istria
En su descripción de Istria (Del sito de l’Istria; 1529, publicado en 1540, Venecia), publicó la primera descripción geográfica y una copia del primer mapa regional de Istria, producido en 1525 y ya incluido en De Summa totius Orbis.[2] Su copia inscrita en piedra ahora se puede ver en el Parque Pietro Coppo en el centro de la ciudad de Izola en el suroeste de Eslovenia.[8] [2]
Códice Piran
En el dos manuscritos de De Summa totius Orbis y Portolano se conservan, encuadernados en un solo bloque de texto, junto con mapas grabados en madera impresos Museo Marítimo Sergej Mašera de Piran. Esta es probablemente la obra cartográfica más preciosa que se conserva en Eslovenia y considerada patrimonio cultural de clase mundial. Es único principalmente porque a diferencia de otras obras de Coppa conservadas, contiene 15 mapas grabados en madera coloreados y dispuestos sistemáticamente.[9] [6]
En 1520, el cartógrafo y geógrafo italiano Pietro Coppo diseñó un mapamundi como se conocía en el siglo XVI. Este mapa en particular es el último en el que aparece la “Cola del Dragón”, la larga extremidad que sale de la parte oriental de Asia y se inclina hacia el sur. Este mapa es interesante porque muestra la visión del geógrafo Claudio Ptolomeo de un Océano Índico casi sin salida al mar, algo que ilustró más de 1500 años antes del trabajo de Coppo en el siglo XVI.
Se hizo un nombre particularmente con sus obras del campo de la cartografía. Escribió cuatro trabajos extensos y para aquellos tiempos muy avanzados:
– De toto orbe (1518-1520)
– El más grande del mundo entero (1524-1526)
– Portolano (1528) en
– Del Sito de Listria (1529, 1540)
El Museo Marítimo »Sergej Mašera« Piran tiene manuscritos muy valiosos de dos de sus obras: De Summa totius orbis y Portolano. Ambos están encuadernados en un bloque de libro, con 15 mapas a color adjuntos. Este trabajo se llama Código Piran.
De Summa totius orbis está escrito en latín y comprende una revisión del mundo entero que conocía en ese momento. Portolano, en cambio, está escrito en italiano; comprende una descripción de los lugares e islas litorales del Mar Mediterráneo y los que se encuentran fuera del Estrecho de Gibraltar, junto con las distancias entre los lugares, los vientos locales y otros detalles. Este trabajo estaba destinado principalmente a ayudar a la gente de mar durante sus viajes.
Histriae tabula (1573)
De especial importancia entre sus mapas es el Mapa de Istria, ya que resulta ser el mapa provincial más antiguo que se conserva de esta península y la visualización detallada más antigua de cualquier parte del territorio esloveno. Fue realizado en 1525.
Echa un vistazo al mapa de Istria. Notarás que difiere un poco de los mapas modernos. Trate de encontrar y marcar en él las ciudades de Piran, Izola, Koper, Trieste, Poreč (Parenzo), Vodnjan (Dignano) y Pula (Pola).
Los mapas grabados en madera de 15 colores de Coppo, reunidos en el Código Piran, representan el mundo entero que conocía en ese momento y es uno de los primeros intentos de publicar un atlas impreso. Los originales de las obras de Coppo, conservados en el Museo Marítimo de Piran, se conservan en condiciones especiales debido a su extremado valor y antigüedad y sólo se pueden ver en ocasiones excepcionales.
Vela
Vela
Serie de Observatorios
Vela era el nombre de un grupo de satélites desarrollados como el elemento Vela Hotel del Proyecto Vela por los Estados Unidos para detectar detonaciones nucleares y monitorear el cumplimiento del Tratado de Prohibición Parcial de Pruebas de 1963 por parte de la Unión Soviética.
País de origen: Estados Unidos
Operador: Fuerza Aérea de EE. UU.
Aplicaciones: Reconocimiento
Especificaciones
Régimen: Órbita muy elíptica
Vida de diseño: 15 años
Estado: Retirado
Lanzado: 12
Operacional: 0
Retirado: 12
Lanzamiento inaugural: Vela 1A
Último lanzamiento: Vela 6B
Programa: Proyecto Vela & Integrated Operational Nuclear Detection System (IONDS).
Campo: Satélite de reconocimiento
Lanzamiento: 1963 hasta 1970
Lanzacohetes: Atlas – Agena – Titan IIIC
Fin de la misión: 1984
Duración: 15 años
Misa en el lanzamiento: de 150 a 261 kg
Vela comenzó como un programa de investigación de bajo presupuesto en 1959. Terminó 26 años después como un sistema espacial militar exitoso y rentable, que también proporcionó datos científicos sobre fuentes naturales de radiación espacial. En la década de 1970, la misión de detección nuclear fue asumida por los satélites del Programa de Apoyo a la Defensa (DSP). A fines de la década de 1980, se amplió con los satélites del Sistema de posicionamiento global (GPS) Navstar. El programa ahora se llama Sistema Operativo Integrado de Detección NuDet (Detonación Nuclear) ( IONDS).
Despliegue
Se construyeron doce satélites, seis del diseño del Vela Hotel y seis del diseño Advanced Vela. La serie Vela Hotel fue para detectar pruebas nucleares en el espacio, mientras que la serie Advanced Vela fue para detectar no solo explosiones nucleares en el espacio sino también en la atmósfera.
Todas las naves espaciales fueron fabricadas por TRW y lanzadas en pares, ya sea en un propulsor Atlas – Agena o Titan III -C. Fueron colocados en órbitas de 118.000 km (73.000 millas),[1] muy por encima de los cinturones de radiación de Van Allen. Su apogeo fue aproximadamente un tercio de la distancia a la Luna. El primer par de Vela Hotel se lanzó el 17 de octubre de 1963,[2] una semana después de que entrara en vigencia el Tratado de Prohibición Parcial de Pruebas, y el último en 1965. Tenían una vida útil de seis meses, pero solo se cerraron después de cinco años. Los pares Advanced Vela se lanzaron en 1967, 1969 y 1970. Tenían una vida útil nominal de diseño de 18 meses, que luego se cambió a siete años. Sin embargo, el último satélite que se apagó fue el Vehículo 9 en 1984, que se había lanzado en 1969 y había durado casi 15 años.
La serie Vela comenzó con el lanzamiento de Vela 1/2 el 17 de octubre de 1963, un vuelo que también marcó el viaje inaugural del vehículo Atlas-Agena SLV-3. El segundo par de satélites se lanzó el 17 de julio de 1964 y el tercero el 20 de julio de 1965. El último lanzamiento falló levemente cuando un motor vernier Atlas se apagó en el despegue, mientras que el otro nonio operaba a niveles de empuje por encima de lo normal. Esto resultó en una inclinación ligeramente más baja de lo normal para los satélites, sin embargo, la misión se llevó a cabo con éxito. El problema se debió a un mal funcionamiento de la válvula de asiento a vernier LOX.
Los satélites Vela posteriores se cambiaron al propulsor Titan IIIC debido a su mayor peso y complejidad. Se lanzaron tres conjuntos más el 28 de abril de 1967, el 23 de mayo de 1969 y el 8 de abril de 1970. El último par de satélites Vela operó hasta 1985, cuando finalmente se cerraron, la Fuerza Aérea afirmó que eran los más antiguos del mundo en funcionamiento. Permanecieron en órbita hasta su descomposición a fines de 1992.
Instrumentos
El satélite Vela-5A / B en su sala blanca. Los dos satélites, A y B, se separaron después del lanzamiento.
Los satélites Vela originales estaban equipados con 12 detectores de rayos X externos y 18 detectores internos de neutrones y rayos gamma. Estaban equipados con paneles solares que generaban 90 vatios.
Los satélites Advanced Vela estaban equipados adicionalmente con dos sensores de fotodiodo de silicio sin imágenes llamados bhangmetros que monitoreaban los niveles de luz en intervalos de menos de milisegundos. Podrían determinar la ubicación de una explosión nuclear dentro de aproximadamente 3,000 millas. Las explosiones nucleares atmosféricas producen una firma única, a menudo llamada “curva de doble joroba”: un destello corto e intenso que dura alrededor de 1 milisegundo, seguido de una segunda emisión de luz mucho más prolongada y menos intensa que toma una fracción de segundo a varios segundos. El efecto se produce porque la superficie de la primera bola de fuego es rápidamente superada por la onda de choque atmosférica en expansión compuesta de gas ionizado. Aunque emite una cantidad considerable de luz en sí mismo, es opaco y evita que la bola de fuego mucho más brillante brille a través. A medida que la onda de choque se expande, se enfría y se vuelve más transparente, lo que permite que la bola de fuego mucho más caliente y brillante vuelva a ser visible.
No solo fenómeno natural se conoce la producción de esta firma, aunque se especuló con que el Velas podría grabar excepcionalmente raros eventos dobles naturales, tales como un meteoro huelga en la nave espacial que produce un destello brillante o desencadenante en un rayo Superbolt en la atmósfera de la Tierra, como pudo haber ocurrido en el incidente de Vela.[3] [4] [5]
También estaban equipados con sensores que podían detectar el pulso electromagnético de una explosión atmosférica.
Se requería energía adicional para estos instrumentos, y estos satélites más grandes consumían 120 vatios generados a partir de paneles solares. Por casualidad, los satélites Vela fueron los primeros dispositivos en detectar explosiones de rayos gamma cósmicos.
Observaciones controvertidas
Alguna controversia todavía rodea al programa Vela ya que el 22 de septiembre de 1979 el satélite Vela 5B (también conocido como Vela 10 y OPS 6911[6]) detectó el característico destello doble de una explosión nuclear atmosférica cerca de las Islas Príncipe Eduardo. Aún explicado de manera insatisfactoria, este evento se conoce como el Incidente de Vela. El presidente Jimmy Carter inicialmente consideró que el evento era evidencia de una prueba nuclear conjunta de Israel y Sudáfrica, aunque el informe ahora desclasificado de un panel científico que posteriormente nombró mientras buscaba la reelección concluyó que probablemente no fue el evento de una explosión nuclear.[cita requerida] Una explicación alternativa implica un evento magnetosférico que afecta a los instrumentos.
Un incidente anterior ocurrió cuando una intensa tormenta solar el 4 de agosto de 1972 activó el sistema en modo evento como si hubiera ocurrido una explosión, pero esto fue rápidamente resuelto por el personal que monitoreaba los datos en tiempo real. [7]
En 2018, un nuevo estudio confirmó que es muy probable que se tratara de una prueba nuclear, realizada por Israel. [8] [9]
Vela 5A y 5B
El detector de rayos X de centelleo (XC) a bordo del Vela 5A y su Vela 5B gemelo constaba de dos cristales de NaI (Tl) de 1 mm de espesor montados en tubos fotomultiplicadores y cubiertos por una ventana de berilio de 0,13 mm de espesor. Los umbrales electrónicos proporcionaron dos canales de energía, 3–12 keV y 6–12 keV.[10] Además del anuncio de rayos X de Nova indicado arriba, el detector XC a bordo del Vela 5A y 5B también descubrió y anunció la primera explosión de rayos X jamás reportada.[11] El anuncio de este descubrimiento precedió al anuncio inicial del descubrimiento de explosiones de rayos gamma en 2 años. Delante de cada cristal había un colimador de listones que proporcionaba un ancho completo a la mitad de la apertura máxima (FWHM) de ~ 6,1 × 6,1 grados. El área efectiva del detector fue de ~ 26 cm 2. Los detectores escanearon un gran círculo cada 60 segundos y cubrieron todo el cielo cada 56 horas.[12] La sensibilidad a las fuentes celestes estaba severamente limitada por el alto fondo intrínseco del detector, equivalente a aproximadamente el 80% de la señal de la Nebulosa del Cangrejo, una de las fuentes más brillantes del cielo en estas longitudes de onda.[12]
El detector de rayos X satelital Vela 5B siguió funcionando durante más de diez años.
Vela 6A y 6B
Al igual que los satélites Vela 5 anteriores, los satélites de detección de pruebas nucleares Vela 6 formaban parte de un programa dirigido conjuntamente por los Proyectos de Investigación Avanzada del Departamento de Defensa de EE. UU. Y la Comisión de Energía Atómica de EE. UU., Administrado por la Fuerza Aérea de EE. UU. Las naves espaciales gemelas, Vela 6A y 6B, se lanzaron el 8 de abril de 1970. Se utilizaron datos de los satélites Vela 6 para buscar correlaciones entre estallidos de rayos gamma y eventos de rayos X. Se encontraron al menos dos buenos candidatos, GB720514 y GB740723. Los detectores de rayos X fallaron en Vela 6B el 27 de enero de 1972 y en Vela 6A el 12 de marzo de 1972.
Papel de Vela en el descubrimiento de estallidos de rayos gamma
El 2 de julio de 1967, a las 14:19 UTC, los satélites Vela 4 y Vela 3 detectaron un destello de radiación gamma diferente a cualquier firma de armas nucleares conocida.[13] Sin saber qué había sucedido pero sin considerar el asunto particularmente urgente, el equipo del Laboratorio Científico de Los Alamos, dirigido por Ray Klebesadel, archivó los datos para su investigación. A medida que se lanzaron satélites Vela adicionales con mejores instrumentos, el equipo de Los Alamos continuó encontrando explosiones inexplicables de rayos gamma en sus datos. Al analizar los diferentes tiempos de llegada de las ráfagas detectadas por diferentes satélites, el equipo pudo determinar estimaciones aproximadas para las posiciones del cielo de dieciséis ráfagas[14] y descartar definitivamente un origen terrestre o solar. Contrariamente a la creencia popular, los datos nunca se clasificaron.[15] Después de un análisis exhaustivo, los hallazgos se publicaron en 1973 como un artículo de Astrophysical Journal titulado “Observaciones de estallidos de rayos gamma de origen cósmico”.[14] Esto alertó a la comunidad astronómica sobre la existencia de explosiones de rayos gamma (GRB), ahora reconocidos como los eventos más violentos del universo.
Lanzamientos
Historial de lanzamiento | |||||||
N º de pedido. | Satélite | Fecha de lanzamiento | Lanzacohetes | Masa | Instrumentos | ID de Cospar | Comentario |
1 | Vela 1A | 17 de octubre de 1963 | Atlas Agena -D | 150 kilogramos | 3 instrumentos | 1963-039A | |
2 | Vela 1B | 1963-039C | |||||
3 | Vela 2A | 17 de julio de 1964 | Atlas Agena -D | 150 kilogramos | 8 instrumentos | 1964-040A | |
4 | Vela 2B | 1964-040B | |||||
5 | Vela 3A | 20 de julio de 1965 | Atlas Agena -D | 150 kilogramos | 8 instrumentos | 1965-058A | |
6 | Vela 3B | 1965-058B | |||||
7 | Vela 4A | 28 de abril de 1967 | Titán -3C | 231 kilogramos | 9 instrumentos | 1967-040A | |
8 | Vela 4B | 1967-040B | |||||
9 | Vela 5A | 23 de mayo de 1969 | Titán -3C | 259 kilogramos | 8 instrumentos | 1969-046D | |
10 | Vela 5B | 1969-046E | |||||
11 | Vela 6A | 8 de abril de 1970 | Titán -3C | 261 kilogramos | 8 instrumentos | 1970-027A | |
12 | Vela 6B | 1970-027B |
Avance del proyecto
El proyecto Vela, luego el programa del Sistema Integrado de Detección Nuclear Operativa (IONDS) lanzado por los Estados Unidos para monitorear la aplicación del Tratado de Prohibición Parcial de Ensayos Nucleares firmado en 1963, tiene tres componentes: Vela Uniform debe monitorear las señales sísmicas emitidas por un prueba nuclear subterránea, Vela Sierra detecta pruebas atmosféricas desde el suelo, mientras que Vela Hotel debe detectar las mismas pruebas desde el espacio. El Proyecto Vela es desarrollado por DARPA y supervisado por la Fuerza Aérea de los Estados Unidos . El nombre Vela se elige en referencia a la constelación de las Velas. Doce satélites, en dos subseries, son construidos por la empresa TRW. Los instrumentos están siendo desarrollados por el Laboratorio Nacional de Los Alamos, que ha adquirido experiencia en el desarrollo de detectores de rayos cósmicos y rayos gamma mediante el desarrollo de cargas útiles para cohetes de sondeo.
Despliegue
Los satélites son lanzados por parejas por lanzadores Atlas / Agena en 1963 (Vela 1), 1964 (Vela 2) y 1967 (Vela 3). Versiones posteriores más pesadas por cohetes Titan IIIC en 1967 (Vela 4), 1969 (Vela 5) y 1970 (Vela 6). Se colocan en una órbita circular alta (altitud 137.000 km) con una inclinación orbital de 36 °. Cada par circula en la misma órbita pero ocupa una posición opuesta (a 180 °) para garantizar en conjunto una vigilancia completa de la superficie del globo.
Los satélites Vela han cumplido por completo sus objetivos y también han aportado información científica que ha tenido un impacto significativo en el campo de la astronomía (viento solar, estallido de rayos gamma). Todos los satélites funcionaron al menos 10 veces más que la duración para la que fueron diseñados (6 meses). Los satélites de la versión mejorada (Vela 5 y 6) funcionaron hasta que fueron puestos voluntariamente fuera de servicio el 27 de septiembre de 1984 casi 15 años después de su lanzamiento.
Características técnicas
El satélite Vela tiene la forma de un poliedro regular de 26 lados cuyo cuerpo está cubierto de células solares que generan 120 vatios. Se estabiliza por rotación a razón de 2 revoluciones por segundo (primeras versiones) y luego 1 revolución por segundo para las versiones Vela 5 y 6. Su masa está entre 150 kg (Vela 1) y 261 kg (Vela 6). El par de satélites incluye un motor de apogeo responsable de colocar el satélite en su órbita final.
Instrumentos
Estructura interna de un satélite Vela.
Primer plano de 2 satélites Vela poco antes de su lanzamiento.
Satélites 1A a 4B
Detector de rayos x
Instrumento presente en satélites de Vela 1A
Detector de rayos gamma
Instrumento presente en satélites de Vela 1A
Detector de neutrones
Instrumento presente en satélites de Vela 1A
El detector de neutrones identifica tanto los neutrones generados por una explosión nuclear como los de origen espacial (subproductos de los rayos cósmicos, otros). Con este instrumento se midieron electrones con una energía entre 1 y 100 MeV.
Experimento de viento solar
Instrumento presente en satélites de Vela 4A
El instrumento está compuesto por 4 contadores Geiger y un analizador electrostático que permite el estudio del viento solar y los electrones de baja energía del espacio interplanetario y la cola de la magnetosfera. Se utilizaron contadores Geiger para medir el flujo y la distribución angular de electrones con energía superior a 45 keV.
Espectrómetro de electrones de protones ⇒ Analizador electrostático y tubos Geiger
Instrumento presente en los satélites Vela 2A a 3B
Medida de la distribución angular y del espectro energético de partículas en la magnetosfera y el viento solar. Un contador Geiger cuenta electrones con energía superior a 45 keV. Un analizador electrostático mide la energía de iones y electrones según una cuadrícula de 16 valores entre 0,3 y 20 keV y evalúa aproximadamente su distribución angular con respecto al Sol.
Detector de radiación de fondo
Instrumento presente en los satélites Vela 2A y 2B
Contador de rayos X de centelleador
Instrumento presente en satélites de Vela 3A
Este instrumento se utiliza para medir el flujo de rayos X emitidos por el sol. También se utiliza para medir el flujo integrado de protones entre 3 y 100 MeV.
Detector de circuito estático
Instrumento presente en satélites de Vela 2A
Este instrumento mide la intensidad, distribución, variaciones de tiempo y espectro de energía de los electrones presentes en la región de transición y en la cola de la magnetosfera. Las partículas medidas son electrones cuya energía está entre 45 y 430 keV y protones entre 180 y 570 keV. En la versión a bordo del Vela 3A, la medición toma electrones cuya energía está entre 30 y 475 keV y protones entre 180 y 570 keV. En la versión a bordo del Vela 4A, la medida transporta los electrones cuya energía está entre 30 y 700 keV.
Tubos Geiger
Instrumento presente en los satélites Vela 2A a 3B
Este detector se utiliza para analizar casos en los que el detector de circuito estático identifica electrones y protones de la misma energía.
Magnetómetro
Instrumento presente en los satélites Vela 2A a 3B
El magnetómetro mide el campo magnético en un solo eje perpendicular al eje de rotación del satélite. La sensibilidad del detector cubre el rango 0-63 gamma.
Detector de rayos X y gamma con centelleadores
Instrumento presente en satélites de Vela 4A
Detector ultravioleta extremo
Instrumento presente en satélites Vela de 3A
Telescopio de partículas energéticas de circuito sólido
Instrumento presente en satélites de Vela 4A
El instrumento incluye 4 detectores de partículas tipo semiconductor, un tubo fotomultiplicador y un centelleador anti-coincidencia con un campo óptico de 30 °. Se utiliza para medir la intensidad y dirección de protones con energía entre 0,5 y 100 MeV y núcleos alfa con energía entre 12 y 400 MeV.
Satélites 5A a 6B
Uno de los instrumentos del satélite Vela 5B.
Detector ultravioleta extremo
Dos detectores miden la radiación ultravioleta extrema emitida por el Sol respectivamente en las longitudes de onda de 30 a 150 A y 120 a 900 A. El instrumento reproduce el espectro aproximado del flujo.
Detector de rayos X solar
Telescopio de partículas solares
El instrumento se utiliza para medir la intensidad y dirección de los protones solares con energía entre 0,3 y 50 MeV y núcleos alfa solares con energía entre 2 y 100 MeV . Permite identificar y medir los flujos de núcleos de deuterio, tritiul y helio-3. El instrumento incluye 3 telescopios orientados a 45 °, 90 ° y 135 ° con respecto al eje de rotación del satélite. Cada telescopio incluye un tubo colimador con un campo óptico de 30 ° y un detector de partículas de tipo circuito sólido.
Detector de electrones
Viento solar
Rayos cósmicos
Detector de neutrones
Astronomía de rayos gamma
Historial de lanzamiento
Lanzamiento de Vela 3A y 3B por un cohete Atlas Agena -D el 20 de julio de 1965.
Resultados científicos
La primera señal de una explosión de rayos gamma registrada el 2 de julio de 1967 por un instrumento a bordo de un satélite Vela 4.
El descubrimiento de estallidos de rayos gamma
Las explosiones de rayos gamma son los fenómenos astronómicos más violentos de nuestro Universo. Se caracterizan por una emisión de rayos gamma que suele durar desde unos pocos milisegundos hasta unos minutos. La radiación gamma solo es observable directamente desde el espacio, por lo que la observación de estallidos de rayos gamma está condicionada por el desarrollo de detectores gamma a bordo de satélites artificiales. Los satélites Vela equipados con ellos para detectar pruebas nucleares son los primeros en descubrir estallidos de rayos gamma accidentalmente enjulio 1967. La primera versión de los satélites, Vela 1, tiene instrumentación de baja sensibilidad. Además, los detectores de cada satélite pueden reaccionar ante partículas cargadas de fuentes ya conocidas (rayos cósmicos emitidos por el Sol, radiación emitida por una supernova, etc.). Pero enjulio 1967, una señal que dura unos segundos con un pico doble atípico es percibida simultáneamente por los detectores de dos satélites Vela 4. Los ingenieros del Laboratorio Nacional de Los Alamos liderados por Ray Klebesadel, quienes analizan los datos proporcionados por los satélites Vela, están buscando una explicación, pero no hay ninguna tormenta solar o supernova en esta fecha. El equipo del laboratorio es consciente de que se trata de un fenómeno asombroso, pero en la medida en que los detectores no proporcionan la ubicación de la fuente o la distancia a la misma, posponen un análisis más profundo para la provisión de detectores más sensibles a bordo de las generaciones posteriores de satélites Vela. Estos fueron lanzados entre 1969 (Vela 5) y 1970 (Vela 6). Al analizar el momento preciso de detección de los estallidos de rayos gamma por los distintos satélites, los ingenieros logran por triangulación localizar el origen de dieciséis de estos fenómenos en el cielo, lo que les permite eliminar las fuentes de radiación conocidas en ese momento. (Supernova, Tierra, Luna, Sol). Los datos, que estaban cubiertos por el secreto militar debido a la naturaleza del programa Vela, fueron desclasificados en 1973 y el descubrimiento de las misteriosas señales se hizo público en un artículo escrito por el equipo de Los Alamos y publicado en el Astrophysical Journal. El nuevo fenómeno se llama “explosión de rayos gamma” o GRB (“Gamma Ray Burst”).
Los datos recogidos por los satélites Vela 5A, B, 6A y 6B permitieron identificar 73 estallidos de rayos gamma entre Julio de 1969 y Abril de 1979. Los satélites Vela 6A y B también se utilizaron para buscar correlaciones entre las explosiones de rayos gamma y las emisiones de rayos X. En dos casos (GB720514 y GB740723), se detectaron datos que parecían indicar un vínculo.
Detección de prueba nuclear
El incidente de Vela
La 22 de septiembre de 1979, un instrumento (el bhangmeter) de uno de los satélites Vela detecta un doble destello de luz (un destello corto seguido de un destello largo) considerado característico de una explosión nuclear. En el pasado, esta firma de luz detectada por un satélite Vela podría haberse asociado cada vez (en 41 casos) con una explosión nuclear real. La señal luminosa del 22 de septiembre ocurre en un área de 5.000 km de diámetro que incluye el extremo sur de África, el Océano Índico y el Atlántico Sur, así como una pequeña parte de la Antártida.
Varios hechos recientes sugieren que Sudáfrica, Israel o los dos países juntos, pueden haber querido realizar una prueba nuclear a pesar de la presión ejercida por las dos superpotencias de la época. Sin embargo, existen algunas inconsistencias entre los datos proporcionados por los dos bhangmetros redundantes instalados a bordo del satélite Vela. Dados los riesgos políticos, el gobierno de los Estados Unidos está lanzando una investigación exhaustiva para determinar si realmente se realizó una prueba y quién la realizó. Participaron numerosos organismos públicos, laboratorios y empresas externas. Se analizan los datos proporcionados por los satélites Defense Support Program (DSP), Satellite Data System (SDS) y Defense Meteorological Satellite Program (DMSP), todos los portadores de detectores capaces de identificar una explosión nuclear, así como las señales de las cadenas de boyas Sistema de vigilancia acústica de sonido (SOSUS) y Sistema de localización de impacto de misiles (MILS) responsables de monitorear los submarinos de misiles soviéticos y localizar el área de precipitación de ojivas nucleares. Las muestras de la atmósfera y la vegetación en varios países de la región son realizadas por agentes estadounidenses para buscar rastros de lluvia radiactiva. Aunque algunos laboratorios concluyen que efectivamente hubo una explosión nuclear (por ejemplo, el Laboratorio de Investigaciones Navales de la Armada de los Estados Unidos), la conclusión es que las señales detectadas probablemente fueron producto de la colisión de un micrometeorito con un satélite.
Erupción del Krakatoa
Erupción del Krakatoa 1883
La erupción de 1883 del Krakatoa (indonesio: Letusan Krakatau 1883) en el estrecho de Sunda se produjo del 20 de mayo al 21 de octubre de 1883, alcanzando su punto máximo en las últimas horas de la mañana del 27 de agosto, cuando más del 70% de la isla de Krakatoa y su archipiélago circundante fueron destruidos, se derrumbó en una caldera.
Fotografía durante la erupción de 1883.
Volcán: Krakatoa
Fecha de inicio: 20 de mayo de 1883[1]
Fecha final: 21 de octubre de 1883 (?)[1]
Ubicación: Archipiélago de Krakatoa, estrecho de Sunda, Indias Orientales Holandesas (ahora Indonesia) 6.102°S 105.423°E
Impacto: 20 millones de toneladas de azufre liberadas; caída de cinco años de 1,2 °C (2,2 °F)
Fallecidos: 36.417–120.000
El cambio de geografía tras la erupción
La erupción fue uno de los eventos volcánicos más mortíferos y destructivos de la historia registrada. La explosión se escuchó a 3.110 kilómetros (1.930 millas) de distancia, en Perth, Australia Occidental, y Rodrigues, cerca de Mauricio, a 4.800 kilómetros (3.000 millas) de distancia[3] La onda de presión acústica dio la vuelta al mundo más de tres veces.[4] Al menos 36.417 muertes se atribuyen a la erupción y los tsunamis que creó.
En los días y semanas posteriores a la erupción del volcán se sintieron importantes efectos adicionales en todo el mundo. Se informó de actividad sísmica adicional hasta febrero de 1884, pero cualquier informe posterior a octubre de 1883 fue desestimado por la investigación posterior de Rogier Verbeek sobre la erupción.
Temprana
En los años previos a la erupción de 1883, la actividad sísmica alrededor del volcán Krakatoa fue intensa y los terremotos se sintieron hasta en Australia. A partir del 20 de mayo de 1883, la salida de vapor comenzó a producirse regularmente desde Perboewatan, el más septentrional de los tres conos de la isla. Las erupciones de ceniza alcanzaron una altitud estimada de 6 km (20.000 pies) y se podían escuchar explosiones en Batavia (Yakarta), a 160 km (100 millas) de distancia.[5]
Las erupciones en Krakatoa comenzaron de nuevo alrededor del 16 de junio, con fuertes explosiones y una espesa nube negra que cubrió las islas durante cinco días. El 24 de junio, un viento predominante del este despejó la nube y se pudieron ver dos columnas de ceniza saliendo del Krakatoa. Se cree que el asiento de la erupción fue uno o varios respiraderos nuevos que se formaron entre Perboewatan y Danan. La violencia de las erupciones en curso provocó que las mareas en los alrededores fueran inusualmente altas y los barcos anclados tuvieron que ser amarrados con cadenas. Se sintieron terremotos en Anyer, Banten, y los barcos comenzaron a reportar grandes masas de piedra pómez al oeste, en el Océano Índico.[5]
A principios de agosto, un ingeniero topográfico holandés, el capitán HJG Ferzenaar, investigó las islas Krakatoa.[5] Observó tres columnas de ceniza importantes (las más nuevas de Danan), que oscurecían la parte occidental de la isla, y columnas de vapor de al menos otros once respiraderos, principalmente entre Danan y Rakata. Cuando aterrizó, notó una capa de ceniza de aproximadamente 0,5 m (1 pie 8 pulgadas) de espesor y la destrucción de toda la vegetación, dejando solo tocones de árboles. Desaconsejó cualquier otro aterrizaje.[5]
Fase climática
El 25 de agosto, las erupciones del Krakatoa se intensificaron. Aproximadamente a las 13:00 horas del 26 de agosto, el volcán entró en su fase paroxística. A las 2:00 pm, se podía ver una nube de ceniza negra a 27 km (17 millas) de altura. En ese momento, la erupción era casi continua y se podían escuchar explosiones cada diez minutos. Los barcos dentro de un radio de 20 kilómetros (12 millas) del volcán informaron una fuerte caída de ceniza, con trozos de piedra pómez caliente de hasta 10 cm (4 pulgadas) de diámetro aterrizando en sus cubiertas. Entre las 19:00 y las 20:00 horas, un pequeño tsunami azotó las costas de Java y Sumatra, a 40 km (25 millas) de distancia.
El 27 de agosto se produjeron cuatro enormes explosiones que marcaron el punto culminante de la erupción. A las 5:30 am, la primera explosión se produjo en Perboewatan, lo que provocó un tsunami que se dirigió a Telok Betong, ahora conocido como Bandar Lampung. A las 6:44 am, Krakatoa explotó nuevamente en Danan, y el tsunami resultante se propagó hacia el este y el oeste. La tercera y mayor explosión, a las 10:02 am, fue tan violenta que se escuchó a 3.110 km (1.930 millas) de distancia, en Perth, Australia Occidental, y en la isla de Rodrigues en el Océano Índico, cerca de Mauricio, a 4.800 km (3.000 millas) de distancia, donde se cree que la explosión fue un disparo de cañón desde un barco cercano. La tercera explosión ha sido considerada el sonido más fuerte de la historia.[6] [7] [8]:602 [4]:79 Se ha calculado que el volumen de la explosión que se escuchó a 160 km (100 millas) del volcán fue de 180 dB.[9] Cada explosión estuvo acompañada de tsunamis que se estima que alcanzaron más de 30 metros (98 pies) de altura en algunos lugares. Una gran zona del estrecho de Sunda y lugares de la costa de Sumatra se vieron afectados por los flujos piroclásticos del volcán. Se ha estimado que la energía liberada por la explosión equivale a unos 200 megatones de TNT (840 petajulios),[10] aproximadamente cuatro veces más poderosa que la Bomba Zar, el arma termonuclear más poderosa jamás detonada. Esto la convierte en una de las explosiones más poderosas de la historia. A las 10:41 am, un deslizamiento de tierra arrancó la mitad del volcán Rakata, junto con el resto de la isla al norte de Rakata, provocando la explosión final.[6]
Onda de presión
La onda de presión generada por la colosal tercera explosión irradió desde Krakatoa a 1.086 km/h (675 mph). Se estima que la erupción alcanzó los 180 dB, lo suficientemente fuerte como para escucharse a 5.000 kilómetros (3.100 millas) de distancia.[11]:248 Fue tan poderoso que rompió los tímpanos de los marineros en el RMS Norham Castle de Castle Line, que se encontraba frente a Sumatra,[11]:231,234 y provocó un pico de más de 8,5 kilopascales (2,5 inHg), en el manómetro conectado a un gasómetro en la planta de gas de Batavia a 160 km (100 millas) de distancia, sacándolo de la escala.[4]:69 [11] :218 [nota 1]
La onda de presión se registró en barógrafos de todo el mundo. Varios barógrafos registraron la ola siete veces durante cinco días: cuatro veces con la ola alejándose del volcán hasta su antípoda y tres veces viajando de regreso al volcán.[4]:63 Por lo tanto, la onda dio la vuelta al mundo tres veces y media. Ash fue impulsada a una altura estimada de 80 km (50 millas).
Las erupciones disminuyeron rápidamente a partir de ese momento y el Krakatoa quedó en silencio en la mañana del 28 de agosto. Pequeñas erupciones, en su mayoría de lodo, continuaron hasta octubre de 1883. Para entonces, quedaba menos del 30% de la isla original.
Efectos
La combinación de flujos piroclásticos, cenizas volcánicas y tsunamis asociados con las erupciones del Krakatoa tuvo consecuencias regionales desastrosas. Algunas tierras en Banten, aproximadamente a 80 km al sur, nunca fueron repobladas; volvió a ser jungla y ahora es el Parque Nacional Ujung Kulon. El número oficial de muertos registrado por las autoridades holandesas fue de 36.417.[12]
“Las cenizas ardientes de Ketimbang”
Verbeek y otros creen que la última gran erupción del Krakatoa fue una explosión lateral u oleada piroclástica. Alrededor del mediodía del 27 de agosto de 1883, una lluvia de ceniza caliente cayó alrededor de Ketimbang (ahora Katibung en la provincia de Lampung), en Sumatra. Aproximadamente 1.000 personas fueron asesinadas en Sumatra;[11] No hubo supervivientes de las 3.000 personas en la isla de Sebesi. Hay numerosos informes de grupos de esqueletos humanos flotando a través del Océano Índico en balsas de piedra pómez volcánica y apareciendo en la costa este de África hasta un año después de la erupción.[11]:297–298
Tsunamis y efectos lejanos
Barcos de lugares tan lejanos como Sudáfrica se sacudieron cuando los tsunamis los azotaron, y los cuerpos de las víctimas fueron encontrados flotando en el océano durante meses después del evento. [dudoso–discutir] Se creía que los tsunamis que acompañaron a la erupción fueron causados por gigantescos flujos piroclásticos que ingresaban al mar; Cada una de las cuatro grandes explosiones estuvo acompañada de grandes flujos piroclásticos resultantes del colapso gravitacional de las columnas eruptivas.[cita necesaria] Esto provocó que varios kilómetros cúbicos de material ingresaran al mar, desplazando un volumen igual de agua de mar. La ciudad de Merak fue destruida por un tsunami de 46 metros de altura. Algunos de los flujos piroclásticos llegaron a la costa de Sumatra a una distancia de hasta 40 km (25 millas), habiéndose movido a través del agua sobre un colchón de vapor sobrecalentado.[nota 2] También hay indicios de flujos piroclásticos submarinos que alcanzan los 15 km (9,3 millas) del volcán.[13]
Se registraron olas más pequeñas en mareógrafos hasta en el Canal de la Mancha.[14] Estos ocurrieron demasiado pronto para ser restos de los tsunamis iniciales y pueden haber sido causados por ondas de aire conmovedoras de la erupción. Estas ondas de aire dieron varias vueltas alrededor del mundo y cinco días después todavía eran detectables en los barógrafos.[15]
Efectos geográficos
Evolución de las islas alrededor del Krakatoa
Tras la erupción, se descubrió que el Krakatoa había desaparecido casi por completo, excepto el tercio sur. Gran parte del cono Rakata se había cortado, dejando tras de sí un acantilado de 250 metros (820 pies). De los dos tercios septentrionales de la isla, sólo quedó un islote rocoso llamado Bootsmansrots (‘ Roca de Bosun’), un fragmento de Danan; Poolsche Hoed había desaparecido.
La enorme cantidad de material que depositó el volcán alteró drásticamente el fondo del océano. Se estima que se depositaron entre 18 y 21 km3 (4,3 a 5,0 millas cúbicas) de ignimbrita en 1.100.000 km2 (420.000 millas cuadradas), llenando en gran medida la cuenca de 30 a 40 m (98 a 131 pies) de profundidad alrededor de la cuenca. Las masas de tierra de las islas Verlaten y Lang aumentaron, al igual que la parte occidental del remanente de Rakata. Gran parte de este material ganado se erosionó rápidamente, pero las cenizas volcánicas siguen siendo una parte importante de la composición geológica de estas islas. La cuenca tenía 100 m (330 pies) de profundidad antes de la erupción y 200 a 300 m (660 a 980 pies) después.
Dos bancos de arena cercanos (llamados Steers y Calmeyer en honor a los dos oficiales navales que los investigaron) se convirtieron en islas por la caída de ceniza, pero luego el mar las arrasó. El agua de mar de los depósitos volcánicos calientes de Steers y Calmeyer provocó una subida de vapor, lo que algunos confundieron con una erupción continua.
Clima global
La erupción provocó un invierno volcánico.[17] En el año siguiente a la erupción, las temperaturas medias de verano en el hemisferio norte cayeron 0,4 °C (0,72 °F).[18] Las precipitaciones récord que azotaron el sur de California durante el año hidrológico comprendido entre julio de 1883 y junio de 1884 (Los Ángeles recibieron 970 milímetros (38,18 pulgadas) y San Diego 660 milímetros (25,97 pulgadas)[19] se han atribuido a la erupción del Krakatoa.[20] No hubo El Niño durante ese período, como es habitual cuando ocurren fuertes lluvias en el sur de California,[21] pero muchos científicos dudan de que haya una relación causal.[22] [verificación fallida]
La erupción inyectó una enorme cantidad de gas dióxido de azufre (SO2) en lo alto de la estratosfera, que posteriormente fue transportado por vientos de alto nivel por todo el planeta. Esto condujo a un aumento global de la concentración de ácido sulfúrico (H2 SO4) en los cirros de alto nivel. El aumento resultante en la reflectividad de las nubes (o albedo) reflejó más luz entrante del sol de lo habitual y enfrió todo el planeta hasta que el azufre cayó al suelo en forma de precipitación ácida.[23]
Efectos ópticos globales
Pinturas de 1888 que muestran los efectos ópticos de la erupción en el cielo a lo largo del tiempo.
La erupción del Krakatoa de 1883 oscureció el cielo en todo el mundo durante años y produjo espectaculares puestas de sol en todo el mundo durante muchos meses. El artista británico William Ascroft hizo miles de bocetos en color de los atardeceres rojos al otro lado del mundo desde Krakatoa en los años posteriores a la erupción. La ceniza provocó “atardeceres rojos tan vívidos que se llamó a los camiones de bomberos en Nueva York, Poughkeepsie y New Haven para apagar la aparente conflagración”.[24] Esta erupción también produjo un Anillo del Obispo alrededor del sol durante el día y una luz volcánica de color púrpura durante el crepúsculo. En 2004, un astrónomo propuso la idea de que el cielo rojo que se muestra en la pintura de Edvard Munch de 1893 El grito es una representación precisa del cielo sobre Noruega después de la erupción.[25]
Los observadores meteorológicos de la época rastrearon y mapearon los efectos en el cielo. Llamaron al fenómeno “corriente de humo ecuatorial”.[26] Esta fue la primera identificación de lo que hoy se conoce como corriente en chorro.[27] Durante varios años después de la erupción, se informó que la luna parecía ser azul y, a veces, verde. Esto se debía a que algunas nubes de ceniza estaban llenas de partículas de aproximadamente 1 μm de ancho, el tamaño adecuado para dispersar fuertemente la luz roja y permitir el paso de otros colores. Los blancos rayos de luna que brillaban a través de las nubes emergían azules y, a veces, verdes. La gente también vio soles color lavanda y, por primera vez, registró nubes noctilucentes.[24]
Número de muertos
El número oficial de muertos fue de 36.417,[12] aunque otra estimación lo sitúa en 120.000.[28]
Cifra oficial de muertos [12] | |
Ubicación | Fallecidos |
Bantén | 21.565 |
Lampung | 12.466 |
Jacarta | 2.350 |
Bengkulu | 34 |
Java Occidental | 2 |
Total | 36.417 |
Posibles Causas
El destino del norte del Krakatoa ha sido objeto de cierta disputa entre los geólogos. Inicialmente se propuso que la isla había sido destruida por la fuerza de la erupción. La mayor parte del material depositado por el volcán es de origen magmático y la caldera formada por la erupción no está llena en gran medida con depósitos de la erupción de 1883. Esto indica que la isla se hundió en una cámara de magma vacía al final de la secuencia de erupción en lugar de haber sido destruida durante las erupciones.
Basándose en los hallazgos de investigadores contemporáneos, las hipótesis establecidas parten de que parte de la isla se hundió antes de las primeras explosiones en la mañana del 27 de agosto. Esto obligó a que las chimeneas del volcán quedaran por debajo del nivel del mar, provocando:
- grandes inundaciones que crearon una serie de explosiones freáticas (interacción entre agua subterránea y magma).
- agua de mar para enfriar el magma lo suficiente como para que se formara una costra y produjera un efecto de “olla a presión” que se aliviaba sólo cuando se alcanzaban presiones explosivas.
La evidencia geológica no respalda la suposición de que la causa fue únicamente el hundimiento antes de la explosión. Por ejemplo, los depósitos de piedra pómez e ignimbrita no son de un tipo consistente con una interacción magma-agua de mar. Estos hallazgos han llevado a otras hipótesis:
- una caída de la tierra bajo el agua o un hundimiento parcial expuso repentinamente la cámara de magma altamente presurizada, abriendo un camino para que el agua de mar ingrese a la cámara de magma y preparando el escenario para una interacción magma-agua de mar.
- Las explosiones finales pueden haber sido causadas por la mezcla de magma: una infusión repentina de magma basáltico caliente en el magma más frío y ligero de la cámara debajo del volcán. Esto habría resultado en un aumento rápido e insostenible de la presión, provocando una explosión catastrófica. La prueba de esta teoría es la existencia de piedra pómez compuesta de material claro y oscuro, siendo el material oscuro de origen mucho más caliente. Según se informa, dicho material constituye menos del cinco por ciento del contenido de la ignimbrita Krakatoa, y algunos investigadores han rechazado que esto sea la causa principal de las explosiones del 27 de agosto.
Duración: 36 segundos.0:36 Modelo numérico de explosión hidrovolcánica del Krakatoa y generación de Tsunami.
Mader & Gittings describieron en 2006 un modelo numérico para una explosión hidrovolcánica del Krakatoa y el tsunami resultante.[29] Se forma una alta pared de agua que inicialmente mide más de 100 metros impulsada por el agua, el basalto y el aire impactados.
Investigación verbeek
Aunque la fase violenta de la erupción de 1883 terminó a última hora de la tarde del 27 de agosto, después de que volvió la luz el 29 de agosto, durante meses continuaron los informes de que el Krakatoa todavía estaba en erupción. Las primeras tareas del comité de Verbeek fueron determinar si esto era cierto y verificar los informes de otros volcanes en erupción en Java y Sumatra. En general, se descubrió que eran falsas. Verbeek descartó cualquier afirmación de que el Krakatoa siga en erupción después de mediados de octubre debido al vapor de material caliente, deslizamientos de tierra debido a las fuertes lluvias monzónicas de esa temporada y “alucinaciones debidas a la actividad eléctrica” vistas desde la distancia.[30]
No se observaron signos de mayor actividad hasta 1913, cuando se informó de una erupción. Una investigación no pudo encontrar evidencia de que el volcán estuviera despertando. Se determinó que lo que se había confundido con una actividad renovada había sido un deslizamiento de tierra importante (posiblemente el que formó el segundo arco hacia el acantilado de Rakata).
Los exámenes posteriores a 1930 de cartas batimétricas realizadas en 1919 muestran evidencia de un abultamiento indicativo de magma cerca de la superficie en el sitio que se convirtió en Anak Krakatau.
En la cultura popular
El Grito.
- Se ha teorizado que la explosión fue una fuente de inspiración para la pintura de Edvard Munch de 1893, El grito. El cielo rojizo del fondo es la memoria del artista de los efectos de la poderosa erupción volcánica del Krakatoa, que tiñó profundamente de rojo los cielos del atardecer en partes del hemisferio occidental durante meses durante 1883 y 1884, aproximadamente una década antes de que Munch pintara El grito.[31]
Fue la primera erupción volcánica que se convirtió en noticia en todo el mundo.
El telégrafo hizo posible que gente de diferentes rincones del mundo se enterara de que un volcán había hecho desaparecer una isla en Indonesia y esto despertó mucho interés.
Cómo la erupción del volcán de Krakatoa en 1883 afectó los vuelos en avión
Una de las erupciones más grande de los últimos 250 años ayudó a descubrir las corrientes de aire que hoy hacen posible que los aviones vuelen.
Antes de que el volcán indonesio Krakatoa entrara en erupción en 1883, nadie sabía que a miles de metros por encima de nuestras cabezas, existían corrientes de aire que años después harían posible que aprendiéramos a volar mejor.
¿Qué tuvo de especial esta erupción para llevar a un descubrimiento científico?
Para empezar, hubo dos factores que la hicieron especial, según explicó Jenni Barclay, profesora de Vulcanología de la Universidad de East Anglia, en Reino Unido, al programa de radio la BBC The Genius of Accidents.
“La erupción del Krakatoa soltó que una enorme cantidad de magma a la superficie en un periodo de tiempo muy corto de tiempo”, dijo la experta.
“Y la otra cosa que la hizo particularmente explosiva fue que el agua se metió en su sistema y una vez que esto pasa, se convierte en vapor y la inmensa cantidad de energía extra que esto crea provoca que todo el sistema estalle”.
El resultado fue que el volcán concentró tanta energía que expulsó su carga por todo lo alto.
“Parte del material, sobre todo las partículas más finas, subieron muy alto, a unos 40 kilómetros“, afirmó.
Para monitorear el fenómeno, la Real Sociedad de Londres para el Avance de la Ciencia Natural decidió por primera vez involucrar al público en su actividad y publicó anuncios pidiendo a los ciudadanos que enviaran sus descripciones de los cambios que habían visto en el cielo que pudieran estar relacionados con la erupción del Krakatoa.
Las cartas y dibujos llegaron desde lugares tan distantes que los expertos se dieron cuenta de que algo estaba llevando las cenizas del Krakatoa a lugares muy lejanos.
La erupción había sucedido el 27 de agosto y en cuestión de un día sus cenizas ya habían sido vistas a miles de kilómetros de distancia, lo que significaba que el viento se movía a gran velocidad.
La red de observadores que la Real Sociedad de Londres había improvisado le permitió rastrear lo que hoy se conoce como corrientes en chorro.
El meteorólogo Chris Bell explicó que las corrientes en chorro son corrientes de aire muy rápidas que fluyen por el medio de la atmósfera.
Los aviones aprovechan las corrientes de aire para moverse más rápido.
“Las corrientes en chorro recorren el hemisferio norte de oeste a este porque la forma en que la Tierra gira sobre su eje hace que los vientos se muevan en esa dirección. Pueden fluir muy rápidamente, su velocidad promedio va de los 160 a 240 kilómetros por hora, pero las más fuertes pueden registrar vientos a más de 320 kilómetros por hora”, afirmó Bell.
El conocimiento de las corrientes en chorro ayuda a predecir el tiempo. Pero, ¿qué tiene que ver todo esto con que hoy podamos volar?
Los aviones aprovechan estas corrientes en chorro para ahorrar combustible e ir a mayor velocidad, es por eso que el viaje de Nueva York a Londres suele durar de una a dos horas menos que el trayecto inverso. O menos: en 2015, por ejemplo, una aeronave de British Airways consiguió hacer este recorrido en cinco horas y 16 minutos, una hora y media antes de lo anunciado.
A la vez, los pilotos deben tener cuidado de no encontrarse con una corriente que vaya en dirección contraria, ya que esto puede provocar accidentes.
Krakatoa Hoy
A finales de 1927, Krakatoa se despertó, produciendo vapor y escombros. A principios de 1928, el borde de un nuevo cono apareció sobre el nivel del mar, y se convirtió en una pequeña isla en un año.
Llamada Anak Krakatoa, la isla ha seguido creciendo hasta una elevación de unos 2.667 pies, y ha hecho erupción levemente a veces.
Atlas Miller
Atlas Miller
Autor
Lopo Homem
¿Pedro Reinel?
¿Jorge Reinel?
¿Antonio de Holanda?
Fecha: hacia 1519
Idioma: Latín con mayoría de topónimos en portugués
Propietario: República Francesa
El Atlas Miller es un conjunto de mapas manuscritos finamente iluminados realizados en Portugal hacia 1519 y conservados actualmente en la Biblioteca Nacional de Francia. Una inscripción en el reverso de uno de los mapas dice que fue hecho por orden del rey Manuel I de Portugal por el cosmógrafo Lopo Homem, si bien se cree que también intervinieron en la realización del atlas los cartógrafos Pedro Reinel y su hijo Jorge Reinel, y el iluminador Antonio de Holanda.1
El atlas combina elementos geográficos y visuales de tres orígenes muy diferentes: las cartas portulanas, los mapas ptolemaicos y las miniaturas iluminadas de Flandes.2 Su decoración presenta una calidad artística superior a la de cualquier otra obra cartográfica portuguesa del siglo XVI. Solo puede comparársele el Atlas Vallard, hecho en Francia en 1547 con influencias portuguesas.3
Dos páginas casi en blanco, que contienen solo una red de líneas de rumbo en la mitad izquierda, la existencia de recuadros para texto dejados vacíos, y otros indicios muestran que el Atlas Miller no llegó a ser terminado.4 Se desconoce su destinatario exacto así como el modo en que llegó a la corte francesa. Su contenido y las circunstancias de su realización plantean diversos interrogantes que en algunos casos siguen siendo preguntas abiertas sobre la cartografía, los descubrimientos geográficos y las relaciones internacionales de la primera parte del siglo XVI.5
Descripción física
El Atlas Miller, tal como actualmente se conserva, está formado por seis hojas de pergamino fino (“velino“). Cuatro de ellas —de unos 41,5 cm de alto por 59 cm de ancho— muestran mapas de diversas regiones del mundo, en algunos casos por ambos lados. Otra, del mismo tamaño, muestra por un lado un mapamundi circular y por el otro una cartela con una leyenda en latín y un escudo de armas. La sexta hoja, de mayor tamaño —unos 61 cm de alto por 118 cm de ancho—, contiene un mapa en cada lado, uno del Atlántico Norte y el otro, del Mediterráneo y regiones vecinas.6
Todos los mapas, textos e ilustraciones del atlas se dibujaron a mano. Las leyendas principales están escritas en latín y la mayoría de los topónimos en portugués.
Historia
Las cinco hojas del atlas que contienen mapas regionales se las vendió en 1855 un librero de París llamado Charavey al portugués vizconde de Santarem, que se lo revendió posteriormente a Emmanuel Miller, de ahí el nombre con el que se conoce hoy al atlas. En 1897 la viuda del señor Miller se lo vendió a su vez a la Bibliothèque Nationale (BNF), donde se conserva actualmente.7
El mapamundi circular apareció por separado mucho más tarde, en 1930, cuando fue subastado en Londres.8 El comprador, Marcel Destombes, organizó en 1939 una reunión de expertos que concluyó que este mapamundi debía haber formado parte del Atlas Miller.9 Posteriormente, en 1976, Destombes donó el mapa a la BNF.10
Autor y fecha
La hoja que contiene el mapamundi circular muestra en el otro lado, en lo que debió ser originalmente la portada del atlas encuadernado, una leyenda en latín que dice que el mapamundi fue realizado por el cosmógrafo Lopo Homem en Lisboa en 1519 por orden del rey Manuel I de Portugal:
Hec est universi orbis ad hanc usqz diem cogniti / tabula quam ego Lupus homo Cosmographus / in clarissima Ulisipone civitate Anno domini nostri / Millessimo quigentessimo decimo nono jussu / Emanuelis incliti lusitanie Regis collatis pluribs / aliis tam vetustorum qz recentiorum tabulis mag / na industria et dilligenti labore depinxi.11
Traducción:
Este es el mapa de todo el orbe del universo hasta hoy conocido, el cual yo Lupus Homo, cosmógrafo, dibujé con gran industria y diligente trabajo en la ilustre ciudad de Lisboa el año de nuestro señor de mil quinientos diecinueve, por orden de Manuel, ínclito rey de Portugal, habiendo comparado muchos otros mapas tanto antiguos como modernos.
Es probable sin embargo que la realización del atlas se prolongase durante varios años, quizás hasta 1522, y que otros autores además de Homem interviniesen en él.12 Antes del descubrimiento del mapamundi circular se pensaba que el atlas era obra de los cartógrafos portugueses Pedro Reinel y Jorge Reinel, padre e hijo respectivamente. Esta atribución se ha mantenido en la historiografía portuguesa,13 si bien en el registro bibliográfico de la BNF figura Lopo Homem como único autor.7 Por otra parte, las abundantes miniaturas que decoran el atlas debieron ser realizadas por algún iluminador profesional, dada su gran calidad. El historiador Alfredo Marques identificó a Antonio de Holanda como posible autor, llegando a sugerir que este artista pudo haber sido además el coordinador general del proyecto.1
Destinatario
El atlas fue realizado por orden del rey Manuel I pero no se sabe con certeza a quién estaba destinado ni por qué camino llegó a París. El escudo de armas que figura actualmente en la portada es el de Catalina de Médici, reina de Francia, y debió ser añadido después de 1559 porque incluye un distintivo que indica que la reina estaba viuda por aquel entonces.14 Armando Cortesão sugirió que el rey Manuel podría haberle enviado el atlas como regalo al rey de Francia Francisco I; Leon Bourdon afirmó que podrían haber sido los hijos de Lopo Homem los que lo llevasen consigo al emigrar a Francia en los años 1540; y Alfredo Marques propuso la hipótesis de que fuese un regalo de boda de Manuel I para su nueva esposa, Leonor, hermana del rey Carlos I de España, la cual al morir Manuel en 1523 se lo llevó consigo a España y de allí en 1530 a Francia al ser casada de nuevo con el rey Francisco I.15
Contenido
Mapamundi circular
Mapamundi o hemisferio circular del Atlas Miller.
El primer mapa del atlas es un mapamundi circular de 33 cm de diámetro,16 sin indicación de meridianos, paralelos ni ninguna otra línea cartográfica, lo cual impide saber si representa solo un hemisferio o una parte más amplia de la superficie terrestre. El eje vertical del mapa pasa por Rusia, Palestina y el este de África mientras que el eje horizontal cruza el actual Brasil, la isla de Madagascar y la península de Malaca. Si se asume que el eje horizontal coincide con el ecuador entonces el continente africano parece encontrarse desplazado al norte de su posición real.17
El borde meridional del planisferio muestra una fantástica tierra austral que une Sudamérica con el Extremo Oriente y por tanto hace supuestamente imposible cualquier navegación desde el océano Atlántico hacia Asia bordeando América por el sur.18 Esa era la ruta que iba a seguir la expedición castellana capitaneada por el portugués Fernando de Magallanes que precisamente en 1519, fecha de realización de este mapa, partió de Sanlúcar de Barrameda.
Dicha tierra austral parece convertir a la extensión marina formada por los océanos Atlántico e Índico en un mar interior. Esta concepción geográfica tiene un precedente en la obra Esmeraldo de situ orbis, del también portugués Duarte Pacheco Pereira, escrita hacia 1505-1508 e influenciada por las teorías de autores clásicos como Ptolomeo o Pomponio Mela y por ciertos pasajes bíblicos.19 También aparece mencionada en un párrafo de texto del mapa de Piri Reis.20
Mapas regionales
Isla de Madagascar en el mapa de África meridional.
El Atlas Miller incluye siete mapas regionales; le falta una hoja que debió contener un octavo, probablemente del continente africano. Los siete mapas son bastante homogéneos en su tamaño, estilo decorativo y convenciones cartográficas. Todos presentan la típica red de líneas de rumbos de las cartas portulanas medievales, con el habitual tronco de leguas. Además cada uno incluye un meridiano graduado en latitudes, el ecuador y los trópicos en sus latitudes correspondientes y, a la manera de la Geographia de Claudio Ptolomeo, los paralelos que delimitan los climata ptolemaicos.21 Todos están orientados con el norte hacia arriba.
El primer mapa regional, en la encuadernación original del Atlas, es el de las costas de Europa septentrional (páginas 6 y 7), que abarca desde Bretaña por el sur hasta el “mare congelatu” de Islandia por el norte. La toponimia es abundante en Francia, Flandes y las islas Británicas pero casi inexistente en el Báltico y Escandinavia.22 la página siguiente muestra la mitad occidental de un mapa del Atlántico con una exacta representación de las islas Azores (“insule Ancipitrum”) y de una isla Verde (“insula Viridis”) que podría ser Groenlandia.23 La mitad oriental de este mapa probablemente mostrase la península ibérica pero esa parte del atlas se ha perdido.
África apenas aparece representada en las cartas regionales del Atlas Miller porque falta la hoja que probablemente contenía en un lado un mapa del continente entero (páginas 10 y 11 en la encuadernación original) y en el otro una imagen más detallada del África meridional, la cual continuaba por occidente el fragmento de mapa que hoy muestra Madagascar (páginas 12 y 13). Esta isla se representa con el nombre de “insule divi laurentii” y con muchos topónimos, indicando una leyenda que sus habitantes son musulmanes.24
El mapa del océano Índico (páginas 14 y 15 del atlas) muestra en su mitad occidental unos trazados costeros muy exactos, con latitudes en general muy correctas. La mitad oriental es más errónea, si bien muestra el litoral de Birmania y el delta del río Ganges en su posición correcta. En el mapa de Insulindia (páginas 16 y 17) se pueden ver las ciudades de Malaca, conquistada por los portugueses en 1511, y Singapur, así como las islas Molucas (llamadas “Malucus Insule”). Una leyenda en latín dice que más allá de Sumatra (“Trapobana”) existe un total de 1378 islas.25
El mapa del “Magnus Golfus Chinarum” (páginas 18 y 19) muestra un trazado geográfico totalmente erróneo. No da el nombre de ninguna localidad costera, limitando la toponimia a las grandes regiones. Este mapa presenta la peculiaridad de que dos de los barcos dibujados como decoración no muestran insignias de Portugal ni de países musulmanes, como en el resto del atlas, por lo que podrían representar juncos de Java.2627
El mapa de la “Terra Brasilis” o “Regionis magni brasilis” (páginas 22 y 23) muestra el continente sudamericano desde la costa norte del actual Brasil hasta más allá del estuario del Río de la Plata por el sur. Tiene una gran cantidad de topónimos, muchos más que cualquier otro mapa del Brasil de décadas anteriores o posteriores. En el extremo noroccidental, en una región desprovista de toponimia, aparece la desembocadura de uno o dos grandes ríos que Marques identifica con el Amazonas.28 Curiosamente, la persona que decoró este mapa cometió un error al rotular el trópico de Capricornio, al cual llamó “Circulus Cancri”.29
Gran desplegable
El Atlas Miller incluye un desplegable de dimensiones sensiblemente mayores que el resto de la obra (61 x 118 cm). Por uno de sus lados presenta un mapa del mar Mediterráneo y regiones adyacentes; por el otro un mapa del Atlántico norte, que incluye los recientes descubrimientos en el continente americano.
El mapa del Mediterráneo abarca el espacio tradicional de las cartas portulanas mediterráneas, ligeramente expandido para incluir el mar Caspio (“Hyrcanius mare”) y el golfo Pérsico. Tiene una red de líneas de rumbos que se distribuyen en dos círculos de rosas de vientos, no en solo uno como es el caso de los mapas regionales del Atlas. Contrariamente a estos no muestra tronco de leguas pero sí un meridiano graduado en latitud y, algo poco frecuente, varios paralelos con graduaciones incompletas en longitud.3031
El mapa del Atlántico Norte abarca desde las costas occidentales de Europa y África hasta las islas y tierras continentales de América (llamada “Mundus Novus”). Difiere de los demás mapas del atlas en que no presenta líneas de rumbos sino una simple cuadrícula ortogonal. Cortesão interpretó este hecho como una muestra más de que el Atlas Miller no llegó a ser terminado mientras que Marques ha especulado que podría haberse tratado de una omisión deliberada para dificultar el uso de este mapa para la navegación.32 Sí que incluye un tronco de leguas, un meridiano graduado en latitud y los límites de los climata ptolemaicos. Los topónimos son abundantes en la región del Caribe y en el norte del continente, no existiendo ninguno en las costas africanas.32 Existen tres cartelas con leyendas en latín y una cuarta, vacía, que no llegó a ser utilizada.32 La situada más al norte describe la “Terra Corte Regalis”, alusión a las tierras exploradas por Gaspar Corte Real; otra dice que las costas de los actuales Estados Unidos forman un continente continuo con Noruega por el norte y con Brasil por el sur, y la tercera afirma que en las Antillas del rey de Castilla se encuentra oro.33 Una ilustración representa en Norteamérica una escena bucólica en torno a un manantial, posible alusión a la fuente de la eterna juventud que Juan Ponce de León buscó por esos parajes (“Terra Bimene”). Otra miniatura muestra en Centroamérica tres personas de piel negra que parecen discutir dónde comenzar una excavación mientras una cuarta dispara una flecha con un arco. Estas figuras podrían ser “indios de piel oscura” 31 o quizás algunos de los primeros esclavos africanos transportados a América.33
El Atlas Miller quiso evitar la primera circunnavegación de la Tierra
Por Gonzalo Prieto
Hace 500 años, el 20 de septiembre de 1519, cinco naves partieron de Sanlúcar de Barrameda con el objetivo de circunnavegar el planeta. La expedición estaba capitaneada por Fernando de Magallanes, que fallecería en la misma, y Juan Sebastián Elcano que la lideraría en su vuelta.
Regresaron a la Península Ibérica 18 de los 239 hombres que salieron. Fueron los primeros en dar una vuelta al mundo tras recorrer con éxito el paso que sería dado en llamar Estrecho de Magallanes, al sur del continente americano. Habían hecho realidad una de las mayores gestas marítima de la historia que supuso un antes y un después en la concepción de las dimensiones de la Tierra y de la configuración de sus continentes.
El atlas Miller: una obra de arte
El atlas combina elementos geográficos y visuales de tres orígenes muy diferentes: las cartas portulanas, los mapas ptolemaicos y las miniaturas iluminadas de Flandes. Lo cierto es que su decoración presenta una calidad artística superior a la de cualquier otra obra cartográfica portuguesa del siglo XVI. Solo puede compararse con el Atlas Vallard, hecho en Francia en 1547 con influencias portuguesas.
Europa en el Atlas Miller. 1519. Biblioteca Nacional de Francia.
Pérez-Mallaína, que es autor de la conferencia «1519-1522: la nueva imagen del mundo. El Atlas Miller y la primera circunnavegación de la Tierra», considera que «el Atlas Miller es una magnifica obra de arte, con ilustraciones que pueden encuadrarse dentro de la escuela flamenca».
Brasil en el Atlas Miller. 1519. Biblioteca Nacional de Francia.
Pero lo cierto es que el contenido de este atlas y las circunstancias de su realización plantean diversos interrogantes. En algunos casos siguen siendo preguntas abiertas sobre la cartografía, los descubrimientos geográficos y las relaciones internacionales de la primera parte del siglo XVI.
Una herramienta de disuasión cartográfica
Pérez-Mallaína explica que «según la opinión de algún eminente investigador portugués, con él se intentaba demostrar que para llegar a las Molucas (archipiélago de la actual Indonesia) la única ruta viable era la portuguesa (rodeando África por el cabo de Buena Esperanza)».
Mapamundi o hemisferio circular del Atlas Miller, de 33 cm de diámetro. 1519. Biblioteca Nacional de Francia.
Así, explica, que según esta interpretación «el océano Atlántico y el Índico estaban rodeados de tierras (siguiendo la visión de Ptolomeo) y formaban un gigantesco mediterráneo oceánico, que no tenía comunicación con el Pacífico». En ese sentido se podría ver, según Pérez-Mallaína «como una forma de disuasión cartográfica, que difundida desde Portugal, pretendía quitar respaldo geográfico al proyecto de Magallanes».
Detalle de Malaca o las conocidas por entonces como «Islas de las Especias» en el Atlas Miller. 1519. Biblioteca Nacional de Francia.
Por ello, a juicio de este investigador «los trabajos de Ortelius o Mercator sí suponen una verdadera revolución cartográfica y poseen mayor entidad que el Atlas Miller». De todas maneras, según reconoce, «el Miller gana en belleza a casi todos».
La fecha del planisferio o mapamundi resumen del Atlas es 1519, por lo que coincide con la fecha de salida de Magallanes. El Atlas supone la imagen actualizada de la visión del mundo grecolatino, concretamente de la de Claudio Ptolomeo, vigente desde el siglo II d.C.
La primera circunnavegación a la Tierra
La primera circunnavegación de la Tierra, al servicio de Carlos I, cumple su quinto centenario y tenía el propósito de abrir una ruta comercial con las islas Molucas o de las Especias (un archipiélago de la actual Indonesia) por occidente, buscando un paso entre el océano Atlántico y el océano Pacífico.
La escuadra, después de haber explorado durante meses el litoral americano al sur de Brasil logró cruzar el estrecho de Magallanes el 21 de noviembre de 1520. En su travesía por el Pacífico llegó a las islas Filipinas, donde, el 27 de abril de 1521, muere Fernando de Magallanes en la batalla de Mactán.
Mapa del primer viaje de circunnavegación mundial (10 de agosto de 1519 – 8 de septiembre de 1522). Fuente: Wikipedia.
Los expedicionarios continuaron la navegación hasta las islas Molucas, objetivo de su viaje, donde eligieron a Juan Sebastián Elcano para capitanear el viaje de regreso. Navegando hacia el oeste por el océano Índico y dando la vuelta a África, el 6 de septiembre de 1522 la Victoria, única nave que quedaba en la expedición, retornó a Sanlúcar de Barrameda con su carga de especias, convirtiéndose en la primera embarcación de la historia en dar la vuelta al mundo.
Mapa de las Indias Orientales del Atlas Miller. Pedro Reinel ; Jorge Reinel; Antonio de Holanda
1519. Fuente: Biblioteca Nacional de Francia.
Línea Rupnik
Línea Rupnik
Mapa de la Línea Rupnik, la línea punteada representa las fortificaciones defensivas construidas a lo largo de la frontera entre Italia y Yugoslavia.
El Bunker Rupnikova en el municipio de Škofja Loka
Ubicación
Estado: Yugoslavia
Estado actual: Eslovenia; Croacia
Información general
Tipo: Línea fortificada
Construcción: 1937 -Obras suspendidas en 1941
Material: Hormigón , acero y hierro
Condición actual: En estado de abandono
Información militar
Usuario: Yugoslavia
Función estratégica: Defensa de las fronteras nacionales con el Reino de Italia y la Alemania nazi
Término función estratégica: 1945
Ocupantes: Guardias fronterizos
Acciones de guerra: Ocupación de Yugoslavia
Nota
Después de los tratados de paz de París y los cambios en las fronteras italianas, parte de las obras de la Línea Rupnik quedaron rodeadas únicamente por territorio yugoslavo, ahora esloveno y croata.
La Línea Rupnik (en esloveno y croata Rupnikova linija, en serbio Рупникова линија Rupnikova linija) fue una enorme línea fortificada del Reino de Yugoslavia erigida a lo largo de la frontera terrestre occidental y septentrional, encargada por el general esloveno Leon Rupnik . La construcción de la línea defensiva fue una medida de seguridad adoptada para contrarrestar el Muro Alpino del Reino de Italia , así como contra el peligro de una invasión de la Alemania nazi , tras el Anschluss de Austria .
La Línea Rupnik de Yugoslavia se inspiró en varios otros sistemas de fortificación construidos a lo largo de las fronteras, principalmente por Francia (con la Línea Maginot ), Checoslovaquia (con sus propias fortificaciones fronterizas ) y la vecina Italia. Fue creado para proporcionar buenas posiciones y fortalecer la frontera existente, con el fin de repeler una invasión.
Aunque había alrededor de 15 000 soldados a cargo de las fortificaciones en su apogeo, la línea podía contener hasta alrededor de 40 000 hombres, sin embargo, nunca se utilizó en todo su potencial ya que en gran parte no estaba preparada y fue abandonada en el momento de la invasión de Yugoslavia en abril . 1941.[1]
Historia
Urbanismo y Construcción
La idea de construir fortificaciones a lo largo de la frontera con Italia surgió en 1935 del General Rupnik, para contrarrestar la construcción del Muro Alpino en medio del progresivo empeoramiento de las relaciones entre ambos estados, dado que ya en la segunda mitad del siglo 1930, la voluntad de la Italia fascista de expandir sus fronteras preocupó a las autoridades yugoslavas. En 1936, se aprobó oficialmente un decreto para comenzar a planificar el nuevo sistema de fortificación a lo largo de la frontera.
La construcción comenzó entre 1937 y 1938 .[2] [3] Una operación a gran escala como esta redujo significativamente los efectos de la actual crisis económica del país, así como mejoró el nivel de vida, el estado empleó aproximadamente a 15.000 trabajadores inicialmente en 1937, el número aumentó a 60.000 trabajadores de los cuales unos 40.000 eran reservistas del ejército en 1941 . Solo cuando la línea se estaba delineando recibió el nombre de Línea Rupnik. Aproximadamente 4.000 búnkeres se completaron o construyeron parcialmente antes de la invasión del Eje.[2]
Después del Anschluss de 1938 , Yugoslavia también se encontró en la frontera con la Alemania nazi y, por lo tanto, extendió las fortificaciones a las fronteras del norte.
Para defender las fronteras se adiestraron 72 compañías, llamadas “granicari” (en serbio ) o “granicarji” (en esloveno ), organizadas en batallones. Se movilizaron 50.000 hombres con 40 baterías, de los cuales al menos un tercio estaban en la frontera con Italia. Los granicarios estaban divididos en seis sectores con seis sedes diferentes.
Segunda guerra mundial
La línea no estaba adecuadamente preparada para la invasión del Eje que tuvo lugar en abril de 1941 durante la Segunda Guerra Mundial , ya que su construcción debía completarse en 1947. El presupuesto militar yugoslavo se había agotado en gran medida en el momento de la invasión, ambas fuerzas atacantes tenían fuerza militar superior. Como resultado, la línea estuvo mal defendida y en gran parte abandonada en la invasión de Italia y Alemania. Parte del sector VI cerca de Dravograd logró mantener posiciones durante tres días antes de abandonar los puestos de avanzada.[4] Otros casos notables de resistencia ocurrieron el 8 de abril en Mount Blegoš, Gozd Martuljek y en Kastav cerca de Rijeka el 9 de abril. Algunas fuerzas yugoslavas lograron hacer retroceder a los invasores en Circhina , pero finalmente se vieron obligados a retirarse. [1]
La mayoría de estas fortificaciones nunca se completaron.
Leon Rupnik , creador de la línea de defensa.
Muchos de los objetos en el área anexada por Italia (conocida como la provincia de Ljubljana ) fueron destruidos para evitar su uso por parte de los partisanos yugoslavos y para llegar a los tan necesarios metales ubicados en las paredes de estas fortificaciones. [2]
Posguerra
Uno de los búnkeres restantes en la línea Rupnik
Después de la guerra, todas las fortificaciones permanecieron en el territorio de la Yugoslavia socialista . La mayoría de los edificios fueron abandonados, excepto unos pocos que fueron utilizados por los militares. Tras la desintegración de Yugoslavia , la línea ganó pleno reconocimiento y se creó una ruta temática para turistas, aunque el área todavía está administrada por el Ministerio de Defensa de Eslovenia. Goli Vrh y Hrast Hill Forts están actualmente en proceso de renovación para servicios turísticos.[5] [6]
Organización
El plan requería la construcción de dos líneas paralelas de búnkeres, todos interconectados. No hubo ningún esfuerzo por ocultar las posiciones del enemigo, con el fin de mejorar potencialmente el efecto psicológico que podría tener en el lado opuesto.
Toda la línea se había dividido en seis sectores, teniendo mayor importancia los de menor numeración;[1] [2]
Sector | Sede comando | Role |
I | Vrhnika | Prevención de la invasión de Ljubljana . |
Yo | Kamenjak | Impedir la invasión de Zagreb desde Fiume . |
tercero | obispo Loka | Difesa della zona tra Škofja Loka e Vrhnika . |
IV | ferroviarios | Defensa alrededor de Železniki y el valle superior del Sava . |
EN | Circonio | Defensa alrededor de la fortaleza de Cerknica . |
NOSOTROS | Máribor | Defensa entre Maribor y Ptuj y todo Karawanken . |
Líneas paralelas defensivas
Las posiciones se dividieron además en dos líneas principales de defensa;
- 1ª línea de defensa: siendo de hecho la parte delantera del complejo defensivo, se compone de búnkeres de varias formas y tamaños con ametralladoras montadas, la forma más construida fue una torre.
- Línea de artillería: Esta línea estaba formada por cañones antitanque, barreras, fosos y fortines. Las fortificaciones estaban entre las más grandes, ya que algunas fueron diseñadas para permitir que la infantería motorizada pasara por los corredores principales . [2]
Planificación y construcción
Cuando en 1935 Italia atacó Etiopía y luego concluyó un triple pacto con la Alemania nazi, el Reino de Yugoslavia se vio obligado a pensar en planes para fortalecer sus fronteras. En el ejército del Reino de Yugoslavia no tenían ninguna experiencia en la construcción de fortificaciones. En 1935 establecieron dos comisiones, que se encargaron de preparar planes para fortificar la frontera occidental. Pidieron ayuda a expertos franceses y checoslovacos.
Primero fortalecieron la frontera con Italia, que fue considerada el oponente más peligroso, pero cuando Alemania se anexó a Austria en marzo de 1938, la fortificación se extendió hasta este límite.
La línea de defensa completa se dividió en cinco sectores, y más tarde después de la anexión de Austria a Alemania, fue seis. Los sectores no fueron marcados secuencialmente, sino por importancia.
- El primer sector fue al oeste de Liubliana, con sede en Vrhnika, defendiendo la dirección de Trieste-Liubliana.
- El segundo sector llegó al norte de Sušak con su sede en Kamenjak y debería evitar la penetración del enemigo desde Reka hacia Zagreb y Dalmacia.
- El tercer sector se ubicó entre Škofja Loka y Vrhnika con la sede en Vrhnika. Cierra el acceso a Liubliana a lo largo del valle de Poljane y la cresta entre Porezen y Blegoš al norte y Žirovski vrh al sur.
- El cuarto sector cerró la valle Selška dolina y acceso por la cresta desde Soriška planina hasta Ratitovec. La sede estaba en Železniki.
- El quinto sector tenía su sede en Cerknica. Cerró el acceso a Liubliana a través de Rakitna y el corredor hacia el este a través de Velike Lašče.
- El sexto sector se estableció un poco más tarde, cubriendo el área entre Črna na Koroškem y Maribor.
El primer plan para fortificar la frontera italiana fue confirmado en 1936. Primero, comenzaron a construir caminos accesibles, y la construcción de fortalezas comenzó en 1937 o 1938.
En 1935 se formaron equipos de construcción y al final de 1939 participaron en la fortificación de la frontera 40,000 constructores. Cuando Hitler en 1939 atacó a Polonia, el ejército yugoslavo recrutó a un gran número de reservistas, quienes luego participaron en la construcción de búnkeres y otras posiciones fortificadas.
Debido a la falta de recursos financieros, al cambio de situación en las fronteras y a las limitaciones de tiempo los planes se modificaron varias veces y se redujeron considerablemente. Se interrumpió la construcción de grandes fortificaciones subterráneas, se construyeron búnkeres y fortificaciones más pequeños, pero durante el ataque a Yugoslavia en abril de 1941 todavía había muchas fortalezas sin terminar.
La construcción de fortificaciones también influyó la vida de la población circundante y les permitieron sueldo suplementario cuando proveyeron a trabajadores de alimentos, bebidas y materiales de construcción
Las fortificaciones nunca cumplieron su propósito y ya fueron abandonadas durante el ataque italiano a Yugoslavia. Los italianos destruyeron la mayor parte de las fortalezas en el territorio ocupado mientras que los alemanes los estaban inventariando, en algunos fueron instalados cuadrillas militares, otros fueron minados.
Estas fortalezas se pueden ver hoy en día, aunque han sido olvidadas por mucho tiempo y sólo se utilizan recientemente para propósitos turísticos.
El ingreso a las fortificaciones sólo es posible si va acompañado de un guía.
Debe estar conectado para enviar un comentario.