Tecnología
ASTRO-F (Akari)
Astro-F (Akari)
Información general
Organización: JAXA
Fecha de lanzamiento: 21 de febrero de 2006
Aplicación: Observatorio espacial
Configuración: Cilíndrica
Equipo:
FIS Far Infrared Surveyor
NIR Near Infrared Camera
MIR-S Middle Infrared Shorter Camera
MIR-L Middle Infrared Longer Camera
Tipo de órbita: Circular
Período orbital: 96,6 minutos
ASTRO-F (o Akari) es un satélite de astronomía infrarroja diseñado por la JAXA, en colaboración con universidades e institutos técnicos de Europa y Corea. Fue lanzado el 21 de febrero de 2006 por un cohete M-V a una órbita polar terrestre. Tras el lanzamiento fue rebautizado como Akari, que significa “luz” en japonés.
Su misión principal es escanear el cielo entero en infrarrojo cercano, medio y lejano a través de su telescopio de 68,5 cm de diámetro, que será mantenido durante las observaciones a una temperatura de 6 K para evitar interferencias con la radiación infrarroja que emitiría el propio telescopio.
Se espera que los sensores de infrarrojos lejanos y medios duren unos 550 días, limitados como están por el helio líquido que funciona a modo de refrigerante. El sensor de infrarrojos cercanos podrá continuar operando una vez se agote el refrigerante gracias a un sistema de refrigeración mecánica. El satélite consta de los siguientes instrumentos:
- FIS Far Infrared Surveyor: Instrumento sensor de infrarrojos lejanos
- NIR Near Infrared Camera: Instrumento sensor de infrarrojos cercanos
- MIR-S Middle Infrared Shorter Camera: Sensor de infrarrojos medios con longitudes de onda menores
- MIR-L Middle Infrared Longer Camera: Sensor de infrarrojos medios a longitudes de onda marrón|enanas marrones]]
- Estudiar los procesos de formación de sistemas planetarios
- Descubrir nuevos cometas
AKARI (conocido como ASTRO-F o IRIS – rayos infrarrojos Imaging Surveyor) es la segunda misión espacial para la astronomía infrarroja en Japón. AKARI ha sido desarrollado por los miembros de la JAXA / ISAS y colaboradores. IRAS (Satélite Astronómico Infrarrojo, lanzado en 1983 por el Reino Unido, los Estados Unidos y los Países Bajos), llevó a cabo la primera encuesta de todo el cielo en longitudes de onda infrarrojas y tuvo un gran impacto en la astronomía. La misión AKARI es un ambicioso plan para realizar una encuesta de todo el cielo con mucha más sensibilidad y resolución espacial y la cobertura de longitud de onda más ancha que IRAS. AKARI tiene un telescopio 68.5cm enfrió a 6K, y observar en el intervalo de longitud de onda de 1,7 micras (infrarrojo cercano) a 180 (de infrarrojo lejano). AKARI fue lanzado con éxito al espacio por un cohete MV. AKARI ha sido colocado en una órbita polar sincronizada con el sol de unos 700 kilómetros.
Los datos de imagen AKARI de infrarrojo lejano de todo el cielo se han completado y puesto en libertad a los investigadores de todo el mundo. Los nuevos mapas de imagen AKARI tienen cuatro a cinco veces mejor resolución que la de las imágenes de todo el cielo de infrarrojo lejano convencionales, así como los datos en longitudes de onda más largas. Se espera que los datos de imagen AKARI para contribuir a una variedad muy amplia de estudios astronómicos, por ejemplo, en las zonas de formación estelar y planetaria y la evolución de las galaxias.
Alta Resolución de infrarrojo lejano de todo el cielo la imagen datos publicados (enero de 2015)
El principal objetivo de la misión astronómico infrarrojo ASTRO-F es hacer una encuesta de todo el cielo en longitudes de onda infrarrojas, con una sensibilidad de un orden de magnitud mejor y resolución de un par de veces más alta que IRAS (Infrared Astronomical Satellite), que es el primer satélite astronómico infrarrojo lanzado en 1983. ASTRO-F hará una segunda encuesta generación que satisfaga las expectativas del astrónomo actual.
Hay una gran variedad de objetivos científicos que será investigado por ASTRO-F. Especialmente nos centramos en lo siguiente.
- Para comprender la formación y evolución de las galaxias.
- Para indagar en el proceso de formación de estrellas y sistemas planetarios.
Con el fin de lograr estos objetivos, ASTRO-F lleva a cabo las siguientes observaciones.
- Un imparcial de todo el cielo en longitudes de onda de 50 a 180 micras.
- Una resolución de alta sensibilidad y observaciones espectroscópicas que cubren más de varias decenas de grados cuadrados en longitudes de onda de 1,7 a 180 micras.
Contorno
ASTRO-F satélite consiste en un criostato y un módulo de bus. Un telescopio e instrumentos científicos se almacenan en el criostato y se enfría por helio líquido y refrigeradores mecánicos. El módulo de bus se encarga de la manutención del satélite, control de actitud, manejo de datos, y la comunicación con el sistema de tierra. La altura y el peso del satélite son 3,7 metros y 952 kg, respectivamente. El criostato y el módulo de bus tienen estructuras independientes con el fin de disminuir flujo de entrada de calor en el criostato.
El panel solar que suministrará energía eléctrica al satélite se extenderá en la órbita. El criostato tiene una tapa de la abertura en el suelo a fin de mantener un vacío apretado y prevenir flujo de entrada de luz parásita. Esta tapa de abertura se expulsa en el espacio después del establecimiento de la actitud del satélite.
ASTRO-F será lanzado por MV No.8 vehículo de lanzamiento que también ha sido desarrollado por JAXA / ISAS. La operación se lleva a cabo después del lanzamiento principalmente a Sagamihara Espacio Centro de Operaciones (SSOC) y Uchinoura Space Center (USC).
Telescopio
El telescopio ASTRO-F es un sistema Ritchey-Chrétien con F / 6.1. La distancia focal es 4200 mm y la abertura eficaz es de 68,5 cm. Todo el telescopio se enfrió hasta aproximadamente 6K durante las observaciones. El objetivo del telescopio enfriado es la de suprimir la radiación térmica perjudicial irradiaba de telescopio en sí.
El telescopio se compone de un espejo primario, un espejo secundario, armazones que soportan el espejo secundario, y deflectores que impiden que la luz parásita. Las cerchas están hechas de berilio (Be) de metal. El berilio es un material con un peso ligero y una buena conducción térmica.
El espejo primario es de SiC (carburo de silicio), un material ligero y rígido. El lado posterior del espejo está ahuecado con el fin de hacerlo más ligero. El peso real de los 71 cm (diámetro efectivo es de 67 cm) espejo primario es sólo 11 kg. Esta es la primera vez que un espejo de SiC va a volar en el espacio.
La superficie del espejo primario se recubre por oro (Au) con el fin de aumentar la reflectancia a la longitud
Criostato
170 litros de helio líquido superfluido (en el momento del lanzamiento) se carga en el tanque del criostato y se enfría los instrumentos y el telescopio hasta una temperatura muy baja.
Dos juegos de Stirling de ciclo refrigeradores mecánicos se incorporan además del helio líquido. La adición de los refrigeradores mecánicos extiende la vida de helio y reduce la cantidad de helio a realizar en el espacio. ASTRO-F hará observaciones durante un año y medio, manteniendo una temperatura muy baja utilizando tanto helio líquido y los refrigeradores mecánicos.
Instrumentos de plano focal
ASTRO-F está equipado con dos tipos de instrumentos; el FIS (infrarrojo lejano Surveyor) para las observaciones de infrarrojo lejano y el IRC (cámara de infrarrojos) para ver de cerca y observaciones en el infrarrojo medio.
FIS: infrarrojo lejano Surveyor
El FIS es el instrumento destinado principalmente para hacer una encuesta de todo el cielo en longitudes de onda del infrarrojo lejano. Dos detectores del FIS son fotoconductores que utilizan cristal semiconductor Ge: Ga, germanio dopado con Galio. Destacaron Ge: Virutas de Ga son sensibles a la luz infrarroja extrema de la longitud de onda más larga que las normales. Cada detector se utiliza con filtros. Por lo tanto el FIS tiene efectivamente cuatro bandas de observación.
El FIS también se utiliza para señalar las observaciones para detectar objetos débiles o para llevar a cabo la espectroscopia utilizando un espectrómetro de transformada de Fourier.
Cámara de infrarrojos: IRC
La IRC se compone de tres sistemas de cámaras independientes. La cámara NIR se asigna a las longitudes de onda del infrarrojo cercano en el 1,7 – 5,5 micras gama. La cámara MIR-S se asigna a cortas longitudes de onda en el infrarrojo medio por encima del 5,8 – 14,1 micras gama y la cámara MIR-L se asigna al infrarrojo medio longitudes de onda más largas de 12.4 – 26.5 micras.
Una de las ventajas de la IRC es que se puede observar a 10 minutos de arco cuadrado a la vez debido a las grandes formaciones de detectores formato (512×412 para NIR, 256×256 para MIR). Cada cámara puede seleccionar una banda de frecuencias específica para observar mediante el uso de filtros. Además, el IRC está equipada con prismas y grisms por lo que puede realizar observaciones espectroscópicas.
Las observaciones de la IRC son básicamente en el modo de puntero. Observaciones de la encuesta utilizando una parte de conjuntos de detectores también están bajo consideración.
Modo de órbita y de Control de Posición
La órbita de ASTRO-F es una órbita polar síncrona Sol con una altitud de 745 km. Se va alrededor de la Tierra por encima de la zona de penumbra y pasa por encima de los polos norte y sur. El periodo orbital es de aproximadamente 100 minutos.
Las observaciones con ASTRO-F se llevan a cabo en dos modos de control de actitud; el modo de encuesta y el modo de puntero.
Modo de encuesta
Modo de encuesta es el modo de observación básica de ASTRO-F. La actitud del satélite siempre se establece de manera que la dirección del telescopio es perpendicular a las direcciones del Sol y de la Tierra. Por lo tanto el telescopio gira y explora el cielo a lo largo de un gran círculo como el satélite gira alrededor de la Tierra. La dirección del Sol desde la Tierra gira una vez en un año. En consecuencia, ASTRO-F puede hacer una encuesta de todo el cielo en medio año en el modo de encuesta.
Modo de cursor
Modo de cursor se utiliza en el caso cuando un observador solicita una exposición a largo o espectroscopia hacia una ubicación fija. El telescopio no puede apuntar en una dirección arbitraria en cualquier momento, debido a que el telescopio no se puede mirar en la dirección desde la cual la luz del sol y / o la Tierra vienen. Debido a esta restricción, cualquier tiempo de exposición es menos de diez minutos para una observación.
Periodo de observación
La vida útil de ASTRO-F termina cuando el helio líquido, el refrigerante principal de a bordo ASTRO-F, se agota. El tiempo de vida esperado se estima en unos 550 días después de su lanzamiento.
El plan de funcionamiento es el siguiente. Los dos primeros meses de la misión es la fase de verificación del rendimiento (PV). En el siguiente medio año, el FIS de todo el cielo se lleva a cabo preferentemente (Fase 1). Después de la fase 1, ASTRO-F observa diversos objetos en el modo de puntero además de complementar las áreas perdidas de la Fase 1, hasta que se consume el helio líquido. La cámara de infrarrojo cercano de la IRC puede continuar observaciones después de que el helio expira, porque la cámara de infrarrojo cercano se puede utilizar a la temperatura mantenida por sólo los refrigeradores mecánicos.
Los objetivos científicos
La evolución de las galaxias
Explorar protogalaxias
¿Cuándo y cómo se galaxias nacen y ¿cómo evolucionaron a la época actual? La luz de las estrellas que han nacido en las primeras fases del Universo se observan en la longitud de onda infrarroja debido a un efecto Doppler cosmológica. Por otra parte, las galaxias recién nacidos pueden ser más luminosa en longitudes de onda infrarrojas, ya que se cree que están sometidos a la formación de estrella grande escala envuelto en nubes de polvo. ASTRO-F buscará galaxias recién nacidas (protogalaxias) con alta sensibilidad a los infrarrojos. Se espera ASTRO-F para detectar más de diez millones de galaxias de todo el cielo.
Origen y evolución de las galaxias
IRAS, el primer satélite astronómico infrarrojo del mundo, descubrieron galaxias luminosas infrarrojas. Resultó que eran galaxias de formación estelar activa. Algunos de ellos están chocando unas con otras en las que un gran número de estrellas están surgiendo. También se cree que un masivo agujero negro está en el centro de tales galaxias y enorme energía está irradiando de ella. Este tipo de interacción se cree que es un fenómeno frecuente en el universo temprano. ASTRO-F hará un estudio sistemático que se remonta a las etapas iniciales del universo, e investigar el origen y evolución de las galaxias.
A buscar sistemas planetarios fuera del sistema solar Propia
Una de nuestras grandes preocupaciones es si existen sistemas planetarios a excepción de nuestro propio Sistema Solar y si existe vida allí. Un planeta se forma dentro de un disco (disco protoplanetario) compuesta de gas y polvo alrededor de una estrella. ASTRO-F puede buscar la radiación de un disco protoplanetario dentro de 1000 años luz. Se revelará el proceso de formación de los sistemas planetarios a través de observaciones en el infrarrojo. También se espera para detectar los discos de polvo que son un vestigio de sistemas planetarios en formación alrededor de estrellas cercanas.
Descubrir nuevos cometas
ASTRO-F tiene el potencial de detectar una gran cantidad de cometas desconocidos. La luz de una cometa que generalmente vemos es la luz solar dispersada por el cometa. ASTRO-F puede detectar la luz infrarroja intrínseca radiada por un cometa en sí que se calienta por el sol Se espera ASTRO-F para detectar más de 50 cometas nuevos.
AKARI completado la operación
Agencia Japonesa de Exploración Aeroespacial informó de que se completó la operación del satélite astronómico infrarrojo AKARI (ASTRO-F). Los transmisores de a bordo fueron apagados a las 17:23 (JST) el 24 de noviembre, 2011.
AKARI fue lanzado el 22 de febrero (JST), 2006 desde el Centro Espacial Uchinoura por el vehículo de lanzamiento MV Nº 8. Es el primer satélite astronómico infrarrojo japonés, y ha sido operado más allá de su vida útil (*). AKARI proporcionan catálogos de la fuente de infrarrojos que contienen 1,3 millones de objetos, así como muchos de los resultados esenciales de la astronomía infrarroja.
operación de la ciencia de Akari se completó en junio de 2011, tras una avería en su sistema de suministro de energía ocurrido el 24 de mayo de 2011. Después de entonces, se han realizado esfuerzos constantes para la interrupción segura.
Los resultados principales que ofrece AKARI se presentan en las siguientes páginas, así como página de resultados de la ciencia del proyecto.
- abrir una nueva ventana AKARI Proyecto del sitio> Resultados
- Estado actual de la Misión de AKARI Después de un año de observaciones — El universo visto por AKARI (Temas: July 11, 2007)
- Reciente más destacado de Akari (Temas: 19 de noviembre de 2008)
ASTRO-E2
Información general
Organización: JAXA
Estado: Astro-E: fallido; Astro-E2: activo
Fecha de lanzamiento: Astro-E: 2000; Astro-E2: 10 de julio de 2005
Aplicación: Observatorio espacial
Configuración: Cilíndrica
Equipo: X-ray Spectrometer (XRS): X-ray Imaging Spectrometer (XIS): Hard X-ray Detector (HXD)
ASTRO-E y ASTRO-EII (también Astro-E2) son satélites japoneses construidos principalmente por la JAXA con el objetivo de estudiar el cielo en el rango de los rayos X. En el año 2000 el lanzamiento del ASTRO-E falló y el satélite se perdió en el océano, por lo que el 10 de julio de 2005 se lanzó un reemplazo conocido como ASTRO-EII. Este satélite tiene una alta resolución espectroscópica así como la capacidad de estudiar una banda de energía bastante ancha, desde los rayos X suaves hasta los rayos gamma (0,3 – 600 keV). Estas características son esenciales a la hora de estudiar fenómenos astronómicos que involucran grandes energías, como agujeros negros y supernovas. Tras el éxito en el lanzamiento, el ASTRO-EII fue rebautizado como Suzaku una deidad japonesa similar al fenix cuyo nombre significa “pájaro rojo del sur”.
El satélite funcionó correctamente hasta el 29 de julio de 2005, cuando tuvo la primera de una serie de complicaciones con el sistema de vacío. El 8 de agosto de 2005 este fallo causó el derrame del helio líquido usado como refrigerante al espacio, quedando a partir de entonces el instrumento principal del satélite, el XRS, inutilizado aunque los otros instrumentos no se vieron afectados. El ASTRO-EII lleva a bordo los siguientes instrumentos científicos:
- X-ray Spectrometer (XRS)
- X-ray Imaging Spectrometer (XIS)
- Hard X-ray Detector (HXD)
ASTRO-EII utiliza cinco telescopios de rayos X blandos unidos a tres diferentes tipos de instrumentos. Estos telescopios cuentan con rango de energía más eficaz del mundo. Uno tiene un espectroscopio de rayos X que medir la energía de los fotones de rayos X individuales con una precisión 10 veces mayor que los instrumentos anteriores. Cada uno de los cuatro restantes tiene una cámara CCD que puede devolver alta calidad, claras imágenes de rayos X y espectros a la Tierra. ASTRO-E también lleva un detector de rayos X duros con capacidad de cubrir de alta energía, o “duros”, los rayos X en la sensibilidad más alta jamás alcanzada.
ASTRO-EII se caracteriza por los instrumentos de superprecisión se realiza para observar los procesos de alta energía en el Universo, tales como los que se producen en los agujeros negros y racimos de galaxias. Estos instrumentos, que utilizan la tecnología líder en el mundo de Japón en este campo, puede realizar una medición precisa del efecto Doppler de la línea de rayos X – algo que ha sido difícil de lograr con los instrumentos existentes. ASTRO-EII nos permitirá observar con detalle la dinámica del gas en la fusión de grupos de galaxias gigantes, así como el movimiento y el estado físico de la materia que cae en un enorme agujero negro. El aumento de la sensibilidad de los instrumentos permitirá la observación de las estrellas primitivas oscura en las galaxias lejanas, y hacer una contribución significativa a la comprensión de la evolución del Universo y de la estructura del espacio-tiempo.
ASTRO-EII se puso en marcha a las 12:30 pm el 10 de julio de 2005 (hora estándar de Japón, JST) desde el Centro Espacial Uchinoura (USC) por MV.
La puesta en órbita ASTRO-EII se le dio un apodo de “Suzaku”.
Suzaku (anteriormente ASTRO-EII) fue un astronomía de rayos X por satélite desarrollado conjuntamente por la NASA Goddard Space Flight Center y el Instituto de Ciencias Espaciales y Aeronáuticas en JAXA para sondear las fuentes de rayos X de alta energía, como las explosiones de supernovas, agujeros negros y galáctico clusters. Se puso en marcha el 10 de julio de 2005 a bordo del cohete MV-6. Después de su exitoso lanzamiento, el satélite Suzaku fue renombrado después de la mítica ave bermellón del Sur. [4]
Apenas unas semanas después de su lanzamiento, el 29 de julio de 2005, el primero de una serie de fallas en el sistema de enfriamiento producido. Estos terminaron provocando todo el reservorio de helio líquido hierva en el espacio antes del 8 de agosto de 2005. Esta cerró efectivamente el Espectrómetro de Rayos X (XRS), que era el instrumento principal de la nave espacial. Los otros dos instrumentos, el Espectrómetro de Imágenes de rayos X (XIS) y el detector de rayos X duros (HXD), no se vieron afectados por el mal funcionamiento. Como resultado de ello, otro XRS se integró en el satélite de rayos X Hitomi, lanzado en 2016.
El 26 de agosto de 2015, JAXA anunció que las comunicaciones con Suzaku habían sido intermitente desde el 1 de junio, y que la reanudación de las operaciones científicas serían difíciles de lograr dada la condición de la nave espacial. [5] operadores de la misión decidieron completar la misión de forma inminente, como Suzaku tenía superado su vida útil de diseño por 8 años en este punto. La misión llegó a su fin el 2 de septiembre de 2015, cuando la JAXA ordenó a los transmisores de radio sobre Suzaku para cambiar a sí mismos fuera.[3] [6]
Poco después del lanzamiento, Suzaku perdió el helio líquido para enfriar el detector XRS-2, impactando severamente la resolución del instrumento. Todos los demás instrumentos son operables y proporcionaron resultados valiosos. Suzaku operado mucho más allá del tiempo de vida de dos años de diseño hasta que en junio de 2015, cuando el sistema de comunicaciones del satélite de forma intermitente cortada. En agosto de 2015, la misión fue declarada la pérdida y el satélite se apagó el 2 de septiembre de 2015.
SWIFT
SWIFT Gamma-Ray
Swift es un observatorio espacial dedicado al estudio de las explosiones de rayos gamma o GRB (del inglés Gamma-Ray Burst). Posee tres instrumentos que trabajan juntos permitiéndole estudiar el fenómeno en rayos gamma, rayos x, ultravioleta y visible.
Fue construido por un consorcio internacional formado por Estados Unidos, Reino Unido e Italia y lanzado finalmente el 20 de noviembre de 2004 en un cohete Delta 2. Es controlado por el Goddard Space Flight Center de la NASA.
En principio su misión es de dos años, pero se prevé que si no ocurre ningún contratiempo, la misión pueda ser extendida.
La principal característica de este observatorio es que cuando detecta una explosión de rayos gamma es capaz de localizarla en 15 segundos, para entonces reorientarse automáticamente para quedar apuntando con todos sus instrumentos el lugar de origen de la explosión o llamarada de rayos gamma entre 20 y 75 segundos después de la explosión.
Los objetivos científicos de la misión Swift son:
- Determinar el origen de las llamaradas de rayos gamma.
- Clasificar las llamaradas de rayos gamma y buscar nuevos tipos.
- Determinar como evoluciona e interactúa la onda expansiva con sus alrededores.
- Usar las llamaradas de rayos gamma para estudiar el universo primitivo.
- Un estudio de todo el cielo en rayos X más sensible que cualquier anterior.
Para lo cual dispone de los siguientes instrumentos:
- Burst Alert Telescope (BAT): Detecta las llamaradas y anota sus coordenadas.
- X-Ray Telescope (XRT): Toma imágenes y realiza análisis espectrales de las llamaradas. Con estos datos se consigue una localización más precisa del origen de la explosión.
- UV/Optical Telescope (UVOT): Se usa tanto como para estudiar el espectro en radiación ultravioleta y visible, así como para estudiar la variación de luminosidad de las llamaradas con el tiempo. También afina la posición de la llamarada de rayos gamma hasta una resolución inferior a un arcosegundo.
Gracias a los logros científicos de la misión Swift, se cree haber resuelto el misterio de las llamaradas o explosiones de rayos gamma. Ya se sabía que algunas de las explosiones podían ser provocadas por supernovas, pero se han encontrado indicios de que otras que hasta ahora no tenían explicación podrían ser formadas por colisiones entre agujeros negros y estrellas de neutrones o entre varias de estas últimas.
Observaciones realizadas por el Swift han permitido localizar el objeto más lejano jamás observado, una explosión a 13.000 millones de años luz.
Iformación general
Swift es un multi- longitud de onda observatorio espacial dedicado al estudio de las explosiones de rayos gamma (GRBs). Sus tres instrumentos trabajan juntos para observar GRB y sus resplandores en el de rayos gamma, rayos X, radiación ultravioleta, y ópticos bandas de ondas.
Sobre la base de los análisis continuos de la zona del cielo con uno de los monitores del instrumento, Swift utiliza volantes de inercia para girar de forma autónoma en la dirección de posibles estallidos de rayos gamma. El nombre de “Swift” no es un acrónimo relacionado con la misión, sino más bien una referencia a la capacidad de giro rápido del instrumento, y la agilidad de aves del mismo nombre.[6] Todos los descubrimientos Swift ‘s se transmiten al suelo y los datos están a disposición de otros observatorios que unen Swift en la observación de los estallidos de rayos gamma.
En el tiempo entre eventos de PSG, Swift está disponible para otras investigaciones científicas y científicos de las universidades y otras organizaciones pueden presentar propuestas para las observaciones.
El Centro de Operaciones de Swift Misión (MOC), donde se lleva a cabo al mando del satélite, se encuentra en State College, Pennsylvania y es operado por la Universidad Estatal de Pensilvania y subcontratistas de la industria. La estación terrestre principal Swift está situado en el centro espacial de Broglio cerca de Malindi, en la costa del este de Kenia, y es operado por la Agencia Espacial Italiana. El Centro de Datos Científicos Swift (SDC) y el archivo se encuentran en la Centro de Vuelo Espacial Goddard fuera de Washington DC El Centro de Ciencias de Datos del Reino Unido Swift se encuentra en la Universidad de Leicester.
El bus de la nave espacial Swift fue construido por Spectrum Astro, que más tarde fue adquirida por General Dynamics Avanzada de Sistemas de Información,[7] , que a su vez fue adquirida por Orbital Sciences Corporation.
Instrumentos
Burst Telescopio de Alerta (BAT)
El MTD detecta eventos de PSG y calcula sus coordenadas en el cielo. Cubre una gran fracción del cielo (más de un estereorradián codificada totalmente, tres estereorradianes parcialmente codificado; en cambio, el cielo lleno de ángulo sólido es 4π o alrededor de 12,6 estereorradianes). Se localiza la posición de cada evento con una precisión de 1 a 4 minutos de arco dentro de los 15 segundos. Esta posición crudo se transmite inmediatamente al suelo, y algunas de campo amplio, rápido mató telescopios basados en tierra puede coger el PSG con esta información. El MTD utiliza una máscara-apertura codificada de 52.000 puestos aleatoriamente 5 mm de plomo azulejos, 1 metro por encima de un plano detector de 32.768 mm de cuatro CdZnTe azulejos detector de rayos X duros; que se ha diseñado específicamente para Swift. Rango de energía: 15-150 keV.[8]
Telescopio de Rayos X (XRT)
El XRT [9] puede tomar imágenes y realizar análisis espectral de la luminiscencia residual de GRB. Esto proporciona la ubicación más precisa de la GRB, con un círculo de error típico de aproximadamente 2 segundos de arco de radio. El XRT también se utiliza para realizar el seguimiento a largo plazo de los GRB afterglow curvas de luz durante días o semanas después del evento, dependiendo del brillo de la luminiscencia residual. El XRT utiliza un telescopio Wolter tipo I de rayos X con 12 espejos anidados, se centró en un único MOS de carga acoplada dispositivo (CCD) similares a los utilizados por los XMM-Newton cámaras EPIC MOS. A bordo de software permite observaciones totalmente automatizadas, con el instrumento de seleccionar un modo de observación apropiado para cada objeto, en función de su tasa de recuento medido. El telescopio tiene un rango de energía de 0,2 – 10 keV. [10]
Telescopio ultravioleta / óptico (UVOT)
Después de Swift ha basculado hacia un GRB, el UVOT se utiliza para detectar un resplandor óptico. El UVOT proporciona una posición de sub-segundo de arco y proporciona la fotometría óptica y ultravioleta a través de filtros lenticulares y los espectros de baja resolución (170-650 nm) mediante el uso de sus ópticas y UV grisms. El UVOT también se utiliza para proporcionar a largo plazo de seguimiento de curvas de luz de fosforescencia de PSG. El UVOT se basa en el XMM-Newton monitor óptico de la misión (OM) de instrumentos, con la óptica mejorada y actualizar los equipos de procesamiento a bordo. [11]
El 9 de noviembre de 2011, UVOT fotografiado el asteroide 2005 YU 55 como el asteroide hizo un sobrevuelo cercano de la Tierra. [12] El 3 de junio de 2013, UVOT dio a conocer una encuesta masiva ultravioleta de las cercanas nubes de Magallanes.[13]
Objetivos de la misión
La misión Swift tiene cuatro objetivos científicos clave:
- Para determinar el origen de los estallidos de rayos gamma. Parece que hay al menos dos tipos de GRB, de las que sólo se pueden explicar con una hipernova, creando un haz de rayos gamma. Se necesitan más datos para explorar otras explicaciones.
- Para utilizar los GRBs de ampliar la comprensión del joven universo. GRB parecen tener lugar a “distancias cosmológicas” de muchos millones o miles de millones de años luz, lo que significa que se pueden utilizar para sondear el cosmos distantes, y por lo tanto jóvenes,.
- Para llevar a cabo un estudio de todo el cielo que será más sensible que cualquier anterior, y se sumará de manera significativa al conocimiento científico de las fuentes de rayos X astronómicos. Por lo tanto, también se podría producir resultados inesperados.
- Para servir como una plataforma de rayos gamma / X-ray / observatorio óptico de uso general, la realización rápida “objetivo de oportunidad” observaciones de muchos fenómenos astrofísicos transitorios, tales como supernovas.
Historia de la misión
Swift fue lanzado el 20 de noviembre de 2004, y alcanzó una órbita casi perfecta de 586 × 601 kilometros (364 × 373 millas) de altura, con una inclinación de 20 °.
El 4 de diciembre, se produjo una anomalía durante la activación del instrumento cuando el refrigerador de termoeléctrico (TEC) Fuente de alimentación para el Telescopio de rayos X no se encienden como se esperaba. El equipo de XRT en Leicester y la Universidad Estatal de Pensilvania fueron capaces de determinar el 8 de diciembre que el XRT sería utilizable incluso sin el TEC de ser operativas. Las pruebas adicionales el 16 de diciembre no dió más información en cuanto a la causa de la anomalía.
El 17 de diciembre a las 07:28:30 UT, el Swift de la explosión de Alerta Telescopio (MTD) y provocó encuentra a bordo de un estallido de rayos gamma de manifiesto durante las operaciones de lanzamiento y principios. [14] La nave espacial no mataron de forma autónoma a la ráfaga desde la normalidad la operación todavía no había comenzado, y la rotación autónoma aún no se ha activado. Swift tuvo su primer disparador PSG durante un período en el giro autónoma fue activado el 17 de enero de 2005, aproximadamente a las 12:55 GMT. Se señaló el telescopio XRT a las coordenadas de a bordo calcula y se observa una fuente de rayos X brillante en el campo de visión. [15]
El 1 de febrero de 2005, el equipo de la misión lanzó la primera luz de la imagen del instrumento UVOT y declaró Swift operativa.
A partir de mayo de 2010, Swift ha detectado más de 500 estallidos de rayos gamma, resplandores de rayos X para más del 90% de ellos, y resplandores ópticas de más del 50% de ellos. [16]
Octubre del 2013 Swift había detectado más de 800 estallidos de rayos gamma. [17]
A partir de febrero de 2015, Swift sigue funcionando bien y tiene 942 detecciones de PSG en total en su haber, con alrededor de 15 GRBs detectados en 2015 hasta la fecha. [18]
Detecciones notables
- 9 mayo de 2005: Swift detectó GRB 050509B, un estallido de rayos gamma que duró una vigésima parte de un segundo. La detección fue la primera vez que la ubicación exacta de una corta duración estallido de rayos gamma había sido identificado y la primera detección de luminiscencia de rayos X en una corta ráfaga individual.[19] [20]
- 4 de septiembre 2005: Swift detectó GRB 050904 con un desplazamiento hacia el rojo valor de 6,29 y una duración de 200 segundos (la mayoría de los estallidos detectados dura unos 10 segundos). También se encontró que los cerca de 12,6 mil millones más distantes aún detectadas, a años luz.
- 18 de febrero 2006: Swift detectó GRB 060218, un inusualmente largo (alrededor de 2000 segundos) y cerca (unos 440 millones de años luz) de ráfaga, que era inusualmente débil a pesar de su corta distancia, y puede ser una indicación de una inminente supernova.
- 14 de junio de 2006: Swift detectó GRB 060614, un estallido de rayos gamma que duró 102 segundos en una galaxia distante (alrededor de 1,6 millones de años luz). Sin supernova fue visto después de este evento (y GRB 060505 a los límites de profundidad) que lleva a algunos a especular que representaba una nueva clase de progenitores. Otros sugirieron que estos eventos podrían haber sido las muertes de estrellas masivas, pero los que producen muy poco radiactivo 56 Ni para alimentar una explosión de supernova.
- 9 enero 2008: Swift estaba observando una supernova en NGC 2770 cuando fue testigo de un estallido de rayos X procedentes de la misma galaxia. Se encontró que la fuente de esta explosión ser el comienzo de otra supernova, más tarde llamada SN 2008D. Nunca antes había visto una supernova sido en una etapa tan temprana de su evolución. Después de este golpe de suerte (posición, tiempo, instrumentos más adecuados), los astrónomos fueron capaces de estudiar en detalle esta supernova Tipo Ibc con el telescopio espacial Hubble, el observatorio de rayos X Chandra, el Very Large Array en Nuevo México, el Gemini Norte telescopio en Hawai, Gemini Sur en Chile, el Keck I telescopio en Hawai, el telescopio de 1,3 m PAIRITEL en el Monte Hopkins, los telescopios de 200 pulgadas y 60 pulgadas en el Observatorio Palomar en California, y el telescopio de 3,5 metros en el Apache Observatorio punto en Nuevo México. La importancia de esta supernova fue comparado por el líder del equipo del descubrimiento Dr. Alicia Soderberg a la de la piedra de Rosetta para la egiptología.[21]
- 8 de febrero y 13 de 2008: Swift proporcionan información crítica acerca de la naturaleza del Objeto Hanny, sobre todo la ausencia de una fuente de ionización dentro de la Voorwerp o en la vecina IC 2497.
- 19 de marzo de 2008: Swift detectó GRB 080319B, un estallido de rayos gamma entre los objetos celestes más brillantes jamás presenciado. En 7.5 mil millones de años luz, Swift estableció un nuevo récord para el objeto más lejano (brevemente) visible para el ojo desnudo. También se dice que es de 2,5 millones de veces intrínsecamente más brillante que el anterior supernova más brillante aceptado (SN 2005ap). Swift observó un récord de cuatro GRB de ese día, que también coincidió con la muerte del señalado escritor de ciencia ficción Arthur C. Clarke. [22 ]
- 13 de septiembre de 2008: Swift detectó GRB 080913, en el momento en el GRB más distante observado (12,8 mil millones de años luz) hasta la observación de GRB 090423. Unos meses más tarde [23] [24]
- 23 de abril de 2009: Swift detectó GRB 090423, la explosión cósmica más distante jamás visto en ese momento, a 13.035 millones de años luz. En otras palabras, el universo tenía sólo 630 millones de años cuando se produjo esta explosión.[25]
- 29 de abril de 2009: Swift detectó GRB 090429B, que fue encontrado por su posterior análisis publicado en 2011 sea de 13,14 mil millones de años luz de distancia (aproximadamente equivalente a 520 millones de años después del Big Bang), incluso más allá de GRB 090423.[26]
- 16 de marzo de 2010: Swift atado por su récord de nuevo detección y localización de cuatro ráfagas en un solo día.
- 13 de abril de 2010: Swift detectó su GRB 500a. [27]
- 28 de marzo de 2011: Swift detectó Swift J1644 + 57, que el análisis posterior demostró ser posiblemente la firma de una estrella está interrumpida por un agujero negro o el encendido de un núcleo galáctico activo.[28] “Esto es realmente diferente de cualquier evento explosivo hemos visto antes “, dijo Joshua Bloom de la Universidad de California en Berkeley, autor principal del estudio publicado en la edición de junio de la Ciencia. [29]
- 16 de septiembre y 17 de 2012: BAT activan dos veces en una fuente de rayos X duros hasta ahora desconocido, llamado Sw J1745-26, unos pocos grados desde el centro galáctico. El estallido, producido por una rara X-ray nova, anunció la presencia de un agujero negro de masa estelar hasta ahora desconocido que experimenta una transición dramática de la baja / duro al estado de alta / suave.[30] [31] [32]
- 2013: Descubrimiento de ultra larga clase de estallidos de rayos gamma.
- 24 de de abril de, 2013: Swift detectó un brote de rayos X desde el centro galáctico. Esto resultó no estar relacionado con Sgr A *, pero a un insospechado magnetar. Posteriores observaciones por parte de la NuSTAR y el Observatorio Chandra de rayos X confirmaron la detección. [33]
- 27 de de abril de, 2013: Swift detectó el Gamma-ray “sorprendentemente brillante” reventar GRB 130427A. Observado simultáneamente por el telescopio espacial de rayos gamma Fermi, es uno de los cinco más cercanos GRB detectado y uno de los más brillantes visto por cualquiera telescopio espacial. [34]
- 3 de junio de, 2013: Evidencia para la emisión kilonova en definitiva GRB.
- 23 de de abril de 2014: Swift detectó la secuencia más fuerte, más caliente y más larga duración de las erupciones estelares nunca vistos desde una estrella enana roja en las inmediaciones. La explosión inicial de esta serie récord de las explosiones era tanto como 10.000 veces más potente que la mayor erupción solar jamás registrada. [35]
- 3 de mayo de 2014: La detección de un pulso de radiación UV de una Fuerza Internacional de Policía descubrió joven de tipo Ia SN.
- 27 de de octubre de, 2015: Swift detectó su 1000a estallido de rayos gamma GRB 151027B.
El coche de juguete de Mardin.
El coche de juguete de Mardin.
En Diciembre de 2011 durante las excavaciones en el distrito Kiziltepe de la provincia suroriental de Mardin, en El sureste de Turquía. Se ha encontrado el primer carro de juguete del mundo, de la Edad de Piedra Tardía.
El Carro esta hecho de piedra y se cree que tiene 7.500 años de Edad, según el arqueólogo Mesut Alp.
El Director de Cultura y Turismo de Mardin, Davut Beliktay, dijo:”que el carro es como una copia de los coches actuales, y agregó que, en su forma, el juguete antiguo también se asemeja a un tractor”. También cuenta que se encontraron en la zona muñecas y silbatos de piedra. “Creemos que los silbatos y las muñecas tienen entre 5.000 y 6.000 años de antigüedad. Los silbatos están todavía en condición de funcionar”.
Según los arqueólogos la rueda fue inventada en Mesopotamia en el 5.500 a.C., llega a Europa y asía en el 4.000 a.C.
Si tenemos un juguete del 5.500 a.C., Habrá que hacer caso a otros arqueólogos que estiman la aparición de la rueda en el 8.000 a.C.
Algunos arqueólogos creen que su función pudiera ser una urna funeraria, pero en general están desconcertados de su morfología.
Hoy los padres compran a sus hijos juguetes de coches eléctricos con los que jugar, pero hace miles de años la situación era un tanto diferente.
Sin embargo, este antiguo descubrimiento revela que nuestros antepasados eran conscientes de la rueda hace 7500 años!
Un coche de piedra con dos ejes y 4 ruedas que datan de hace unos 7.500 años fue encontrado durante las excavaciones en el distrito Kiziltepe de la provincia suroriental de Mardin, están ahora en exhibición en el Museo de Mardin, Turquía.
De acuerdo con el Director de Cultura y Turismo de Mardin, Davut Beliktay, el coche es como una copia de los coches hoy en día. También señala que la forma de este antiguo juguete se asemeja a un tractor.
En la pantalla también una antigua tablilla con inscripciones.
Tras el análisis histórico exhaustivo, la inscripción de la piedra 5 centímetros, que fue descubierto en un sitio de excavación en el Girnavas Mound, a 4 km del centro histórico de Nusaybin -¿Fue considera el contenido un antiguo título de algún paso de propiedad.
Beliktay dijo que la escritura en la tabla histórica había logrado mantenerse intacta a lo largo de los años debido a excelentes técnicas de preservación. El guión, explicó, había sido raspada sobre la superficie arcillosa con un clavo y luego la tableta había sido colocado en un quemador.
El arqueólogo Alp explicó que tiene 2.800 años de antigüedad y se refiere a la venta de un jardín.
El contenido de la escritura, agregó refiere a un jardín de árboles frutales y los árboles frutales dentro, que se han de repartir entre los tres hijos del propietario. La escritura se refiere a “Nabulu”, que explica Alp era, de hecho, el antiguo nombre de la actual Nusaybin. Beliktay ha confirmado que la información completa sobre los dos hallazgos se proporcionará en breve.
Aún así, el elemento más fascinante es el coche de juguete antiguo. Algunos han sugerido que no es un coche, sino más bien un carro. Sin embargo, los carros suelen tener sólo dos ruedas y empujados por un animal.
La evidencia de conocimiento antiguo de la rueda se puede encontrar en otros períodos de tiempo.
Grabados de la roca, el puñado de modelos de vagones y las representaciones de carretas incisas en vasijas de barro ya no son nuestra única prueba para la utilización de los vagones. El registro arqueológico se ha enriquecido con nuevas pruebas.
La primera visión de modelos de rueda en Edad del Cobre fue escrito por Marin Dinu en su estudio “modelos de arcilla de ruedas descubiertas en cultivos de la Edad del Cobre de la vieja Europa de mitad de Quinto milenio antes de Cristo” Dinu señala que el uso de vehículos de ruedas por lo tanto podría ser fechada mucho antes de lo que se suponía anteriormente.
Sin embargo, registro arqueológico proporciona evidencia indiscutible de que las ruedas eran conocidas a través de la mayor parte de Europa y Anatolia desde el anterior cuarto milenio antes de Cristo en adelante.
Sin embargo, nada tan asombroso como el antiguo coche de juguete conserva en el Museo de Mardin nunca ha sido encontrado.
Así que la pregunta sigue siendo: ¿Es este pequeño coche de juguete antiguo quizás la evidencia más temprana de la rueda?
Algunas nuevas preguntas han surgido tras este nuevo hallazgo en Turquía, ¿se descubrió la rueda 2000 años de lo que se creía?. Otra hipótesis descrita por científicos es si podría tratarse de un antiguo vehículo para transportar a los muertos ya que en aquella época comenzaron las primeras ceremonias en las que se veneraba a los muertos, pero al tratarse de un juguete parece algo macabro para un niño. Tal vez ¿existian algunos vehículos rudimentarios de cuatro ruedas en la edad de piedra tardía?. Realmente ¿es un juguete? o ¿es una representación de algo que se utilizaba en la edad de piedra?. Como de costumbre este hallazgo es uno de los nuevos enigmas y misterios de la arqueología con el que se enfrentan los arqueólogos y que tratan de explicar de forma coherente, aunque no deja de sorprender. Algunos lo han catalogado como otro de los Ooparts descubiertos ya que el juguete con forma de coche o tractor es similar a los coches actuales, pero creemos que seria ir demasiado lejos el pensar que existían coches hace 7500 años, aunque la posibilidad de que se descubriera la rueda 2000 o incluso 5000 años antes de lo que se creía nos sorprendería, pero seria bastante evidente y posible.
STSat-1
STSat-1
(Science and Technology Satellite-1, KAISTSat-4, Uribyol-4)
El STSAT-1 (Ciencia y tecnología de los satélites-1), anteriormente conocido como KAISTSAT 4 (Corea del Instituto Avanzado de Ciencia
El Instituto Avanzado Coreano de Ciencia y Tecnología satélite 4 (KAISTSAT 4) es un telescopio ultravioleta en un satélite. Está financiado por el Instituto de Investigación Aeroespacial de Corea, y se puso en marcha el 27 de septiembre de 2003 [1] en una órbita de la Tierra con una altura entre 675 y 695 km. [2] [3]
Fecha: 2003-09-27 at 06:12:00 UTC
Vehículo: Kosmos-3M
Lugar lanzamiento: Plesetsk, Russia
Trajectory Description
Periapsis: 675 km.
Apoapsis: 695 km.
Periodo: 98,5 m.
Inclinación: 98,2º.
Excentricidad: 0,00142
4 KAISTSAT (Korea Advanced Institute of Science and Technology Satellite 4) es un satélite astrofísico de S-coreano que fue lanzado por un Kosmos 3 M cohete desde Plesetsk en 6:12 UT en 27 de septiembre de 2003. El satélite de 120 kg lleva un espectrógrafo de spcial UV imágenes para supervisar las nubes de gas en la galaxia. Completará una asignación del cielo completo en aproximadamente un año, mediante la exploración de una tira de un grado cada día. Además, también puede apuntar el telescopio hacia abajo a las exhibiciones aurorales de imagen.
Cinco instrumentos científicos están previstos el KAISTSAT-4. Actualmente se están diseñando un espectrógrafo de imágenes de ultravioleta lejano y un conjunto de instrumentos de plasma espacial. El espectrógrafo de imágenes hará observaciones de objetos astronómicos y superiores de la atmósfera de la tierra. La instrumentación de plasma es capaz de rápida medición de los plasmas térmicos de la magnetosfera, frío plasma ionosférico y los campos magnéticos de la tierra. Se identifican los conductores principales del sistema y las limitaciones en las cargas, así como la nave espacial. Un análisis preliminar de la misión de K-4 se ha realizado con los requisitos del sistema que se derivan de los controladores del sistema. Investigación detallada muestra que orbita heliosincrónica con una altitud aproximada de 800 km es óptima para satisfacer los requisitos identificados. También se muestran las comparaciones con otras órbitas de diferentes inclinaciones. Cuatro modos de funcionamiento y un programa diario de maniobra de la nave espacial se encuentran desde el modelo orbital sol-síncrona. Se muestra que los objetivos científicos de K-4 pueden lograrse con niveles moderados de los riesgos de diseño y operación
KAISTSAT-4, el cuarto satélite desarrollado por el Instituto avanzado de Corea de ciencia y tecnología, (FIMS, también conocido como lanza), el mismo instrumento observa auroras y sistema con alta resolución espacial y toda la información espectral. El ancho de banda FIMS, 900? 1175 A y 1335? 1750 A, incluye las líneas importantes de oxígeno atómico y emisiones Lyman-Birge-Hopfield (LBH) que proporcionan información sobre la energía del electrón precipitado asociada con auroras. Esta información se compara con mediciones in situ simultánea de keV electrones en la misma nave. Cabe señalar que estudios similares anteriores requieren una oportunidad fortuita de dos naves independientes observando la misma región al mismo tiempo. Una frecuencia de 10 Hz FIMS muestreo arroja imágenes de resolución espacial de kilómetros los que pueden utilizarse para estudiar la dinámica de la pequeña escala de auroras. Además, los efectos de la precipitación de electrones en la ionosfera son supervisados por dos conjuntos de sondas de Langmuir cilíndricas, que están orientados perpendicularmente entre sí.
Las cargas útiles STSAT-1 son FIMS (ultravioleta lejano espectrógrafo de imágenes), SST (Telescopio de estado sólido), DCS (Sistema de Recolección de Datos), NAST (sensor de ángulo estrecho de la estrella), Lanza (Espectroscopia de plasma Evolución de Astrofísica de Radiación) El STSAT- 1 fue lanzado en septiembre de 2003.
La estructura de S / C se asemeja a una caja de tamaño aproximado: 66 cm x 60 cm x 80 cm. Es estabilizado en tres ejes. Los requisitos de puntero S / C exigen una precisión de puntería de 0,5º, un conocimiento actitud de 5 minutos de arco y una firmeza de aproximadamente 5 minutos de arco / s. Además, el S / C requiere un complejo conjunto de maniobrabilidad actitud en apoyo de sus objetivos de la misión. Por lo tanto, los ADCS (determinación de actitud y Control Subsystem) se compone de cuatro giroscopios de fibra óptica (FOG), dos estrellas de precisión rastreadores (actitud de referencia inercial dentro de 10-60 segundos de arco) se refiere como NAST (Limitar sensor del ángulo de estrella), un sensor de sol gruesa y dos magnetómetros de saturación de tres ejes para detección de actitud. Bobinas torquer magnéticas se utilizan para la descarga impulso de las cuatro ruedas de reacción, así como para el control en velocidad de giro para la fase inicial después de la separación nave espacial. Un receptor GPS se utiliza para proporcionar S / posición C, la velocidad y el tiempo. Determinación de actitud se basa en un algoritmo de filtro de Kalman extendido teniendo en cuenta la deriva de polarización del giroscopio. La estructura de bus compartido emplea un bus MIL-STD-1553B modificado para comunicaciones a bordo.
El S / C cuenta con tres paneles solares, uno fijo y dos de despliegue, que proporciona una potencia de 150 W. La masa de la nave espacial es de 106 kg, potencia = 150 W, la vida de diseño de la misión es de dos años. 5) 6) 7)
Lanzamiento: Un lanzamiento de STSAT-1 en un vehículo Kosmos-3M (de Polyot) desde Plesetsk, Rusia, tuvo lugar el 27 de septiembre de 2003, junto con la carga útil BILSAT-1 DMC (Disaster Monitoring Constellation), NigeriaSat-1, y BNSCSat-1, construido a SSTL, Surrey, Reino Unido. Y con Mozhayets-4 y Larets, ambos de Rusia.
Hay cuatro modos de funcionamiento de STSAT-1 para alcanzar los objetivos científicos; estos son:
1) Modo de observación en punta (observación de las fuentes galácticas seleccionados y extendidas con FIMS durante las fases del eclipse de la órbita)
2) Modo Sky-encuesta (observación de todo el cielo, el S / C gira alrededor del eje paralelo a la hendidura de la FIMS)
3) el modo de observación Aurora (FIMS se está apuntando en la dirección del nadir en los polos norte y sur)
4) Modo Aire resplandor (FIMS se señaló una inercia con una dirección del nadir).
La nave espacial STSAT-1 está todavía en funcionamiento a partir de 2007. Sin embargo, la misión de observación periódica duró hasta octubre de 2005 – cuando se detectó un comportamiento anormal de la actitud de la nave espacial. En la fase de post misión, la nave espacial está siendo utilizada como un banco de pruebas para el control de actitud y los experimentos de comunicación.
- El LEOP (Fase de Lanzamiento y operación temprana) se completó a finales de octubre de 2003.
- Operaciones de la misión regular de cargas útiles y los instrumentos de verificación de tecnología comenzaron en enero de 2004. Antes de las observaciones de la misión de la falta de adecuación de puntería se FIMS se mide con respecto a la del sensor estelar.
- Durante el tiempo de vida de la misión, FIMS, la carga útil principal del STSAT-1, escanea la mayor parte de las líneas de visión a nuestra galaxia y algunos objetos que eran de interés científico (alrededor del 70% del cielo). 8) 9)
Complemento del sensor: (FIMS, SPP, DCS / ADAM)
FIMS (UVL espectrógrafo de imágenes) desarrolladas en un proyecto cooperativo de KAIST, KAO (Corea del Observatorio de la astronomía) y UCB / SSL (Universidad de California en Berkeley / Laboratorio de Ciencias Espaciales), PI: J. Edelstein de UCB / SSL. Nota: El instrumento FIMS también se conoce como SPEAR (Espectroscopia de plasma Evolución de Astrofísica de la radiación) en la documentación publicada de los EE.UU. 10) 11) 12) 13) 14) 15)
El objetivo de las observaciones FIMS es estudiar la materia interestelar caliente difusa en el espectro ultravioleta lejano (UVL). Los objetivos generales de la FIMS son: 1) para mapear la distribución espacial de los plasmas Galactic calientes a través de un estudio del cielo de un año, 2) para determinar los estados físicos de la materia interestelar caliente como superburbujas y remanentes de supernova con agudas observaciones, y 3) probar los modelos actualmente disponibles para la evolución galáctica.
El instrumento permite el mapeo detallado de la distribución espacial de los plasmas calientes galácticos y la determinación de los estados físicos de los asuntos interestelares caliente, así como la detección de las diversas líneas de emisión de la atmósfera superior de la tierra. FIMS emplea un paso de banda dual (900-1175 y 1335-1750 Ä Ä), alta resolución espectral (1,5 A y 2,5 A, respectivamente) espectrógrafo de imágenes con un 8º x 5 ‘FOV (campo de visión) y una resolución angular de 5 minutos de arco. FIMS es sensible a los flujos de líneas de emisión que son más débiles que cualquier detección previa en un orden de magnitud. Los datos de observación permiten la determinación del estado de equilibrio térmico y la ionización en plasmas Galactic calientes.
Spitzer
El Telescopio Espacial Spitzer (SST por sus siglas en inglés) (conocido inicialmente como Instalación de Telescopio Infrarrojo Espacial o SIRTF de sus siglas en inglés), es un observatorio espacial infrarrojo, el cuarto y último de los Grandes Observatorios de la NASA. Otros telescopios espaciales en el infrarrojo que han precedido al Spitzer fueron los telescopios IRAS e ISO.
Está encuadrado en el Programa de Grandes Observatorios de la NASA. Es una pieza clave en el programa para la “Búsqueda Astronómica de los Orígenes del Universo”. Consta de tres instrumentos diseñados para captar el espectro del infrarrojo, longitudes de onda de entre 3 y 180 micras: una cámara de infrarrojos, un espectrógrafo de infrarrojos y un fotómetro de multibanda.
Fue lanzado el 25 de agosto de 2003 desde el Centro Espacial Kennedy usando como vehículo un Delta II. Mantiene una órbita heliocéntrica similar a la de la Tierra, pero que lo aleja de nuestro planeta a razón de unos 15 millones de kilómetros por año. Spitzer va equipado con un telescopio reflector de 85 cm de diámetro. La vida útil del telescopio Spitzer viene limitada, como en otros telescopios infrarrojos espaciales, por la tasa de evaporación del helio líquido que se utiliza como refrigerante. Inicialmente se esperaba que el helio durase un mínimo de 2,5 años y un máximo de 5. El helio líquido se agotó el 15 de mayo de 2009, lo que supone una duración de más de 5,5 años. Actualmente (agosto de 2009) Spitzer sigue operando en una misión extendida, la Spitzer Warm Mission, en la que el telescopio se enfría pasivamente, sin necesidad de refrigerante, hasta -246 grados Celsius.
El costo total de la misión se ha estimado en 670 millones de dólares. Entre los retos tecnológicos de esta misión se encontraba la realización del espejo principal de Berilio.
http://www.mdscc.nasa.gov/?Section=Misiones&Id=13
Datos técnicos
- Fecha de lanzamiento: 25 de agosto 2003
- Vehículo/lugar de lanzamiento: Delta 7920h elv / kennedy space center
- Duración estimada: 2.5 años (mínimo); 5+ años
- Órbita: heliocéntrica siguiendo a la Tierra.
- Longitudes de onda: 3 – 180 micras
- Telescopio:85 cm de diámetro (33.5 pulgadas), f/12 berilio ligero, enfriado a menos de 5.5 k.
- Límite de difracción:6.5 micras
- Capacidades científicas: imagen / fotometría, 3-180 micras
- Espectroscopía, 5-40 micas
- Espectrofotometría, 50-100 micras
- Seguimiento planetario:1 arcsec / seg
- Criogeno/volumen:Helio líquido/ 360 litros (95 galones)
- Masa en lanzamiento: 950 kg (2094 lb)
Manteniendo la tradición de la NASA, el telescopio fue renombrado después de su demostración de operación exitosa, en 18 de diciembre de 2003. A diferencia de la mayoría de los telescopios, que son nombrados por un panel de científicos, el nombre de éste fue obtenido de un concurso abierto sólo a niños. El nombre final proviene del Dr. Lyman Spitzer, Jr., considerado uno de los científicos más influyentes del siglo XX y uno de los primeros impulsores de la idea de telescopios espaciales proponiendo esta posibilidad en los años 40.
Con el Spitzer se quiere estudiar objetos fríos que van desde el sistema solar exterior hasta los confines del universo. Este telescopio constituye el último elemento del programa de Grandes Observatorios de la NASA, y uno de los principales elementos del Programa de Búsqueda Astronómica de los Orígenes (Astronomical Search for Origins Program). El telescopio contiene tres instrumentos capaces de obtener imágenes, realizar fotometría en el rango de 3 a 180 micras y obtener espectros de gran resolución en el rango de 5 a 100 micras.
En mayo del 2007 obtuvo datos sobre un diminuto planeta al que se denominó HD14026b, el planeta extrasolar era el más caliente registrado hasta ese momento con 3700 °C en superficie.1
En agosto del 2008 detectó una inmensa cantidad de vapor de agua dentro de un sistema estelar en formación llamado NGC 1333-IRAS 4B. El vapor procedente de la nube central del sistema cae sobre un disco de polvo estelar del que surgirían los planetas y cometas. Este sistema crece dentro de su núcleo frío de gas y polvo. El director del estudio Dan M. Watson,2 de la Universidad de Rochester, en Nueva York dijo: “por primera vez estamos viendo cómo llega el agua hasta el lugar en el que se formarían los planetas”.3
El telescopio espacial Spitzer es el telescopio más grueso y infrarrojo lanzado por la NASA.
Estas longitudes de ondas que no pueden ser observadas útilmente desde el suelo, sólo un objeto por fuera de la atmósfera, enfriado criogénicamente puede efectuar observaciones útiles.
Este satélite es semejante al telescopio espacial ISO lanzado por el ESA en 1995 y cuya vida útil fue de 28 meses.
Antes de su lanzamiento, fue nombrado SIRTF para Space Infrared Telescope Facility pero ha sido renombrado Spitzer, del nombre de científico americano, Lyman Spitzer. Puede observar y detectar brillo infrarrojo emitido por objetos a longitudes de onda entra tres y cien sesenta micrómetros.
Podrá hacer aproximadamente 100.000 observaciones durante su vida, cuya previsión es de 5 años.
Su órbita única le permitirá utilizar las temperaturas frías de el espacio para su enfriamiento (además de estar abastecido por 400 litros de helio líquido) y sus tableros solares le aportarán la energía y le protegerá de emisiones solares (radiaciones y partículas).
Los nuevos instrumentos muy sensibles del telescopio permitirán perforar el espacio que es oscurecido por nubes de gas, las nubes interestelares que bloquean los telescopios que funcionan en el dominio visible.
Ya anuncia nuevos datos respecto a la formación de los planetas así como sobre objetos fríos tal como las enanas morenas, y las galaxias infrarrojas, los asientos de formación de estrella muy intensa.
El telescopio de Spitzer es un reflector de peso ligero tipo Ritchey-Chrétien. Pesa menos de 50 kg y está diseñado para operar a una temperatura extremadamente baja. El telescopio tiene una apertura de 85 cm de diámetro. Todas sus partes, excepto los soporte de los espejo, están hechas de berilio ligero. El berilio es un material muy fuerte que trabaja bien en la construcción de telescopios espaciales infrarrojos, porque tiene un calor específico bajo a muy bajas temperaturas. El telescopio está sujetado a la parte superior del caparazón enfriado por vapor del criostato, el cual mantiene los instrumentos de ciencia muy fríos.
El espejo primario de 85 cm de diámetro está diseñado para operar a temperaturas de 5.5 k, con un error en el frente de onda de menos de 0.07 ondas. El telescopio spitzer tiene un diseño ritchey-chretien y permitirá alcanzar el límite de difracción a longitudes de onda de más de 6.5 micras.
La filosofía del diseño del telescopio está basada en los siguientes puntos:
- Maximizar el uso de materiales con una razón de dureza/densidad muy alta, conductividad térmica elevada, y calor específico criogénico bajo.
- Construir el telescopio entero del mismo material para prevenir complicaciones por expansión térmica, y hacer el montaje del telescopio tan estable dimensionalmente como sea posible.
- Seleccionar una configuración que minimice el tamaño de los elementos mayores del montaje del telescopio.
- Intentar exhaustivamente el diseño más simple posible para minimizar el número de partes, logrando así reducir el tiempo y costo de diseño, fabricación e integración.
El spitzer se ha diseñado para ver el cielo en la franja de infrarrojos. Desde el espacio, llega muy poca energía térmica de objetos distantes a la Tierra (exceptuando la procedente del sol). Por lo tanto, para examinar el cielo de infrarrojos se debe contar con un telescopio muy sensible y con detectores a muy bajas temperaturas.
Cerca de un 80% del tiempo de observación de Spitzer estará disponible a la comunidad científica en general, a través de un concurso de propuestas de observación organizado por el Centro Científico Spitzer.
Spitzer determinará la estructura y composición de los discos de polvo y gas que rodean a las estrellas cercanas. Los discos proto-planetarios de polvo y gas y los discos de polvo de “segunda generación,” un estado de evolución posterior en el que la mayor parte del gas ha desaparecido, se cree que forman parte del proceso de formación de sistemas planetarios. Mediante la observación de estos discos en varios estados de evolución, Spitzer podrá estudiar la transformación de una nube de polvo y gas sin estructura en un sistema planetario.
El Montaje Criogénico del Telescopio de Spitzer (CTA por sus siglas en Inglés), consiste de cuatro partes principales: Un criostato de helio superfluido, un telescopio Ritchey-Chretien de peso ligero de 85cm, un conjunto de caparazones exteriores, y una cámara de alojamiento de múltiples instrumentos, la cual aloja los instrumentos de ciencia. Todo lo que está frío, es parte del CTA. El CTA está montado mecánicamente, pero térmicamente aislado de la nave espacial, por medio de vigas y sostenes, así como de escudos protectores contra radiación térmica. El arreglo de paneles solares y escudos protectores de la nave espacial, bloquean al CTA del sol y de los demás componentes de la nave espacial en todo momento, ayudando a mantener al CTA tan frío como sea posible.
La nave espacial de Spitzer se refiere a la porción tibia del observatorio, incluyendo el montaje de Paneles Solares, el vehículo de la nave espacial, y los componentes montados en el vehículo que proveen las funciones de ingeniería del observatorio. Estos componentes incluyen: Los arreglos solares, la unidad de comando y manejo de datos, el sub-sistema de control a reacción, el sub-sistema de telecomunicaciones, el suministro de energía y el programa de computación de vuelo
Instrumentos de Spitzer
La Cámara de Arreglo Infrarrojo de Spitzer
La Cámara de Arreglo Infrarrojo (IRAC, por sus siglas en Inglés) es uno de los tres instrumentos de ciencia de Spitzer, y provee una capacidad de imagen a longitudes de onda en el cercano y mediano infrarrojo. Esta es una cámara con fines múltiples y generales que será usada por observadores de Spitzer para una amplia variedad de programas astronómicos de investigación.
IRAC es una cámara de 4 canales que provee imágenes simultaneas de 5.12 por 5.12 minutos de arco a 3.6, 4.5, 5.8 y 8 micras. Cada uno de los 4 arreglos de detectores en la cámara tiene un tamaño de 256 por 256 pixeles. IRAC usa dos conjuntos de arreglos de detectores. Los dos canales de corta longitud de onda son captados por detectores hechos de indio y antimonio. Los canales de larga longitud de onda usan detectores de silicio que han sido especialmente tratados con arsénico. La única parte móvil en IRAC era originalmente el obturador de la cámara, mas éste realmente permanece abierto todo el tiempo.
El Espectrógrafo Infrarrojo de Spitzer
El Espectrógrafo Infrarrojo (IRS, por sus siglas en Inglés), es uno de los tres instrumentos a bordo de Spitzer y provee espectroscopía de alta y baja resolución a longitudes de onda en el mediano infrarrojo. Los espectrómetros son instrumentos que dispersan la luz en sus longitudes de onda constituyentes, creando espectros. Con estos espectros, los astrónomos pueden estudiar las líneas de absorción y emisión, las cuales son como huellas de átomos y moléculas.
El IRS tiene 4 módulos separados: Uno de baja resolución, de corta longitud de onda, cubriendo el intervalo entre 5.3 y 14 micras; otro de alta resolución, también de corta longitud de onda, cubriendo entre 10 y 19.5 micras; uno de baja resolución, de larga longitud de onda para observaciones entre 14 y 38 micras; y uno más de alta resolución, de larga longitud de onda para observaciones entre 19 y 37 micras. Cada módulo tiene su propia rendija de entrada para permitir el paso de luz infrarroja. Los detectores son arreglos de 128 por 128. Los detectores de silicio de longitud de onda más corta son tratados con arsénico, los detectores de silicio de longitud de onda más larga son tratados con antimonio.
El IRS consiste de dos partes físicamente separadas: Los ensamblajes fríos, los cuales están localizados en la cámara de alojamiento de múltiples instrumentos de Spitzer, y las partes electrónicas tibia las cuales están localizadas en el vehículo de la nave espacial de Spitzer. ¡El IRS no tiene partes móviles!
El Fotómetro de Imágenes en Multibanda de Spitzer
El Fotómetro de Imágenes en Multibanda del Spitzer (MIPS, por sus siglas en Inglés) es uno de los tres instrumentos científicos que volarán a bordo del Observatorio y proveerá imágenes y espectroscopía limitada a longitudes de onda en el lejano infrarrojo. Tiene tres arreglos de detectores. Un arreglo de 128 por 128 para imágenes a 24 micras está compuesto de silicio, especialmente tratado con arsénico. Otro arreglo de 32 por 32 para imágenes a 70 micras, y un arreglo más de 2 por 20 para imágenes a 160 micras, usan ambos germanio, tratado con galio. El arreglo de 32 por 32 también tomará también espectros desde 50 a 100 micras. El campo visual de MIPS varía desde 5 por 5 minutos de arco a la más corta longitud de onda hasta 0.5 por 5 minutos de arco a la más larga longitud de onda.
Los tres arreglos, los calibradores, el espejo de escaneo, y partes ópticas constituyen la porción criogénica del MIPS. Todo este montaje está situado en la cámara de instrumentos fríos de Spitzer. Además, el MIPS y el IRS comparten la electrónica tibia que controla su operación. La única parte móvil en MIPS es un espejo de escaneo usado para hacer más eficiente la observación de grandes áreas en el cielo.
10 años del Spitzer
« en: 24 de Agosto de 2013, 13:36:03»
10 años del Spitzer
Para celebrar los 10 años en el espacio del Telescopio Espacial Spitzer, la NASA ha publicado una galería de imágenes tomadas por el observatorio infrarrojo más grande que jamás se haya lanzado.
Lanzado el 25 de agosto 2003 desde Cabo Cañaveral con un cohete Delta 2, el satélite Spitzer ( que en un primer tiempo llevó el nombre de SIRTF para Space Infrared Telescope Facility) ha observado en diez años cometas, asteroides, planetas y galaxias.
Entre sus principales descubrimientos podemos destacar la detección de un anillo adicional enorme pero discreto alrededor de Saturno, la primera observación directa de la luz de un exoplaneta distante (55 Cancri) y la determinación de la composición del cometa Tempel 1, después de la mision Deep Impact.
Habiendo agotado sus reservas de helio líquido en 2009, Spitzer ha pasado a una mision en fase “caliente” con disminución de sus capacidades de observación, pero siendo aún científicamente productivo.
En octubre proximo, por ejemplo, Spitzer observara el asteroide 2009 DB para especificar su tamaño y ver si es compatible con el proyecto de EE.UU. de capturar y desviar un asteroide en 2025.
Galeria del Spitzer: http://www.nasa.gov/mission_pages/spitzer/multimedia/gallery/gallery-index.html#lowerAccordion-set1-slide8
Dos fotos del lanzamiento del SIRTF/Spitzer, hace diez años
El cohete Delta II que transporta el telescopio ha sido lanzado esta mañana en Cabo Cañaveral.
Placa de hierro en la pirámide de Keops.
Placa de hierro en la pirámide de Keops.
En 1837, J.R.Hill, ingeniero ingles, descubrió una placa de hierro dentro del conducto de la cámara del Rey, entre los testigos del descubrimiento se encontraba el polémico Howard Vyse.
Hill, lo relata así:” Fue necesario quitar con explosiones las dos filas de piedras exteriores da la actual superficie de la pirámide”
La placa mide 26 cm de largo por 8,6 cm de ancho.
Fue examinada por Flinders Petrie, egiptólogo, quien ratifico su antigüedad.
Transcurrieron 160 años, para que volviera a ser examinada, por A. Lucas director del gabinete químico del departamento de antigüedades Egipcias del Museo Británico. Lucas afirmó que la placa de hierro tenía las misma edad que la pirámide.
Los análisis determinaron que la placa no tenia hierro de origen meteoritico, años después Lucas se retracto de sus palabras. ¿Por que?
En 1989, se volvió a estudiar la placa, fueron dos estudios independientes, pero que llegaron a la misma conclusión.
Uno de ellos lo realizo el Dr. El Sayed El Guyar de la Facultad de l Petróleo y Minerales de Suez, el otro lo realizo M.P.Jones del Imperial College de Londres.
La conclusión fue la misma:” La placa era datada en el mismo momento en que la pirámide era construida, siendo contemporánea a ella”.
La placa esta en el Museo Británico, la versión de el museo es que la placa fue colocada en el lugar del descubrimiento y que los análisis de El Gayar-Jones no eran ciertos.
Si el hierro no comenzó a usarse en Egipto hasta el 650 a.C., ¿que hace esa placa de hierro en la pirámide datada del 2500 a.C.
Esta placa de hierro no hay que confundirla con los objetos encontrados en otra cámara.
En 1872, Waynman Dixon, descubrió en el conducto norte de la cámara de la reina unos objetos similares a los hallados en la cámara del rey. Los investigadores abrieron uno de los conductos, encontraros tres objetos: una bola de piedra de unos 0,8 kg, una estaca de madera y un garfio metálico (de los cuales se desconoce el significado).
Se encuentran en el Museo Británico desde 1970, aunque comenzaron a exponerse al público en 1990, a excepción de la vara de cedro que ha desaparecido.
Nadie menciona que el Coronel Vyse también descubrió en 1837 los conductos de ventilación de 23 cm2 y más de 60 metros. Como Vyse quería ver si llegaban hasta el exterior, uno de sus ayudantes, Hill, subió a la superficie exterior de la pirámide y encontró aperturas similares donde estos conductos parecían terminar. Hill, desde el exterior del conducto, lanzó una piedra que cayó con tal fuerza que casi lesiona a los de abajo. Cuando Vyse limpió estos conductos comenzó a entrar aire al interior, manteniendo la temperatura constante a unos 20 grados.
Pero Vyse también localizó una placa de hierro de 30 por 10 centímetros de hierro en una junta de la sillería del conducto de ventilación sur de la llamada Cámara del Rey. La placa estaba encajada y oculta. Lo más significativo es que la placa es de hierro y que éste no comenzó a utilizarse en Egipto hasta el año 650 a.C. Por lo tanto, si la construcción de la Gran Pirámide es del 2500 a.C. ¿dónde encaja esta placa de hierro en la historia?
Y no sólo había una placa de hierro, sino una esfera de piedra desigual, un garfio de dos dientes y una vara de cedro de 12 centímetros de largo. Estos descubrimientos los realizó Waynman Dixon en 1872 en el conducto norte de la Cámara de la Reina. Se encuentran en el Museo Británico desde 1970, aunque comenzaron a exponerse al público en 1990, a excepción de la vara de cedro que ha desaparecido. Y es una lástima, porque ésta sí que es susceptible de datarse con Carbono 14 para averiguar su edad real.
Los objetos de Dixon
Charles Piazzi Smyth en su libro de 1878 “La Gran Pirámide” describía como fue el descubrimiento del primer grupo de estos objetos:
Al percibir una grieta, primero me lo señaló el doctor Grant, en la pared sur de la Cámara de la Reina, que le permitía colocar un alambre y empujarlo a una distancia más profunda el señor W. Dixon puso a su carpintero a abrir un agujero con martillo y cincel en ese lugar… midiendo aproximadamente una posición similar en la pared norte, el señor Dixon indicó al carpintero que trabajara también allí con el martillo y el cincel.
Se encendieron fuegos dentro de estos canales, pero aunque en el canal sur el humo se disipó, su salida no fue descubierta en el exterior de la gran pirámide.
Algo más, sin embargo, se descubrió dentro de los canales (de la Cámara de la reina), esto es, un pequeño gancho de bronce de unos 5 cms; un poco de madera parecida a cedro (unos 13 cms) , que podría ser su mango; y una bola de granito gris o piedra verde de unos 850 gramos.
El trozo de madera se ha perdido. Se cree que está en algún lugar del Museo Mariscal de Aberdeen (1) Lo que nos impide hacer una datación por carbono a dicha pieza sin igual.
La placa de J.R. Hill
En 1837, el ingeniero británico J.R. Hill encontró una placa de hierro incrustada dentro del canal sur de la Cámara del Rey. Tuvo que ser necesario volar dos escalones exteriores de las piedras de la actual superficie de la pirámide para extraerla. El señor Hill y otros presentaron certificados declarando que la placa de hierro era contemporánea a la pirámide y, posteriormente, depositaron la antigua reliquia en el Museo Británico.
La placa de hierro mide 26 cm por 8,6 cm. Siglo y medio después del hallazgo, en 1989 dos eminentes metalúrgicos, el doctor El Gayar, de la Facultad de Petróleo y Minerales de Suez, y el doctor M. P. Jones, del Colegio Imperial de Londres, de forma conjunta realizaron pruebas químicas y microscópicas de la misteriosa placa de hierro, y se comprobó que la placa era contemporánea a la Gran Pirámide y que no procedía de hierro meteórico. Sus análisis revelaron rastros dorados y se dedujo que la placa pudo estar recubierta de oro. Concluyeron que originalmente medía 26 cm x 26 cm, y probablemente fue utilizada para cubrir la boca del canal sur en la parte exterior del monumento. (2)
Desde aquí nos hacemos una pregunta: Si el hierro no comenzó a usarse en Egipto hasta el 650 a.C., ¿que hace esa placa de hierro en la pirámide datada en el 2500 a.C. aprox.?
Rudolf Gantenbrink
De sobra es conocida la historia de la famosa puerta de Gantenbrink en el canal sur de la cámara de la Reina. En el canal opuesto, el norte, no solo encontramos la misma puerta, sino que además se hallaron otras sorpresas:
En las imágenes del vídeo original del primer ascenso de su robot el UPUAT se observó otro objeto muy similar al de Dixon (el que tiene forma de gancho) pero esta vez de color dorado. También se divisó una larga pieza de madera (22 cms) con un extremo claramente roto. La sección transversal era muy similar a la vara de cedro encontrada por Dixon en 1872. Todos en el canal norte de la Cámara de la Reina. (3) También se encontraron varias barras de metal de origen moderno, seguramente de las expediciones de Dixon.
MOST
Microvariability and Oscillations Of STars ó MOST es un observatorio espacial de Canadá lanzado el 30 de junio de 2003 mediante un cohete Rokot desde el cosmódromo de Plesetsk.
La misión de MOST es medir las variaciones de luz en las estrellas para buscar exoplanetas y realizar estudios heliosismológicos.
El satélite porta un telescopio de 15 cm de apertura y tecnología canadiense para un control muy preciso de la posición de la nave. También va equipado con un transmisor de radioaficionado.
No confundir con: “Mandar un antiguo satélite espía del Pentágono a la órbita de Marte para llevar a cabo observaciones científicas. Dicho así, parece una locura, pero eso precisamente en lo que consiste la propuesta MOST (Mars Orbiting Space Telescope). ¡Un telescopio espacial como el Hubble alrededor del planeta rojo!”
El Microvariabilidad y Oscilaciones de Estrellas telescopio, más conocido simplemente como MOST, es Canadá primera ‘s telescopio espacial. Hasta casi 10 años después de su lanzamiento también fue el telescopio espacial más pequeño en órbita (por la que sus creadores lo apodaron el “telescopio espacial Humble”, en referencia a uno de los más grandes, el Hubble). [2] MOST es el primer nave espacial dedicada al estudio de asterosismología, seguido posteriormente por las ya finalizadas- COROT y Kepler misiones. También fue el primer satélite científico canadiense lanzado desde ISIS II, 32 años antes.
Datos principales:
Vehículo de lanzamiento
Sitio de lanzamiento
Aplicación
66 kg
65 cm x 65 cm x 30 cm
Sitio web
98,7 grados
101,4 minutos
834 km
818 km
Equipamiento
Instrumentos principales (Telescopio de 15 cm de apertura)
Tipo Maksutov catadióptrico
Diámetro 15 cm (5,9 pulgadas)
Longitud focal 88,2 cm (34,7 pulgadas)
Las longitudes de onda 350-750 nm ( luz visible
Como su nombre indica, su misión principal es controlar las variaciones en la luz de la estrella, lo que lo hace mediante la observación de un solo objetivo durante un largo periodo de tiempo (hasta 60 días). Por lo general, los telescopios espaciales más grandes no pueden permitirse el lujo de permanecer enfocados en un solo objetivo durante tanto tiempo debido a la demanda de sus recursos.
A los 53 kg (117 libras) de 65 cm (26 pulgadas) de ancho y alto y 30 cm (12 pulgadas) de profundidad, es el tamaño y el peso de un pequeño pecho o una maleta extra-grande llenado de la electrónica. Esto lo coloca en la categoría de microsatélite.
MAS fue desarrollado como un esfuerzo conjunto de la Agencia Espacial Canadiense, Dynacon Enterprises Limited (ahora microsatélites Sistemas Canada Inc), el Laboratorio de Vuelos Espaciales (SFL) en la Universidad de Toronto Instituto de Estudios Aeroespaciales y la Universidad de la Columbia Británica. Conducido por el investigador principal Jaymie Matthews, el plan del equipo de ciencia más es el uso de las observaciones de la mayoría de usar asterosismología para ayudar a la fecha de la edad del universo, y para buscar firmas de luz visible de planetas extrasolares.
Las características más un instrumento [3] que comprende una de doble luz visible CCD de la cámara, alimentada por una de 15 cm de apertura Maksutov telescopio. Un CCD recoge imágenes de la ciencia, mientras que el otro proporciona imágenes utilizadas por el software de estrella de seguimiento que, junto con un conjunto de cuatro ruedas de reacción (volantes motorizados controlados por ordenador que son similares a los giroscopios) mantienen apuntando con un error de menos de 1 de arco segundo, mejor, de lejos, señalando que cualquier otro microsatélite hasta la fecha.
El diseño del resto del MOST fue inspirada y basada en diseños de bus de microsatélites por primera vez por AMSAT, y trajo por primera vez a la viabilidad comercial de la empresa de microsatélites SSTL (con sede en la Universidad de Surrey, en el Reino Unido); durante las primeras etapas de desarrollo de MOST, el grupo central de AMSAT diseñadores de satélites de microsatélites aconsejado y guiado el equipo de diseño de satélite MOST, a través de una disposición de transferencia de know-how con UTIAS. Este enfoque de diseño del satélite se caracteriza por hacer uso de la electrónica de calidad comercial, junto con un “pequeño equipo”, “principios de prototipos enfoque de desarrollo de la ingeniería” bastante diferente de la utilizada en la mayoría de los otros programas espaciales de ingeniería, para lograr un costo relativamente muy bajos: costo del MOST ciclo de vida (diseño, construcción, puesta en marcha y operar) es menos de $ 10 millones en fondos canadienses (unos 7 millones de euros o 6 millones de dólares, al tipo de cambio al momento del lanzamiento).
El desarrollo del satélite fue gestionado por la Agencia Espacial Canadiense Espacio Poder Ciencia ‘s, y fue financiado bajo el Programa de pequeñas cargas útiles; sus operaciones son en la actualidad (a partir de 2012), gestionado por la exploración espacial Rama de la CSA. Es operado por SFL (donde se encuentra la estación de tierra más primario) en conjunto con Microsat Sistemas Canada Inc. (ya que la venta de la división espacial de Dynacon con el MSCI en 2008). A partir de diez años después de su lanzamiento, a pesar de los fracasos de dos de sus componentes (una de las cuatro ruedas de reacción y una de las dos tarjetas driver CCD), el satélite sigue funcionando bien, como resultado de tanto en curso de software de a bordo actualizaciones, así como redundancia de hardware integrado, lo que permite mejoras en el rendimiento y para volver a configurar las unidades de hardware en torno fallidos.
En 2008, el satélite Equipo del Proyecto MAS obtuvo el premio Alouette la Aeronáutica y del Espacio de Canadian Institute, [4] [5] que reconoce las contribuciones sobresalientes a avance de la tecnología espacial canadiense, las aplicaciones, la ciencia o la ingeniería.
Cese de las operaciones de financiación por la CSA
El 30 de abril de 2014, la Agencia Espacial Canadiense anunció que la financiación continúe operando la mayoría se retiró el 9 de septiembre de 2014, [6] , aparentemente como resultado de los recortes de fondos al presupuesto de la Agencia Espacial Canadiense por el gobierno de Harper, [7] a pesar el hecho de que el satélite sigue siendo plenamente operativo y capaz de tomar en curso observaciones científicas. PI Jaymie Matthews respondió diciendo que “se tendrá en cuenta todas las opciones para mantener el satélite en órbita, y que incluye una apelación directa al público.”
Operaciones actuales
En octubre de 2014, el MOST fue adquirida por satélite Sistemas de microsatélites Canada Inc. (MSCI), que ha operado el satélite desde su lanzamiento en 2003. Los ingenieros MSCI han hecho un seguimiento de la salud del satélite en los últimos años y se han realizado numerosas mejoras en el software. MSCI ha comenzado la operación comercial del satélite y ofrece una variedad de usos potenciales, incluyendo la continuación de la misión más originales en colaboración con el Dr. Matthews, sino también otros estudios planetarios, control de actitud algoritmo de sistema de I + D, y la observación de la Tierra. MSCI es también el contratista principal de la nave espacial NEOSSat.
Descubrimientos
El equipo más ha reportado una serie de descubrimientos. En 2004 se informó que la estrella Procyon no oscila en la medida en que se esperaba, [8] aunque esto ha sido discutido. En 2006 observaciones revelaron una clase hasta ahora desconocido de estrellas variables, el “poco a poco pulsante supergigantes B” (SPBsg).[9] En 2011, los tránsitos MOST detectados por exoplaneta 55 Cancri e de su estrella principal, basado en dos semanas de fotométrica casi continuo monitoreo, confirmando una detección más temprana de este planeta, y permitiendo que las investigaciones sobre la composición del planeta. Otros informes de descubrimientos se enumeran en la página de ciencia más en la Universidad de Columbia Británica.
Es el primer satélite científico canadiense puesto en órbita y totalmente concebido y construir por Canadá. MOST es un pequeño telescopio dedicado únicamente al astero sismología, es decir al estudio de las vibraciones que sacuden las estrellas. El interés en estudiar tales vibraciones es grande ya que permite conseguir informaciones sobre la estructura interna de una estrella, pues, sobre sus dimensiones, su masa y sus constituyentes. El proyecto es iniciado en 1996 por el investigador Slavek Rucinski de Centro de investigación en Tecnologías de la Tierra y del Espacio de Ontario, Jaymie Matthews y Tony Moffat. De la talla y de la forma de una maleta gruesa, el satélite pesa sólo 54 kilogramos y es dotado de un telescopio extremista perfeccionado de a pena de 15 centímetros de diámetro. Sin embargo, es diez veces más sensible que el telescopio espacial Hubble para detectar las variaciones minúsculas de luminosidad de las estrellas debidas a las vibraciones que sacuden su superficie.
Puede así pasar 60 días observando continuo la misma estrella. Su vida útil debería ser de 5 a 10 años. Primer descubrimiento superior es hecho en 2004 concierne a Procyon, de estrellas las más estudiadas por los astrónomos. Mientras que se esperamos a ver el astro vibrar, comprobamos que no es nada. Esto contradice 20 años de teorías y de observaciones que fuerzan así a los astrofísicos a repensar sus modelos sobre las estrellas. En 2005, MOST observa para ella primera vez un planeta gigante que órbita si cerca de su estrella huésped que ésta se ve forzada a sincronizar su rotación con planeta.
Comúnmente, son los planetas que sincronizan su rotación con su estrella.
GALEX
Galaxy Evolution Explorer (GALEX, Explorador de la Evolución Galáctica) fue un observatorio espacial de la NASA lanzado el 28 de abril de 2003 a bordo de un cohete Pegasus y dedicado a observar galaxias en longitudes de onda ultravioleta. La misión fue dirigida desde el Instituto de Tecnología de California.
El objetivo de GALEX fue estudiar la evolución y cambios que se producen en las galaxias, así como los procesos de formación estelar en las primeras etapas del Universo, hasta hace unos 10.000 millones de años.
GALEX, que pesa unos 280 kg, fue situado en una órbita de unos 690 km de altura, con una inclinación orbital de 29 grados. Utiliza un único telescopio de tipo Richey-Chretien y 50 cm de apertura que dirige la luz hacia dos detectores de 65 mm de diámetro, uno para observar en el ultravioleta cercano (sensible a longitudes de onda de entre 175 y 280 nanómetros) y el otro para el ultravioleta lejano (entre 135 y 175 nanómetros). El observatorio sólo toma datos científicos cuando se encuentra en el lado nocturno de su órbita (cuando está a la sombra de la Tierra). La duración nominal de la misión era de 29 meses, periodo tras el cual la duración de la misión fue extendida.
El observatorio envió los datos en banda X y la telemetría en banda S a las estaciones terrestres situadas en Hawaii y Dongara (Australia).
El 28 de junio de 2013 la NASA anunció la conclusión de la misión del GALEX tras 10 años de operación.
Especificaciones
- Masa total: 280 kg
- Órbita: circular a 690 km de altura, 29 grados de inclinación orbital.
- Alimentación: paneles solares con una salida máxima de 290 vatios.
- Control de posición: estabilizado en los tres ejes mediante dos sistemas de giroscopios y cuatro volantes de inercia.
Finalmente la NASA ha decidido poner fin a la misión, tal y como se puede leer en NASA Decommissions Its Galaxy Hunter Spacecraft.
Durante este tiempo GALEX, el Explorador de la Evolución Galáctica, ha descubierto cosas como anillos de estrellas nuevas alrededor de viejas galaxias muertas, ha ayudado a confirmar lo que es la energía oscura, por citar algunos ejemplos, y ha permitido localizar galaxias durante su paso desde su juventud a su madurez que no se habían visto nunca antes.
En total ha observado varios cientos de millones de galaxias a través de unos 10.000 millones de años; una peculiaridad de su modo de funcionamiento era que sólo realizaba sus observaciones cuando estaba a la sombra de la Tierra, donde era de noche.
En GALEX – Image Gallery hay unas cuantas imágenes de las que ha generado, aunque los científicos aún tardarán años en acabar de analizar todos los datos conseguidos por este telescopio.
La nave en si se calcula que aun seguirá en órbita otros 65 años antes de caer a la atmósfera.
Las observaciones de GALEX están diciendo a los científicos cómo las galaxias, las estructuras básicas de nuestro Universo, evolucionan y cambian. Además, las observaciones de GALEX están investigando las causas de la formación de estrellas durante un período en que la mayor parte de las estrellas y los elementos que vemos hoy tuvo sus orígenes.
Dirigido por el Instituto de Tecnología de California, GALEX está llevando a cabo varios estudios del cielo, primera en su tipo, incluyendo un galáctico adicional (más allá de nuestra galaxia) ultravioleta de todo el cielo. Durante su misión GALEX se producirá el primer mapa completo de un Universo de galaxias en construcción, que nos acerca a la comprensión de cómo se formaron las galaxias como nuestra Vía Láctea.
GALEX también es la identificación de los objetos celestes para su posterior estudio de las misiones en curso y futuras y los datos de GALEX ahora se llena un gran archivo, sin precedentes a disposición de toda la comunidad astronómica y para el público en general.
Los científicos les gustaría entender cuando se formaron las estrellas que vemos hoy en día y los elementos químicos que componen la Vía Láctea. Con sus observaciones ultravioletas, GALEX está llenando en una de las piezas clave de este rompecabezas.
31 de Mayo de 2005 13:37 ET
MINNEAPOLIS, MN – Un telescopio diseñado para estudiar las galaxias se está acelerando estallidos estelares dramáticos de forma gratuita. También ve el asteroide de vez en cuando, vía satélite, y un surtido de desechos espaciales.
El Galaxy Evolution Explorer (GALEX) telescopio espacial ultravioleta se puso en marcha en 2003 para investigar cómo evolucionan las galaxias. La radiación ultravioleta (UV) la banda de ondas se pensaba que era una región más bien moderada del espectro electromagnético.
“[GALEX] está descubriendo que el cielo ultravioleta no es tan tranquilo”, dijo Barry Welsh, de la Universidad de California, Berkeley, en una conferencia de prensa en la reunión de la Sociedad Astronómica Americana en la actualidad.
Welsh presentó algunos de los eventos de 84 “locales” que el telescopio ha sido testigo por casualidad, incluyendo las llamaradas, explosiones y rayas de movimiento rápido.
“Todos estos objetos son un bono para los astrónomos, ya que las observaciones provienen libre cuando el telescopio está dirigido a las galaxias distantes”, dijo Welsh.
El telescopio tiene un amplio ángulo de visión – grados y medio de diámetro, que es aproximadamente tres lunas llenas de ancho. Con tanto del cielo siendo observados, el satélite no puede dejar coge fenómenos astrofísicos adicionales.
Entre estos eventos al azar son “nudistas cósmicos” – que pueden ser causadas por asteroides, satélites o restos flotantes espacio generado por los humanos pasar con velocidad delante del telescopio.
“Los científicos generalmente tiran todas estas cosas, porque la suciedad encima de sus datos”, dijo Welsh.
Pero a diferencia de las cámaras habituales en otros telescopios, GALEX tiene contadores de fotones, que registran la hora de llegada y la dirección de los paquetes individuales de luz. Streakers y otros indeseables se separan fácilmente de los datos específicos.
Walsh mostró varias películas en el tiempo transcurrido desde el recuento de fotones de GALEX. Una mostraba cinco piezas de espacio de los escombros voladores en la formación sobre el telescopio. Otro fue del Kallisto asteroide conocido.
Científicamente más interesantes fueron las observaciones de estrellas distantes que iluminaron a causa de un brote. Estas enormes erupciones en la superficie de una estrella pueden durar un par de minutos y por lo general causar aumento de 100 veces en la potencia de UV de la estrella.
Alrededor de una vez cada dos meses, GALEX ha detectado un brote de apagarse. Un evento, que tuvo lugar el 24 de abril de 2004, fue el mayor brote jamás registrado en la luz UV. El GJ 3685A estrella de repente se convirtió en 10.000 veces más brillante – casi la sobrecarga del telescopio.
Esta llamarada, que duró 20 minutos, fue de aproximadamente un millón de veces más energía que las llamaradas de nuestro sol. El GJ 3685A estrella, que está a 45 años luz de nosotros, es una vieja, pequeña estrella – llamada enana roja. Estas estrellas – a veces se refiere como “las estrellas de bengala – pueden entrar en erupción tan a menudo como cada pocas horas.
El satélite registra la evolución de las bengalas con una resolución temporal de 5 centésimas de segundo. Al igual que varios de los otros bengalas en el conjunto de datos de GALEX, el evento GJ 3685A era en realidad dos bengalas – uno tras poco después de la otra.
Walsh y sus colegas están recopilando estas bengalas GALEX fortuitas para estudios futuros.
La NASA elimina del servicio su nave espacial cazadora de galaxias
La NASA ha apagado su explorador de evolución galáctica (Galaxy Evolution Explorer – GALEX) después de una década de operaciones en la que se utilizó la visión ultravioleta del telescopio espacial para estudiar cientos de millones de galaxias a través de 10.000 millones de años de tiempo cósmico.
“GALEX es un logro sorprendente”, dijo Jeff Hayes, ejecutivo del programa GALEX de la NASA en Washington. “Esta pequeña misión exploradora ha realizado mapas y estudiado galaxias en la luz ultravioleta que no podemos ver con nuestros propios ojos, a través de gran parte del firmamento”.
Arriba aparece una imagen de GALEX de la galaxia NGC 4736 en luz ultravioleta. Esta galaxia está ubicada a 17 millones de años luz en la constelación Canes Venatici.
La nave espacial permanecerá en órbita durante al menos 65 años, luego caerá a la Tierra y se quemará al volver a entrar en la atmósfera. GALEX cumplió con sus objetivos principales y la misión se ha extendido tres veces antes de ser cancelada.
Entre lo más destacado de la década de exploraciones del firmamento de la misión se incluye:
- Descubrimiento de una gigantesca cola similar a un cometa detrás de una estrella veloz llamada Mira;
- Captura de un agujero negro “con las manos en la masa” en el momento en que absorbía una estrella;
- Hallazgo de gigantes anillos de estrellas nuevas alrededor de galaxias viejas y muertas;
- Confirmación independiente de la naturaleza de la energía oscura; y
- Descubrimiento de un eslabón perdido en la evolución de las galaxias, la transición de jóvenes a viejas de las galaxias adolescentes.
Espada Vikinga Ulfbehrt
Una espada Ulfberht se muestra en la Museo Nacional Germánico de Nuremberg, Alemania. (Martin Kraft / Wikimedia Commons)
Cuando los arqueólogos encontraron la espada vikinga Ulfbert, que data de entre el 800 y el 1000 d. C., se quedaron atónitos. No podían entender cómo la tecnología para hacer esta espada hubiera estado disponible antes de la Revolución Industrial que ocurrió unos 800 años después.
Su contenido de carbono es tres veces más alto que el de otras espadas de su tiempo, y las impurezas fueron eliminadas hasta un grado tal que el mineral de hierro debe haber sido calentado a por lo menos 3.000 grados Fahrenheit.
Con gran esfuerzo y precisión, el herrero moderno Richard Furrer de Wisconsin, forjó una espada de la calidad de Ulfberht usando la tecnología que habría estado disponible en la Edad Media. Dijo que era la cosa más complicada que jamás había hecho, y usó métodos que no se sabe que hayan sido utilizados por la gente de esa época.
Misteriosa espada vikinga fabricada con tecnología del futuro
El documental de NOVA y National Geographic, titulado “Secretos de la Espada Vikinga” emitido por primera vez en 2012 dio un vistazo sobre la composición metalúrgica de la enigmática espada. Se encontraron alrededor de 170 espadas datadas entre el año 800 dC a 1000 dC, pero la tecnología que les habría forjado es de la revolución industrial de los años 1800 y 1900. Los investigadores dicen que para forjar el hierro del que están hechas las espadas, necesitan calentar el mineral alrededor de 3.000 grados (F). A continuación, se licua y se eliminan las impurezas. Se mezcla entonces con carbono para reforzar el hierro. Sin embargo las tecnologías medievales, que es lo que los vikingos habrían estado utilizando, no habrían sido capaces de calentar ningún metal o sustancia a tan alta temperatura. En aquellos días, las impurezas se habrían eliminado martilleando el hierro.
En el proceso de forjar hierro, el mineral debe ser calentado a 3.000 grados Fahrenheit para licuarlo, permitiendo al herrero eliminar las impurezas (llamadas “escoria”). El carbón también se mezcla para hacer que el hierro frágil sea más fuerte.
La tecnología medieval no permitía que el hierro se calentara a una temperatura tan alta, así la escoria se eliminaba golpeando el metal, un método mucho menos eficaz.
El Ulfberht, sin embargo, casi no tiene escoria y tiene un contenido de carbono tres veces mayor que el de otros metales del mismo período. Se hizo de un metal llamado “acero del crisol“.
Se pensaba que los hornos inventados durante la revolución industrial fueron las primeras herramientas para calentar el hierro a este grado.
El herrero moderno Richard Furrer de Wisconsin habló en NOVA sobre las dificultades de hacer un arma de este tipo. Furrer se describe en el documental cómo él es una de las pocas personas en el planeta que tiene las habilidades para tratar de reproducir el Ulfberht. La diferencia en pureza se ve por la consistencia del acero Ulfberht, casi libre de escoria. (Screenshot/NOVA/National Geograph)
“Para hacerlo bien, es la cosa más complicada, pero sé cómo hacerla” dijo.
Comentó sobre cómo el fabricante de Ulfberht se habría considerado como poseedor de poderes mágicos. “Ser capaz de hacer un arma de la suciedad es una cosa bastante potente” dijo. Pero hacer un arma que se podría doblar sin romperse, mantenerse tan fuerte y que pesa tan poco se consideraría como sobrenatural.
Furrer pasó días de trabajo continuo y meticuloso para forjar una espada similar y usó tecnología medieval, aunque de una manera nunca antes sospechada. El defecto o error más diminuto podría haber convertido la espada en una pieza de chatarra. Al final pareció declarar su éxito con más alivio que alegría.
Es posible que el material y los conocimientos técnicos procedieran del Oriente Medio. La ruta de comercio del Volga entre los establecimientos Vikingo y el Oriente Medio se abrió al mismo tiempo que los primer Ulfberhts aparecieron y se cerró cuando los últimos Ulfberhts se produjeron.
La espada misteriosa a la que nos referimos fue realizada por los Vikingos y grabada con la palabra Ulfberht. La espada se forjó de tal manera que parece que ha sido hecha por tecnologías que no estaban disponibles hasta 800 años después de la era Vikinga, de ahí el misterio que la envuelve. Alan Williams, de la Colección Wallace en Londres ha estudiado las espadas y opina que son unas espadas únicas en su categoría, y cree que el fabricante es único. Eran extremadamente raras y valiosas, habría formado parte del arsenal de la élite Vikinga.
En contradicción con esto, Ulfberht casi no contiene impurezas y tiene tres veces la cantidad de carbono que cualquier otro metal que se sepa que existiera en su momento. El metal de las espadas está hecho de lo que se conoce como acero de crisol. Robert Lehmann, un químico en el Instituto de Química Inorgánica de la Universidad de Hannover, estudió una de las espadas Ulfberht que se encontrado en 2012 en un montón de grava excavada en el río Weser, que fluye a través de Baja Sajonia en el noroeste de Alemania. La hoja de esta espada tiene un alto contenido de manganeso, lo que indicó a Lehmann que no venía de Oriente. La guarda estaba hecha de hierro con un alto contenido de arsénico, lo que sugiere un depósito de Europa. Delimitó la posible fabricación a un sitio en la región de Taunus, al norte de Frankfurt, Alemania. Aunque se conocen algunos monasterios de la región Taunus que podrían haber producido armas en esa época, el nombre de Ulfberht no se ha encontrado en sus registros.
Los Hornos que podrían haber calentar los metales y las sustancias que conforman las espadas a temperaturas extremadamente altas no se inventaron hasta la revolución industrial, que es cuando también se desarrollaron las herramientas para poder calentar el hierro a estas temperaturas. Se consultaron herreros actuales y llegaron a la conclusión que para hacer una espada como la Ulfberht el proceso sería muy difícil y complejo. Por las características especiales que confiere la forma de hacer la espada posiblemente en aquella época se le habría podido otorgar la distinción de “espadas mágicas” ya que la forma en la que están forjadas permite que la hoja de curve, que esté siempre en buenas condiciones de filo y que sean muy ligeras.
Los investigadores encargaron a herreros actuales una recreación de Ulfberht utilizando tecnología medieval. Tras muchos días de trabajo finalmente se pudo producir un metal similar. Los investigadores creen que es posible que el conocimiento para hacer este tipo de espadas se originara en Medio Oriente y que las rutas comerciales con Europa habrían podido difundir el conocimiento y las tecnologías. Cuando esas rutas comerciales se cerraron, debido a la falta de uso, Ulfberht también dejó de fabricarse.
Grandes historias de una herramienta que nos ha acompañado desde siempre y que no deja de sorprendernos. Tecnología oriental en el mundo Vikingo… y pensamos que ya lo sabemos todo.
Generalmente las armas vikingas se han catalogado —de forma errónea— como algo autóctono. Tendemos a decir ‘espadas vikingas’ o ‘yelmos vikingos’ o ‘escudos vikingos’ y, sin embargo, esto no es del todo cierto. Si bien algunas de ellas que sí habrían sido algo intrínsecamente vikingo, muchas son, en realidad, del periodo anterior a la Era Vikinga —la Era de Vendel (550-794)—; y éstas fueron, a su vez, importaciones y asimilaciones. Desde tiempos del Imperio romano y sus ‘Estados sucesores’ los pueblos del norte importaron armamento de forma habitual: la mitad de las armas halladas en yacimientos de la Germania libre fechadas entre los siglos III y V son de fabricación romana. Y no solo del Imperio Romano, los pueblos del norte también importaron armamento del Imperio Franco, tal y como recoge la Gesta Karoli Magni.
Tal debió ser el interés de estas sociedades por las armas extranjeras, que a lo largo de la historia hasta se les llegó a prohibió su venta:
- La legislación romana prohibía vender armas al Barbaricum. Legislación que se mantuvo en Bizancio.
- En el año 803 Carlomagno prohíbe la venta de bruniae (cotas de malla) y de baugae (brazales) fuera del reino.
- En el año 864 Carlos el Calvo decreta pena de muerte para aquellos que vendan armas a los vikingos.
Si ya entramos en detalle, dentro de las armas utilizadas por los escandinavos durante la Era Vikinga, la espada era apreciada por encima del resto; no sólo era la más cara y la que podía estar más elaborada y ricamente decorada —con adornos de metales como la plata e incrustaciones de piedras preciosas—, sino que era también la que mayor maestría técnica requería al guerrero que la portaba y blandía.
Parece ser que el trabajo de los espaderos francos era especialmente apreciado por los hombres del norte. ¿Por qué importaban los vikingos sus espadas? Puesto que la calidad del metal franco, comparado con el nórdico, era muy superior. Y ello justificaba su precio. Y, precisamente por su elevado coste, no todos los guerreros vikingos pudieron permitirse una, quedando reservada para aquellos más ricos y pudientes. Una espada durante el reinado de Carlomagno, por ejemplo, costaba tres sueldos. Cinco durante el de Carlos el Calvo. Y según las sagas nórdicas, una espada podía llegar a costar 16 vacas lecheras. Generalmente era un arma que pasaba de generación en generación, como herencia.
Herederas de la spatha romana —y esta del gladius— las espadas que utilizaron los escandinavos durante el periodo que comprende la Era Vikinga estaban elaboradas con la técnica que tiene por nombre pattern welding[i] (soldadura de diseño), que combinaba piezas de metal de distinta composición: las espadas se fabricaban a partir de barras de acero retorcidas —generalmente tres— y soldadas mediante forja a martillazos, hasta formar una hoja que tenía una pigmentación característica en forma de hondas o espigas y que componía el núcleo central de la hoja. A esta se le añadían dos filos de alto contenido en carbono que se forjaban, afilaban y pulían. La tira central de la hoja también se trabajaba en ambas caras, para crear andaduras longitudinales poco profundas —llamadas vaceos— que hacían más ligera la hoja sin reducir su efectividad.
El resultado era una hoja elástica de doble filo, fina y flexible, pero dura y resistente que medía entre 70 y 100 centímetros, siendo lo habitual unos 90. La empuñadura podía ser de metal, aunque habitualmente era de algún tipo de material orgánico como la madera, el cuero o el asta y, probablemente, se recubría con tela o cuero. En la mayoría de ocasiones los vikingos importaban las hojas y les añadían sus empuñaduras y pomos, tan característicos, que podían ser de distintos tipos; en forma de pirámide, lobulados o estilo sombrero de tres picos, entre otros, y solían ser también de algún tipo de material orgánico como los ya mencionados y, a veces, de hierro. La espada se guardaba en una vaina de madera que podía tener también un forro de tela o lana —la grasa natural de la lana ayudaba a evitar que la hoja se oxidase—, y esta, a su vez, se protegía con una funda de cuero. El extremo terminaba con una contera de metal, que podía estar decorada, y cuya función era la de proteger la punta de la espada. Se llevaban normalmente colgadas de una correa al hombro derecho o en el cinturón o tahalí a la altura de la cadera.
Inscripción +VLFBEHT+ en la hoja de una espada del siglo IX (Germanisches Nationalmuseum FG 2187).
Hacia finales del siglo VIII comenzaron a circular por Europa unas nuevas espadas de una calidad excepcional con la inscripción Ulfberht en la hoja, en la mayoría de casos con una cruz griega antes y después del nombre: +Vlfberht+. Por estas fechas surgió en la zona de Renania Central una nueva técnica que producía hojas muy duras y flexibles, de una acero sin apenas impurezas o escoria, con un inusual alto contenido de carbono[ii], lo que las hacía más fuertes, más flexibles y menos frágiles que las que hemos visto hasta ahora. Estas hojas se obtenían mediante la técnica de fundición en crisoles, también llamado acero crucible o de crisol, algo que hasta el momento no era posible debido a la elevada temperatura de fusión que necesitaba el hierro. Temperaturas mucho más altas de las que la mayoría de los herreros europeos eran capaces de conseguir en sus forjas.
¿Y quién era Ulfberht? Durante mucho tiempo se pensó que era el nombre de una familia propietaria de una herrería en la zona de Renania. Una hipótesis que ha sido rechazada recientemente ya que las firmas con cruz griega eran típicas de abades, obispos y monasterios. Esto no nos debe sonar extraño, ya que en aquella época era habitual que las grandes abadías y sedes episcopales fabricasen armas.
La firma de Ulfberht estaba grabada de modo que si su propietario blandía la espada con la mano derecha, su oponente podía leerlo.
Estas espadas tuvieron un enorme impacto geográfico: tan sólo en Noruega se han hallado 44 ejemplares, y otros 166 han sido hallados en yacimientos de 23 países de Europa, entre ellos uno en España. Eran de las mejores producciones armeras de la época y tuvieron tanto éxito, y llegaron a ser tan famosas y codiciadas, que hasta fueron ‘pirateadas’ por otros herreros a lo largo y ancho de Europa Occidental: surgieron imitadores que también marcaron su nombre en la hoja. Otras inscripciones que se han encontrado han sido Inglerii, Cerolt, Ulen, Pulfbrii, Centrlit. Sin embargo, la calidad de estas espadas ‘de imitación’ era muy inferior. Y no solo la calidad era menor; las inscripciones de las imitaciones en ocasiones están mal escritas, las letras están hacia abajo u otras peculiaridades. Estudios recientes sobre las espadas con inscripción Ulfberht han revelado que unas fueron forjadas a partir de lingotes de acero de crisol —las ‘verdaderas’— y otras poseen una calidad muy inferior, con mucho menos contenido de carbono. Las imitaciones han sido generalmente exhumadas en tumbas, mientras que las verdaderas han sido mayoritariamente halladas en lechos de ríos, a causa de pérdidas fortuitas o casuales, lo que implica que su propietario no se desprendía de ellas tan fácilmente. Y es que, como ya hemos dicho, las espadas eran, probablemente, el arma más apreciada y codiciada de los vikingos.
[i] Técnica utilizada durante los siglos III y IX.
[ii] Las espadas forjadas mediante pattern welding entre el 0,4 y el 0,5% de carbono, mientras que las espadas Ulfberht, un 0,75%.
Debe estar conectado para enviar un comentario.