Este Mundo, a veces insólito

Calendario
enero 2025
L M X J V S D
 12345
6789101112
13141516171819
20212223242526
2728293031  

Sociedad

Advanced Composition Explorer

Información general

Organización: NASA

Fabricante: Laboratorio de Física Aplicada Johns Hopkins

masa de lanzamiento: 757 kilogramos (1.669 lb)

Poder: 444 W End-of-Life (5 años)

Fecha de lanzamiento: 25 de 08 de 1997, 14:39:00 UTC

Vehículo de lanzamiento: Delta II 7920-8ace1

Sitio de lanzamiento: Cabo Cañaveral LC-17A

Aplicación: Observatorio espacial

Masa: 596 kg

NSSDC ID: 1997-045A

Tipo de órbita: Alrededor del punto Lagrange L1

Semieje mayor: 148,100,000 kilómetros (92.000.000 millas)

Excentricidad: ~ 0,017

Perigeo: 145,700,000 90,500,000 kilómetros (millas)

Apogeo: 150,550,000 93,550,000 kilómetros (millas)

Inclinación: ~ 0 °

Instrumentación

  • Cosmic Ray Isotope Spectrometer (CRIS): Estudia y determina la composición isotópica de los rayos cósmicos en un intento de esclarecer su origen
  • ACE Real Time Solar Wind (RTSW)
  • Solar Wind Ion Mass Spectrometer (SWIMS) y Solar Wind Ion Composition Spectrometer (SWICS): Estos dos instrumentos son espectrómetros de masas cada uno destinado para diferentes medidas. Analizan la composición química e isotópica del viento solar y la materia interestelar.
  • Ultra-Low Energy Isotope Spectrometer (ULEIS): Este instrumento mide el flujo de iones en el rango del helio hasta el níquel para determinar las características de las partículas energéticas solares y el mecanismo por el cual las mismas se cargan por el sol.
  • Solar Energetic Particle Ionic Change analyzer (SEPICA)
  • Solar Isotope Spectrometer (SIS)
  • Solar Wind Electron, Proton and Alpha Monitor (SWEPAM)
  • Magnetometer (MAG)

Historia

La misión fue concebida en un encuentro el 19 de junio de 1983 en la Universidad de Maryland, aunque se venía gestando la propuesta de un satélite que estudiara en profundidad el viento solar y las radiaciones intergalácticas bajo el nombre de Cosmic Composition Explorer. En 1986 la NASA retomó la idea, pero no sería hasta 1988 cuando el ACE fue seleccionado para un estudio conceptual conocido como la Fase A del diseño.

Finalmente el 22 de abril de 1991 la misión dio comienzo oficialmente con la firma de un contrato entre NASA/GSFC y el California Institute of Technology. Tras varios meses con el planeamiento de las operaciones, dio comienzo la Fase B de definición de la misión en agosto de 1992.

El diseño preliminar comenzó en noviembre de 1993, y las Fases C y D de implementación de los instrumentos comenzaron poco después.

ACE en órbita alrededor del Sol-Tierra L 1 puntoace2

Advanced Composition Explorer (ACE) es una NASA programa de Exploradores Solar y la exploración espacial misión para estudiar la materia que comprende partículas energéticas del viento solar, el medio interplanetario, y otras fuentes. En tiempo real los datos de la ECA son utilizados por la NOAA Centro de Clima Espacial Predicción para mejorar las predicciones y avisos de tormentas solares.[1] El ACE nave espacial robótica fue lanzadas el 25 de de agosto de 1997, y entró en una órbita de Lissajous cerca de la L1 punto de Lagrange (que se encuentra entre el Sol y la Tierra a una distancia de unos 1,5 millones de kilómetros de este último) el 12 de diciembre de 1997.[2] la nave espacial está operando a esa órbita. Debido a que la ECA está en una órbita no kepleriano, y tiene maniobras regulares de mantenimiento en posición, los parámetros orbitales en el cuadro de información adyacentes son sólo aproximados. La nave espacial se encuentra todavía en buen estado general, en 2015, y se prevé que tenga suficiente combustible para mantener su órbita hasta el año 2024.[3] de la NASA Goddard Space Flight Center a cargo del desarrollo y la integración de la nave espacial ACE.[4]

Observaciones de la ECA permiten la investigación de una amplia gama de problemas fundamentales en las siguientes cuatro áreas principales: [5]

Composición elemental e isotópica de la materia

Un objetivo importante es la determinación precisa y completa de la composición elemental e isotópica de las diversas muestras de “material básico” de la que se aceleran núcleos. Estas observaciones se han usado para:

  • Generar un conjunto de abundancias isotópicas solares basadas en el muestreo directo de material solar.
  • Determinar la composición elemental e isotópica de la corona con una precisión mejorada en gran medida.
  • Establecer el patrón de diferencias isotópicas entre los rayos cósmicos y el sistema solar materia.
  • Medir las abundancias elementales e isotópicas de interestelares “iones pick-up” y interplanetarias.
  • Determinar la composición isotópica del “componente de rayos cósmicos anómalos”, lo que representa una muestra del medio interestelar local.

Origen de los elementos y el procesamiento posterior de la evolución

Isotópicas “anomalías” en meteoritos indican que el sistema solar no fue homogéneo, cuando se formó. Del mismo modo, la Galaxia no es ni uniforme en el espacio ni constante en el tiempo debido a la continua estelar nucleosíntesis. Las mediciones de la ECA se han usado para:

  • Buscar diferencias entre la composición isotópica de material solar y meteoritos.
  • Determinar las contribuciones de viento solar y las partículas energéticas solares para el material lunar y meteorítico, y a las atmósferas planetarias y magnetosferas.
  • Determinar los procesos de nucleosíntesis dominantes que contribuyen a los rayos cósmicos material de origen.
  • Determinar si los rayos cósmicos son una muestra de material recién sintetizado (por ejemplo, a partir de las supernovas) o de lo contemporáneo medio interestelar.
  • Buscar patrones isotópicos en materia solar y galáctico como una prueba de los modelos de evolución de las galaxias.

La formación de la corona solar y la aceleración del viento solar

De partículas energéticas solares, viento solar , y las observaciones espectroscópicas muestran que la composición elemental de la corona se diferencia de la de la fotosfera, a pesar de los procesos por los cuales esto ocurre, y por el cual el viento solar se acelera posteriormente, son poco conocidos. La composición y el cargo por el estado de datos detallados proporcionados por la ECA se utilizan para:

  • Aislar los procesos de formación de la corona dominantes mediante la comparación de una amplia gama de abundancias coronal y fotosféricas.
  • Estudiar las condiciones del plasma en la fuente del viento solar y las partículas energéticas solares midiendo y comparando los estados de carga de estas dos poblaciones.
  • Estudiar el viento solar procesos de aceleración y cualquier cargo o fraccionamiento de masa dependiente en diversos tipos de viento solar flujos.

Aceleración de partículas y el transporte en la naturaleza

Aceleración de partículas es ubicuo en la naturaleza y la comprensión de su naturaleza es uno de los problemas fundamentales del espacio de plasma astrofísica. El único conjunto de datos obtenidos por las mediciones de la ECA se han utilizado para:

  • Realizar mediciones directas de carga y / o fraccionamiento de masa-dependiente durante partículas energéticas solares y eventos de aceleración interplanetarias.
  • Restringir llamarada solar, descarga coronal y modelos de aceleración de choque interplanetarias con carga, masa, y los datos espectrales que abarcan hasta cinco décadas en energía.
  • Probar los modelos teóricos para el 3 de He-ricos bengalas y eventos de rayos γ solares.

Instrumentación

Espectrómetro de Rayos Cósmicos de Isótopos (CRIS)

El Cosmic Ray Isótopo Espectrómetro cubre la más alta década del intervalo de energía Composición Avanzada Explorer, de 50 a 500 MeV/nucleón, conace3 resolución isotópica de elementos de Z ≈ 2 a 30. Los núcleos detectados en este intervalo de energía son predominantemente rayos cósmicos originarios de nuestra galaxia. Esta muestra de la materia galáctica investiga la nucleosíntesis del material parental, así como los procesos de fraccionamiento, aceleración, y de transporte que estas partículas se someten en el Galaxy y en el medio interplanetario. Cargo e identificación masiva con CRIS se basa en mediciones múltiples de dE / dx y la energía total en pilas de detectores de silicio, y mediciones de trayectoria en un hodoscope brillante trayectoria de fibra óptica (SOFT). El instrumento tiene un factor geométrico de 250 cm 2 sr para mediciones de isótopos.[6]

Solar isótopos Espectrómetro (SIS)

El Solar Isótopo Espectrómetro (SIS) proporciona mediciones de alta resolución de la composición isotópica de núcleos energéticos de Él a Zn (Z = 2 a 30) en el rango de energía de ~ 10 a ~ 100 MeV / nucleón. Durante grandes eventos solares SIS mide las abundancias isotópicas de partículas energéticas solares para determinar directamente la composición de la energía solar en corona y para estudiar los procesos de aceleración de partículas. Durante los tiempos tranquilos solares SIS mide los isótopos de baja energía de los rayos cósmicos y el Galaxy isótopos de lo anómalo de rayos cósmicos componente, que se origina en el medio interestelar cercano. SIS tiene dos telescopios compuestos de los detectores de estado sólido de silicio que proporcionan mediciones de la carga nuclear, masa, y la energía cinética de los núcleos de incidentes. Dentro de cada telescopio, trayectorias de las partículas se miden con un par de detectores de silicio de la tira de dos dimensiones instrumentados con la electrónica (VLSI) personalizados muy gran escala integrados para proporcionar ambas medidas de posición y de pérdida de energía. SIS fue especialmente diseñado para conseguir una excelente resolución de masa bajo las altas condiciones extremas, el flujo se encuentran en grandes eventos de partículas solares. Se proporciona un factor de geometría de 40 cm2 sr, significativamente mayor que los espectrómetros de isótopos de partículas solares anteriores.[7]

Ultra Low Energy Isótopos (Espectrómetro ULEIS)

El ultra baja energía de Isótopos (Espectrómetro ULEIS) en la nave espacial ACE es un espectrómetro de masas de ultra alta resolución que las medidas composición de partículas y energía espectros de elementos Él-Ni con energías de ~ 45 keV / nucleón a un MeV pocos / nucleón. ULEIS investiga partículas aceleradas en partículas energéticas solares eventos, choques interplanetarios, y al viento solar choque de terminación. Mediante la determinación de espectros de energía, la composición de la masa, y sus variaciones temporales en relación con otros instrumentos de la ECA, ULEIS mejora enormemente nuestro conocimiento de las abundancias solares, así como otros depósitos tales como el local de medio interestelar. ULEIS combina la alta sensibilidad necesaria para medir flujos de partículas de baja, junto con la capacidad de operar en los más grandes eventos de partículas solares o de choque interplanetaria. Además de la información detallada de los iones individuales, ULEIS cuenta con una amplia gama de velocidades de recuento para diferentes iones y energías que permite la determinación precisa de los flujos de partículas y anisotropías más cortos (pocos minutos) escalas de tiempo.[8]

Solar Partículas Energéticas carga iónica Analizador (SEPICA)

El Partículas Energéticas solar carga iónica Analizador (SEPICA) fue el instrumento sobre la composición Advanced Explorer (ACE) que determina los estados de carga iónica de las partículas energéticas solares y interplanetarias en el rango de energía de ≈0.2 MeV nucl-1 a ≈5 MeV cargo- 1. El estado de carga de iones energéticos contiene información clave para desentrañar temperaturas fuente, la aceleración, el fraccionamiento y los procesos de transporte para estas poblaciones de partículas. SEPICA tenía la capacidad de resolver estados de carga individuales con un factor geométrico sustancialmente más grande que su predecesor ULEZEQ en ISEE-1 y -3, en la que se basa SEPICA. Para conseguir estos dos requisitos al mismo tiempo, SEPICA se compone de una sección de alta carga sensor de resolución, y dos resolución carga baja, pero una gran parte del factor geométrico.[9]

A partir de 2008, este instrumento ya no está funcionando debido a las válvulas de gas fallidas.[3]

Los iones del viento solar Espectrómetro de Masas (NADA) y el viento solar Ion Espectrómetro de Composición (SWICS)

El espectrómetro de iones de viento solar Composición (SWICS) y el viento solar iones Espectrómetro de Masas (NADA) sobre la ECA son instrumentos optimizados para las mediciones de la composición isotópica de materia solar e interestelar y químicas. SWICS unívocamente determinado la composición química e iónica de carga del viento solar, las velocidades térmicas y medias de los principales iones del viento solar de la H a la Fe a todas las velocidades del viento solar por encima de 300 km s -1 (protones) y 170 km S -1 (Fe + 16), y resolvió H y He isótopos de ambas fuentes de energía solar y interestelares. SWICS también midió las funciones de distribución, tanto de la nube interestelar y polvo en la nube iones de recogida hasta energías de 100 keV e -1. NADA mide la composición química del estado, isotópica y la carga del viento solar para cada elemento entre Él y Ni. Cada uno de los dos instrumentos son por tiempo de vuelo espectrómetros de masas y utilizar el análisis electrostático seguido del tiempo de vuelo y, en caso necesario, una medición de energía.[10] [11]

El 23 de agosto de 2011, el sistema electrónico de tiempo de vuelo SWICS experimentó una anomalía de hardware edad y el inducido por la radiación que aumentó el nivel de fondo en los datos de la composición. Para mitigar los efectos de este fondo, el modelo para la identificación de los iones en los datos se ajustó a tomar ventaja de sólo el ion de carga de energía por medido por el analizador electrostático, y la energía de iones medido por los detectores de estado sólido. Esto ha permitido a SWICS siguen ofreciendo un subconjunto de los productos de datos que se proporcionaron al público antes de que el hardware anomalía, incluyendo relaciones de estado de carga de iones de oxígeno y carbono, y las mediciones de hierro viento solar. Las mediciones de la densidad de protones, la velocidad, y la velocidad térmica por SWICS no se vieron afectados por esta anomalía y continúan hasta el día de hoy.[3]

Electrones, protones, y el monitor de partículas alfa (EPAM)

El electrón, protón, y Alpha Monitor (EPAM) a bordo de la nave espacial ACE está diseñado para medir una amplia gama de partículas energéticas sobre casi la unidad de esfera completa en alta resolución en el tiempo. Tales mediciones de iones y electrones en el intervalo de unas pocas decenas de keV a varios MeV son esenciales para entender la dinámica de las erupciones solares, regiones de interacción co-rotación de la aceleración de choque interplanetaria (del CIR), y eventos terrestres aguas arriba. La gran rango dinámico de EPAM se extiende desde alrededor de 50 keV a 5 MeV para los iones, y 40 keV a aproximadamente 350 keV para los electrones. Para complementar sus mediciones de electrones e iones, EPAM también está equipado con una composición de apertura (CA), que identifica de forma inequívoca especies de iones informado que las tarifas de grupos de especies y / o eventos de altura de impulsos individuales. El instrumento alcanza su gran cobertura espacial a través de telescopios Fife orientados en diversos ángulos con respecto al eje de giro nave espacial. Las mediciones de partículas de baja energía, obtenidos como las resoluciones de tiempo entre 1,5 y 24 s, y la capacidad del instrumento para observar anisotropías de partículas en tres dimensiones hacen EPAM un excelente recurso para proporcionar el contexto interplanetario para los estudios que utilizan otros instrumentos en la nave espacial ACE.[12]

El viento solar de electrones, protones y Alpha Monitor (SWEPAM)

El experimento del viento solar Electrón Protón Alfa Monitor (SWEPAM) proporciona la mayor parte del viento solar observaciones para el Advanced Composition Explorer (ACE). Estas observaciones proporcionan el contexto para las mediciones de la composición elemental e isotópicos realizados sobre la ECA, además de permitir el examen directo de numerosos viento solar fenómenos como la eyección de masa coronal, las perturbaciones interplanetarias, y viento solar estructura fina, con tecnología avanzada, la instrumentación de plasma 3-D. También proporcionan una base de datos ideal tanto para heliosféricos y magnetosféricos estudios multicéntricos nave espacial en la que se pueden utilizar en conjunción con otras observaciones simultáneas de la nave espacial, como Ulises. Las observaciones SWEPAM se realizan simultáneamente con electrones independientes (SWEPAM-e) y el ion (SWEPAM-i) instrumentos. Con el fin de ahorrar costes para el proyecto ACE, SWEPAM-e y SWEPAM-i son los repuestos de vuelo reciclados a partir de la articulación de la NASA / ESA Ulises misión. Ambos instrumentos tenían remodelación selectiva, modificación y modernización requerida para cumplir con los requisitos de la misión de la ECA y naves espaciales. Ambos incorporan analizadores electrostáticos cuyos campos de visión barren todas las direcciones de observación pertinentes como la nave espacial gira en forma de abanico.[13]

Magnetómetro (MAG)

El experimento de campo magnético sobre ACE proporciona mediciones continuas del campo magnético local en el medio interplanetario. Estas mediciones son esenciales en la interpretación de las observaciones de la ECA simultáneas de distribuciones energéticas y partículas térmicas. El experimento consiste en un par de gemelo, boom- montado, los sensores de saturación triaxiales que se encuentra a 165 pulgadas (= 4,19 m) del centro de la nave espacial en oponerse a los paneles solares. Los dos sensores triaxiales proporcionan un instrumento de vectores equilibrada, totalmente redundante y permiten cierta evaluación mejorada del campo magnético de la nave espacial.[14]

ACE eólica en tiempo real Solar (RTSW)

La avanzada Composición Explorer (ACE) RTSW sistema está supervisando continuamente el viento solar y la producción de las advertencias de mayor actividad geomagnética inminente, hasta una hora de antelación. Avisos y alertas emitidas por NOAA especiales con los sistemas sensibles a dicha actividad a tomar medidas preventivas. El sistema recoge RTSW viento solar y los datos de partículas energéticas en alta resolución de tiempo de cuatro instrumentos de la ECA (MAG, SWEPAM, EPAM, y SIS), los paquetes de los datos en un flujo de bits de baja velocidad, y transmite los datos de forma continua. La NASA envía datos en tiempo real a la NOAA cada día durante la descarga de datos de la ciencia. Con una combinación de estaciones de tierra dedicadas (CRL en Japón y RAL en Gran Bretaña), y el tiempo en las redes de seguimiento de tierra existentes (DSN de la NASA y AFSCN de la USAF), el sistema RTSW puede recibir datos las 24 horas del día durante todo el año. Los datos en bruto se envían inmediatamente desde la estación terrestre hacia el Centro de Predicción del Clima Espacial en Boulder, Colorado, procesado, y luego entregados a su tiempo del Centro de Operaciones del espacio en el que se utilizan en las operaciones diarias; los datos también se envían al Centro Regional de Alerta CRL en Hiraiso, Japón, a la USAF 55ª escuadrilla de espacio tiempo, y se colocan en la World Wide Web. Los datos se descargan, se procesan y se dispersan dentro de 5 minutos desde el momento en que salen de la ECA. El sistema también utiliza RTSW las partículas energéticas de baja energía para advertir sobre unas próxias perturbaciones interplanetarias, y para ayudar a controlar el flujo de partículas de alta energía que pueden producir daños por radiación en sistemas de satélites.[15]

Los resultados de la ciencia

Los espectros de partículas observada por ACEace4

Fluencias de oxígeno observada por ACE

La figura muestra la influencia de partículas (flujo total en un periodo de tiempo determinado) de oxígeno en ACE por un período de tiempo justo después de mínimo solar, la parte del ciclo solar de 11 años cuando la actividad solar es baja.[16] El de más bajo partículas de energía provienen del viento solar lento y rápido, con velocidades de aproximadamente 300 a aproximadamente 800 kilómetros por segundo. Al igual que la distribución de viento solar de todos los iones, la de oxígeno tiene una cola supratérmica de partículas de alta energía; es decir, en el marco del viento solar a granel, el plasma tiene una distribución de energía que es aproximadamente una distribución térmica, pero tiene un exceso notable por encima de aproximadamente 5 kiloelectron voltios, como se muestra en la Figura 1. El equipo de ACE ha hecho contribuciones a la comprensión de la orígenes de estas colas y su papel en la inyección de partículas en los procesos de aceleración adicionales.

A energías más altas que las de las partículas del viento solar, ACE observa partículas de regiones conocidas como co-rotación regiones de interacción (CIRS). CIRs forman debido a que el viento solar no es uniforme. Debido a la rotación solar, corrientes de alta velocidad chocan con los anteriores viento solar lento, creando ondas de choque en aproximadamente 2-5 unidades astronómicas (UA, la distancia entre la Tierra y el Sol) y la formación de CIR. Las partículas aceleradas por estos choques son comúnmente observados a 1 UA continuación energías de unos 10 megaelectron voltios por nucleón. Mediciones de la ECA confirman que CIRs incluyen una fracción significativa de helio con una sola carga se forma cuando se ioniza el helio neutro interestelar.[17]

A energías aún más altas, la mayor contribución a la medida de reflujo de partículas se debe a las partículas energéticas solares (SEP) asociados a las perturbaciones interplanetarias (IP) impulsados por las eyecciones de masa coronal rápidas (CME) y áreas fl solares. Abundancias enriquecidas de iones de helio-3 y helio muestran que las colas supratérmica son la principal población de semillas para estos SEP.[18] choques IP viajan a velocidades de hasta unos 2000 kilómetros por segundo acelerar las partículas de la cola supratérmica a 100 megaelectron voltios por nucleón y más. IP choques son particularmente importantes porque pueden seguir para acelerar partículas a medida que pasan a través de la ECA y por lo tanto permiten que los procesos de aceleración de choque para ser estudiados in situ.

Otras partículas de alta energía observados por ACE son los rayos cósmicos anómalos (ACRs) que se originan con los átomos interestelares neutros que se ionizan en la heliosfera interior para hacer que los iones “pickup” y más tarde se aceleran a energías superiores a 10 megaelectron voltios por nucleón en el exterior heliosfera. ACE también observa iones de recogida directamente; que son fácilmente identificados porque se pagan por separado. Por último, las partículas de más alta energía observados por ACE son los rayos cósmicos galácticos (GCR), que se cree que acelerar las ondas de choque de las explosiones de supernovas en nuestra galaxia.

Otros resultados de la ECA

Poco después del lanzamiento, los sensores detectan SEP sobre ACE eventos solares que tenían características inesperadas. A diferencia de la mayoría de los eventos grandes, choque acelerado por la SEP, éstos fueron altamente enriquecido en hierro y el helio-3, así como el mucho más pequeño, FL se asocian-eventos impulsivos SEP.[19] [20] En el primer año de operaciones, ACE encontrado muchos de estos eventos “híbridos”, lo que llevó a la discusión sustancial dentro de la comunidad en cuanto a qué condiciones podrían generarlos.[21]

Un reciente descubrimiento notable en la física heliosférica ha sido la presencia ubicua de las partículas con forma espectral supratérmica común. Esta forma se produce de forma inesperada en el viento solar tranquila; en condiciones de perturbación corriente abajo de los choques, incluyendo CIRs; y en la heliosfera en otro lugar. Estas observaciones han llevado Fisk y Gloeckler 22] que sugieren un nuevo mecanismo para la aceleración de las partículas.

Otro descubrimiento ha sido que el ciclo solar actual, medido por manchas solares, las CME, y SEP, ha sido mucho menos magnéticamente activo que el ciclo anterior. McComas y col.[23] han demostrado que las presiones dinámicas del viento solar medidos por el satélite Ulises sobre todas las latitudes y por ACE en el plano de la eclíptica están correlacionados y estaban disminuyendo en el tiempo por cerca de 2 décadas. Llegaron a la conclusión de que el Sol había estado experimentando un cambio global que afectó a la heliosfera en general. Al mismo tiempo, las intensidades de GCR estaban aumentando y en 2009 fueron los más altos registrados durante los últimos 50 años.[24] GCR tener más di fi cultades para llegar a la Tierra cuando el Sol está más activo magnéticamente, por lo que la alta intensidad de GCR en 2009 es consistente con un dinámico reducido a nivel mundial la presión del viento solar.

ACE también mide la abundancia de níquel-cobalto-59 y 59 isótopos rayos cósmicos; estas mediciones indican que un tiempo más largo que la vida media de níquel-59 con los electrones ligados (7,6 × 10 4 años) transcurrido entre el momento de níquel-59 se creó en una explosión de supernova y el tiempo de los rayos cósmicos se aceleraron.[25] tales retrasos largos indican que los rayos cósmicos provienen de la aceleración del material estelar o interestelar de edad y no de material eyectado de la supernova fresco. ACE también mide una relación de hierro-58 / hierro-56 que se enriquece sobre la misma relación en el material del sistema solar.[26] Estos y otros hallazgos han llevado a una teoría sobre el origen de los rayos cósmicos en superburbujas galácticos, formada en las regiones donde muchas supernovas explotan dentro de unos pocos millones de años. Las observaciones recientes de un capullo de rayos cósmicos acelerados recién en el súper-Cygnus por el observatorio de rayos gamma Fermi[27] apoyan esta teoría.

Seguimiento sobre el observatorio del clima espacial

El 11 de febrero de 2015, el Observatorio Espacial Climático Profundo (DSCOVR) -con varios instrumentos similares que incluyen un instrumento nuevo y más sensible para detectar con destino a la Tierra eyecciones de masa coronal -successfully lanzados por la NOAA y la NASA a bordo de un SpaceX Falcon 9 vehículo de lanzamiento desde Cabo Cañaveral, Florida. La nave espacial llegó a L 1 el 8 de junio de 2015, poco más de 100 días después del lanzamiento.[28] Junto con la ECA, tanto proporcionará los datos del clima espacial, siempre y cuando la ECA puede seguir funcionando.[29]

IEH-2

El grupo de experimentos IEH (International Extreme-ultraviolet Hitchhicker) voló al espacio por segunda vez en agosto de 1997 a bordo del Discovery, STS 85. Constaba de cuatro instrumentos, tres de ellos con finalidad observacional astronómica. El Solar Extreme Ultraviolet Hitchhicker estudiaba los flujos del Sol y otros objetos astronómicos en el ultravioleta lejano y extremo. El Ultraviolet Spectrograph for Astronomical Research realizó espectros ultravioletas de diversos objetos, Júpiter y el Hale-Bopp entre ellos. El Student Experiment of Solar Radiation observó el Sol en el ultravioleta y en rayos X blandos. La tripulación tuvo la oportunidad de observar el cometa Hale-Bopp gracias a un telescopio manual.

STS-85ieh21

Misión: crista-SPAS-02
Transbordador Espacial: Descubrimiento
Plataforma de Lanzamiento: 39A
Lanzado: 7 de agosto de 1997 10:41:00 am EDT
Plataforma de aterrizaje: el Centro Espacial Kennedy, Florida
Aterrizaje: 19 Agosto de 1997, 07:07:59 am EDT
Pista: 33
Distancia lanzamiento: 8.792 pies
Tiempo de lanzamiento: 68 segundos
Revolución: 185
Misión Duración: 11 días, 19 horas, 18 minutos, 47 segundos
Órbita Altitud: 173 millas terrestres
Órbita Inclinación: 51,6 grados
Millas recorridas: 4,7 millones

Miembros de la tripulación
ieh22
Imagen superior: STS-85 Crew foto con el comandante Curtis L. Brown , Piloto Kent V. Rominger , los especialistas de misión N. Ene Davis , Robert L. Curbeam, Jr. , Stephen K. Robinson , especialista de carga y Bjarni Tryggvason V. . Crédito de la imagen: NASA

Aspectos destacados de la misión

STS-85 lleva un complemento de cargas útiles en la bodega de carga que se centró en la misión a los objetivos de la tierra del planeta, así como preparaciones para el ensamblaje de la Estación Espacial Internacional: el infrarrojo espectrómetros criogénicos y telescopios para el Ambiente-Shuttle Pallet Satélite-2 (crista-SPAS- 02); Desarrollo del vuelo japonesa Manipulador (MFD); las aplicaciones de la tecnología y de la ciencia-01 (TAS-1) y la Internacional ultravioleta extremo autoestopista-02 (IEH-02).

Este fue el segundo vuelo de crista-SPAS carga útil. Crista-SPAS-02 también representaban la cuarta misión en una empresa de cooperación entre la Agencia Espacial Alemana (DARA) y la NASA. De carga útil incluye tres telescopios y espectrómetros de cuatro, desplegados en el día de avión de ida, para reunir datos sobre medio ambiente de la Tierra. Después de más de 200 horas de vuelo libre, crista-SPAS fue recuperado el 16 de agosto Los tres telescopios CRISTA recogieron 38 perfiles atmosféricos de pleno derecho de la atmósfera media. se pusieron en marcha un total de 22 cohetes de sondeo y 40 globos para proporcionar la correlación de datos. Instrumento complementario, el Medio Ambiente Espectrógrafo de Alta Resolución de Investigación (MAHRSI) también obtuvo buenos resultados. Los datos de la misión STS-85 y primeros crista-SPAS vuelo, STS-66 en 1994, espera que produzca una nueva visión de la distribución del ozono en la atmósfera terrestre. Una vez que las operaciones científicas se completa, se utilizó crista-SPAS en un ejercicio de simulación para prepararse para la primera Estación Espacial Internacional (ISS) Vuelo de montaje, STS-88, con la carga útil siendo manipulados como si fuera el bloque funcional de carga (FGB) que se fijarse al nodo ISS 1.

TAS-1 era una carga útil autoestopista lleva ocho experimentos diseñados para demostrar más rápido, mejor, aviónica más baratos y procesos: Solar Experimento constante (SOLCON), infrarrojo espectral Radiómetro (ISIR) y traslado Laster altímetro (SLA), toda la parte de la misión de la NASA para programa planeta Tierra; y la viscosidad crítico de xenón (CVX), Espacio módulo experimental (SEM); Flujo de dos fases (TPF); Experimento criogénico de vuelo (CFE) y el soporte de dispositivos de medición de aceleración Solo y la Banda ancha Stand Alone dispositivo de aceleración de medición (SAAMD / WBSAAMD). Todos los experimentos se realizaron con éxito.

MFD diseñado para evaluar el uso de la multa del brazo pequeño que será parte del futuro experimental japonés Sistema de Manipulación Remota del módulo de la ISS. A pesar de algunos problemas técnicos, MFD completó una serie de ejercicios por la tripulación en órbita, así como operadores de planta. Dos experimentos japoneses no relacionados, de dos fases Experimento circuito de fluido (TPFLEX) y Evaluación de Ambiente y Espacio Efectos sobre materiales (ESEM), se montaron cerca de la fina brazo pequeño en la bodega de carga.

IEH-02 era volar por segunda vez y consistió en cuatro experimentos, todos los cuales tuvieron un buen desempeño en órbita: solar ultravioleta extremo autoestopista-2 (SEH); Telescopio Ultravioleta espectrografía para la Investigación Astronómica (UVSTAR); La distribución y la automatización de la tecnología Avance – Colorado autoestopista y Experimento de Estudiantes de la Radiación Solar (DATOS-CAZADOR); y traslado Glow Experimento-5 y -6, todo ello con el objetivo común de investigar ultravioleta extrema solar (EUV) de flujo y el UVE emisiones del sistema toro de plasma Júpiter, Io.

Dentro de la cabina de carga útil: Demostración del Sistema de biorreactor-3 (BDS-3), una carga útil de investigación en biología celular que ha volado previamente. En este vuelo, BDS utiliza para el cultivo de células de cáncer de colon a un tamaño más grande que se puede lograr en la Tierra.

La tripulación también trabajó con el Sistema de Visión Espacial Orbiter (OSVs), que se utilizará durante el montaje de la ISS. OSVs presenta series de puntos colocados estratégicamente en diferentes Construcciones de carga útil del vehículo y que permiten una alineación precisa y la capacidad de señalar.

Minisat 01

Organización: Instituto Nacional de Técnica Aeroespacial de España

Estado: Reentrado en la atmósfera

Fecha de lanzamiento: 21 de abril de 1997

Vehículo de lanzamiento: Pegasus

Sitio de lanzamiento: Gran Canaria

Reingreso: 26 de febrero de 2002minisat11

Aplicación: Observatorio espacial / Experimental

Masa: 209 kg

NSSDC ID: 1997-018A

El programa de satélites artificiales MINISAT fue desarrollado por la agencia española INTA en la década de 1990 y se preveía que estuviera compuesto de varios satélites, de los que hasta la fecha solo ha sido lanzado uno, el Minisat 01.

Minisat 01

Fue lanzado el 21 de abril de 1997 desde la base aérea de Gando, en Gran Canaria, con un cohete Pegasus XL. Con un peso de 200 kg, el satélite estaba equipado con 3 instrumentos científicos1:

  • Un espectrógrafo de ultravioleta
  • Una cámara de rayos gamma (LEGRI – Low Energy Gamma Ray Imager)
  • Un experimento de investigación sobre los fluidos en ausencia de gravedad

Su vida operativa estaba prevista en dos años, pero finalmente se extendió hasta dos años más. El día 14 de febrero de 2002, a las 3:12 horas, tuvo lugar el último contacto del Minisat 01 con la estación de seguimiento.

MINISAT

El día 21 de abril de 1997 era lanzado al espacio el MINISAT 01, primer satélite de diseño y fabricación totalmente españoles, y, también, primer vehículo puesto en órbita desde España. Durante su misión, MINISAT completó miles de rotaciones a la Tierra, y se mantuvo en contacto permanente y simultáneo con el Centro de Control de la Misión, situado en el INTA, en Torrejón de Ardoz, y la Estación de Seguimiento de Maspalomas, en Gran Canaria.

Al hito científico y tecnológico que representó el lanzamiento —por primera vez esta operación de integración, lanzamiento y posterior seguimiento se realizaba desde territorio español— le sucedió la cotidianidad, el envío periódico de datos relativos a los experimentos que el satélite llevaba a bordo, y que eran minuciosamente analizados por el Centro de Operaciones Científicas, situado en las instalaciones del INTA en Villafranca del Castillo, Madrid.

La incertidumbre que conlleva todo nuevo reto científico, fue reemplazada por la satisfacción por el éxito completo de la misión, superior si cabe a las expectativas más optimistas. El perfecto funcionamiento del satélite y la utilidad de los datos aportados por los diferentes experimentos han justificado el interés creciente por el Programa MINISAT en otros países.

Cronología del Programa MINISAT

Junio de 1990

Empezó a gestarse el que sería el proyecto más ambicioso del sector aeroespacial en España. Durante los meses siguientes, muchas fueron las reuniones, conversaciones, intercambio y aporte de ideas, y numerosas las personas e instituciones, organismos y empresas que en ellas tomaron parte.

El proceso no fue fácil ni rápido, y, dentro de él, no podemos olvidar un proyecto que aspiró a «ser», pero que nunca llegó a ver la luz: el Proyecto Santa María. El Programa MINISAT fue abriéndose camino en discusiones acerca de la plataforma, la carga útil, los costes y los beneficios de lo que hubiese constituido el Santa María.

Se tuvo conciencia desde el comienzo de que el interés del programa no residía sólo en lanzar el primer MINISAT, sino, también, en mantener vivo un programa de más larga duración, que se estructuraría en tres futuras generaciones de minisatélites para tres tipos distintos de misiones: de uso científico, de observación de la Tierra o del espacio y de comunicaciones, respectivamente. Sin embargo, la credibilidad de todo ello pasaba necesariamente por la puesta en órbita del que debería ser el «MINISAT 01».

Julio de 1990minisat12

Dio comienzo la fase A, con el Estudio de Viabilidad del Proyecto, aprobado en Noviembre del mismo año por la Comisión Permanente Interministerial de Ciencia y Tecnología (CICYT).

Año 1991

Desarrollo de la fase B o de «Definición de un Sistema de Minisatélites», que sería aprobada por la CICYT en Diciembre del mismo año.

Año 1992

El Programa MINISAT había conseguido su incorporación al Plan Nacional del Espacio.

Junio de 1994

Después de superar satisfactoriamente el examen de diseño, se entraba en la última y definitiva fase de «Diseño de Detalle y Fabricación», la cual era aprobada el 21 de Junio de 1994 por la CICYT.

El Programa Integrado MINISAT, propuesto en origen por el INTA, se había venido desarrollando hasta entonces con la colaboración de diversas empresas del sector aeroespacial, y contaba con la ayuda de una Comisión de Seguimiento, creada al efecto, cuya presidencia recayó en el Centro para el Desarrollo Tecnológico e Industrial (CDTI).

Julio de 1994

Comienzan los trabajos de construcción del MINISAT. El número de empresas interesadas en participar en el desarrollo y fabricación de la plataforma prácticamente se había duplicado con respecto al inicio del programa. Era una ocasión única de aunar esfuerzos, desarrollar capacidades, adquirir y ponerse al día en las más altas tecnologías, e incorporar a España, de forma decidida y por la puerta grande, al sector y el mercado del espacio.

Bajo la dirección técnica y de gestión del INTA, y con el apoyo e impulso del Ministerio de Defensa, Construcciones Aeronáuticas (CASA) asumía el papel de contratista principal, y se responsabilizaba de la construcción de la plataforma del satélite. Tan ambicioso proyecto pretendía involucrar al mayor número posible de empresas españolas que trabajaban en el sector. En este sentido, CRISA (encargada de las unidades electrónicas del subsistema de potencia eléctrica), INDRA (encargada de la telemedida y telecomando), SENER (encargada del control de asiento del satélite), TGI e INSA, intervinieron como empresas colaboradoras y subcontratistas.

La construcción del MINISAT planteaba nuevos problemas a la ciencia y la tecnología de nuestro país. Se trataba de tener a punto un satélite, para ponerlo en órbita en tan sólo 18 meses. Además, nunca antes en España se había diseñado, fabricado, integrado y ensayado un satélite completo. Sólo hubo pequeños retrasos producidos por causas de fuerza mayor, como por ejemplo la entrega de las células de los paneles solares fotovoltaicos, que se fabricaron en la ciudad de Kobe, gravemente afectada por el terremoto que sacudió Japón.

Al mismo tiempo, comenzó a considerarse cuál sería la carga útil que habría de portar MINISAT en su primera misión. Desde el principio no hubo lugar para la duda. Con el fin de poder facilitar una amplia participación española, y para no introducir implicaciones de tipo comercial, el contenido del primer minisatélite (MINISAT 01), tendría un carácter exclusivamente científico, y estaría constituido por tres experimentos:

EURD

Espectrógrafo para medir la radiación difusa en el rango ultravioleta extremo.

CPLM

Dispositivo para estudiar el comportamiento de puentes líquidos en microgravedad.

LEGRI

Detector de rayos gamma basado en nuevas tecnologías de Ioduro de Mercurio.

A estos instrumentos se añadió una experiencia tecnológica,  ETRV, que estudiaría el comportamiento en órbita de un nuevo regulador de velocidad para el despliegue de grandes reflectores y mástiles.

El lanzamiento del satélite Minisat-01 desde Gran Canaria cumple 16 años

La Isla hizo historia en abril de 1997 al poner en órbita el primer diseño fabricado en España

21.04.2013 | 12:52

El lanzamiento del satélite Minisat-01 desde Gran Canaria cumple 16 años LP/DLPminisat13

María Jesús Hernández El 21 de abril de 1997 Gran Canaria entró a formar parte de la historia aeronáutica, tras el lanzamiento del Minisat-01, el primer satélite de diseño y fabricación cien por cien española, y también, primer vehículo puesto en órbita desde España. La única misión espacial que ha sido completada por un país de la Unión Europea desde su propio territorio, cumple hoy 16 años. Arrancó a las 12.00 horas, desde la base aérea de Gando, con un cohete Pegasus XL, posteriormente bautizado con el nombre de Gran Canaria, que viajaba en el fuselaje del avión Lockheed L-1011 Tristar comandado por el capitán estadounidense Bill Weaver.

El lanzamiento del microsatélite fue seguido desde la Estación Espacial de Maspalomas por un nutrido grupo de autoridades civiles y militares, políticos, técnicos, entre ellos ingenieros de la NASA, y periodistas, con el entonces responsable del centro regional del INTA (Instituto Nacional de Técnica Aeroespacial), Julio Melián a la cabeza. Asimismo, la 2 de TVE emitió el acontecimiento en directo, con señales simultáneas desde Gran Canaria y desde la base aérea de Torrejón de Ardoz (Madrid), donde se encontraban los coordinadores del programa científico Minisat, entre ellos el secretario de Estado y presidente del INTA en aquel momento, Pedro Morenés.

La misión que constaba de tres fases, se inició en Gando a las 12.00 horas con un despegue sin contratiempos, a pesar de los riesgos que entrañaba la proximidad del cohete que transportaba la aeronave al suelo. El TriStare fue escoltado por dos cazas F-18, uno de los cuales transportaba la cámara que permitió filmar la operación. Una hora más tarde, a las 13.00 horas, cuando el avión superó los 11.000 metros de altura, se procedió al desprendimiento del cohete Gran Canaria y, tras cinco segundos de caída libre, se encendió su motor de propulsión. Así concluyó la primera etapa.

La segunda, que duró alrededor de siete minutos, consistió en el desprendimiento de las diferentes partes del Pegasus (cofias, contrapuertas) que protegían al minisatélite, hasta dejarlo en contacto con el exterior, a unos 590 kilómetros de la Tierra. Tras la separación del cohete, comenzó la tercera y definitiva etapa con la puesta en órbita del Minisat-01 y la emisión de los primeros datos, que llegaron para júbilo de todos los implicados, tres horas y media después de haberse iniciado la operación. “A las 15.28 horas se escucharon los primeros llantos del niño”, fueron las palabras con las que el INTA confirmó el éxito del lanzamiento.

A partir de ahí el Minisat pasaba por la zona de cobertura de Maspalomas cada hora y media, pudiéndose observar y enviar señales durante quince minutos

Así se puso en órbita desde Gran Canaria, a 600 km de altitud y una inclinación de 28,5 grados sobre el plano ecuatorial, el primero y hasta ahora único ingenio de la tecnología espacial, de diseño y fabricación española. Con un peso de 200 kg y una estructura hexagonal de un metro de ancho por 1,5 de alto, la principal novedad del Minisat-01 consistía en que se trataba de un vehículo ligero y modular, de bajo coste en comparación con lo existente hasta el momento, destinado a la experimentación científica. También contribuyó a la capacitación de más de 100 ingenieros y científicos en todas las áreas de un programa espacial completo.

El programa Minisat se gestó en 1990 con la finalidad de desarrollar un sistema que permitiera operaciones espaciales a bajo coste y menor tiempo de desarrollo que los grandes programas espaciales. La idea original era el desarrollo de tres generaciones de microsatélites para tres tipos distintos de misiones: de uso científico, para la observación de la tierra o del espacio y de comunicaciones. No obstante, todo dependía de la puesta en órbita del primero, el Minisat 01, que 16 años después de su exitoso lanzamiento sigue siendo el único que prosperó.

El pequeño satélite fue equipado con tres instrumentos científicos y una experiencia tecnológica. Entre ellos figuraba el EURD, un espectrógrafo para el estudio de la emisión del medio interestelar en el ultravioleta extremo y lejano, que incorporaba en su diseño tecnología avanzada , con una sensibilidad hasta mil veces mayor y una resolución espectral diez veces mejor que la existente en modelos previos.

En segundo lugar estaba el telescopio LEGRI, un detector de rayos gamma de baja energía procedentes de fuentes astronómicas, destinado fundamentalmente al estudio de las explosiones de supernovas y la existencia de agujeros negros. Este instrumento astronómico constituyó una gran escuela de formación para un buen número de astrofísicos e ingenieros españoles, dado que les aportó una valiosa experiencia en instrumentación espacial, clave en años venideros.

La Universidad Politécnica de Madrid fue la encargada de desarrollar el tercer elemento científico, el CPLM, dirigido al estudio del comportamiento de puentes líquidos en condiciones de microgravedad. Este experimento tuvo posteriormente aplicaciones prácticas en el procesado de materiales de gran calidad en industrias como la farmacéutica, o la microelectrónica.

Por último, se sumó la tecnología ETRV, para el estudio del comportamiento en órbita de un nuevo regulador de velocidad para el despliegue de grandes reflectores y mástiles. Se trataba de un experimento crucial para solucionar el problema planteado en todos los satélites lanzados al espacio hasta ese momento: el despliegue deficitario de los apéndices (antenas, paneles solares, mástiles…), después de su puesta en órbita. Construcciones Aeronáuticas diseñó un regulador de velocidad para este tipo de despliegues y se incorporó en el Minisat un año antes del lanzamiento, de forma que el programa sirvió para testar de forma satisfactoria esta nueva tecnología, que, posteriormente se empleó en el satélite Hispasat.

Con todos sus elementos, el sistema científico y tecnológico del Minisat-01 partía de un concepto totalmente novedoso en el mundo aeroespacial de la década de los 90: la fabricación de una serie de plataformas espaciales multiusos en el segmento comprendido entre los 100 y los 500 kg, con dos módulos independientes entre sí, y una plataforma de servicio estándar, versátil y polivalente.

Resultados

Si el lanzamiento fue un éxito, aún más lo fue su operatividad, dado que el Minisat-01 estaba diseñado para una vida útil de dos años pero estuvo operando y enviando datos científicos durante cinco, en los que completó miles de rotaciones a la Tierra, y se mantuvo en contacto permanente y simultáneo con el centro de control de la misión, situado en el INTA, en la Estación de Seguimiento de Maspalomas y en Torrejón de Ardoz.

“El 14 de febrero de 2002, a las 03.12 horas, tuvo lugar el último contacto del aparato con la estación de seguimiento del proyecto. Superó ampliamente los cálculos más optimistas, al permanecer operativo durante más del doble del tiempo previsto”, anunció el INTA. El fin de la misión se debió a la degradación de la órbita, producida por la fricción con las altas capas de la atmósfera. La completa desintegración del satélite se produjo el 26 de febrero cuando el Minisat-01 alcanzó una altura cercana a los 100 km sobre la superficie terrestre.

Durante sus cinco años de vida estuvo recogiendo y transmitiendo información a los equipos científicos. Entre sus contribuciones a la ciencia destacan las observaciones tomadas por el instrumento EURD durante el descenso del microsatélite en los últimos meses de la fase final de entrada en la atmósfera, proporcionando datos no conseguidos hasta la fecha por ninguna otra misión. “El análisis de estos datos permitirá profundizar en el conocimiento de la distribución en altura de los componentes atmosféricos y sus condiciones físicas, desde la órbita inicial a 575 km, hasta la última órbita registrada, cercana a los 300 km. Hemos de destacar que el espectro del brillo nocturno de la atmósfera terrestre obtenido por EURD es más de 100 veces superior en sensibilidad a las medidas anteriores”, recogen los informes del proyecto.

Dichos resultados también han tenido impacto sobre las teorías y observaciones en varios campos de la Astrofísica. “Han permitido refutar la teoría de desintegración de los neutrinos postulada por el profesor Sciama; y, por otra parte, confirmado un defecto de flujo en los modelos de atmósferas estelares de Kurucz, ya apuntado por las observaciones de Voyager. Los flujos de las estrellas en el rango de longitud de onda de EURD son entre un 10 y un 40% más intensos que en los modelos teóricos”.

La única expectativa científica que la misión Minisat no logró alcanzar fue la planteada por el estadounidense Denis Sciama, encaminada a resolver el misterio de la materia oscura, una sustancia que compone más de un cuarto del universo, pero que nunca ha sido vista. Después del Minisat, la industria espacial mundial ha dado pasos gigantescos desde el punto de vista científico y tecnológico, y sin embargo, el reto de la materia oscura sigue abierto. De hecho, el pasado 4 de abril, un equipo internacional del centro de investigación CERN en Ginebra afirmó que había registrado lo que podría ser la primera huella física dejada por una materia oscura mientras estudiaban rayos cósmicos grabados a bordo de la Estación Espacial Internacional en los últimos 18 meses.

Con todo, el balance final del satélite español Minisat-01 lanzado en Gran Canaria, 16 años desde su puesta en órbita y 11 después de que finalizara su vida operativa, es tremendamente positivo y así lo ratifica la comunidad científica internacional. Un triunfo para la industria española que se quedó en promesa de futuro, dado que el segundo satélite de la serie, proyectado con cuatro nuevos instrumentos, sigue en el cajón.

Fernando J. Ballesteros Roselló es actualmente el Jefe de Instrumentación del Observatorio Astronómico de la Universidad de Valencia. Licenciado (1992) y Doctor (1996) en Física por la Universidad de Valencia. Trabajó en el diseño y desarrollo del telescopio espacial de rayos gamma INTEGRAL, de la Agencia Espacial Europea, actualmente en órbita alrededor de la Tierra, así como del telescopio espacial LEGRI a bordo de Minisat 01 (INTA). Posteriormente sus intereses evolucionaron hacia la astrobiología, realizando su labor investigadora en temas de emergencia de la complejidad y la vida en el universo.

HALCA

Nombres: HALCA; MUSAS-B; VSOP

Operador: ES COMO

ID COSPAR: 1997-005A

SatCat №: 24720

Sitio web: Inicio HALCA

Duración de la misión: 8 años, 9 meses, 18 días

Fabricante: NEC Toshiba Space Systems

Masa de lanzamiento: 830 kg (1.830 lb)

Dimensiones: 1,5 m x 1 m (4,9 pies x 3,3 pies)halca1

Fecha de lanzamiento: 04:50 12 de febrero de 1997

Cohete: M-5 -1

Sitio de lanzamiento: Kagoshima MV Pad

Desactivado: 30 de de noviembre de 2005

Parámetros orbitales

Sistema de referencia: Geocéntrico

Régimen: muy elíptica

Semieje mayor:17,259 km (10.724 millas)

Excentricidad: 0.5999671

Perigeo: 533,5 km (331,5 mi)

Apogeo: 21,244.1 13,200.5 km (mi)

Inclinación: 31.1880 grados

Período: 376,1 minutos

RAAN: 127.6566 grados

Número de revoluciones: 26766

Telescopio principal: antena de malla

Diámetro: 8 m (26 pies)

Las longitudes de onda: 1,3, 6, 18 cm (de radio)

HALCA (altamente Laboratorio Avanzado de Comunicaciones y astronomía), también conocido por su nombre de proyecto VSOP (Programa Observatorio Espacial VLBI), o el nombre en clave MUSAS-B (para el segundo de la Mu serie de la nave espacial Space Engineering), es un medidor japonesa del telescopio de radio de 8 diámetro, por satélite que fue utilizado para VLBI (VLBI). Fue la primera misión dedicada VLBI espaciales.

Fue colocado en una órbita muy elíptica con un apogeo altitud de 21.400 km y un perigeo altitud 560 km, con un período orbital de aproximadamente 6,3 horas. Esta órbita permitido de imágenes de fuentes de radio celestes por el satélite en combinación con un conjunto de telescopios de radio en tierra, de tal manera que tanto el bien (u, v) se obtuvieron cobertura de avión y de muy alta resolución.

Aunque diseñado para observar en tres bandas de frecuencia: 1,6 GHz, 5,0 GHz y 22 GHz, se encontró que la sensibilidad de la banda de 22 GHz tenía severamente degradada después de la implementación orbital, probablemente causada por la deformación de vibración de la forma de plato en el lanzamiento, por lo tanto limitar las observaciones a las bandas de 1,6 GHz y 5,0 GHz.

HALCA se puso en marcha en febrero de 1997 a partir de Kagoshima Centro Espacial, e hizo sus observaciones finales VSOP en octubre de 2003, muy por encima de su vida útil de 3 años se predijo, antes de que la pérdida de control de actitud. Todas las operaciones se terminaron oficialmente en noviembre de 2005.[2]

Una misión de seguimiento ASTRO-G fue planeada (VSOP-2), con una fecha de lanzamiento propuesto de 2012, pero el proyecto fue cancelado en 2011 debido al aumento de los costes y las dificultades de alcanzar sus objetivos científicos. Se esperaba alcanzar resoluciones de hasta diez veces mayor y hasta diez veces mayor sensibilidad que su predecesor HALCA.

La cancelación de ASTRO-G sale del ruso radioastron misión como la instalación de VLBI espacio sólo está operativa actualmente.

Aspectos destacados

  • Las observaciones de máseres hidroxilo y púlsares a 1,6 GHz
  • La detección de franjas de interferencia para cuasar PKS1519-273 entre HALCA y radiotelescopios terrestres
  • Rutinas de imágenes de los cuásares y galaxias de radio, etc. mediante observaciones VLBI experimentales con redes de radiotelescopios terrestres y HALCA

Enlaces externos

http://www.isas.jaxa.jp/e/enterp/missions/halca/

Antena con un diámetro efectivo de 8 m, hecho de una combinación de redes de cable y el plano de simetría de malla metálica. Las ondas de radio son conducidos a la bocina de alimentación de 2,5 m de largo por dos (principal y secundaria) espejos de reflexión.

Después del lanzamiento, el control orbital del satélite se realizó el 14 de febrero, 16 y 21 de 1997, tras el establecimiento del control de actitud de tres ejes. El 28 de febrero, se completó el despliegue de la reflexión de espejo principal de la gran antena. pleno funcionamiento como un satélite VLBI espacial comenzó después de los chequeos técnicos, tales como el establecimiento de un enlace de comunicación interactiva con la estación de seguimiento.

HALCA previsto utilizar tres bandas de frecuencia, 1,60 / 1,73 GHz, 4,7 / 5,0 GHz y 22.0 / 22.3GHz. La sensibilidad de la banda de 22GHz disminuyó drásticamente, sin embargo, probablemente causado por la vibración en el lanzamiento. Las observaciones fueron hechas tanto por el uso de las bandas de 1,6 GHz y 5,0 GHz intensamente.

Antes del lanzamiento, la vida de la misión HALCA se estimó en alrededor de 3 años, debido a la radiación dañaría su panel solar-array y acortar su vida drásticamente. Sin embargo, el satélite continuó operando hasta noviembre de 2005, 8 años y 9 meses después del lanzamiento.

Usando HALCA, un radiotelescopio virtual con una abertura 30.000 km (radio de aproximadamente tres veces la de la Tierra) fue creado. Las observaciones de los cuerpos celestes se realizaron en colaboración con las redes de radiotelescopios en el suelo en todo el mundo,

Hemos tenido éxito en la observación de las ondas de radio y de chorro de rayos X a partir de PKS0637-752 cuásar con una resolución de 2 / 10.000 seg de arco y un chorro de M87 Galaxy con 1 / 1.000 seg resolución de arco.

El equipo internacional VSOP se dio cuenta de VLBI espacial por primera vez en el mundo y las observaciones realizadas. Fue galardonado con el Premio Laurel de 2005 IAA (Academia Internacional de Astronáutica).

Los astrónomos Hacer Primeras imágenes del telescopio espacial Con Radiohalca2

Marcando un importante hito en la historia de la astronomía de radio, los científicos del Observatorio Nacional de Radioastronomía (NRAO) en Socorro, Nuevo México, se han realizado las primeras imágenes utilizando una antena de radio telescopio en el espacio. Las imágenes, más de un millón de veces más detalladas que las producidas por el ojo humano, utilizan el nuevo satélite HALCA japonesa, trabajando en conjunto con la Fundación Nacional de Ciencia (NSF) de matriz de base muy larga (VLBA) y el Very Large Array (VLA) radiotelescopios terrestres. Las imágenes de estos lugares es el resultado de un esfuerzo NRAO a largo plazo con el apoyo de la National Aeronautics and Space Administration (NASA).

“Este éxito significa que nuestra capacidad para crear imágenes detalladas de radio de los objetos en el universo ya no está limitado por el tamaño de la Tierra”, dijo el Director de NRAO Paul Vanden Bout. “La visión de la astronomía acaba de convertirse en mucho más nítida.”

HALCA, lanzado el 11 de febrero por el Instituto de Ciencia Espacial y Astronáutica (ISAS) de Japón, es el primer satélite diseñado para obtener imágenes de radioastronomía. Es parte de una colaboración internacional dirigida por ICEA y respaldada por NRAO; Observatorio Astronómico Nacional de Japón; Laboratorio de Propulsión a Chorro de la NASA (JPL); la Agencia Espacial Canadiense; el Fondo Nacional de Australia Telescope; la Red VLBI Europea y el Instituto Conjunto para VLBI en Europa.

El 22 de mayo, HALCA observó una galaxia lejana llamada activa PKS 1519-273, mientras que el VLBA y VLA también observaron la misma. Los datos del satélite fue recibida por una estación de seguimiento en las instalaciones de NRAO en Green Bank, Virginia Occidental. los datos grabados en cinta desde el satélite y desde los telescopios de radio en el suelo fueron enviados al Centro de Operaciones (AOC) en Socorro, Nuevo México matriz de NRAO.

En Socorro, astrónomos y científicos informáticos utilizan una computadora de propósito especial para combinar digitalmente las señales del satélite y los telescopios terrestres para hacerlos trabajar todos juntos como una sola, radiotelescopio gigante. Esta máquina dedicada, la VLBA Correlator, construido como parte del instrumento VLBA, se modificó en los últimos cuatro años para permitir que se incorporan datos del satélite. La correlación de los datos de observación se completó con éxito el 12 de junio, después de que se estableció la fecha exacta de la grabación por satélite. El tratamiento posterior del ordenador produce una imagen de PKS 1519-273 – la primera imagen jamás producido utilizando un telescopio de radio en el espacio.

Por Jim Ulvestad, el astrónomo NRAO que hizo la primera imagen, el éxito puso fin a una larga búsqueda de esta nueva capacidad. Ulvestad participó en un experimento hace más de una década en la que un satélite de comunicaciones de la NASA, TDRSS, se utilizó para probar la idea de hacer imágenes astronómicas de radio mediante la combinación de datos de espacio y de radio telescopios de tierra. Este experimento mostró que una antena en órbita podría, de hecho, el trabajo en conjunto con los observatorios de radio basados en tierra, y allanado el camino para HALCA y un satélite ruso radioastronomía planeado llamada RadioAstron.

“Esta primera imagen es un hito importante técnica, y demuestra la viabilidad de una misión mucho más avanzada, surgen, actualmente en estudio por la NASA”, dijo Ulvestad.

La primera imagen mostraba ninguna estructura en el objeto, incluso en el nivel de detalle extremadamente fino alcanzable con HALCA; es lo que los astrónomos llaman una “fuente puntual”. Este objeto también aparece como una fuente puntual en todas-terrestres observaciones. Además, el experimento TDRSS 1986 observó el objeto, y, si bien este experimento no produjo una imagen, se indicó que PKS 1519-273 debería ser una fuente de punto.

“Esta imagen simple punto puede no parecer muy impresionante, pero su belleza para nosotros es que muestra todo nuestro sistema, complejo está funcionando correctamente. El sistema incluye no sólo los que orbitan y terrestres antenas, sino también la determinación de la órbita, estaciones de seguimiento , el correlador, y el software de procesamiento de imágenes, “dijo Jonathan Romney, el astrónomo NRAO que dirigió el desarrollo del correlador VLBA, y su mejora para procesar los datos de los telescopios en órbita de radio. “Nos gustaría ser escéptico de una imagen compleja si no hubiéramos sido capaces de obtener una buena imagen de punto en primer lugar,” añadió Romney.

Un segundo objetivo de la observación, el quásar 1156 + 295, observado el 5 de junio, hizo una imagen más interesante. Visto por los observatorios de radio basados en tierra, este objeto, a una distancia de 6,5 mil millones de años luz, se ha sabido para mostrar un alargamiento en su estructura al noreste del núcleo. Sin embargo, visto con el sistema tierra-espacio, está claramente demostrado que tiene tanto un núcleo y un complejo de “chorro” que emerge del núcleo. Tales chorros, que consisten en partículas subatómicas que se mueven cerca de la velocidad de la luz, se ven en muchos quásares y galaxias activas en todo el universo. De hecho, 1156 + 295 es uno de una clase de objetos encontrados recientemente por el Observatorio Compton de Rayos Gamma de la NASA para exhibir potente emisión de rayos gamma; estos objetos se encuentran entre los más compactos y energético conocido en el universo.

“Si se demuestra que este objeto es en realidad un sistema central de chorro, HALCA ha producido su primera nueva información científica, y demuestra sus capacidades de imagen para una variedad de investigaciones astrofísicas”, dijo Romney. “Esta imagen muestra que el chorro se extiende mucho más cerca del núcleo, o” motor central ‘del quásar que se muestra mediante imágenes de planta única, “añadió Romney.

“Este es un logro emocionante e histórico para la radioastronomía,” dijo Miller Goss, director de VLA / VLBA de NRAO. “En NRAO, hemos visto a nuestros colegas – los científicos, ingenieros eléctricos, informáticos y técnicos en Socorro y Green Bank – trabajo durante años en este proyecto Ahora, pueden estar orgullosos de su éxito.”.

Los radioastrónomos, al igual que los astrónomos usando la luz visible, por lo general tratan de hacer que las imágenes de los objetos a los que apuntan sus telescopios. Debido a que las ondas de radio son mucho más largas que las ondas de luz, un telescopio de radio debe ser mucho más grande que un instrumento óptico con el fin de ver la misma cantidad de detalles. Una mayor capacidad de ver los detalles, llamado poder de resolución, ha sido una búsqueda de astrónomos de radio durante más de medio siglo.

Para ver un nivel de detalle igual a la revelada por los telescopios ópticos requeriría un plato de radio-telescopio de millas de diámetro. En la década de 1950, los científicos británicos y australianos desarrollado una técnica que utiliza antenas más pequeñas, separadas ampliamente, y se combinan sus señales para producir poder de resolución igual a la de un solo plato tan grande como la distancia entre los platos más pequeños. Esta técnica, llamada interferometría, es utilizado por el VLA, con 27 antenas y una separación máxima de 20 millas, y el VLBA, con 10 antenas y una separación máxima de 5.000 millas. Los sistemas como el VLBA, en el que las antenas son tan ampliamente separados que los datos deben ser individualmente grabada en cada sitio y combinado después de la observación, se denominan sistemas de interferometría de base muy larga (VLBI). VLBI fue desarrollado por astrónomos estadounidenses y canadienses y la primera se presentó con éxito en 1967.

El VLBA, el trabajo con los telescopios de radio en Europa, representa el mayor telescopio de radio que pueden ser acomodadas en la superficie de la Tierra. Con una órbita que la lleva más de 13.000 millas sobre la Tierra, HALCA, trabajando con los telescopios basados en tierra, se extiende la “visión aguda” de la radioastronomía más lejos que nunca. Usando HALCA, radioastrónomos esperan producir rutinariamente imágenes con más de 100 veces el detalle visto por el telescopio espacial Hubble.

Los astrónomos de todo el mundo están esperando para usar el satélite para buscar respuestas a preguntas acerca de algunos de los objetos más distantes y intriging en el universo. Tanto como un tercio del tiempo de observación del VLBA se dedicará a las observaciones en conjunto con HALCA. Durante la vida útil esperada de cinco años de HALCA, los científicos esperan observar cientos de quasares, pulsares, galaxias y otros objetos.

Lanzado desde el Centro Espacial de Japón Kagoshima, HALCA orbita la Tierra cada seis horas, que van desde 350 a 13.200 millas de altura. El satélite de 1.830 libras tiene una antena parabólica de 26 pies de diámetro. La antena, doblado como un paraguas para la puesta en marcha, se desplegó bajo control de radio de la tierra el 26 de febrero se señaló la antena hacia PKS 1519-273 después de una salida de tres meses de la de la electrónica, las computadoras y los sistemas de orientación nave espacial.

HALCA observaciones representan una verdadera colaboración científica internacional. Además de la nave espacial HALCA, construido, lanzado y operado por el ICEA de Japón, la participación de un gran número de telescopios de radio en tierra es también esencial. Instrumentos VLBA y VLA de NRAO, incluyendo el correlador VLBA, serán un componente vital de esta colaboración. Otros telescopios de radio en los EE.UU., Japón, Europa y Australia, también participarán.

Instalación de NRAO en Green Bank, Virginia Occidental, es una de las cinco estaciones de seguimiento en los que se recibidos y registrados los datos recogidos en la nave espacial. Otra es en un centro de ICEA en Japón, y el JPL opera tres estaciones de seguimiento adicionales, en California, Australia y España. JPL además contiene información de todas las estaciones de seguimiento para determinar la órbita de la nave espacial muy precisa necesaria para reducir estas observaciones.

Los esfuerzos NRAO VLBI espacial en Socorro y Green Bank fueron apoyados por la financiación de la National Aeronautics and Space Administration. El Observatorio Nacional de Radioastronomía es una instalación de la Fundación Nacional de Ciencia, operada bajo un acuerdo cooperativo por Associated Universities, Inc.

Yemen

Subcategoría: Círculos de piedras.

Círculo de piedra en el Yemen

27 de marzo 2001

Los arqueólogos tropezaron con los restos notables de una civilización perdida Edad de Bronce cerca de la costa del Mar Rojo de Yemen. Un recinto de Stonehenge-como la de los monolitos de granito y basalto, cada uno más de 3 metros (10 pies) de altura y un peso de siete toneladas, es todo lo que queda. Sin embargo, sugiere una compleja y bien organizada la cultura que floreció aproximadamente 4.000 años atrás.

Las enormes piedras están dispuestas en un patrón muy similar a la del yacimiento neolítico de Stonehenge en Inglaterra. Los arqueólogos creen que la piedra utilizada para hacer los pilares se originó en las montañas de Surat a unos 60 kilómetros (37 millas) del sitio y fue probablemente flotando en balsas a través del Mar Rojo.yemen

Debajo de uno de los monolitos astillados, los restos de un esqueleto masculino se encontraron entre las varias capas de la tierra quemada, posiblemente implicando algún tipo de conmemoración.

También se recuperó fueron los esqueletos de tres niños, cada uno se encuentra debajo de una columna de basalto.

“En algún momento alrededor de 2000 aC, la cultura ‘Stonehenge’ de esta Edad de Bronce desapareció de repente sin dejar rastro”, dijo Edward Keall del Cercano Oriente y Asia del Departamento de Estudios en el Museo Real de Ontario. Pero la comprensión de la cultura que construyó este monumento debería arrojar nueva luz sobre “otras civilizaciones desconocidas de la Península Arábiga, que estableció las piedras y los pilares similares en toda la región”.

Un descubrimiento casual de un grupo de megalitos en una llanura costera en el oeste de Yemen, ha enviado a los académicos luchan por explicar por qué y cómo las personas vivían allí entre ca. 2400 y 800 aC conocidos como al-Tihamah, la llanura se cree que han sido habitadas hasta el siglo octavo o noveno

Después de una temporada estudiando un montón de tierra del siglo IX dC fuera de la aldea de al-Mutaynah, Edward Keall, director de la Misión Canadiense de Arqueología del Museo Real de Ontario, se dirigió a la nueva sede por un agricultor fecha local. “Fue como volver al siglo XIX, en términos de la maravilla del descubrimiento”, dice Keall, que encontró cinco de 20 toneladas, megalitos de granito, tres de los cuales permanecieron de pie y se mide ocho pies de altura. Otra, más de 20 pies de largo, estaba inclinada de la tierra. Keall y su equipo investigaron las zonas adyacentes y descubrió más de una docena de otros monolitos dispuestos en patrón no obvio.

Las piedras gigantes en el sitio principal parecen haber sido creado superficialmente en el suelo arenoso. Un grupo de herramientas de aleación de cobre-se encuentran en una piedra estaba parado originalmente data de entre 2400 y 1800 aC, lo que sugiere que las piedras fueron erigidas durante el mismo período. En la superficie, encuentra raspadores incluyen obsidiana y sílex y hojas, lo que implica la supervivencia de una industria lítica arcaica en la Edad del Bronce de Yemen. Algunas de las piedras de pie en un segundo sitio parecen haber sido reutilizado como pilares de un gran edificio, cuya finalidad se desconoce. Fragmentos de cerámica encontrados en la fecha de proximidad entre los años 1200 y 800 antes de Cristo, la evidencia de que la zona fue ocupada ya sea por lo menos 1.500 años o pagar dos veces.

“No sabemos lo que mantener a la gente en esta zona desértica terriblemente marginal”, dice Keall. “¿Fue un recurso natural o una posición estratégica que llevó a estas personas a invertir tanto esfuerzo en la erección de estos monumentos notables?” La ausencia de materiales arqueológicos de la región entre los años 800 aC y 800 dC también es un enigma. Keall está planeando nuevos estudios de este invierno.

KAO

Kuiper Airborne Observatory

Organización: NASAkao5

Ubicación:Hangar 211 del Ames Research Center, en Moffett Field, California, Estados Unidos.

Coordenadas: 37°25′17″N 122°02′51″O

Altitud: Hasta 14 000 m (45 000 pies)

Longitud de onda: Entre 1 y 500 μm.

Fecha de construcción: 1974. Retirado en 1995.

Diámetro: 91,5 cm (36 pulgadas)

Tipo de montaje: Reflector Cassegrain con apertura de 36 pulgadas (91.5 cm) montado a bordo de un Lockheed C-141 modificado.

Sitio web: Sobre el Kuiper Airborne Observatory

El Kuiper Airborne Observatory (KAO), en español Observatorio Aerotransportado Kuiper, fue una instalación dirigida por la NASA para realizar investigaciones en astronomía en la franja del infrarrojo. La plataforma para las observaciones era un avión de transporte C-141 muy modificado, con una autonomía de unos 10 000 km y que alcanzaba una altitud de vuelo para las investigaciones de hasta 45 000 pies (14 km). Se le dio el nombre en honor al astrónomo Gerard Kuiper.

El diagrama muestra el interior del “Kuiper Airborne Observatory”. Nótese el telescopio montado entre el area de la cabina de mando y del astrónomo P.I. (Investigador Principal).

Características

El telescopio montado en el KAO era un reflector Cassegrain con una apertura de 36 pulgadas (91.5 cm), diseñado principalmente para las observaciones de entre 1 y 500 μm del espectro. Su capacidad de vuelo le permitía elevarse por encima del vapor del agua de la atmósfera terrestre, permitiendo así las observaciones de la radiación infrarroja, que es absorbida por el señalado vapor antes de llegar a las instalaciones situadas en la superficie de la Tierra. Además al estar montado sobre un avión se podían realizar observaciones en prácticamente cualquier punto del mundo.

El KAO realizó bastante descubrimientos importantes, como la primera observación de los anillos planetarios de Urano en 1977 y la identificación definitiva de la atmósfera de Plutón en 1988. Fue usado también para estudiar el origen y distribución del agua y moléculas orgánicas en regiones de formación estelar y en las regiones interestelares. Los astrónomos del Kuiper Airbone Observatory también investigaron los discos que rodean algunas estrellas probablemente asociados a la formación de planetas alrededor de las mismas.

Se hicieron observaciones más lejanas en el espacio, como las potentes emisiones del infrarrojo lejano procedentes de centro de nuestra gkao3alaxia y de otras galaxias. También se rastreó la formación de elementos pesados como hierro, níquel y cobalto por la fusión masiva de la explosión de la supernova 1987A.

El KAO tenía su base en el Ames Research Center en Moffett Field, California (cerca de San José). Comenzó a funcionar en 1974 y fue retirado en 1995. En febrero de 2006, el avión permanecía almacenado en el Hangar 211 en Moffett Field; no está operativo y posiblemente sea donado a un museo en el futuro. Fue sustituido por el observatorio SOFIA

En sus 21 años de operación, el KAO hizo observaciones cruciales para el descubrimiento de los anillos de Urano (en 1977) y el descubrimiento de la atmósfera dekao1 Plutón (en 1988). Halló moléculas orgánicas en los lugares de formación de estrellas y encontró trazas de hierro, níquel y cobalto producto de la fusión nuclear en la célebre supernova 1987A. Para remplazar al KAO se ideó Sofia, un proyecto conjunto entre la Nasa y el Centro Aeroespacial de Alemania (DLR).

El KAO en vuelo. Se puede ver la apertura del telescopio en el fuselaje delante del ala – NASA

Algunos de los descubrimientos del KAO inlcuyen el de los anillos de Urano en 1977 y la confirmación de la existencia de la atmósfera de Plutón en 1988.

kao2

Estos investigadores están tkao4rabajando en los controles del telescopio. La fotografía se tomo mirando hacia atrás desde el área del telecopio hacia la parte trasera del aeroplano.

Image right: C-141 NASA-714 KAO Telescope. Image courtesy: NASA.

Túmulo Ishibutai

Subcategoría: Túmulo funerario.

07/12/2011 en Japón, Prehistoria, 古墳ishibutai1

Asuka pueblo se encuentra a unos 20 kilómetros al sur de la ciudad de Nara, en la región de Kansai, en Honshu, Japón central. Hace unos trece centenar de años, sin embargo Asuka era el sitio de la primera capital de Japón, y fue probablemente aquí que el budismo estableció por primera vez un punto de apoyo en el país, y aquí donde se llevaron a cabo los primeros grandes proyectos de construcción en madera y piedra – de los kofun (túmulo) construcciones del siglo 7 de la enigmática piedra Sakafune que, en algunos aspectos, se asemeja a rockart británica.

En los alrededores de la actual aldea de Asuka (明日香村), lo que era antes el glorioso Yamato (大和 – Suprema armonía), observándonos desde hace siglos y flanqueado por cerezos y almendros, se encuentra el Ishibutai ( 石舞台 ). Este túmulo de piedras que sirvió de tumba en tiempos ancestrales (finales del periodo Kofun, siglo V), fue nombrado sitio histórico de interés nacional en 1957, aunque ya desde aun antes de la fundación de la ciudad de Nara ya era frecuentado por peregrinos y curiosos, antes de caer en el olvido. En la foto podéis ver la visión exterior del Ishibutai, curiosamente su construcción es contemporánea a la introducción del sistema de escritura chino en Japón.

El kofun Ishibutai (石舞台古墳 ? ) Es un antiguo montículo situado a Asuka, en la prefectura de Nara en Japón. Se remonta al siglo VII dC Es la mayor estructura megalítica conocida en Japón [1]ishibutai2

Esta tumba monumental es esencialmente rectangular y tiene un depósito de cadáveres también rectangular cuyas dimensiones son aproximadamente el 8 por 4 metros.

La altura de la habitación – que se accede a través de una pasarela cubierta – es de unos 5 metros.

Toda la estructura está hechishibutai3a de piedras y rocas (incluyendo imponentes monolitos y megalitos) secos. Las rocas más, ya que las estructuras de soporte de la entrada a la morgue y la cubierta, se estima que pesan entre 60 y 80 toneladas cada uno.

El kofun de Ishibutai se cree que es la tumba de Soga sin Umako, “gran ministro” (大臣 Oomi ?) De la corte imperial de Yamato, la región donde se establecieron los gobernantes del país. Dado que no es un montículo de un emperador, cuyas excavaciones se consideraría un sacrilegio, la kofun Ishibutai ha sido objeto de exploración intensiva, iniciado en 1933 por el arqueólogo japonés Kosaku Hamada. Las excavaciones continuaron hasta 1975.

El kofun fue proclamado sitio histórico en 1935 y en 1954 se convirtió en un sitio histórico especial (特別史跡 tokubetsu Shiseki ? ), Uno de los 75 en el país. [2]

El Ishibutai Túmulo, Asuka. Crédito de la imagen de Wikimedia Commons

El kofun Ishibutai (arriba) data de la primera parte del siglo 7 y se cree que se han construido para Soga-no-Umako, un miembro del poderoso clan Soga y un defensor de la aceptación del budismo en Japón. La piedra angular kofun ‘s se estima que pesa unas 75 toneladas, mientras que la propia cámara mide unos 8 por 4 metros, y se encuentra a 5 metros de altura. Mientras que la construcción básica no es muy diferente a la carretilla de construcción en Gran Bretaña de una fecha muy anterior al aspecto mucho más lineal de Ishibutai es que llama la atención.

El interior de la kofun

ishibutai5La entrada de kofun Ishibutai.ishibutai4

Ishibutai ( 石舞台 ) el túmulo de piedra

Con unas 30 moles de piedra, con un peso total de mas de 2 toneladas, se forma una cavidad interior de unos 7.7m de largo, 3.5m de ancho y casi 5m de altura, espacio que seria ocupado por algún líder de la época y sus mas preciadas pertenencias. Aunque no se percibe, en los bordes de la cámara, hay unas cavidades en forma de canales para drenar el agua que se filtraba a través de las piedras. Evidentemente, cuando en el 1933 fue re-descubierto, los tesoros que pudiera contener la cámara ya no estaban, apenas quedando el sarcófago en su interior (que, si no me equivoco, actualmente esta en el Museo nacional de ishibutai6Nara).

BeppoSAX

BeppoSAX fue un observatorio espacial de rayos X fruto de la colaboración entre los Países Bajos e Italia. Originalmente denominado SAX (Satellite per Astronomia X, en italiano), fue renombrado BeppoSAX en honor a Giuseppe “Beppo” Occhialini, físico italiano. El observatorio fue lanzado el 30 de abril de 1996 mediante un cohete Atlas desde Cabo Cañaveral. Al final de su misión reentró en la atmósfera, el 29 de abril de 2003.bepposax1

La misión de BeppoSAX fue realizar estudios espectroscópicos y de variabilidad temporal de fuentes celestes de rayos X en la banda de energías entre 1 y 200 keV, incluyendo una monitorización completa del cielo para la detección de eventos transitorios en el rango entre 2 a 30 keV.

Entre la instrumentación, el satélite portaba cuatro concentradores de rayos X sensibles a energías entre 1 y 10 keV (con uno de ellos capaz de detectar energías tan bajas como 0,1 keV), un centelleador de gas sensible a entre 3 y 12 keV y un centelleador de cristal de ioduro de sodio para energías entre 15 y 200 keV.

BeppoSAX fue un italianoholandesa por satélite para la astronomía de rayos X que jugó un papel crucial en la resolución del origen de los estallidos de rayos gamma (GRBs), los eventos más energéticos conocidos en el universo. Fue la primera misión de rayos X capaz de observar simultáneamente objetivos de más de más de 3 décadas de la energía, de 0,1 a 300 kiloelectronvolts (keV) con área relativamente grande, buena (por el momento) la capacidad de resolución de energía y de imagen (con una resolución espacial de 1 de minutos de arco entre 0,1 y 10 keV). BeppoSAX es un importante programa de la Agencia Espacial Italiana (ASI) con la participación de la Agencia Holandesa de Programas Aeroespaciales (NIVR). El contratista principal del segmento espacial era Alenia mientras Nuova Telespazio dirigió el desarrollo del segmento terreno . La mayor parte de los instrumentos científicos fueron desarrollados por el Consejo Nacional Italiano de Investigación (CNR), mientras que las cámaras Wide Field fueron desarrollados por el Instituto Holandés para la Investigación Espacial (SRON) y el LECS fue desarrollado por la División de Astrofísica de la Agencia Espacial Europea ‘s ESTEC instalaciones.

BeppoSAX fue nombrado en honor a la italiana físico Giuseppe “Beppo” Occhialini . SAX significa “Satélite por un Astronomia raggi X” o “Satélite de Astronomía de rayos X”.

De rayos X observaciones no se pueden realizar desde basados en tierra telescopios , ya que la atmósfera de la Tierra bloquea la mayoría de la radiación entrante.

Uno de los principales logros del BeppoSAX fue la identificación de numerosas explosiones de rayos gamma con objetos extragalácticos. (Véase el artículo enlazado para más detalles.)

Lanzado por un Atlas-Centaur el 30 de abril de 1996 en una baja inclinación (<4 grados) la órbita terrestre baja, la vida útil esperada de dos años se amplió al 30 de abril, 2002, debido a un alto interés científico en la misión y la continua buena estado técnico. Después de esta fecha, la órbita comenzó a deteriorarse rápidamente y diversos subsistemas estaban empezando a fallar por lo que es ya no vale la pena llevar a cabo observaciones científicas.

El 29 de abril de 2003, el satélite acabó con su vida que cae en el océano Pacífico .

Características de la nave espacialbepposax2

BeppoSAX es un tres ejes estabilizado por satélite, con una precisión de puntería de 1 ‘. La restricción principal actitud deriva de la necesidad de mantener la normal a los paneles solares dentro de los 30 ° del Sol, con excursiones ocasionales a 45 ° para algunas observaciones WFC. Debido a la baja órbita del satélite estaba a la vista de la estación de tierra de Malindi por sólo una fracción limitada del tiempo. Los datos fueron almacenados a bordo de una unidad de cinta con una capacidad de 450 Mbits y se transmite a tierra en cada órbita durante el paso de la estación. La velocidad de datos media disponible para instrumentos estaba a punto de 60 kbit / s, pero las tasas de pico de hasta 100 kbit / s puede ser retenido por parte de cada órbita. Con los paneles solares cerrados, la nave fue de 3,6 m de altura y 2,7 m de diámetro. La masa total es de 1.400 kg, con una carga útil de 480 kg.

La estructura del satélite consistió en tres subconjuntos funcionales básicos:

  • el módulo de servicio, en la parte inferior de la nave espacial, que albergaba a todos los subsistemas y las cajas electrónicas de los instrumentos científicos.
  • el módulo de carga útil, que albergaba los instrumentos científicos y los rastreadores de estrellas .
  • la estructura de sombra térmica, que cerraba el módulo de carga útil.

Los principales subsistemas del satélite son:

  • La actitud del sistema de control orbital (AOCS), que lleva a cabo la determinación de la actitud y maniobrado y operado el subsistema de control de Reacción a cargo de la órbita de la recuperación. Se incluyó redundantes magnetomers , sensores de adquisición de Sun, tres sensores estelares, seis giroscopios (tres de los cuales son para la redundancia), tres torquers magnéticos y cuatro ruedas de reacción , todos controlados por un equipo dedicado. Los AOCS garantizarse una precisión de puntería de 1 ‘durante las observaciones de origen y las maniobras con una velocidad de subida de 10 ° por minuto.
  • El manejador de datos de a bordo (OBDH) era el núcleo de la gestión de datos y de control del sistema en el satélite y también logró las interfaces de comunicación entre el satélite y la estación de tierra. Su ordenador supervisado todas las actividades de los subsistemas de procesador, tales como los de cada instrumento, y los buses de comunicación.

Instrumentación

BeppoSAX contenía cinco instrumentos científicos:

  • Espectrómetro de baja energía Concentrador (LECS)
  • Medio de Energía Concentrador Espectrómetro (MECS)
  • Alta presión de gas de centelleo proporcional Contador (HPGSPC)
  • Sistema detector phoswich (PDS)
  • Wide Field Camera (WFC)

Los primeros cuatro instrumentos (a menudo llamados instrumentos de campo estrecho o IFN) apuntan a la misma dirección, y permiten observaciones de un objeto en una amplia banda de energía de 0,1 a 300 keV (16 a 48.000 attojoules (AJ)).bepposax3

El WFC contenía dos apertura codificada cámaras que operan en el 2 a 30 keV (320 a 4.800 AJ) y cada gama que cubre una región de 40 x 40 grados (20 grados por 20 de anchura a media altura) en el cielo. El Congreso, que se complementa con el blindaje del PDS que tenía una (casi) todo el cielo vista en el 100 a 600 keV (16.000 a 96.000 aJ) banda, ideal para detectar explosiones de rayos gamma (GRB).

El blindaje PDS tiene una pobre resolución angular. En teoría, después de un GRB se observó en el PDS, la posición fue refinada por primera vez con el CFM. Sin embargo, debido a los muchos picos en el PDS, en la práctica un GRB se encontró utilizando el CFM, a menudo corroboradas por un BATSE -signal. La posición hasta minuto de arco de precisión – en función de la relación señal a ruido de la explosión – se encontró con el CFM-imagen deconvoluted. Las coordenadas fueron enviadas rápidamente a cabo como una Unión Astronómica Internacional (UAI) y la explosión de rayos gamma de coordenadas circular red. Después de esto, las observaciones de seguimiento inmediatas con el NFI y observatorios ópticos en todo el mundo permiten un posicionamiento preciso del PSG y observaciones detalladas del resplandor de rayos X, óptica y radio.

Los MECS contenían tres idéntica contadores proporcionales de centelleo de gas que operan en los 1,3 como 10 keV (208 a la 1602 AJ) gama. El 6 de mayo de 1997 una de las tres unidades idénticas MECS se perdió cuando una falla desarrollado en la fuente de alimentación de alto voltaje.bepposax4

El LECS fue similar a las unidades MECS, es de esperar que tenía una ventana más delgada que permite que los fotones con energías más bajas de hasta 0,1 keV (16 aJ) pase a través y operado en un modo “sin propósito”, que es necesaria para detectar la energía más baja X rayos gamma como estos se perderían en el régimen de baja campo cerca de la ventana de entrada de un GSPC convencional. Los datos anteriores LECS 4 keV (641 aJ) no es utilizable debido a problemas de calibración, probablemente causado por el diseño sin propósito. El LECS y MECS tenían capacidad de imagen, mientras que los instrumentos de campo estrecho de alta energía estaban sin imágenes.

El HPGSPC era también un contador proporcional de centelleo de gas, operando a una presión alta (5 atmósferas). Alta presión es igual de alta densidad y densa de material de fotones parar permitió la detección de fotones hasta 120 keV (19.000 AJ).

El PDS era un cristal (yoduro de sodio / yoduro de cesio detector de centelleo) capaz de absorber fotones de hasta 300 keV (48000 AJ). La resolución espectral del PDS era más bien modesta en comparación con los detectores de gas, pero la tasa de recuento bajo de fondo resultante de la órbita de baja inclinación BeppoSAX y una buena capacidad de rechazo fondo significaba que el PDS sigue siendo uno de los instrumentos de alta energía más sensibles voladas.

B eppoSAX era un importante programa de la Agencia Espacial Italiana con la participación de la Agencia Holandesa para Programas Aereospace.Se puso en marcha el 30 de abril de 1996 Cabo Cañaveral y operados por 6 años.Fue la primera misión de rayos X con una carga útil científica que abarca más de tres décadas de la energía – de 0,1 a 300 keV – con un área relativamente grande efectiva, resolución media energía y de imagen en el intervalo de 0,1-10 keV.

Características de la misión

Vida útil: 04 30, 1996-abril 30, 2002
Rango de energía: 0.1 – 300 keV
Características especiales: Amplio-banda de energía
Carga útil:

  • Los instrumentos de campo estrecho (NFI):
    • Cuatro telescopios Xray trabajan en conjnction con uno de los siguientes detectores:
      • Espectrómetro de baja energía Concentrador (LECS)
        (una unidad) 0.1-10 keV, área ef 22 cm2 @ 0,28 keV, diámetro FOV 37′, resolución angular 9.7′ FWHM @ 0,28 keV.
      • Medio de Energía Concentrador Espectrómetro (MECS)
        (tres unidades) 1.3-10 keV, el área total del FEP 150 cm2 @ 6 keV, diámetro FOV 56′, resolución angular para el radio de señal total 50% 75 “@ 6 keV.
    • Alta presión de gas de centelleo proporcional Contador (HPGSPC)
      4-120 keV, área ef 240 cm2 @ 30 keV
    • Sistema de detección de phoswich (PDS)
      15-300 keV. Los escudos laterales de los PDS se utilizan como monitor de estallido de rayos gamma en el intervalo de 60 a 600 keV. Área Ef 600 cm 2 @ 80 keV
  • Cámara de Gran Angular
    (2 unidades) 2-30 keV con un campo de visión 20 deg X 20 deg. El WFC son perpendiculares al eje de la NFI y el punto en direcciones opuestas entre sí. Ef área 140 cm2.

Resalte la ciencia:

  • Primero minutos de arco posición de GRB. determinación de la posición en la escala de tiempo rápida
  • En primer lugar de rayos X de observación y vigilancia de la PSG de seguimiento
  • espectroscopía de banda ancha de diferentes clases de fuentes de rayos X

Archivo: espectros, curvas de luz, imágenes y datos en bruto para el MECS, LECS y el PDS.

MSX

MSX (acrónimo del experimento espacial de mediano plazo) era un proyecto de BMDO (Organización de Defensa de Misiles Balísticos, Organización de defensa contra misiles balísticos) con el objetivo principal de la recogida de datos en una amplia gama de longitudes de onda (de la radiación ultravioleta a infrarrojo) para demostrar la viabilidad para descubrir y realizar un seguimiento de misiles balísticos durante su fase de vuelo crucero. Además de los instrumentos de a bordo fueron utilizados para realizar los estudios aeronómicos (que estudian la abundancia de ozono, clorofluorocarbonos , dióxido de carbono y metano) y auroras.[1] [3]

Especie: Observatorio del espacio / Militar

Organización: Departamento de Defensa de los Estados Unidos [1]

Fecha de lanzamiento: 24 de abril de 1996, 12:27 GMT [2] [3] [4]msx

Cohete portador: Delta 7920 [1] [3]

Lugar de lanzamiento: Fuerza Aérea Vandenberg [3] [5]

Objetivo de la misión: observaciones y misiles detectores astronómicos. [3] [5]

Designación internacional: 1996-024A

peso: 2.700 kg [1] [3] [5]

Potencia: 1200 vatios [1] [3] [5]

Características

MSX se compone de tres secciones de 1,5 x 1,5 m cuadrados que albergaba la electrónica, el hidrógeno en un sólido de temperatura de 8,5 K para enfriar los detectores y los tres instrumentos de observación. Los datos recogidos se procesan en tiempo real por OSDP (On-Board de señal y procesadores de datos) para detectar y seguir las señales generadas por los instrumentos. También sensores para medir la contaminación y la degradación del rendimiento de los instrumentos de procesos de desgasificación principalmente celebrada, y dio a conocer un número de áreas de 2 cm de diámetro para calibrar los instrumentos. [1] [3] [4]

La nave estabilizada en tres ejes con una precisión de 0,01 grados usando volantes. Fue capaz de almacenar hasta 108 GB de datos y se comunica con la Tierra en banda X antenas usando ajustable y con un ancho de banda de 2 kbps de subida y 25 Mbps en bajada. Los dos paneles solares del satélite xeneraban hasta 1200 vatios de potencia que alimentan las baterías de hidruro metálico de níquel.[5]

El satélite se insertó en órbita inicial de 908 kilometros de perigeo y 913 kilometros apogeo con una inclinación orbital de 99,4 grados y un periodo orbital de 102,9 minutos. Dejó de funcionar en junio de 2008.[4]

Instrumentos

MSX era tres instrumentos a bordo: [1] [2] [3]

  • SPIRIT III (Infrared Space Imaging Telescope): un radiómetro de alta resolución espacial y cinco longitudes de onda a lo largo con un espectrómetro de transformada de Fourier de seis canales y alta resolución espectral.
  • UVIS (ultravioleta y visible Reproductores de imágenes y espectrógrafo Imager) formados por cinco detectores espectrográfico y cuatro detectores en el ultravioleta y el rango visible.
  • SBV (espacio-base Visible): un telescopio de 15 cm de abertura a la gama visible con un CCD y procesamiento de imagen electrónica.

El experimento espacial de mediano plazo (MSX) [página en inglés] fue lanzado en abril de 1996 y operó hasta febrero de 1997, cuando agotó el helio liquido refrigerante. Durante sus 10 meses de operación, el MSX recopiló una gran cantidad de datos en la banda de 4,2 a 26 micrones. Estudió la emisión infrarroja del gas y el polvo que ocupan todo el universo. MSX tenía 30 veces más resolución espacial que IRAS y observó áreas que no habían sido rastreadas por éste.

Trelleborg (Slagelse)

Subcategoría: Hill Fort.

trelleborg1El Trelleborg (o Trælleborg) al oeste de Slagelse en la danesa isla de Zelanda, es uno de los siete castillos anillo vikingo descubierto a partir de 2014. En su día, la fortaleza estaba situada en una península que se adentraba en la zona pantanosa entre dos ríos. El pantano estaba conectado a la Gran Belt por un lago que en su momento podría ser navegado por barcos vikingos. Se cree Trelleborg haber sido ordenada por el rey Harald Bluetooth en el año 980 dC y que podría haber mandado el Gran Belt y su tráfico marítimo, entre las islas de Zelanda y Fionia.

Trelleborg es el mejor conservado de las fortalezas del anillo Viking y hay un museo aquí desde 1995 – Trelleborg Museo -, la presentación de la historia de esta fortaleza particular y la zona. Algunos de los artefactos encontrados en relación con las excavaciones arqueológicas están en exhibición en el museo, mientras que otros están en exhibición en el Nationalmuseet en Copenhague. Museo con la tecnología digital y virtual, en un proyecto conocido como Ny Trelleborg. En colaboración con los otros castillos anillo vikingos, el proyecto también está solicitando la admisión a la UNESCO como Patrimonio de la Humanidad. [1]

Al igual que en los otros castillos anillo vikingos encontrado hasta ahora, el Trelleborg en Slagelse fue diseñado como un círculo exacto con dos caminos que cruzan en ángulo recto en el centro geométrico, lo que lleva a cuatro puertas con dos puertas siempre uno frente al otro. En cada uno de los cuatro cuadrantes había cuatro casi idénticas casas alargadas dispuestas en un cuadrado. A diferencia de otros castillos de anillo, Trelleborg se amplió con una especie de patio. Toda la fortaleza puede tener espacio suministrado para unas 1.300 personas.

Castillo principal

El castillo principal circular estaba rodeado por una muralla, de 4,5 m de alto, 17,5 m de ancho en la base y con un diámetro de 137 m. La albañilería exterior estaba hecha de madera de roble. Dos filas de postes fueron apoyados por vigas inclinadas desde el exterior y el espacio entre los polos se llenó de limo y piedras. La albañilería interior también fue revestido con madera y las dos fachadas se ve reforzada por vigas que conectan los dos. En el este, había un amplio 5 m berma protegida por un foso con un perfil en punta, 17 m de ancho y 4 m de profundidad. La zanja no estaba lleno de agua y tenía una empalizada en su base. Las dos carreteras estaban cubiertas de madera, y las cuatro puertas revestidas con piedras en el interior. Al igual que en Fyrkat, puede haber habido un camino círculo a lo largo del lado interior de las murallas.

Las fortificaciones rodeaban un total de 16 casas alargadas dispuestas en cuatro cuadrados 29.42 m de largo cada uno. Las casas tenían una ftrelleborg2orma algo de nave, similar a como las largas paredes estaban desorbitados hacia el exterior. Cada casa tenía cuatro entradas, dos en los extremos cortos y dos en las paredes largas, y se dividió en tres habitaciones con una gran sala central (18 x 8 m) y dos salas más pequeñas en los extremos. Las puertas estaban protegidas por pórticos. Además de las grandes casas comunales, también hubo casas más pequeñas al norte del barrio del este del norte, dos pequeñas casas en el patio interior del barrio noreste y el suroeste y una pequeña cabaña cuadrado, cada uno cerca de las puertas norte y oeste. [2]

Bailey

Esta parte de la fortaleza parece único, como otros castillos anillo parecen carecer de esta función (hasta ahora sólo Aggersborg, Fyrkat y Trelleborg ha sido totalmente excavada a partir de 2006, aunque). El patio estaba protegido por una muralla de su propia hacia el este. Las 14 casas comunales de la muralla, cada uno de 26.33 metros de largo, se colocaron con su eje a través de la longitud de los edificios que apuntan hacia el centro del castillo principal.

En una extensión de este patio hay un cementerio de 135 tumbas. La mayoría de los enterrados resultaron ser hombres jóvenes, pero algunos eran mujeres o niños. Tres tumbas contienen entierros masivos, uno de cinco y el otro para once personas. Más de dos tercios de las tumbas no tenían ofrendas graves, los otros sólo tenía algunas piezas, las armas es más bien raro. Sólo dos tumbas eran ricas en elementos. Uno de ellos era la tumba de una mujer con perlas, un cubo de bronce, un ataúd de madera y piedras de juego. La otra era la tumba de un hombre con un cuenco de bronce y un hacha de plata adornada. La gran cantidad de tumbas simples puede indicar una influencia cristiana. Graves de jinetes fueron encontrados en los alrededores terrenos más elevados. [2]

Excavación y se encuentra…

El sitio fue excavado entre 1934 y 1942. La mayor parte de los hallazgos en Trelleborg, refleja una vida diaria relativamente tranquilo aquí, e incluye todos los días utensilios tales como cerámica, cerraduras, llaves, accesorios, cuchillos, piedras de afilar, peines, tejiendo pesos, tijeras y agujas . A pocos artesanos que aquí se dedicaban a la plata, el oro y el bronce de trabajo de naturaleza más delicada. [3]

También se encontraron armas como hachas de hierro, puntas de flecha y partes de escudos y hay fuertes indicios de un ataque batalla y el castillo que tiene lugar en algún momento durante la corta vida de los castillos. Se encontraron 19 puntas de flecha enterrada profundamente en las murallas y puertas. En combinación con las tres fosas comunes, esto se toma como evidencia sólida. Los soldados muertos fueron enterrados rápidamente en masa, muchos de ellos mostrando cortes profundos y heridas letales de armas de combate. El análisis de estroncio de los restos óseos se ha puesto de manifiesto que una mayor parte de los muertos, se originó a partir de lo que hoy conocemos como Noruega y Polonia Por lo tanto, y se cree que han sido los mercenarios extranjeros, estacionados aquí como guardias del castillo. Este descubrimiento está en consonancia con Harald Bluetooths fuerte alianza con los Obotrite eslavos a través de su matrimonio con Tove, hija del príncipe Mstivoj. Harald tarde huyó a la ciudad de Wolin (entonces conocido como Jumne), donde murió de sus heridas después de combatir a sus perseguidores en 986-87 AD. [2] [4] [5]

Citas

Dataciones por dendrocronología, han encontrado la madera utilizada para las construcciones que han sido talados en el otoño del 980 dC y posteriormente utilizado para la construcción, probablemente en la primavera del 981 dC. El tiempo de construcción más bien corto y la falta completa de cualquier signo de mantenimiento, indican un único uso por debajo de los edificios de no más de 10 a 15 años tal vez. Las partes de la fortaleza, como la muralla oriental exterior fue probablemente nunca completaron antes de que se abandonó el sitio. Los hallazgos arqueológicos muestra que Trelleborg estaba bajo ataque en algún momento, lo que resulta en varios soldados muertos y signos de fuego, sugiere el castillo podría haber sido destruido por el fuego. Las regiones alrededor de las puertas muestran signos de uso más largo sin embargo. [2]

Mayores, dataciones anteriores pusieron el castillo cerca del año 1000 DC.

El paisaje que rodea el Trelleborg, ha cambiado considerablemente desde la época de los vikingos, debido a un aumento de la tierra conocido como rebote post-glacial, que afecta a esta parte del mundo, y el pantano anterior se ha reducido a un pequeño pantano, mientras que los dos ríos de Vårby Å y Tude Å, ha reducido a las corrientes estrechas. [6]

En 1948, una de las casas comunales fue trelleborg3reconstruida en el sitio, pero las investigaciones más recientes, ha llevado ya a otras opiniones sobre su verdadero diseño original. Hoy en día el sitio del Trelleborg es un museo al aire libre con algunos edificios para exposiciones. El museo fue creado en 1995, y desde 1999 hasta 2.004 danés historiador Kåre Johannessen fue el curador del museo. [7] Hay planes de expansión y actualizaciótrelleborg4n de las exposiciones y del municipio de Slagelse también ha iniciado una gran restauración de la naturaleza del proyecto de todo el valle del río de Tude Å, incluyendo el trelleborg. [2] [6]

Vista desde las murallas del castillo principal, mirando al este a través del patio. Dos de las 14 casas comunales se puede ver aquí recogidos. La plaza cercada es el sitio de un cementerio pagano asociado. [2]

La casa comunal reconstruida por el trelleborg.

trelleborg5Vista desde las murallas mirando hacia adentro. Las fortificaciones encerrados un total de 16 casas comunales. [2]