Este Mundo, a veces insólito

Calendario
abril 2025
L M X J V S D
 123456
78910111213
14151617181920
21222324252627
282930  

Tecnología

Vela

Vela

Serie de Observatorios

Vela era el nombre de un grupo de satélites desarrollados como el elemento Vela Hotel del Proyecto Vela por los Estados Unidos para detectar detonaciones nucleares y monitorear el cumplimiento del Tratado de Prohibición Parcial de Pruebas de 1963 por parte de la Unión Soviética.

Satélite Vela 5B en órbita.

País de origen: Estados Unidos

Operador: Fuerza Aérea de EE. UU.

Aplicaciones: Reconocimiento

Especificaciones

Régimen: Órbita muy elíptica

Vida de diseño: 15 años

Estado: Retirado

Lanzado: 12

Operacional: 0

Retirado: 12

Lanzamiento inaugural: Vela 1A

Último lanzamiento: Vela 6B

Programa: Proyecto Vela & Integrated Operational Nuclear Detection System (IONDS).

Campo: Satélite de reconocimiento

Lanzamiento: 1963 hasta 1970

Lanzacohetes: AtlasAgenaTitan IIIC

Fin de la misión: 1984

Duración: 15 años

Misa en el lanzamiento: de 150 a 261 kg

Vela comenzó como un programa de investigación de bajo presupuesto en 1959. Terminó 26 años después como un sistema espacial militar exitoso y rentable, que también proporcionó datos científicos sobre fuentes naturales de radiación espacial. En la década de 1970, la misión de detección nuclear fue asumida por los satélites del Programa de Apoyo a la Defensa (DSP). A fines de la década de 1980, se amplió con los satélites del Sistema de posicionamiento global (GPS) Navstar. El programa ahora se llama Sistema Operativo Integrado de Detección NuDet (Detonación Nuclear) ( IONDS).

Despliegue

Se construyeron doce satélites, seis del diseño del Vela Hotel y seis del diseño Advanced Vela. La serie Vela Hotel fue para detectar pruebas nucleares en el espacio, mientras que la serie Advanced Vela fue para detectar no solo explosiones nucleares en el espacio sino también en la atmósfera.

Todas las naves espaciales fueron fabricadas por TRW y lanzadas en pares, ya sea en un propulsor AtlasAgena o Titan III -C. Fueron colocados en órbitas de 118.000 km (73.000 millas),[1] muy por encima de los cinturones de radiación de Van Allen. Su apogeo fue aproximadamente un tercio de la distancia a la Luna. El primer par de Vela Hotel se lanzó el 17 de octubre de 1963,[2] una semana después de que entrara en vigencia el Tratado de Prohibición Parcial de Pruebas, y el último en 1965. Tenían una vida útil de seis meses, pero solo se cerraron después de cinco años. Los pares Advanced Vela se lanzaron en 1967, 1969 y 1970. Tenían una vida útil nominal de diseño de 18 meses, que luego se cambió a siete años. Sin embargo, el último satélite que se apagó fue el Vehículo 9 en 1984, que se había lanzado en 1969 y había durado casi 15 años.

La serie Vela comenzó con el lanzamiento de Vela 1/2 el 17 de octubre de 1963, un vuelo que también marcó el viaje inaugural del vehículo Atlas-Agena SLV-3. El segundo par de satélites se lanzó el 17 de julio de 1964 y el tercero el 20 de julio de 1965. El último lanzamiento falló levemente cuando un motor vernier Atlas se apagó en el despegue, mientras que el otro nonio operaba a niveles de empuje por encima de lo normal. Esto resultó en una inclinación ligeramente más baja de lo normal para los satélites, sin embargo, la misión se llevó a cabo con éxito. El problema se debió a un mal funcionamiento de la válvula de asiento a vernier LOX.

Los satélites Vela posteriores se cambiaron al propulsor Titan IIIC debido a su mayor peso y complejidad. Se lanzaron tres conjuntos más el 28 de abril de 1967, el 23 de mayo de 1969 y el 8 de abril de 1970. El último par de satélites Vela operó hasta 1985, cuando finalmente se cerraron, la Fuerza Aérea afirmó que eran los más antiguos del mundo en funcionamiento. Permanecieron en órbita hasta su descomposición a fines de 1992.

Instrumentos

El satélite Vela-5A / B en su sala blanca. Los dos satélites, A y B, se separaron después del lanzamiento.

Los satélites Vela originales estaban equipados con 12 detectores de rayos X externos y 18 detectores internos de neutrones y rayos gamma. Estaban equipados con paneles solares que generaban 90 vatios.

Los satélites Advanced Vela estaban equipados adicionalmente con dos sensores de fotodiodo de silicio sin imágenes llamados bhangmetros que monitoreaban los niveles de luz en intervalos de menos de milisegundos. Podrían determinar la ubicación de una explosión nuclear dentro de aproximadamente 3,000 millas. Las explosiones nucleares atmosféricas producen una firma única, a menudo llamada “curva de doble joroba”: un destello corto e intenso que dura alrededor de 1 milisegundo, seguido de una segunda emisión de luz mucho más prolongada y menos intensa que toma una fracción de segundo a varios segundos. El efecto se produce porque la superficie de la primera bola de fuego es rápidamente superada por la onda de choque atmosférica en expansión compuesta de gas ionizado. Aunque emite una cantidad considerable de luz en sí mismo, es opaco y evita que la bola de fuego mucho más brillante brille a través. A medida que la onda de choque se expande, se enfría y se vuelve más transparente, lo que permite que la bola de fuego mucho más caliente y brillante vuelva a ser visible.

No solo fenómeno natural se conoce la producción de esta firma, aunque se especuló con que el Velas podría grabar excepcionalmente raros eventos dobles naturales, tales como un meteoro huelga en la nave espacial que produce un destello brillante o desencadenante en un rayo Superbolt en la atmósfera de la Tierra, como pudo haber ocurrido en el incidente de Vela.[3] [4] [5]

También estaban equipados con sensores que podían detectar el pulso electromagnético de una explosión atmosférica.

Se requería energía adicional para estos instrumentos, y estos satélites más grandes consumían 120 vatios generados a partir de paneles solares. Por casualidad, los satélites Vela fueron los primeros dispositivos en detectar explosiones de rayos gamma cósmicos.

Observaciones controvertidas

Alguna controversia todavía rodea al programa Vela ya que el 22 de septiembre de 1979 el satélite Vela 5B (también conocido como Vela 10 y OPS 6911[6]) detectó el característico destello doble de una explosión nuclear atmosférica cerca de las Islas Príncipe Eduardo. Aún explicado de manera insatisfactoria, este evento se conoce como el Incidente de Vela. El presidente Jimmy Carter inicialmente consideró que el evento era evidencia de una prueba nuclear conjunta de Israel y Sudáfrica, aunque el informe ahora desclasificado de un panel científico que posteriormente nombró mientras buscaba la reelección concluyó que probablemente no fue el evento de una explosión nuclear.[cita requerida] Una explicación alternativa implica un evento magnetosférico que afecta a los instrumentos.

Un incidente anterior ocurrió cuando una intensa tormenta solar el 4 de agosto de 1972 activó el sistema en modo evento como si hubiera ocurrido una explosión, pero esto fue rápidamente resuelto por el personal que monitoreaba los datos en tiempo real. [7]

En 2018, un nuevo estudio confirmó que es muy probable que se tratara de una prueba nuclear, realizada por Israel. [8] [9]

Vela 5A y 5B

El detector de rayos X de centelleo (XC) a bordo del Vela 5A y su Vela 5B gemelo constaba de dos cristales de NaI (Tl) de 1 mm de espesor montados en tubos fotomultiplicadores y cubiertos por una ventana de berilio de 0,13 mm de espesor. Los umbrales electrónicos proporcionaron dos canales de energía, 3–12 keV y 6–12 keV.[10] Además del anuncio de rayos X de Nova indicado arriba, el detector XC a bordo del Vela 5A y 5B también descubrió y anunció la primera explosión de rayos X jamás reportada.[11] El anuncio de este descubrimiento precedió al anuncio inicial del descubrimiento de explosiones de rayos gamma en 2 años. Delante de cada cristal había un colimador de listones que proporcionaba un ancho completo a la mitad de la apertura máxima (FWHM) de ~ 6,1 × 6,1 grados. El área efectiva del detector fue de ~ 26 cm 2. Los detectores escanearon un gran círculo cada 60 segundos y cubrieron todo el cielo cada 56 horas.[12] La sensibilidad a las fuentes celestes estaba severamente limitada por el alto fondo intrínseco del detector, equivalente a aproximadamente el 80% de la señal de la Nebulosa del Cangrejo, una de las fuentes más brillantes del cielo en estas longitudes de onda.[12]

El detector de rayos X satelital Vela 5B siguió funcionando durante más de diez años.

Vela 6A y 6B

Al igual que los satélites Vela 5 anteriores, los satélites de detección de pruebas nucleares Vela 6 formaban parte de un programa dirigido conjuntamente por los Proyectos de Investigación Avanzada del Departamento de Defensa de EE. UU. Y la Comisión de Energía Atómica de EE. UU., Administrado por la Fuerza Aérea de EE. UU. Las naves espaciales gemelas, Vela 6A y 6B, se lanzaron el 8 de abril de 1970. Se utilizaron datos de los satélites Vela 6 para buscar correlaciones entre estallidos de rayos gamma y eventos de rayos X. Se encontraron al menos dos buenos candidatos, GB720514 y GB740723. Los detectores de rayos X fallaron en Vela 6B el 27 de enero de 1972 y en Vela 6A el 12 de marzo de 1972.

Papel de Vela en el descubrimiento de estallidos de rayos gamma

El 2 de julio de 1967, a las 14:19 UTC, los satélites Vela 4 y Vela 3 detectaron un destello de radiación gamma diferente a cualquier firma de armas nucleares conocida.[13] Sin saber qué había sucedido pero sin considerar el asunto particularmente urgente, el equipo del Laboratorio Científico de Los Alamos, dirigido por Ray Klebesadel, archivó los datos para su investigación. A medida que se lanzaron satélites Vela adicionales con mejores instrumentos, el equipo de Los Alamos continuó encontrando explosiones inexplicables de rayos gamma en sus datos. Al analizar los diferentes tiempos de llegada de las ráfagas detectadas por diferentes satélites, el equipo pudo determinar estimaciones aproximadas para las posiciones del cielo de dieciséis ráfagas[14] y descartar definitivamente un origen terrestre o solar. Contrariamente a la creencia popular, los datos nunca se clasificaron.[15] Después de un análisis exhaustivo, los hallazgos se publicaron en 1973 como un artículo de Astrophysical Journal titulado “Observaciones de estallidos de rayos gamma de origen cósmico”.[14] Esto alertó a la comunidad astronómica sobre la existencia de explosiones de rayos gamma (GRB), ahora reconocidos como los eventos más violentos del universo.

Lanzamientos

Historial de lanzamiento
N º de pedido. Satélite Fecha de lanzamiento Lanzacohetes Masa Instrumentos ID de Cospar Comentario
1 Vela 1A 17 de octubre de 1963 Atlas Agena -D 150  kilogramos 3 instrumentos 1963-039A  
2 Vela 1B 1963-039C  
3 Vela 2A 17 de julio de 1964 Atlas Agena -D 150  kilogramos 8 instrumentos 1964-040A  
4 Vela 2B 1964-040B  
5 Vela 3A 20 de julio de 1965 Atlas Agena -D 150  kilogramos 8 instrumentos 1965-058A  
6 Vela 3B 1965-058B  
7 Vela 4A 28 de abril de 1967 Titán -3C 231  kilogramos 9 instrumentos 1967-040A  
8 Vela 4B 1967-040B  
9 Vela 5A 23 de mayo de 1969 Titán -3C 259  kilogramos 8 instrumentos 1969-046D  
10 Vela 5B 1969-046E  
11 Vela 6A 8 de abril de 1970 Titán -3C 261  kilogramos 8 instrumentos 1970-027A  
12 Vela 6B 1970-027B  

Avance del proyecto

El proyecto Vela, luego el programa del Sistema Integrado de Detección Nuclear Operativa (IONDS) lanzado por los Estados Unidos para monitorear la aplicación del Tratado de Prohibición Parcial de Ensayos Nucleares firmado en 1963, tiene tres componentes: Vela Uniform debe monitorear las señales sísmicas emitidas por un prueba nuclear subterránea, Vela Sierra detecta pruebas atmosféricas desde el suelo, mientras que Vela Hotel debe detectar las mismas pruebas desde el espacio. El Proyecto Vela es desarrollado por DARPA y supervisado por la Fuerza Aérea de los Estados Unidos . El nombre Vela se elige en referencia a la constelación de las Velas. Doce satélites, en dos subseries, son construidos por la empresa TRW. Los instrumentos están siendo desarrollados por el Laboratorio Nacional de Los Alamos, que ha adquirido experiencia en el desarrollo de detectores de rayos cósmicos y rayos gamma mediante el desarrollo de cargas útiles para cohetes de sondeo.

Despliegue

Los satélites son lanzados por parejas por lanzadores Atlas / Agena en 1963 (Vela 1), 1964 (Vela 2) y 1967 (Vela 3). Versiones posteriores más pesadas por cohetes Titan IIIC en 1967 (Vela 4), 1969 (Vela 5) y 1970 (Vela 6). Se colocan en una órbita circular alta (altitud 137.000  km) con una inclinación orbital de 36 °. Cada par circula en la misma órbita pero ocupa una posición opuesta (a 180 °) para garantizar en conjunto una vigilancia completa de la superficie del globo.

Los satélites Vela han cumplido por completo sus objetivos y también han aportado información científica que ha tenido un impacto significativo en el campo de la astronomía (viento solar, estallido de rayos gamma). Todos los satélites funcionaron al menos 10 veces más que la duración para la que fueron diseñados (6 meses). Los satélites de la versión mejorada (Vela 5 y 6) funcionaron hasta que fueron puestos voluntariamente fuera de servicio el 27 de septiembre de 1984 casi 15 años después de su lanzamiento.

Características técnicas

El satélite Vela tiene la forma de un poliedro regular de 26 lados cuyo cuerpo está cubierto de células solares que generan 120 vatios. Se estabiliza por rotación a razón de 2 revoluciones por segundo (primeras versiones) y luego 1 revolución por segundo para las versiones Vela 5 y 6. Su masa está entre 150  kg (Vela 1) y 261  kg (Vela 6). El par de satélites incluye un motor de apogeo responsable de colocar el satélite en su órbita final.

Instrumentos

Estructura interna de un satélite Vela.

Primer plano de 2 satélites Vela poco antes de su lanzamiento.

Satélites 1A a 4B

Detector de rayos x

Instrumento presente en satélites de Vela 1A

Detector de rayos gamma

Instrumento presente en satélites de Vela 1A

Detector de neutrones

Instrumento presente en satélites de Vela 1A

El detector de neutrones identifica tanto los neutrones generados por una explosión nuclear como los de origen espacial (subproductos de los rayos cósmicos, otros). Con este instrumento se midieron electrones con una energía entre 1 y 100  MeV.

Experimento de viento solar

Instrumento presente en satélites de Vela 4A

El instrumento está compuesto por 4 contadores Geiger y un analizador electrostático que permite el estudio del viento solar y los electrones de baja energía del espacio interplanetario y la cola de la magnetosfera. Se utilizaron contadores Geiger para medir el flujo y la distribución angular de electrones con energía superior a 45  keV.

Espectrómetro de electrones de protones ⇒ Analizador electrostático y tubos Geiger

Instrumento presente en los satélites Vela 2A a 3B

Medida de la distribución angular y del espectro energético de partículas en la magnetosfera y el viento solar. Un contador Geiger cuenta electrones con energía superior a 45  keV. Un analizador electrostático mide la energía de iones y electrones según una cuadrícula de 16 valores entre 0,3 y 20  keV y evalúa aproximadamente su distribución angular con respecto al Sol.

Detector de radiación de fondo

Instrumento presente en los satélites Vela 2A y 2B

Contador de rayos X de centelleador

Instrumento presente en satélites de Vela 3A

Este instrumento se utiliza para medir el flujo de rayos X emitidos por el sol. También se utiliza para medir el flujo integrado de protones entre 3 y 100  MeV.

Detector de circuito estático

Instrumento presente en satélites de Vela 2A

Este instrumento mide la intensidad, distribución, variaciones de tiempo y espectro de energía de los electrones presentes en la región de transición y en la cola de la magnetosfera. Las partículas medidas son electrones cuya energía está entre 45 y 430  keV y protones entre 180 y 570  keV. En la versión a bordo del Vela 3A, la medición toma electrones cuya energía está entre 30 y 475  keV y protones entre 180 y 570  keV. En la versión a bordo del Vela 4A, la medida transporta los electrones cuya energía está entre 30 y 700  keV.

Tubos Geiger

Instrumento presente en los satélites Vela 2A a 3B

Este detector se utiliza para analizar casos en los que el detector de circuito estático identifica electrones y protones de la misma energía.

Magnetómetro

Instrumento presente en los satélites Vela 2A a 3B

El magnetómetro mide el campo magnético en un solo eje perpendicular al eje de rotación del satélite. La sensibilidad del detector cubre el rango 0-63 gamma.

Detector de rayos X y gamma con centelleadores

Instrumento presente en satélites de Vela 4A

Detector ultravioleta extremo

Instrumento presente en satélites Vela de 3A

Telescopio de partículas energéticas de circuito sólido

Instrumento presente en satélites de Vela 4A

El instrumento incluye 4 detectores de partículas tipo semiconductor, un tubo fotomultiplicador y un centelleador anti-coincidencia con un campo óptico de 30 °. Se utiliza para medir la intensidad y dirección de protones con energía entre 0,5 y 100  MeV y núcleos alfa con energía entre 12 y 400  MeV.

Satélites 5A a 6B

Uno de los instrumentos del satélite Vela 5B.

Detector ultravioleta extremo

Dos detectores miden la radiación ultravioleta extrema emitida por el Sol respectivamente en las longitudes de onda de 30 a 150 A y 120 a 900 A. El instrumento reproduce el espectro aproximado del flujo.

Detector de rayos X solar

Telescopio de partículas solares

El instrumento se utiliza para medir la intensidad y dirección de los protones solares con energía entre 0,3 y 50  MeV y núcleos alfa solares con energía entre 2 y 100  MeV . Permite identificar y medir los flujos de núcleos de deuterio, tritiul y helio-3. El instrumento incluye 3 telescopios orientados a 45 °, 90 ° y 135 ° con respecto al eje de rotación del satélite. Cada telescopio incluye un tubo colimador con un campo óptico de 30 ° y un detector de partículas de tipo circuito sólido.

Detector de electrones

Viento solar

Rayos cósmicos

Detector de neutrones

Astronomía de rayos gamma

Historial de lanzamiento

Lanzamiento de Vela 3A y 3B por un cohete Atlas Agena -D el 20 de julio de 1965.

Resultados científicos

La primera señal de una explosión de rayos gamma registrada el 2 de julio de 1967 por un instrumento a bordo de un satélite Vela 4.

El descubrimiento de estallidos de rayos gamma

Las explosiones de rayos gamma son los fenómenos astronómicos más violentos de nuestro Universo. Se caracterizan por una emisión de rayos gamma que suele durar desde unos pocos milisegundos hasta unos minutos. La radiación gamma solo es observable directamente desde el espacio, por lo que la observación de estallidos de rayos gamma está condicionada por el desarrollo de detectores gamma a bordo de satélites artificiales. Los satélites Vela equipados con ellos para detectar pruebas nucleares son los primeros en descubrir estallidos de rayos gamma accidentalmente enjulio 1967. La primera versión de los satélites, Vela 1, tiene instrumentación de baja sensibilidad. Además, los detectores de cada satélite pueden reaccionar ante partículas cargadas de fuentes ya conocidas (rayos cósmicos emitidos por el Sol, radiación emitida por una supernova, etc.). Pero enjulio 1967, una señal que dura unos segundos con un pico doble atípico es percibida simultáneamente por los detectores de dos satélites Vela 4. Los ingenieros del Laboratorio Nacional de Los Alamos liderados por Ray Klebesadel, quienes analizan los datos proporcionados por los satélites Vela, están buscando una explicación, pero no hay ninguna tormenta solar o supernova en esta fecha. El equipo del laboratorio es consciente de que se trata de un fenómeno asombroso, pero en la medida en que los detectores no proporcionan la ubicación de la fuente o la distancia a la misma, posponen un análisis más profundo para la provisión de detectores más sensibles a bordo de las generaciones posteriores de satélites Vela. Estos fueron lanzados entre 1969 (Vela 5) y 1970 (Vela 6). Al analizar el momento preciso de detección de los estallidos de rayos gamma por los distintos satélites, los ingenieros logran por triangulación localizar el origen de dieciséis de estos fenómenos en el cielo, lo que les permite eliminar las fuentes de radiación conocidas en ese momento. (Supernova, Tierra, Luna, Sol). Los datos, que estaban cubiertos por el secreto militar debido a la naturaleza del programa Vela, fueron desclasificados en 1973 y el descubrimiento de las misteriosas señales se hizo público en un artículo escrito por el equipo de Los Alamos y publicado en el Astrophysical Journal. El nuevo fenómeno se llama “explosión de rayos gamma” o GRB (“Gamma Ray Burst”).

Los datos recogidos por los satélites Vela 5A, B, 6A y 6B permitieron identificar 73 estallidos de rayos gamma entre Julio de 1969 y Abril de 1979. Los satélites Vela 6A y B también se utilizaron para buscar correlaciones entre las explosiones de rayos gamma y las emisiones de rayos X. En dos casos (GB720514 y GB740723), se detectaron datos que parecían indicar un vínculo.

Detección de prueba nuclear

El incidente de Vela

La 22 de septiembre de 1979, un instrumento (el bhangmeter) de uno de los satélites Vela detecta un doble destello de luz (un destello corto seguido de un destello largo) considerado característico de una explosión nuclear. En el pasado, esta firma de luz detectada por un satélite Vela podría haberse asociado cada vez (en 41 casos) con una explosión nuclear real. La señal luminosa del 22 de septiembre ocurre en un área de 5.000  km de diámetro que incluye el extremo sur de África, el Océano Índico y el Atlántico Sur, así como una pequeña parte de la Antártida.

Varios hechos recientes sugieren que Sudáfrica, Israel o los dos países juntos, pueden haber querido realizar una prueba nuclear a pesar de la presión ejercida por las dos superpotencias de la época. Sin embargo, existen algunas inconsistencias entre los datos proporcionados por los dos bhangmetros redundantes instalados a bordo del satélite Vela. Dados los riesgos políticos, el gobierno de los Estados Unidos está lanzando una investigación exhaustiva para determinar si realmente se realizó una prueba y quién la realizó. Participaron numerosos organismos públicos, laboratorios y empresas externas. Se analizan los datos proporcionados por los satélites Defense Support Program (DSP), Satellite Data System (SDS) y Defense Meteorological Satellite Program (DMSP), todos los portadores de detectores capaces de identificar una explosión nuclear, así como las señales de las cadenas de boyas Sistema de vigilancia acústica de sonido (SOSUS) y Sistema de localización de impacto de misiles (MILS) responsables de monitorear los submarinos de misiles soviéticos y localizar el área de precipitación de ojivas nucleares. Las muestras de la atmósfera y la vegetación en varios países de la región son realizadas por agentes estadounidenses para buscar rastros de lluvia radiactiva. Aunque algunos laboratorios concluyen que efectivamente hubo una explosión nuclear (por ejemplo, el Laboratorio de Investigaciones Navales de la Armada de los Estados Unidos), la conclusión es que las señales detectadas probablemente fueron producto de la colisión de un micrometeorito con un satélite.

Atlas Miller

Atlas Miller

Autor

Lopo Homem
¿Pedro Reinel?
¿Jorge Reinel?
¿Antonio de Holanda?

Fecha: hacia 1519

Idioma: Latín con mayoría de topónimos en portugués

Propietario: República Francesa

El Atlas Miller es un conjunto de mapas manuscritos finamente iluminados realizados en Portugal hacia 1519 y conservados actualmente en la Biblioteca Nacional de Francia. Una inscripción en el reverso de uno de los mapas dice que fue hecho por orden del rey Manuel I de Portugal por el cosmógrafo Lopo Homem, si bien se cree que también intervinieron en la realización del atlas los cartógrafos Pedro Reinel y su hijo Jorge Reinel, y el iluminador Antonio de Holanda.1

El atlas combina elementos geográficos y visuales de tres orígenes muy diferentes: las cartas portulanas, los mapas ptolemaicos y las miniaturas iluminadas de Flandes.2​ Su decoración presenta una calidad artística superior a la de cualquier otra obra cartográfica portuguesa del siglo XVI. Solo puede comparársele el Atlas Vallard, hecho en Francia en 1547 con influencias portuguesas.3

Dos páginas casi en blanco, que contienen solo una red de líneas de rumbo en la mitad izquierda, la existencia de recuadros para texto dejados vacíos, y otros indicios muestran que el Atlas Miller no llegó a ser terminado.4​ Se desconoce su destinatario exacto así como el modo en que llegó a la corte francesa. Su contenido y las circunstancias de su realización plantean diversos interrogantes que en algunos casos siguen siendo preguntas abiertas sobre la cartografía, los descubrimientos geográficos y las relaciones internacionales de la primera parte del siglo XVI.5

Descripción física

El Atlas Miller, tal como actualmente se conserva, está formado por seis hojas de pergamino fino (“velino“). Cuatro de ellas —de unos 41,5 cm de alto por 59 cm de ancho— muestran mapas de diversas regiones del mundo, en algunos casos por ambos lados. Otra, del mismo tamaño, muestra por un lado un mapamundi circular y por el otro una cartela con una leyenda en latín y un escudo de armas. La sexta hoja, de mayor tamaño —unos 61 cm de alto por 118 cm de ancho—, contiene un mapa en cada lado, uno del Atlántico Norte y el otro, del Mediterráneo y regiones vecinas.6

Todos los mapas, textos e ilustraciones del atlas se dibujaron a mano. Las leyendas principales están escritas en latín y la mayoría de los topónimos en portugués.

Historia

Las cinco hojas del atlas que contienen mapas regionales se las vendió en 1855 un librero de París llamado Charavey al portugués vizconde de Santarem, que se lo revendió posteriormente a Emmanuel Miller, de ahí el nombre con el que se conoce hoy al atlas. En 1897 la viuda del señor Miller se lo vendió a su vez a la Bibliothèque Nationale (BNF), donde se conserva actualmente.7

El mapamundi circular apareció por separado mucho más tarde, en 1930, cuando fue subastado en Londres.8​ El comprador, Marcel Destombes, organizó en 1939 una reunión de expertos que concluyó que este mapamundi debía haber formado parte del Atlas Miller.9​ Posteriormente, en 1976, Destombes donó el mapa a la BNF.10

Autor y fecha

La hoja que contiene el mapamundi circular muestra en el otro lado, en lo que debió ser originalmente la portada del atlas encuadernado, una leyenda en latín que dice que el mapamundi fue realizado por el cosmógrafo Lopo Homem en Lisboa en 1519 por orden del rey Manuel I de Portugal:

Hec est universi orbis ad hanc usqz diem cogniti / tabula quam ego Lupus homo Cosmographus / in clarissima Ulisipone civitate Anno domini nostri / Millessimo quigentessimo decimo nono jussu / Emanuelis incliti lusitanie Regis collatis pluribs / aliis tam vetustorum qz recentiorum tabulis mag / na industria et dilligenti labore depinxi.11

Traducción:

Este es el mapa de todo el orbe del universo hasta hoy conocido, el cual yo Lupus Homo, cosmógrafo, dibujé con gran industria y diligente trabajo en la ilustre ciudad de Lisboa el año de nuestro señor de mil quinientos diecinueve, por orden de Manuel, ínclito rey de Portugal, habiendo comparado muchos otros mapas tanto antiguos como modernos.

Es probable sin embargo que la realización del atlas se prolongase durante varios años, quizás hasta 1522, y que otros autores además de Homem interviniesen en él.12​ Antes del descubrimiento del mapamundi circular se pensaba que el atlas era obra de los cartógrafos portugueses Pedro Reinel y Jorge Reinel, padre e hijo respectivamente. Esta atribución se ha mantenido en la historiografía portuguesa,13​ si bien en el registro bibliográfico de la BNF figura Lopo Homem como único autor.7​ Por otra parte, las abundantes miniaturas que decoran el atlas debieron ser realizadas por algún iluminador profesional, dada su gran calidad. El historiador Alfredo Marques identificó a Antonio de Holanda como posible autor, llegando a sugerir que este artista pudo haber sido además el coordinador general del proyecto.1

Destinatario

El atlas fue realizado por orden del rey Manuel I pero no se sabe con certeza a quién estaba destinado ni por qué camino llegó a París. El escudo de armas que figura actualmente en la portada es el de Catalina de Médici, reina de Francia, y debió ser añadido después de 1559 porque incluye un distintivo que indica que la reina estaba viuda por aquel entonces.14​ Armando Cortesão sugirió que el rey Manuel podría haberle enviado el atlas como regalo al rey de Francia Francisco I; Leon Bourdon afirmó que podrían haber sido los hijos de Lopo Homem los que lo llevasen consigo al emigrar a Francia en los años 1540; y Alfredo Marques propuso la hipótesis de que fuese un regalo de boda de Manuel I para su nueva esposa, Leonor, hermana del rey Carlos I de España, la cual al morir Manuel en 1523 se lo llevó consigo a España y de allí en 1530 a Francia al ser casada de nuevo con el rey Francisco I.15

Contenido

Mapamundi circular

Mapamundi o hemisferio circular del Atlas Miller.

El primer mapa del atlas es un mapamundi circular de 33 cm de diámetro,16​ sin indicación de meridianos, paralelos ni ninguna otra línea cartográfica, lo cual impide saber si representa solo un hemisferio o una parte más amplia de la superficie terrestre. El eje vertical del mapa pasa por Rusia, Palestina y el este de África mientras que el eje horizontal cruza el actual Brasil, la isla de Madagascar y la península de Malaca. Si se asume que el eje horizontal coincide con el ecuador entonces el continente africano parece encontrarse desplazado al norte de su posición real.17

El borde meridional del planisferio muestra una fantástica tierra austral que une Sudamérica con el Extremo Oriente y por tanto hace supuestamente imposible cualquier navegación desde el océano Atlántico hacia Asia bordeando América por el sur.18​ Esa era la ruta que iba a seguir la expedición castellana capitaneada por el portugués Fernando de Magallanes que precisamente en 1519, fecha de realización de este mapa, partió de Sanlúcar de Barrameda.

Dicha tierra austral parece convertir a la extensión marina formada por los océanos Atlántico e Índico en un mar interior. Esta concepción geográfica tiene un precedente en la obra Esmeraldo de situ orbis, del también portugués Duarte Pacheco Pereira, escrita hacia 1505-1508 e influenciada por las teorías de autores clásicos como Ptolomeo o Pomponio Mela y por ciertos pasajes bíblicos.19​ También aparece mencionada en un párrafo de texto del mapa de Piri Reis.20

Mapas regionales

Isla de Madagascar en el mapa de África meridional.

El Atlas Miller incluye siete mapas regionales; le falta una hoja que debió contener un octavo, probablemente del continente africano. Los siete mapas son bastante homogéneos en su tamaño, estilo decorativo y convenciones cartográficas. Todos presentan la típica red de líneas de rumbos de las cartas portulanas medievales, con el habitual tronco de leguas. Además cada uno incluye un meridiano graduado en latitudes, el ecuador y los trópicos en sus latitudes correspondientes y, a la manera de la Geographia de Claudio Ptolomeo, los paralelos que delimitan los climata ptolemaicos.21​ Todos están orientados con el norte hacia arriba.

El primer mapa regional, en la encuadernación original del Atlas, es el de las costas de Europa septentrional (páginas 6 y 7), que abarca desde Bretaña por el sur hasta el “mare congelatu” de Islandia por el norte. La toponimia es abundante en Francia, Flandes y las islas Británicas pero casi inexistente en el Báltico y Escandinavia.22​ la página siguiente muestra la mitad occidental de un mapa del Atlántico con una exacta representación de las islas Azores (“insule Ancipitrum”) y de una isla Verde (“insula Viridis”) que podría ser Groenlandia.23​ La mitad oriental de este mapa probablemente mostrase la península ibérica pero esa parte del atlas se ha perdido.

África apenas aparece representada en las cartas regionales del Atlas Miller porque falta la hoja que probablemente contenía en un lado un mapa del continente entero (páginas 10 y 11 en la encuadernación original) y en el otro una imagen más detallada del África meridional, la cual continuaba por occidente el fragmento de mapa que hoy muestra Madagascar (páginas 12 y 13). Esta isla se representa con el nombre de “insule divi laurentii” y con muchos topónimos, indicando una leyenda que sus habitantes son musulmanes.24

El mapa del océano Índico (páginas 14 y 15 del atlas) muestra en su mitad occidental unos trazados costeros muy exactos, con latitudes en general muy correctas. La mitad oriental es más errónea, si bien muestra el litoral de Birmania y el delta del río Ganges en su posición correcta. En el mapa de Insulindia (páginas 16 y 17) se pueden ver las ciudades de Malaca, conquistada por los portugueses en 1511, y Singapur, así como las islas Molucas (llamadas “Malucus Insule”). Una leyenda en latín dice que más allá de Sumatra (“Trapobana”) existe un total de 1378 islas.25

El mapa del “Magnus Golfus Chinarum” (páginas 18 y 19) muestra un trazado geográfico totalmente erróneo. No da el nombre de ninguna localidad costera, limitando la toponimia a las grandes regiones. Este mapa presenta la peculiaridad de que dos de los barcos dibujados como decoración no muestran insignias de Portugal ni de países musulmanes, como en el resto del atlas, por lo que podrían representar juncos de Java.2627

El mapa de la “Terra Brasilis” o “Regionis magni brasilis” (páginas 22 y 23) muestra el continente sudamericano desde la costa norte del actual Brasil hasta más allá del estuario del Río de la Plata por el sur. Tiene una gran cantidad de topónimos, muchos más que cualquier otro mapa del Brasil de décadas anteriores o posteriores. En el extremo noroccidental, en una región desprovista de toponimia, aparece la desembocadura de uno o dos grandes ríos que Marques identifica con el Amazonas.28​ Curiosamente, la persona que decoró este mapa cometió un error al rotular el trópico de Capricornio, al cual llamó “Circulus Cancri”.29

Gran desplegable

El Atlas Miller incluye un desplegable de dimensiones sensiblemente mayores que el resto de la obra (61 x 118 cm). Por uno de sus lados presenta un mapa del mar Mediterráneo y regiones adyacentes; por el otro un mapa del Atlántico norte, que incluye los recientes descubrimientos en el continente americano.

El mapa del Mediterráneo abarca el espacio tradicional de las cartas portulanas mediterráneas, ligeramente expandido para incluir el mar Caspio (“Hyrcanius mare”) y el golfo Pérsico. Tiene una red de líneas de rumbos que se distribuyen en dos círculos de rosas de vientos, no en solo uno como es el caso de los mapas regionales del Atlas. Contrariamente a estos no muestra tronco de leguas pero sí un meridiano graduado en latitud y, algo poco frecuente, varios paralelos con graduaciones incompletas en longitud.3031

El mapa del Atlántico Norte abarca desde las costas occidentales de Europa y África hasta las islas y tierras continentales de América (llamada “Mundus Novus”). Difiere de los demás mapas del atlas en que no presenta líneas de rumbos sino una simple cuadrícula ortogonal. Cortesão interpretó este hecho como una muestra más de que el Atlas Miller no llegó a ser terminado mientras que Marques ha especulado que podría haberse tratado de una omisión deliberada para dificultar el uso de este mapa para la navegación.32​ Sí que incluye un tronco de leguas, un meridiano graduado en latitud y los límites de los climata ptolemaicos. Los topónimos son abundantes en la región del Caribe y en el norte del continente, no existiendo ninguno en las costas africanas.32​ Existen tres cartelas con leyendas en latín y una cuarta, vacía, que no llegó a ser utilizada.32​ La situada más al norte describe la “Terra Corte Regalis”, alusión a las tierras exploradas por Gaspar Corte Real; otra dice que las costas de los actuales Estados Unidos forman un continente continuo con Noruega por el norte y con Brasil por el sur, y la tercera afirma que en las Antillas del rey de Castilla se encuentra oro.33​ Una ilustración representa en Norteamérica una escena bucólica en torno a un manantial, posible alusión a la fuente de la eterna juventud que Juan Ponce de León buscó por esos parajes (“Terra Bimene”). Otra miniatura muestra en Centroamérica tres personas de piel negra que parecen discutir dónde comenzar una excavación mientras una cuarta dispara una flecha con un arco. Estas figuras podrían ser “indios de piel oscura” 31​ o quizás algunos de los primeros esclavos africanos transportados a América.33

https://www.geografiainfinita.com/2019/09/el-atlas-que-quiso-evitar-la-primera-circunnavegacion-de-la-tierra/

El Atlas Miller quiso evitar la primera circunnavegación de la Tierra

Por Gonzalo Prieto

Hace 500 años, el 20 de septiembre de 1519, cinco naves partieron de Sanlúcar de Barrameda con el objetivo de circunnavegar el planeta. La expedición estaba capitaneada por Fernando de Magallanes, que fallecería en la misma, y Juan Sebastián Elcano que la lideraría en su vuelta.

Regresaron a la Península Ibérica 18 de los 239 hombres que salieron. Fueron los primeros en dar una vuelta al mundo tras recorrer con éxito el paso que sería dado en llamar Estrecho de Magallanes, al sur del continente americano. Habían hecho realidad una de las mayores gestas marítima de la historia que supuso un antes y un después en la concepción de las dimensiones de la Tierra y de la configuración de sus continentes.

El atlas Miller: una obra de arte

El atlas combina elementos geográficos y visuales de tres orígenes muy diferentes: las cartas portulanas, los mapas ptolemaicos y las miniaturas iluminadas de Flandes.​ Lo cierto es que su decoración presenta una calidad artística superior a la de cualquier otra obra cartográfica portuguesa del siglo XVI. Solo puede compararse con el Atlas Vallard, hecho en Francia en 1547 con influencias portuguesas.​

 

Europa en el Atlas Miller. 1519. Biblioteca Nacional de Francia.

Pérez-Mallaína, que es autor de la conferencia «1519-1522: la nueva imagen del mundo. El Atlas Miller y la primera circunnavegación de la Tierra», considera que «el Atlas Miller es una magnifica obra de arte, con ilustraciones que pueden encuadrarse dentro de la escuela flamenca».

Brasil en el Atlas Miller. 1519. Biblioteca Nacional de Francia.

Pero lo cierto es que el contenido de este atlas y las circunstancias de su realización plantean diversos interrogantes. En algunos casos siguen siendo preguntas abiertas sobre la cartografía, los descubrimientos geográficos y las relaciones internacionales de la primera parte del siglo XVI.

Una herramienta de disuasión cartográfica

Pérez-Mallaína explica que «según la opinión de algún eminente investigador portugués, con él se intentaba demostrar que para llegar a las Molucas (archipiélago de la actual Indonesia) la única ruta viable era la portuguesa (rodeando África por el cabo de Buena Esperanza)».

Mapamundi o hemisferio circular del Atlas Miller, de 33 cm de diámetro. 1519. Biblioteca Nacional de Francia.

Así, explica, que según esta interpretación «el océano Atlántico y el Índico estaban rodeados de tierras (siguiendo la visión de Ptolomeo) y formaban un gigantesco mediterráneo oceánico, que no tenía comunicación con el Pacífico». En ese sentido se podría ver, según Pérez-Mallaína «como una forma de disuasión cartográfica, que difundida desde Portugal, pretendía quitar respaldo geográfico al proyecto de Magallanes».

Detalle de Malaca o las conocidas por entonces como «Islas de las Especias» en el Atlas Miller. 1519. Biblioteca Nacional de Francia.

Por ello, a juicio de este investigador «los trabajos de Ortelius o Mercator sí suponen una verdadera revolución cartográfica y poseen  mayor entidad que el Atlas Miller». De todas maneras, según reconoce, «el Miller gana en belleza a casi todos».

La fecha del planisferio o mapamundi resumen del Atlas es 1519, por lo que coincide con la fecha de salida de Magallanes. El Atlas supone la imagen actualizada de la visión del mundo grecolatino, concretamente de la de Claudio Ptolomeo, vigente desde el siglo II d.C.

La primera circunnavegación a la Tierra

La primera circunnavegación de la Tierra, al servicio de Carlos I, cumple su quinto centenario y tenía el propósito de abrir una ruta comercial con las islas Molucas o de las Especias (un archipiélago de la actual Indonesia) por occidente, buscando un paso entre el océano Atlántico y el océano Pacífico.

La escuadra, después de haber explorado durante meses el litoral americano al sur de Brasil logró cruzar el estrecho de Magallanes el 21 de noviembre de 1520. En su travesía por el Pacífico llegó a las islas Filipinas, donde, el 27 de abril de 1521, muere Fernando de Magallanes en la batalla de Mactán.

Mapa del primer viaje de circunnavegación mundial (10 de agosto de 1519 – 8 de septiembre de 1522). Fuente: Wikipedia.

Los expedicionarios continuaron la navegación hasta las islas Molucas, objetivo de su viaje, donde eligieron a Juan Sebastián Elcano para capitanear el viaje de regreso. Navegando hacia el oeste por el océano Índico y dando la vuelta a África, el 6 de septiembre de 1522 la Victoria, única nave que quedaba en la expedición, retornó a Sanlúcar de Barrameda con su carga de especias, convirtiéndose en la primera embarcación de la historia en dar la vuelta al mundo.

Mapa de las Indias Orientales del Atlas Miller. Pedro Reinel ; Jorge Reinel; Antonio de Holanda
1519. Fuente: Biblioteca Nacional de Francia.

Globos de Johannes Schöner

Globos de Johannes Schöner

Grabado del globo de Schöner de 1515 (Luculentissima quaedam terrae totius descriptio)

Los Globos de Johannes Schöner son una serie de mapas esféricos de la Tierra realizados por Johannes Schöner (1477-1547). El primero data de 1515, estando entre los más antiguos que aún se conservan.1​ Algunos autores afirman que muestran partes del mundo que todavía no eran conocidas por los europeos, como el estrecho de Magallanes y la Antártida.2

Globos

El Globo de Johannes Schöner de 1515 era un mapa impreso fijado sobre una esfera.3​ Se han conservado dos ejemplares originales, uno en el Museo de Historia de Fráncfort y el otro en la Biblioteca Herzogin Anna Amalia, en Weimar. Hay pocas dudas acerca de que Schöner conocía el globo construido en Núremberg por Martin Behaim en 1492.4​ En la cartografía de Schöner puede observarse un estrecho entre el extremo sur de América y la tierra situada más al sur antes de su “descubrimiento oficial” por Fernando de Magallanes en 1520. El estrecho en realidad se halla en los 53 grados sur, aunque en el globo de 1515 aparece en los 40 grados sur. Schöner acompañó su globo con un tratado explicativo, Luculentissima quaedam terrae totius descriptio (“Una muy Lúcida Descripción de Todas las Tierras”).5

Globo de Johannes Schöner, 1520, hemisferio occidental. Friedrich Wilhlem Ghillany, Geschichte des Seefahrers Ritter Martin Behaim, Nürnberg, Bauer und Raspe, J. Merz, 1853.

El Globo de Johannes Schöner de 1520 es un ejemplar manuscrito. Muestra el continente antártico, que no había sido explorado en aquella fecha.6​ En los globos de 1515 y 1520, AMERICA es mostrada como una isla, tal como se explica en el Luculentissima:

América, la cuarta parte del mundo, y las otras islas que le pertenecen. De este modo puede saberse que la Tierra está dividida en cuatro partes y que las primeras tres partes son continentes, esto es, tierra firme, pero que la cuarta es una isla, como se observa por estar rodeada en todas partes por los mares”.7

Esto ya se indica en la Cosmographiae Introductio de Martin Waldseemüller, donde se dice:

Hasta la fecha [la tierra entera] ha sido dividida en tres partes, Europa, África, y Asia… Ahora, estas partes de la tierra han sido más extensamente exploradas y una cuarta parte ha sido descubierta por Amerigo Vespucci… Por ello la tierra conocida pasa ahora a estar dividida en cuatro partes. Las primeras tres partes son continentes, mientras que la cuarta es una isla, tanto más cuando se ha encontrado que está rodeada de mares por todos lados.8

El Globo de Johannes Schöner de 1523, un modelo imprimido, se había considerado perdido hasta que fue identificado por George Nunn en 1927.9

Globo de Johannes Schöner de Weimar de 1533, en el que América del Norte aparece formando parte de Asia. También muestra la Antártida

El Globo de Johannes Schöner de Weimar de 1533 muestra América del Norte como parte de Asia, así como la Antártida. Escribió un tratado, el Opusculum Geographicum, para acompañar a este globo,10​ en el que describía la aproximación cosmográfica que había utilizado para construir su globo: “Tuve que manejar cartas marinas dibujadas con caracteres excelentes, y noticias de gran valor, que intenté hacer concordar cuanto fuese posible, con posiciones astronómicas”. (Opusc. Geogr., Pt.I, cap.ix).11

En los globos de Schöner de 1523 y 1533, AMERICA se muestra como parte de Asia, como explica en el Opusculum Geographicum:

Después de Ptolomeo, muchas regiones más allá de 180 grados al este fueron descubiertas por el veneciano Marco Polo y otros, pero ahora, habiendo sido descubiertas por los genoveses Colón y Americo Vespucci, que alcanzaron solo las partes costeras de aquellas tierras de España a través del Océano Occidental, consideraron que se trataba de una isla a la que llamaron América, la parte cuarta del globo. Pero por los viajes más recientes realizados en el año 1519 después de Cristo por Magallanes, liderando los barcos del Divino e Invencible [emperador] Carlos etc. a las Islas Molucas, que otros llaman Maluquas, situadas en el Lejano Oriente, han encontrado que la tierra que sería el continente Superior a la India, es una parte de Asia.12

El Globo de Schöner de 1515 tiene una deuda obvia con el mapa de Waldseemüller de 1507, que a su vez derivó del globo construido en Núremberg en 1492 por Martin Behaim. El globo de 1515 coincide con sus precedentes en representar la India Superior (Asia oriental, llamada India superior sive orientalis en el Luculentissima) extendiéndose hasta alcanzar alrededor de la longitud 270° este. Hacia el oeste de España, los descubrimientos de Colón, Vespucci y de otros exploradores españoles y portugueses están representados como una franja larga y estrecha de tierras que se extienden aproximadamente desde la latitud 50° norte hasta los 40° sur. Las costas occidentales de estas tierras, America en el sur y Parias en el norte, está rotulada como Terra ultra incognita (“Tierra allende desconocida”) y Vlterius incognita terra (“Tierra más allá allende desconocida”), indicando que las extensiones de tierra hacia el oeste eran desconocidas. El mar al oeste de estas tierras está rotulada como Oceanus orientalis indianus (océano Índico Oriental), de acuerdo con la conclusión establecida por Colón después de su tercer viaje de 1496-1498, cuando encontró el suelo continental sudamericano, al que llamó el Nuevo Mundo, que identificó con “la isla más grande del mundo” descrita por Marco Polo, Java Major, situada al suroeste de la provincia de la India Superior llamada Ciamba (Champa). Reflejando este concepto, Schöner explicó en otro de sus escritos, el Opusculum Geographicum (cap.xx): “Los Genoveses Colón y Américo Vespuccio, alcanzando solo las partes costeras de aquellas tierras de España a través del Océano Occidental, consideraron que serían una isla a la que llamaron América”. O como Nicolás Copérnico escribió en De Revolutionibus (lib.I, cap.iii):

Ptolomeo extendió el área habitable hasta la mitad alrededor del mundo, dejando más allá la tierra desconocida, donde modernamente se ha añadido Cathay y regiones muy extensas más allá de los 60 grados de longitud, de modo que ahora una longitud más grande de tierra deshabitada que la que queda para el Océano. Además, a esto tendrían que ser añadidas las grandes islas descubiertas en nuestro tiempo bajo los Príncipes de España y Portugal, especialmente América, nombrada en memoria del capitán del barco que la descubrió y considerada debido a su tamaño todavía desconocido como otro mundo, además de muchas otras islas hasta ahora desconocidas, que no nos asombra considerar que sean las Antípodas o Antichthones.

Donde Schöner difiere más notablemente de Waldseemüller es en la representación en su globo de un continente antártico, llamado por él Brasilie Regio. Su continente está basado, aunque tenuemente, en el informe de un viaje real: el de los mercaderes portugueses Nuno Manuel y Cristóvão de Haro al río de la Plata, descrito en el Newe Zeytung auss Presillg Landt (“Nuevas Noticias de la Tierra de Brasil”) publicado en Augsburgo en 1514. El Zeytung relata el paso de los navegantes portugueses a través de un estrecho entre el punto más al sur de América, o Brasil, y una tierra al suroeste, denominada como vndtere Presill o Brasilia inferior. Este supuesto “estrecho” era de hecho el río de la Plata (y/o finalmente el golfo de San Matias). Con “vndtere Presill”, el Zeytung daba a entender que parte de Brasil alcanzaba latitudes más bajas, pero Schöner confundió el significado de “tierra en el lado del sur del estrecho”, con latitudes más altas, así que le dio el significado opuesto. En este débil fundamento basó la construcción de su continente circumantártico, del que no se explican los motivos de su configuración anular o en forma de anillo. En el Luculentissima explica:

El portugués, así, navegó alrededor de esta región, el Brasilie Regio, y descubrió un pasillo muy similar a aquellos de nuestra Europa (donde residimos) y situado lateralmente entre el este y el oeste. De un lado al otro la tierra es visible; y el cabo de esta región sobresale aproximadamente 60 millas, tal como si uno navegase hacia el este a través del estrecho de Gibraltar o Sevilla y Berbería o Marruecos en África, como nuestro Globo muestra hacia el polo antártico. Más allá, la distancia es solo moderada de esta Región de Brasil hasta Malaca, donde Santo Tomás fue coronado con el martirio.13

Con esta vaga información, unida al concepto de las Antípodas heredado de la antigüedad grecorromana, Schöner construyó su representación del continente del sur. Su estrecho sirvió de inspiración a la expedición de Fernando de Magallanes para alcanzar las Molucas por una ruta hacia el oeste. Tomó el descubrimiento de Magallanes de Tierra de Fuego en 1520 como una confirmación más firme de su existencia, y en sus globos de 1523 y 1533 lo describió como TERRA AVSTRALIS RECENTER INVENTA SED NONDUM PLENE COGNITA (“Terra Australis, recientemente descubierta pero todavía no plenamente conocida”). Este hecho fue asumido por sus seguidores, el cosmógrafo francés Oronce Fine en su mapa mundi de 1531, y los flamencos Gerard Mercator en 1538 y Abraham Ortelius en 1570. Los conceptos de Schöner influyeron en los mapas de la escuela cartográfica de Dieppe, notablemente en su representación de Jave la Grande. Generaciones subsiguientes de cartógrafos y de geógrafos teóricos continuaron elaborando mapas con la imagen de una vasta y rica Terra Australis para tentar la codicia de mercaderes y estadistas.

Reproducción del globo terráqueo obra del matemático, cartógrafo y constructor de globos alemán.

Johannes Schöner. De este globo impreso en husos o «gajos» se conservan dos ejemplares montados sobre una esfera y uno impreso en papel sin montar e incompleto. La gran singularidad de este globo es que muestra en 1515 un paso bajo el extremo austral de Suramérica que comunica el Atlántico con el Pacífico, algo aún no descubierto oficialmente hasta cinco años después, en 1520, por la expedición de Magallanes y Elcano, y cuyas noticias no llegaron a España hasta 1522.

Schöner obtuvo la información sobre la existencia de ese estrecho de un relato impreso en 1514 que narraba un viaje portugués hasta los 40 grados de latitud Sur y que posiblemente se refería al estuario del Río de la Plata o al golfo de San Matías, situado en esos 40 grados

 

  

Mapamundi de Leonardo

Mapamundi de Leonardo

Recreación del llamado mapamundi de Leonardo da Vinci.

El llamado Mappamundi de Leonardo da Vinci es un mapa “tipo octante” fechado aproximadamente en 1514 que se ha pretendido relacionar con el descubrimiento de América o, cuando menos, con los primeros usos del nombre. Henry Harrise en su obra de 1892 alude a la imposibilidad de que el mapa, en realidad: “sections of a rude and elementary globe” recogidos entre los papeles de Leonardo da Vinci conservados en Londres, hubiese sido dibujado por el propio Leonardo, siendo citado por Eugène Müntz1​ diciendo acerca de la opinión de R. H. Major sobre la autoría de Leonardo:“an opinion NOW entirely abandoned2 > -NOW = en esa actualidad del año 1898-“,3​ya que a partir de Nordenskjold, con él, en el siglo XX, media docena de autores han dicho lo contrario, y en el siglo XXI, en 2014, la autoría de la proyección octante por parte de Leonardo habría quedado demostrada por Christopher Tyler,4​ De hecho, hay un boceto de la misma en una página de los manuscritos del Codex Atlanticus, hecho de la mano de Leonardo, siendo el boceto de Leonardo, la primera descripción conocida de la proyección octante.

El mapa fue publicado en 1865 por R. H. Major que defendió la autoría de Leonardo da Vinci, destacando la temprana utilización del nombre de América, propuesto por Hylacomilus en 1507,5​cuyo mapa, no fue descubierto hasta 1901, por lo tanto la aseveración de Major era cierta en 1865.6

Descripción

La esfera del mundo está dividida en ocho triángulos esféricos equiláteros, cada sección delimitada por la línea ecuatorial y dos meridianos con 90% de diferencia. Este fue el primer mapa de este tipo. Algunos críticos creen que el mapa no fue realmente obra del mismo Leonardo, ya que la precisión y la maestría en el dibujo no reflejan los altos estándares usuales de da Vinci. Fue hecho probablemente por algún empleado de confianza o copista del taller de Leonardo.’6

Lo documentó R.H. Major en su comunicado Memoir on a mappemonde by Leonardo da Vinci, being the earliest map hitherto known containing the name of America7

Historia sobre la autoría

Esbozo de Leonardo de la proyección octante en el Codex Atlanticus (1508)

Aunque la autoría de la primera descripción de la proyección Da Vinci octant por parte de Leonardo habría quedado demostrada en el informe de Christofer Tyler,,8​ que decidió tratar por separado la autoría de la proyección octante (1508) y la autoría del mapa de Leonardo (1514), los otros autores anteriores a él tratan conjuntamente la autoría de ambos (autoría del mapa y autoría de la proyección -sin separar el uno de la otra-), hablan de “..the eigth of a supposed globe represented in a plane..” o sobre “globe sections” (Harrisse) y otros les llaman “gores”, que constituyen, de hecho, una proyección del globo (hay un error en la traducción de 2005 de Muntz al castellano, videt: “…fragmentos de una pequeña esfera tosca y elemental..” en lugar de “sections of a rude, elementary globe” -sections implica proyección… fragmentos no, aparte que lo hace incompleto-).

Entre estos estudiosos, la autoría de Leonardo no está universalmente aceptada, con algunos autores completamente en contra de cualquier mínima contribución de Leonardo, como, Henry Harrisse (1892),9​ o Eugène Müntz (1898 – citando la autoridad de Harrisse de 1892),10

Otros eruditos aceptan explícitamente ambos (tanto del mapa como de la proyección), totalmente como un trabajo Leonardo, describiéndolos como los primeros de este tipo, entre ellos, R.H. Major (1865) en su trabajo, Memoir on a mappemonde by Leonardo da Vinci, being the earliest map hitherto known containing the name of America (“..the eigth of a supposed globe represented in a plane..” ),11​ Grothe,12​ la “Enciclopedia universal ilustrada europeo-americana”(1934),13​ Snyder en su libro “Flattening the earth” (1993),14​ Christoher Tyler en su trabajo Leonardo da Vinci’s World Map (2014),8​ José Luis Espejo en su libro “Los mensajes ocultos de Leonardo Da Vinci” (2014),15​ o David Bower en su libro “The unusual projection for one of John Dee’s maps of 1580” (2012).16

Otros también aceptan explícitamente como auténticos (tanto el mapa como la proyección), aunque dejando en el aire la mano directa de Leonardo, entregando la autoría de toda la obra a uno de sus discípulos, como Nordenskjold resume en su libro “Facsimile-Atlas” (1889), confirmado además por Dutton (1995) y muchos otros: “..on account of the remarkable projection..not by Leonardo himself, but by some ignorant clerk.”,17​ o Keunig (1955) que llega a ser más preciso: “..by one of his followers at his direction..”.18

Mapa “tipo octante” de la Windsor Library

 

Recreación del nuevo continente americano en el mapa de Leonardo. Compárese con el mapa de Cantino (1502), que representa los viajes hasta esa fecha de Americo Vespucio.

Cuando Leonardo da Vinci dividió el mundo en ocho partes

Es ya un tópico, pero no hay cuestión que Leonardo da Vinci parezca que no hubiera tratado, aunque fuere de forma superficial. Y, en efecto, también le interesaban los mapas. En el Codex Atlanticus, que viene a ser una especie de compendio de papeles diversos de Leonardo dispuesto en varios volúmenes y conservado en la Biblioteca Ambrosiana de Milán, aparecen esbozos de diversos tipos de proyección cartográfica. La mayoría eran conocidos en su tiempo, pero una en particular parece ser obra de Leonardo o, al menos, introdujo en ella ciertos elementos originales, aunque ha habido polémicas sobre ello (algunos autores afirman que ya se había contemplado el uso de este tipo de proyección anteriormente). El dicciónario de la RAE define un octante como:

Instrumento astronómico del tipo del quintante y del sextante, y de análoga aplicación en barcos y aviones, cuyo sector comprende solo 45 grados o la octava parte del círculo.

Proyección en «octantes» propuesta por Leonardo da Vinci.

La proyección más curiosa de las utilizadas por Leonardo era, precisamente, la que es conocida como «proyección en octantes», con un esbozo inicial del año 1508 y un mapa más elaborado en 1514. Esta proyección dividía el mundo en ocho partes a modo de triángulos de Reuleaux1, como si un trébol de cuatro hojas se tratara para cada hemisferio. Como puede verse en la imagen que aparece a continuación, la esfera del globo terrestre está dividida en ocho triángulos esféricos equiláteros. Curiosamente, fue uno de los primeros mapas en los que se menciona a América por su nombre y, también, uno de los primeros en colocar la Antártida, aunque más como un caso de imaginaria «Terra Australis» que como algo real. El dibujo parece ser, según los expertos, obra de algún copista que hubiera trabajado bajo encargo del propio Leonardo.

A principios del siglo XX el cartógrafo e ingeniero Joseph Stanislaus Cahill dio una vuelta de tuerca al concepto con su proyección tipo «mariposa», cuya evolución más refinada dio lugar a la proyección Cahill–Keyes.

La proyección «en mariposa» de Cahill en un documento de 1919.

OSO

OSO

Observatorio Solar en Órbita

El Programa del Observatorio Solar en Órbita (abreviado OSO) era el nombre de una serie de telescopios espaciales estadounidenses destinados principalmente a estudiar el Sol, aunque también incluían importantes experimentos no solares. Ocho fueron lanzados con éxito a la órbita terrestre baja por la NASA entre 1962 y 1975 utilizando cohetes Delta . Su misión principal era observar un ciclo de manchas solares de 11 años en espectros de rayos X y UV. Los siete iniciales (OSO 1–7) fueron construidos por Ball Aerospace, entonces conocida como Ball Brothers Research Corporation (BBRC), en Boulder, Colorado.[1] OSO 8 fue construido por Hughes Space and Communications Company, en Culver City, California.

 

OSO 4

 

Diagrama del observatorio solar en órbita

 

 

 

 

 

 

 

 

Un cohete Delta lanzando OSO 8 el 21 de junio de 1975, en Cabo Cañaveral, Florida

Historia

El diseño básico de toda la serie presentaba una sección giratoria, la “Rueda”, para proporcionar estabilidad giroscópica. Una segunda sección, la “Vela”, fue impulsada eléctricamente contra la rotación de la Rueda y estabilizada para apuntar al Sol. El Sail llevaba instrumentos solares puntiagudos y también el conjunto de células solares fotovoltaicas que alimentaban la nave espacial. El cojinete crítico entre la rueda y la vela fue una característica importante del diseño, ya que tenía que funcionar sin problemas durante meses en el duro vacío del espacio sin la lubricación normal. También transportaba la energía de la Vela y los datos de los instrumentos solares puntiagudos a la Rueda, donde se ubicaban la mayoría de las funciones de la nave espacial. Los instrumentos científicos adicionales también podrían ubicarse en la Rueda,

OSO B sufrió un incidente durante las actividades de integración y verificación el 14 de abril de 1964. El satélite estaba dentro de la instalación de prueba de giro en Cabo Cañaveral conectado a la tercera etapa de su impulsor Delta C cuando un técnico encendió accidentalmente el impulsor a través de electricidad estática. El motor de la tercera etapa se activó, se lanzó a sí mismo y al satélite hacia el techo y rebotó en un rincón de la instalación hasta que se quemó. Tres técnicos murieron calcinados. El satélite, aunque dañado, pudo repararse utilizando una combinación de piezas prototipo, repuestos de vuelo y componentes nuevos. Fue lanzado diez meses después, el 3 de febrero de 1965, y fue designado OSO 2 en órbita.[2]

OSO C nunca llegó a la órbita. El despegue tuvo lugar el 25 de agosto de 1965 y todo salió bien durante la quema de la segunda etapa. Durante la fase de inercia previa a la separación de la tercera etapa, su motor cohete se encendió prematuramente. Esto se registró en las lecturas en tierra como una perturbación de actitud seguida de la pérdida de la telemetría de la segunda etapa, y aunque la tercera etapa logró separarse, sufrió una caída del 18% en el empuje. La nave espacial OSO no pudo alcanzar la velocidad orbital y, en cambio, volvió a caer a la atmósfera y se quemó. Se sospechó que la falla fue causada por una modificación en el mecanismo de encendido en la tercera etapa después de algunas dificultades técnicas menores experimentadas en el lanzamiento anterior de Delta C (TIROS 10 el 2 de julio).[3]

Designacion Fecha de lanzamiento fecha de reingreso Resultados notables
OSO 1 (OSO A) 7 de marzo de 1962 7 de octubre de 1981 [4]  
OSO 2 (OSO B2) 3 de febrero de 1965 8 de agosto de 1989 [5]  
OSO 3 (OSO E1) 8 de marzo de 1967 4 de abril de 1982 [6] Se observaron llamaradas solares del Sol, así como una llamarada de Scorpius X-1 [7] [8]
OSO 4 (OSO D) 18 de octubre de 1967 14 de junio de 1982 [9]  
OSO 5 (OSO F) 22 de enero de 1969 2 de abril de 1984 [10] Radiación difusa de rayos X de fondo medida de 14 a 200  keV [11] [12]
OSO 6 (OSO G) 9 de agosto de 1969 7 de marzo de 1981 [13] Observó tres instancias de coincidencias de rayos X duros con estallidos de rayos gamma. [14]
OSO 7 (OSO H) 29 de septiembre de 1971 8 de julio de 1974 [15] Erupciones solares observadas en el espectro de rayos gamma. Los datos recopilados permitieron la identificación de Vela X-1 como un binario de rayos X de alta masa. [16] [17]
OSO 8 (OSO I) 21 de junio de 1975 8 de julio de 1986 [18] Encontró una línea de emisión de hierro en el espectro de rayos X de un cúmulo de galaxias. [19]

El programa del Observatorio Solar en Órbita Avanzada (AOSO) se desarrolló a mediados de la década de 1960 como una versión más avanzada de la serie OSO. Concebida como un sistema de satélites en órbita polar, esta nave espacial monitorearía continuamente el Sol y el entorno circundante con detectores e imágenes electrónicas que van desde rayos X hasta luz visual. Debido a restricciones presupuestarias, el programa AOSO se canceló en 1965. En cambio, fue reemplazado por los satélites OSO-I, OSO-J y OSO-K. Solo se lanzó OSO-I, que se convirtió en OSO 8.[20]

Se desarrolló y lanzó otro satélite que utiliza la plataforma Orbiting Solar Observatory: el satélite Solwind. Fue lanzado el 24 de febrero de 1979. Fue operado por el Programa de prueba espacial del Departamento de Defensa. Fue destruido el 13 de septiembre de 1985 en una prueba de misiles ASAT.

OSO 1

Descripción general de la misión

El primero de una serie de 8 observatorios solares en órbita lanzados con éxito (OSO 1) se lanzó el 7 de marzo de 1962. La nave espacial de 200 kg tenía una sección de rueda giratoria de 9 lados de 1,2 m de diámetro unida a una sección de vela en forma de abanico. Se puso en una órbita aproximadamente circular a ~ 575 km de altitud, 32,8 grados de inclinación. Los principales objetivos de su misión eran medir la radiación electromagnética solar en las regiones de rayos ultravioleta, rayos X y rayos gamma. En segundo lugar, fue para investigar las partículas de polvo en el espacio. La transmisión de datos finalizó el 6 de agosto de 1963. El satélite volvió a entrar en la atmósfera terrestre el 8 de octubre de 1981.

Instrumentación

Hubo una serie de experimentos de rayos X y rayos gamma a bordo de OSO 1 para realizar observaciones solares. Sin embargo, un instrumento, el Experimento de rayos gamma de la Universidad de Minnesota, fue diseñado para proporcionar mediciones preliminares de la intensidad y las propiedades direccionales de los rayos gamma de baja energía en el espacio. El detector operó en el rango de 50 keV – 3 MeV. Para el rango de 50-150 keV, un cristal de centelleo de NaI(Tl) monitoreaba la radiación a través de un escudo de plomo. El detector que opera en las regiones de energía de 0,3-1,0 MeV y 1,0-3,0 MeV utilizó dos centelleadores conectados como un telescopio de coincidencia Compton.

Ciencias

El experimento de rayos gamma de la Universidad de Minnesota en OSO 1 produjo una medida del flujo de rayos gamma extraterrestres entre 0,5 y 3,0 MeV y una indicación de su origen en la esfera celeste. Igualmente importante, este experimento comenzó a definir los problemas de fondo encontrados en la astronomía de rayos gamma.

Saber más:

 https://web-archive-org.translate.goog/web/20010421004237/http://heasarc.gsfc.nasa.gov/docs/heasarc/missions/images/oso_images.html?_x_tr_sl=en&_x_tr_tl=es&_x_tr_hl=es&_x_tr_pto=sc

Kuhikugu

Kuhikugu

Kuhikugu es un sitio arqueológico ubicado en Brasil, en la cabecera del río Xingu, en la selva amazónica. El área alrededor de Kuhikugu se encuentra hoy en parte del Parque Nacional Xingu. Kuhikugu fue descubierto por primera vez por el antropólogo Michael Heckenberger, que trabajó junto con el pueblo local Kuikuro, que son probablemente descendientes de los habitantes originales de Kuhikugu.[1]

Mapa de Kuhikugu

Complejo arqueológico e historia.

En sentido amplio, el nombre se refiere a un complejo arqueológico que incluye veinte ciudades y pueblos, repartidos en un área de alrededor de 7.700 millas cuadradas (20.000 km2), donde alguna vez vivieron cerca de 50.000 personas. Kuhikugu probablemente estuvo habitado desde hace unos 1.500 años hasta hace tan solo 400 años, cuando las personas que vivían allí probablemente murieron a causa de enfermedades traídas por los europeos. Aunque es probable que los europeos no la transmitieran directamente a los habitantes de Kuhikugu, sí transmitieron enfermedades directamente a socios comerciales de otras áreas. Cuando los europeos llegaron a esta zona, la civilización ya se estaba desmoronando.[2] Los primeros conquistadores que exploraron esta área probablemente vieron los últimos momentos de estas ciudades, y sus registros brindan una idea de cómo habrían sido estos lugares. Y cuando los europeos regresaron algún tiempo después, las ciudades y pueblos ya estaban consumidos por la selva tropical. Los indígenas ahora vivían en tribus alejadas de las ruinas, y la memoria de esa civilización se recordaba a través de la tradición oral.

Lo que distingue a las personas que habrían habitado Kuhikugu de otras civilizaciones sudamericanas son sus monumentos horizontales. A diferencia de los pueblos aztecas y mayas que construyeron pirámides, estos pueblos construyeron largos monumentos en el suelo para sus dioses. Presumiblemente, esto se debe a que sería imposible mantener una pirámide grande en una selva tropical y quedaría eclipsada por los árboles circundantes. La ingeniería era lo suficientemente sofisticada para puentes que cruzaban grandes secciones de río y fosos con fines defensivos. Además, la tierra negra que rodea la zona indica actividad agrícola a gran escala[1] [3]

Asentamiento X11

Estrictamente hablando, Kuhikugu es el asentamiento X11 de este complejo, ubicado cerca de Porto dos Meinacos en la orilla oriental del lago Kuhikugu (ahora Lagoa Dourada) a 12°33′30″S 53°6′40″W. Allí, así como en otros antiguos asentamientos del complejo Kuhikugu, las imágenes de satélite revelan que aún hoy el bosque difiere de las áreas prístinas circundantes, y la exploración terrestre revela que esto es un efecto del antrosol (cf. terra preta), conocido al Kuikuro como egepe. Directamente al norte del sitio X11 hay una aldea Kuikuro, cuyo pequeño tamaño proporciona una comparación interesante con la gran área de egepe que indica el asentamiento prehistórico.[4]

Se construyeron grandes zanjas defensivas y empalizadas alrededor de algunas de las comunidades de Kuhikugu.[1] [4] También existen grandes plazas en algunas de las ciudades de la región, algunas de alrededor de 490 pies (150 m) de ancho.[1] [4] Muchas de las comunidades en Kuhikugu estaban conectadas, con caminos que unían algunos ríos a lo largo de sus caminos y con canales para canoas que corrían a lo largo de algunos de los caminos. Los sitios X35 y X34 son comunidades importantes conectadas por dos de estos caminos. El sitio X11 tiene un total de 4 suburbios que se conectan a través de un río o una carretera, y todos parecen tener una relación constante entre sí.[4]

Es posible que existieran campos de mandioca (yuca) alrededor de las comunidades de Kuhikugu, lo que sugiere que la gente allí eran agricultores.[4] [5] Las presas y estanques que parecen haber sido construidos en el área también sugieren que los habitantes de Kuhikugu pueden haber estado involucrados en la piscicultura, que todavía practican algunos de sus descendientes Kuikuro de hoy en día.

La ciudad perdida de Z

Existe la posibilidad de que las leyendas sobre Kuhikugu hayan convencido al explorador británico, el teniente coronel Percy Fawcett, de emprender su expedición a la “Ciudad Z“. Fawcett afirmó haber descubierto una gran cantidad de fragmentos de cerámica en el Amazonas mientras realizaba trabajo de campo, y los sitios de Kuhikugu podrían haber tenido potencialmente una gran cantidad de cerámica en la superficie. Hay más de 20 sitios que abarca Kuhikugu, cada uno de los cuales podría haber albergado a más de 5.000 personas, y la planificación urbana sofisticada y las estructuras restantes podrían haber sido lo que Fawcett estaba buscando. Todos los sitios siguen un diseño similar, lo que significa que cualquiera de los sitios podría haber influido en Fawcett para buscar la Ciudad Perdida de ‘Z’.[3]

source : http://www.sciences-faits-histoires.com/blog/archeologie/bresil-kuhikugu-ou-site-x11-la-cite-z.html

Kuhikugu, ciudad perdida de Amazonia

Actualmente se acepta que el Amazonas ha sido el hogar de civilizaciones urbanas comparables en tamaño a las ciudades medianas de Europa Occidental. En los años 90, Hecklenberger revivió el mito de las ciudades perdidas de la Amazonia al estudiar los sitios arqueológicos del Alto Xingu, Brasil, entre ellos el famoso X11: Kuhikugu (M. Hecklenberger, pour la science n°388, 2010).

Sin embargo, el Amazonas ha transmitido durante mucho tiempo en la imaginación occidental moderna el Eros de la naturaleza original, virgen e inocente, luchando contra los thanatos de la modernidad destructiva. Las tribus, a diferencia de otras civilizaciones del sur o de Mesoamérica, no dejaron ninguna construcción duradera allí. Durante mucho tiempo se redujeron a los primitivos pueblos cazadores-recolectores que vivían en la Edad de Piedra y se conformaban con lo que la naturaleza estaba dispuesta a darles. En 1982, Pierre Gourou, en su obra seminal «Tierras de Buena Esperanza», contrastó las altas densidades del Delta del Mekong con las muy bajas densidades de la cuenca del Orinoco. Justificó esto por la ausencia o el dominio de las «técnicas de enmarcado». ¿Cómo podemos entonces concebir civilizaciones amazónicas pasadas que sean diferentes de las actuales? Esta visión cambiará gradualmente a partir de la década de 1970. Los investigadores redescubrieron entonces los escritos de los primeros exploradores. Michael Heckenberger cita los relatos de Gaspar de Carvajal, quien escribió en 1542 que «más de 200 piraguas, cada una de las cuales transportaba de 20 a 30 indios y unos 40, surgieron de las islas amazónicas que él pensaba que estaban deshabitadas». Casi dos siglos más tarde, el brasileño Antonio Pires de Campos se aventura cerca del Río Tapajos, al oeste de Xingu, y también evoca muchos pueblos bien conectados entre sí por amplios caminos. Estas observaciones serán corroboradas por R. Carneiro y especialmente por M. Heckenberger, «El alto Xingu es la única zona de la Amazonia brasileña que muestra claramente la continuidad de la ocupación indígena desde la prehistoria hasta la actualidad». Hacia el 1400 d.C., si no antes, las aldeas prehistóricas habían alcanzado proporciones impresionantes (20 a 50 hectáreas). Esto los hace entre los más grandes en cualquier área de tierras bajas de América del Sur en tiempos prehistóricos. Comprendían una variedad de estructuras, incluyendo calzadas lineales a lo largo de los márgenes de los caminos principales, patios centrales y zanjas profundas. Sin duda, esto habría ido acompañado de estructuras sobre el terreno como empalizadas, puentes y puertas de entrada. Se estima que tales aldeas podrían albergar alrededor de mil personas y que más de diez mil indios probablemente vivían al oeste del río Culuene en la región del alto Xingu. (povos indigenas brasil). Heckenberger cartografiará con la precisión de un agrimensor zanjas amplias y profundas y caminos anchos como las actuales autopistas, empalizadas que protegen pueblos, territorios explotados más o menos intensamente, numerosos pueblos unidos entre sí por una red de caminos muy sofisticada. Luego toma conciencia de un alto grado de integración regional. Los espacios ocupados se organizaron sobre cerca de 250 km², incluyendo 50 km² para conjuntos urbanos en el sentido estricto del término. Más recientemente, las excavaciones llevadas a cabo por el equipo anglo-brasileño de Jonas Gregorio de Souza revelarán un continuo de ciudades interconectadas de la civilización arahuaca en más de 400.000 km².

«Al mismo tiempo, regiones como la del sudoeste de la Amazonia albergaban una de las mayores diversidades de familias lingüísticas de la Amazonia, y la naturaleza multiétnica/multilingüística de los sistemas regionales queda ejemplificada por el Alto Xingu34». Se ha formulado la hipótesis de que el cinturón de arahuacos y otros grupos a lo largo del SRA constituye un sistema formativo suprarregional que estuvo presente desde finales de la época precolombina. De ser cierto, esta conexión sugeriría una distribución ininterrumpida de los movimientos de tierra a lo largo de 1800 Km. de este a oeste en el SRA y un impacto humano precolombino más intenso en los bosques de esta región que el anteriormente postulado «Los constructores de tierra precolombinos se asentaron a lo largo de todo el borde sur del Amazonas».

 Se trata de una visión que demuestra la imposibilidad para las civilizaciones amazónicas de desarrollar intercambios complejos entre ellas y de cultivar intensamente un terruño amazónico latinoamericano y estable que se encuentra en estado puro. Lo que se considera en el mejor de los casos como «bons sauvages» es un modelo para la salvaguarda del planeta, ¿lo sigue siendo?

Hecklenberger compara en efecto las ciudades del Alto Xingu con las ciudades-jardín que podrían ser el modelo más conciliador de urbanización duradera y de protección de la biodiversidad. Pero las reservas indias parecen ser muy frágiles en cuanto a la deforestación amazónica, la soja OGM y las tierras extensas.

(Este texto está ampliamente basado en el artículo de M. Hecklenberger en la revista Pour la science n°388, 2010)

La civilización Kuhikugu

En 2008, la prestigiosa revista científica Scientific American publicó un artículo redactado por David Biello (editor asociado) bajo el título Antigua amazonía realmente altamente Urbanizada, en la cual resumía las investigaciones del antropólogo Michael Heckenberger —publicadas, a su vez, en Science— en donde exponía las conclusiones de años de investigación que demostraban que en el estado brasileño de Mato Grosso, especialmente en proximidades del Alto Xingú , se habrían descubierto 28 «ciudades», pueblos y aldeas que habrían sostenido una población de unas 50.000 personas.

No se trataba de «Z», ni de templos y viviendas de piedra, sino de espacios urbanos donde lógicamente se había aprovechado al máximo los recursos naturales del lugar: árboles y tierra.

Lo hallado fueron evidencias de zanjas, circulares en la mayoría de los casos, cuadrangulares en otros, de unos tres metros que supieron tener de profundidad y diez de ancho, redescubiertas porque la lamentable deforestación habría dejado al descubierto, observable en ocasiones desde aeronaves y en otras desde tierra, de las evidencias de esas construcciones. Estamos ante grandes conglomerados sedentarios, construidos entre el año 400 y 1.400 de nuestra era, rodeados por esas zanjas y empalizadas de madera.

A su vez, estos pueblos estaban comunicados entre sí por canales navegables, rectilíneos, donde canoas llevaban y traían mercaderías (volveremos enseguida sobre este detalle), y caminos que cortaban la selva también de manera rectilínea. De estos «caminos» supe ver evidencias en lo profundo del Paraguay hace ya años, y me comentaban los lugareños que «los antiguos» procedían de la siguiente forma: talaban la selva en sentido y ancho de donde querían establecer la vía de comunicación. Dado que la vegetación, en esas latitudes, tarda pocas semanas en hacer desaparecer todo vestigio de haber sido destazada en algún momento, lo que hacía era sembrar, en esos espacios despejados, un tipo de pastizal llamado «paja brava», que crece hasta unos 50 o 60 centímetros de altura. Grueso, áspero, literalmente mata todo brote, toda extensión de la vegetación selvática que tratara de ganar el espacio anterior, con lo cual décadas y hasta siglos después era posible seguir observando evidencias de donde pasaban estas «carreteras en la selva».

La «cultura Kuhikugu» (nombre que se ha dado a este todavía tan poco conocido horizonte cultural tomando el nombre de los relatos orales de los «kuikuros», etnia local que ya merecerá toda nuestra atención, y que se consideran herederos de esos ancestrales pobladores) compartía la particularidad que todas las aldeas y ciudadelas tenían una carretera principal que corría de noreste a suroeste a lo largo del eje del Solsticio de Verano y se disponían a un promedio de cinco kilómetros unas de otras. Y, finalmente, se supone que desaparecieron sus habitantes exterminados por las enfermedades que se extendieron por el subcontinente más rápidamente que los feroces y salvajes conquistadores, al punto que luego la selva recuperó sus espacios naturales.

Estos espacios descritos quizás no serán suficientes, a ojos del lector crítico, para justificar el sueño de Fawcett; sin embargo, es apenas la parte emergente de una trama muy cerrada y extensa de historias civilizatorias sobre las que apenas —acudo a la metáfora blavatskyana— estamos levantando un extremo de velo.

 Porque si nos dirigimos un poco más al oeste, más precisamente en buena parte del estado de Beni en Bolivia y algo de Rondónia en Brasil, encontramos los llamados «Llanos de Mojos». Los «Moxos» (o los «Musus», como los encontramos denominados en escritos ya del siglo XVI) son asiento de otro misterio ya conocido de más antaño pero hasta ahora desconsiderado: las «lomas». ¿Qué son las mismas? Pues montículos absolutamente artificiales. Muchos, de tierra acarreada y apisonada; otros muchos, de ladrillos y bloques de adobe cubiertos de tierra. ¿Dimensiones?: algunos, los más grandes, llegan a los 20 metros de altura, por cien o ciento cincuenta metros de lado. Más aún: sobre esas plataformas en muchos casos se levantan terrazas, muros, empalizadas y verdaderas pirámides truncadas. ¿Ubicación?: unos 20 cerca de la ciudad de Trinidad; unos 380 alrededor de la población llamada Casarabe (llamada así porque entre fines del siglo XVIII y principios del XIX comenzaron a radicarse muchos inmigrantes de origen libanés y sirio, con lo cual se le llamaba coloquialmente la «casa árabe», que devino en el toponímico de referencia), y en toda la región mencionada… ¡se estiman unos 20.000!

En un interesantísimo estudio disponible en Internet, bajo el título A la sombra de los Andes. Arquitectura monumental en los Llanos de Mojos, los arqueólogos Carla Jaimes Betancourt y Heiko Prümers desarrollan un completo estudio sobre estos «montículos», señalando, muy acertadamente, que si estuvieran en Perú serían reconocidos como «huacas» o «pirámides truncadas» (esto, para contrarrestar la tendencia descalificadora con que la mirada de los lugareños —y también las autoridades zonales— contemplan estas ruinas). Pero además de su revalorización, estos profesionales ilustran sobre aspectos apasionantes. En efecto, aquí también tenemos Caminos Elevados, terraplenados, que comunican entre sí los montículos.

Ahora bien; en temporada de lluvias, toda esta enorme extensión —que cubriría dos veces la superficie de Suiza— se inunda. Los montículos, entonces, emergen como «islas» en el mar, siempre comunicados por los caminos elevados. Esa concepción visual, de sitios culturales unidos por caminos artificiales en medio de un enorme lago poco profundo, ¿a dónde nos remite?

A la Huey Tenochtitlán, con sus «chinampas» o islas artificiales, y los pueblos aledaños (hoy, absorbidos por el crecimiento de la urbe) como Xochimilco o Tlatelolco.

 Los Llanos de los Mojos quedaban en el camino, desde tiempos ancestrales, del «Gran Paititi», el reinado extraño que ya los conquistadores supieron buscar por esas latitudes. En Santa Cruz encontramos Samaipata, a la que algunos estudios le adjudican autoría a los poco conocidos Mojocoyas, y que yo creo la avanzada occidental de la civilización de Kuhikugu. Que, por cierto, no es la Kuhikugu decadente de las aldeas con empalizadas descritas párrafos antes: la «civilización de los Mojos» surge alrededor del 500 a.C, extendiéndose, según algunos autores, hasta el 1.000 d.C.

Interesante fenómeno: tomando ambos horizontes señalados, cuanto más atrás vamos en el tiempo más avanzada es la cultura.

De modo que tenemos esta cultura, que tanta sintonía tiene con ciertas particularidades mexicas, por remota que esta última parezca. Es más; se ha descubierto que junto a los caminos terraplenados y elevados discurrían canales por donde, en tiempos de sequía, sin duda grandes canoas continuaban llevando y trayendo mercaderías (además de servir de administrador de sistemas de riesgo). Insisto: esta descripción visual es absolutamente coincidente con lo que los «nahuas» habrían hecho en esos mismos tiempos en el Ánahuac, el México prehispánico.

Y aquí comienza a asomar un «secreto tolteca» anticipado en el título: en Rondónia y Mato Grosso —y esto ya lo señala Fawcett— existía una etnia (literalmente exterminada, aunque algunos descendientes se hayan mestizado completamente) que se llamaban a sí mismo «nahuas».

Recordemos que los «nahuas» han sido la etnia troncal de donde salen distintos «horizontes culturales» o pueblos, que conocemos como zapotecas, olmecas, totonacas, mixtecas, otomíes, etc y etc., en el Ánahuac prehispánico. Ánahuac que, justamente, significa «tierra de nahuas».

Que una «tribu» en el Amazonas se identifique con el mismo nombre, cuando menos, llama poderosamente la atención. Pero aún debemos señalar que todos estos pueblos amazónicos tenían dialectos y lenguas de origen Arawak. Es Fawcett quien, por esta correspondencia lingüística, supone que los «arawaks» (que hemos conocido como «caribes», los «araucas», los «araucanos» del sur de Chile y los «antis» de Perú (de donde surge el toponímico «Andes») pertenecen a la misma raza original.

Hoy sabemos que los «caribes» se extendieron por Sudamérica, dando origen a ramas como los Tupíes, los Tapuyas y los Carijós. De hecho, los Tupíes originan los guaraníes, de presencia dominante en el escenario sudamericano precolombino.

Fuertes en el NE brasileño, se supone que cierta rama de los caribes es responsable de lo que hoy conocemos como «Stonehenge del Solsticio de Verano»: una extraña construcción megalítica en cercanías de Rego Grande, en el estado de Amapá, donde un conjunto de moles de granito de autores desconocidos y formas extrañas que remiten a reminiscencias lovecraftianas desconcierta a propios y extraños. Se le llama de esa particular forma porque en una de las rocas existe un orificio por donde, en el solsticio de verano, atraviesa el sol a mediodía creando un círculo sobre otra piedra a alguna distancia.

Por ciertos restos hallados al pie de estos monolitos (fuegos, quizás rituales, encendidos en los puntos donde fueron instalados) se estima su erección aproximadamente en el 3.000 a.C. Sin duda no tiene relación con la cultura Kuhikugu por su antigüedad, pero demuestra que a lo largo y a lo ancho de lo que hoy llamamos Brasil hubo numerosos pueblos, aún desconocidos, en un período temporal dilatadísimo.

En la desembocadura del Amazonas sobre el Atlántico se encuentra (ya la mencionamos) la Isla de Marajó. En la misma se han encontrado «montículos» en un todo afines a los de los Llanos de los Mojos, aunque si se mira un mapa llama la atención la enorme distancia entre un área y otra. Empero, la identidad de construcciones da a suponer que de alguna manera —quizás ocupando el río Amazonas como vía de comunicación— grupos que se influyeron mutuamente migraron por ese conducto.

Del río Amazonas, mientras tanto, hay un par de cosas que debemos comentar. Por ejemplo, que su nombre autóctono original no era, obviamente, el de Amazonas, sino «Solimoes», y es aquí donde Fawcett se pregunta si en ese nombre no vemos la presencia del nombre de Salomón, y lo vincula con las famosas «minas» de donde fluía el oro y la plasta que este rey hebreo, especulando si, quizás, no habrían navegado en tiempos remotos a través del Atlántico y, por este río, llegado a casi sus fuentes en territorio peruano donde el oro y la plata —especialmente la segunda— abunda.

Sabemos que se le llamó «amazonas» por las historias de mujeres guerreras que vivirían en sus márgenes. Pues bien, sépase que las mismas efectivamente existieron y no se trata de un fábula de los conquistadores. Estas mujeres eran llamadas «Aikembenanas» por los otros pueblos y ya es una certeza etnográfica su existencia.

El secreto tolteca

Si bien Fawcett no había dedicado años a explorar las culturas antiguas del México prehispánico, es un hecho —sencillo de demostrar— que cuando menos, en teoría, lo había estudiado profundamente. No solamente se trata aquí de esa hilación de conocidos y amigos que pudieron hacerle llegar hallazgos de Maler y otros, voy a citar algunas referencias no menores.

Por ejemplo, en su libro ya citado, al hablar de los Toltecas los llama «sabios artistas». Puede parecer un detalle menor, y no lo es: aún hoy, son (somos) un número reducido los que conocemos algo del idioma náhuatl original donde la palabra tolteca se traduce, efectivamente, como «sabio artista»; mucho menos común hubiera sido ese conocimiento a fines del siglo XIX o principios del XX salvo que se esté profundamente empapado de estudios sobre el particular.

Fawcett con

struye su propia teoría. Según la misma, en tiempos remotísimos lo que hoy llamamos Brasil era apenas una de varias islas que ocupaban el Hemisferio Sur. Grandes cataclismos hicieron que el océano se hundiera en ciertos puntos y se elevara en otros (no podemos obviar aquí ver la influencia teosófica, con la presencia intensa de Mu y Lemuria). Tierras que emergieron se habrían fusionado con esa «isla» y formó lo que hoy conocemos como Sudamérica. Al mismo tiempo, otra isla se hundía en el Atlántico. Atlántida. De la misma escapa una casta de sabios artistas, sacerdotes y educadores, los primitivos toltecas —Fawcett mismo dice que emplea ese término a falta de uno mejor— quienes luego de permanecer durante siglos en México extendieron su influencia hacia el Sur. Aislados los grupos (si por guerras, hambrunas, cataclismos; vaya a saberse) un grupo de toltecas «degenerados» se transforma en los «caribes» que conocemos como tales.

Permítaseme hacer aquí una digresión: hace años señalé que hubo una corriente civilizatoria que se inició en la Atlántida y, cruzado a través de décadas hacia Occidente y Oriente, cruzó el Atlántico y llegó a América, siguiendo a un líder (o las enseñanzas y directivas de ese líder) que habría pasado a la historia y la leyenda con el nombre de «Kar», «K’ar» o «K’a’r’» (según las pronunciaciones). Señalé en su momento el «rastro toponímico» que dejaba su nombre a través de la geográfica, y en esa ocasión algunos críticos me atacaron diciendo que se trataba de una tontería pues, según ese razonamiento, una «car-nicería» indicaría el paso de Kar por allí. Sin embargo, no necesito discutir mucho: todos ustedes saben que muchísimos toponímicos se crean usando como raíz adjetivos calificativos del lugar y nombres propios. El pensamiento de Fawcett, entonces, ratifica ésta mi teoría.

Bien, sigamos. El explorador señala en su libro esa presencia «nahua» ya mencionada en proximidades del Alto Xingú. Cerca, también, se encuentra otro grupo cultural, los «Maxubis», con quienes conviviera un tiempo, llamándole poderosamente la atención el ritual de, todos los amaneceres, formar toda la aldea mirando al naciente Sol, elevar sus manos en esa dirección y cantar al unísono un himno de salutación al mismo (costumbre que se encontraba hasta épocas muy recientes entre los mexicas). Estos «toltecas», incluso y siempre según la mirada de Fawcett, habrían llegado a ser los fundadores de Tiwanaku.

Podría decirse que era una teoría demasiado simplista ese «difusionismo excesivo» que proponía el inglés. Por cierto, llega a señalar que veía como posible que una rama de los Tupíes hubiera migrado a través del Pacífico hasta la Polinesia, ocupando en el camino Rapa Nui (Isla de Pascua).

Puede parecer excesivamente simplista este «difusionismo», pero en puridad no podría negarse puntualmente el extraordinario parecido que tienen las tallas en madera de los «fueguinos» (en puridad, los selk’nam, onas y yámanas) con los moais de la Isla de Pascua. Puede verse como exagerado ese difusionismo. Pero quien, como un servidor, ha tenido la oportunidad de estar frente a los moais y contemplar directamente las tallas onas conservadas en museos, no puede negar su extraordinario parecido.

Permitan ustedes que yo agregue, a las ideas de Fawcett, un elemento menor pero sugestivo. He hablado ya de los «kuikuros», el grupo tribal (hoy, de unos 500 individuos) que en los Altos del Xingú son los herederos (dicen serlo) de la cultura Kuhgikugu. Muchos de ellos ya están integrados a la civilización occidental, y de los que permanecen viviendo en sus aldeas originales supongo lo hacen por la interesante conveniencia del turismo. Con un altísimo cociente intelectual uniformemente distribuido entre ellos (es hasta simpático verles totalmente inmersos en su ambiente folklórico… pero sin dejar de revisar —algunos, claro— periódicamente sus celulares, aceptando sin ambagues que cuidar sus raíces no va en detrimento de estar enterados de lo que pasa en el mundo vía redes sociales), una de sus costumbres es conservar vestimentas rituales que emplean en ceremonias ancestrales. En ese ajuar se ocupan sólo cuatro colores: negro, rojo, amarillo y blanco. Los cuatro colores, precisamente, que identifican desde siempre a los «cuatro rumbos» del pensamiento mexica, a las nahui mitl, las «cuatro flechas» simbólicas. Son los colores de los «rezos» que se cuelgan ceremonialmente en el «Árbol de Rezos», los colores de las «cuatro puertas» de la ceremonia del Temazcal Guerrero…

Planisferio de Sylvanus

Planisferio de Sylvanus

Planisferio de Sylvanus

El planisferio de Sylvanus o Mapamundi ptolemaico es el primer planisferio impreso a dos tintas. Fue dibujado por el cartógrafo italiano Bernardo Sylvanus para la edición de 1511 de la Geographia de Ptolomeo realizada por Jacob Pentium.

Descripción

El planisferio, impreso en colores negro y rojo, mide 56,5 × 41,5 centímetros. Utiliza una proyección cordiforme que permite conservar mejor las proporciones, tratando de agregar la información proporcionada por los planisferios de Cantino y Caverio y las noticias proporcionadas por los navegantes, principalmente portugueses, al esquema ptolemaico general, sin sentir la necesidad de alterarlo.

Las tierras recientemente descubiertas se localizan en dos bloques, siguiendo el esquema de Cantino en su disposición general excepto en las costas de América del Norte que desaparecen. En su lugar, al norte y en la misma latitud que ocupa la península ibérica, se representan dos grandes islas y otras menores denominadas «Terra Cube» y «ispaniar insu». Labrador («terra laboratorus») es una isla situada más al este, próxima a Irlanda. Al sur, una gran masa de tierra continental cortada por el margen a la izquierda, recibe el nombre de «Terra Sanctae Crucis», dado por los portugueses a Brasil. Colocadas entre Europa y Asia, nada indica, sin embargo, que se conciban como un continente nuevo, no existiendo apenas distancia entre Cuba y Cipango, localizada en el extremo este, sin tierra que las separe.

Globus Jagellonicus

Globus Jagellonicus

Globus Jagellonicus. Tadeusz Estreicher delineavit. Núm. de ilustración 3, publicado en Tadeusz Estreicher, Globus Biblioteki Jagiellońskiej z początku wieku XVI, w Krakowie, Nakładem Akademii Umięjetności, 1900.

El mapa del Jagiellonian Globe de Tadeusz Estreicher, 1900

El Globus Jagellonicus o globo jagielloniano, probablemente construido en el norte de Italia o en el sur de Francia y datado alrededor de 1510. Se atribuye a Jean Coudray, un relojero francés activo en Francia. Es considerado por algunos autores como el globo terráqueo conocido más antiguo en el que figura América.12

La Universidad Jagellónica institución de educación superior más antigua de Polonia. Fue fundada en 1364 por el rey Casimiro el Grande (1310-1370) a instancias del Papa Urbano V (1362-70). De los 36 objetos de la lista de unos 50 instrumentos del legado de Joannes Broscius (1585-1652), solo se conservan tres en la actualidad. Uno de ellos es la esfera armilar mecánica, conocida desde 1900 como el Globo Jagiellonian.

Historia

Hasta el descubrimiento del globo terráqueo da Vinci en 2012, el globo terráqueo de cobre dorado se consideraba el primer globo terráqueo existente que indicaba cualquier parte del Nuevo Mundo y el primero en delimitar el continente sudamericano.

Posee un parecido llamativo con el Globo de Hunt-Lenox, también posiblemente datado en 1510, considerado el segundo o tercer globo terrestre más antiguo, después del Erdapfel de Martin Behaim, realizado en Núremberg en 1492 antes de que trascendiese en marzo de 1493 la noticia del descubrimiento efectuado por Colón, y por lo tanto, sin representar el nuevo continente.3​ El globo fabricado por Martin Waldseemüller en 1507, del que solo se conservan copias, ya mostraba América.

Perteneció a la Academia de Cracovia, rebautizada en 1817 como Universidad Jaguelónica; actualmente se exhibe en el Museo del Collegium Maius. Fue redescubierto a principios de la década de 1870 y descrito como Globus Jagellonicus en 1900 por el profesor4Tadeusz Estreicher en las Transacciones de la Academia de Ciencias de Cracovia de aquel año.56​ En aquella época, cuando durante un siglo no existió ningún estado polaco, Estreicher señala que este globo que indica descubrimientos geográficos entonces recientes, propiedad de la Academia de Cracovia desde 1510, demuestra el especial interés por la cosmografía de los estudiosos polacos de aquel tiempo.

El globo de cobre dorado está considerado como el más antiguo conservado en el que aparece parte del Nuevo Mundo y el primero en delinear las costas de América del Sur. Es también el globo más antiguo en el que el continente americano es una entidad distinta que Asia. Sin embargo, utiliza el nombre de “América” (introducido en 1507 por Martin Waldseemüller en su Universalis Cosmographia) para un continente localizado al sur de la India.7​ Una reproducción del globo se exhibe en la Sala de la Nacionalidad Polaca de la Universidad de Pittsburgh.8

Características cartográficas

Robert J. King ha señalado que América es mostrada en el Globo Jagielloniano en dos ubicaciones distintas: en el Océano Atlántico, bajo los nombres de MUNDUS NOVUS, TERRA SANCTAE CRUCIS y TERRA DE BRAZIL; y en el océano Índico, bajo el nombre de AMERICA NOVITER REPERTA (América nuevamente descubierta). La frase “america noviter reperta” fue utilizada por primera vez en el cuaderno Globus Mundi: Declaratio sive descriptio mundi et totius orbis terrarum, publicado en Estrasburgo por J. Grüninger en 1509.9

Esta bilocación de América en los hemisferios oriental y occidental resultó de las dos diferentes escalas de longitud empleadas para estimar las distancias. Una de ellas estaba basada en los cálculos de Claudio Ptolomeo, que dejó 180 grados entre el punto más occidental de Europa, el Cabo de San Vincente en Portugal, y el punto más oriental de Asia,  Cattigara; y la otra  estaba basada en las estimaciones de Cristóbal Colón, que dejó 225 grados para la misma distancia. Según el cálculo de Colón, por tanto, el Nuevo Mundo estaba más cercano a Europa, con su parte más occidental separada no más de 135 grados al oeste de Portugal, mientras que según el cálculo ptolemaico, estaría más hacia el oeste, al sur de la India, tal como se representa en el Globo Jagielloniano .

Esta era una solución al problema de plasmar el mundo conocido, de modo que tanto el mapa ptolemaico como el colombino pudieran ser representados a la vez, con una disposición similar a la ideada por Martin Waldseemüller para su mapa mundial de 1507. La aceptación de la pretensión de Colón de haber alcanzado las Indias (Asia oriental) implicó un rechazo del valor de las longitudes y los valores angulares calculados por Ptolomeo, que muchos cartógrafos no estaban dispuestos a aceptar. Como resultado, se produjo un conflicto entre las escuelas geográficas colombina y ptolemaica. Era imposible indicar satisfactoriamente que Colón había alcanzado Asia oriental si el cartógrafo conservaba las longitudes argumentadas por Ptolomeo e intentaba a la vez representar los 360 grados de la circunferencia de la Tierra.10​ El mapa de Waldseemüller era una reconciliación de las longitudes colombinas y las ptolemáicas, como se muestra en el globo de Martin Behaim. En el lado derecho de su mapa mundial, Waldseemüller adoptaba la concepción de Ptolomeo/Behaim, incluyendo la isla de Zipango (Japón) dentro de los 270 grados de longitud hacia el este desde el meridiano de las Islas Canarias. El mapa de Waldseemüller así mismo representa en su lado derecho la concepción de Behaim de la Tierra más allá de la longitud 270ºE, y lo finaliza en el este con un mar abierto. El océano al este de Asia es nombrado como el Occeanus Orientalis Indicus.11

En el lado izquierdo del mapa de Waldseemüller aparecen los 90 grados necesarios para completar los 360. Aquí incluye la concepción colombina, duplicando la misma Asia oriental, una vez como la costa oeste del Occeanus Occidentalis, y otra vez como la costa oeste del Occeanus Orientalis Indicus. Más allá del Occeanus Occidentalis los descubrimientos españoles están mostrados como dos islas estrechas y largas, PARIAS y AMERICA, correspondiendo a América del Norte y del Sur, pero separadas por un estrecho situado en la región del actual canal de Panamá (en el mapa en miniatura insertado en la sección central superior del mapa de Waldseemüller, existe un istmo que une las dos masas de Tierra, demostrando otra vez su disposición a representar soluciones alternativas a una cuestión por entonces sin respuesta). El lado oeste de las dos grandes islas está marcado con las leyendas terra ultra incognita (“tierra más allá desconocida”) en el sur, y en el norte terra ulterius incognita (“tierra más allá allende desconocida”). Incluye un mar conjeturado al oeste de las islas.

En el globo de Waldseemüller de 1507, el mar al oeste de la pretendida costa oeste americana es nombrado como el Occeanus Occidentalis, esto es, el Océano Occidental o Atlántico, y el punto donde se fusiona con el Occeanus Orientalis (el Océano Oriental, u Océano Índico) está tapado por una anotación de latitud. La isla de Zipangri (Japón) y la isla de Hispaniola, que Colón consideraba la misma, difieren solo 45 grados entre sus costas occidentales: esta es sustancialmente la diferencia entre las longitudes defendidas por Colón y por Behaim.12​ El cabo de Florida aparece casi en la misma latitud que la región asiática de Zaitun representada por Behaim, y ambas difieren en una longitud de 55 grados.13​ En el lado izquierdo, en los 90 grados restantes, sí se representa el concepto colombino. La tierra representada tanto en el lado derecho como en el izquierdo de su mapa son las Indias (Asia oriental).14​ Así, las dos concepciones alternativas eran mostradas en el mismo mapa. El mapa mundi de Waldseemüller duplica tanto Asia oriental como Cipangu, denominándolas AméricaHispaniola, ideando una distribución del mapa donde el lector pueda hacer su elección entre el concepto colombino y el de Ptolomeo-Behaim. Así, la elección queda abierta. Como George E. Nunn observó, “Esta era una manera muy verosímil de presentar un problema en aquel tiempo insoluble”.15

Así mismo, en el Globo Jagielloniano, las diferentes escalas de la longitud arrastradas hacia el este y hacia el oeste, producen una muy obvia bilocación de América en el hemisferio oriental y en el occidental: en el hemisferio occidental se localiza al oeste de África, según el criterio de longitudes de Ptolomeo-Behaim, que equivale a que la Tierra tenga 33,296 kilómetros de circunferencia; y en el hemisferio oriental según el criterio de longitudes colombino aparece al este de África, equivalente a una Tierra con 30,191 kilómetros de circunferencia.16​ Como en el mapa de Waldseemüller, ZIPANGRI y SPAN[iola] están separados por cuarenta y cinco grados de longitud. El mapa de Waldseemüller y el globo Jagielloniano muestran su acuerdo con la pretensión de Colón de que eran uno y el mismo, mediante una bilocación en el caso de América.

Investigaciones recientes del Prof. St. Missinne ofrecieron evidencia de que existe una razón para el uso de AMERICA NOVITER REPERTA en una gran isla deshabitada en el Océano Índico Sur. Esto se basa en el hecho de que el relojero que construyó la Esfera Armilar de Jagiellonian usó el Lenox como modelo para su globo terrestre de escala reducida.[17]

No es raro que en el caso de nuevos descubrimientos haya cierta incertidumbre, incluso confusión. Por lo tanto, parece probable que el relojero francés parece haber estado confundido acerca de la ubicación precisa en la región de las antípodas del mundo recién descubierto. Como resultado, grabó “AMERICA NOVITER REPERTA” en el lugar equivocado, es decir, en una gran isla cartográfica sin nombre en el Océano Índico que no tenía nombre en el Lenox Globe. Esta isla tiene una cadena montañosa que está alineada en gran parte de su longitud a lo largo de un meridiano. Varios ríos fluyen hacia el este desde esta cadena montañosa hacia el Océano Índico sin nombre. No se puede descartar que el relojero Jean Coudray haya tenido acceso a la Cosmographiae Introductio de Martin Waldseemüller. Pero no hay evidencia de tal justificación ya sea cartográfica, bibliográfica, ortográfica o toponímica.

Dado que el nombre “América” falta en da Vinci y el Lenox Globe, aunque ya hay tres topónimos en la masa continental latinoamericana de los Lenox, el relojero francés puede haber elegido un espacio vacío sobrante que es aún más occidental para él. .

Debido a la falta de espacio en el pequeño globo terráqueo, esta gran isla desconocida, anónima y “vacía” parece haberle venido bien durante el continuo trabajo de producción mental que actualizó y agregó la frase en latín “América recién descubierta”. Jean Coudray estaba al tanto del nombramiento de América pero no de su ubicación cartográfica precisa, que no estaba disponible en la fuente contemporánea, la xilografía impresa del “Globus Mundi”: Declaratio sive descriptio mundi et totius orbis” de Johannes Adelphus que data de 1509.

En un puente terrestre ptolemaico entre África y Asia, impreso en un mapamundi de Gregor Reisch en la publicación Woodcut que data de 1503 en Basilea con el título Margaretha Filosophica dice en latín traducido aquí al inglés: “Aquí no hay tierra sino mar, en que hay islas de notable tamaño desconocidas para Ptolomeo.” La ubicación específica de esta frase y su contenido “islas de tamaño notable” se encuentran en el Océano Índico Sur, donde el relojero puso “AMERICA NOVITER REPERTA”.[18]

The Jagiellonian Globe, principios del siglo XVI, foto Jerzy Zygier

El Globo, una esfera armilar mecánica

Es una esfera armilar mecánica (diám. 13 cm), fabricada en Francia antes de 1510. La esfera está formada por anillos que representan los sistemas de coordenadas: eclíptica, ecuatorial y horizontal. Está hecho de latón y lámina de cobre martillado; todo el objeto está dorado. Es un instrumento astronómico que se puede utilizar como reloj universal (que indica la hora solar local y la hora sideral) y como calendario juliano. Su mecanismo de reloj está contenido dentro de la esfera central de latón en cuya superficie está grabado un mapa de la Tierra.

Esfera armilar mecánica montada sobre una base de tres patas del siglo XVIII, foto de Grzegorz Zygier

Fragmento de mapa del Jagiellonian Globe, 1510-11, foto de Grzegorz Zygier

Globo de Hunt-Lenox

Globo de Hunt-Lenox

El Globo de Hunt-Lenox, por B.F. De Costa

El Globo Lenox. Ilustración de la Encyclopædia Britannica, 9a ed. Vol. X, 1874.

El Globo de Hunt-Lenox o Globo de Lenox, data de ca. 1510,12es el segundo o tercer globo terráqueo más antiguo que se conoce, después del Erdapfel de 1492. Está albergado en la Rare Book Division de la Biblioteca Pública de Nueva York.

Como notoriedad, es la única instancia de un mapa histórico que contiene literalmente la mítica frase HC SVNT DRACONES (en latín: hic sunt dracones, que significa «Aquí hay dragones»), que se puede hallar en la península de Indochina.

Descripción

El Globo de Lenox es un globo de cobre hueco que mide 112 mm de diámetro y 345 mm de circunferencia. Se compone de dos partes unidas por el ecuador, conectadas por una varilla vertical que atraviesa sendos agujeros situados en ambos polos.3

Su aspecto es semejante al del Globus Jagellonicus, también datado en torno a 1510.

La oración HC SVNT DRACONES aparece en la costa oriental de Asia, al este de la península de Indochina.2

Contexto

Su origen es enigmático. Fue comprado en Paris en 1855 por el arquitecto Richard Morris Hunt, que se lo dio al bibliófilo James Lenox, cuya colección formó parte de la Biblioteca Pública de Nueva York, donde se conserva el globo.

En sus anotaciones, Henry Stevens comenta haber visto el globo mientras cenaba con Hunt en 1870.

Entre los geógrafos, el Hunt-Lenox es especialmente conocido como la representación más antigua conocida de las Américas. América del Sur y partes de América Central están grabadas en el mundo, aunque la masa de tierra se corta en el lugar donde se encuentra la actual Panamá. También se representan las islas de la actual Cuba y La Española.

Algunos detalles más pequeños en el mundo incluyen carabelas un estilo de barco contemporáneo con la exploración de Colón del Nuevo Mundo y monstruos marinos que se cree que fueron soñados por el artista desconocido. Sin embargo, quizás el detalle más memorable es la frase en latín “HC SVNT DRACONES”, ubicado en la región del sudeste asiático actual. Traducido al inglés, la frase significa “aquí yacen dragones” o “aquí hay dragones”. Inman dice que muchos mapas o globos posteriores que fueron diseñados para aparecer como si eran de este período a menudo incluyen esta frase en latín, que se deriva únicamente del Globo Hunt-Lenox. Este objeto es único porque “habla del conocimiento del mundo de los europeos poco después de la época del viaje inicial de Colón”, dice Inman.

Dicha frase se hizo tan famoso que terminó convirtiéndose en sinónimo cartográfico para lo desconocido, continuando con una tradición ya existente en el Medievo que pervive hoy en algunas manifestaciones de la cultura popular. Unidas a las representaciones de monstruos marinos fantásticos y leyendas como “Aquí hay dragones”, los artesanos pretendían alertar a los navegantes de lo desconocido a la vez que mostrar a los incultos ciudadanos de Europa las maravillas y los misterios que había en el mundo. Maravillas que unos pocos privilegiados como Marco Polo o Cristóbal Colón pudieron ver en sus viajes.

La primera investigación que existe de la enigmática frase la realizó el historiador B. F. de Costa para la Revista de Historia Americana en su edición de Septiembre de 1879. En ella, alude a que la descripción “Aquí hay dragones”, hace relación a la frase pronunciada por Marco Polo durante sus viajes a India en dónde dijo: “Aquí viven los Dagroians” o Dragonianos, habitantes del reino de Dagroian. Sin embargo, el pueblo que describe Marco Polo en sus libros esta cercano a Java menor o Sumatra, bastante alejado por tanto del lugar dónde está la inscripción.

De tal manera, que el motivo real de la frase aún es un misterio, pero ha conseguido perpetuar en la historia llegando a describir con esa frase lo desconocido, lo perdido y lo fantástico. ¿Os apetece ver Dragones?

Álvaro Sánchez Lamadrid.

El pequeño tamaño, el color oscuro y la armadura del Hunt-Lenox Globe (el soporte sobre el que se asienta) conspiran para ocultar los detalles de su superficie. Las masas de tierra grabadas en él incluyen dos áreas que representan el Nuevo Mundo: una en la ubicación de América del Sur y la otra, una isla grande y misteriosa en el sur del Océano Índico.

También hay elementos artísticos difíciles de detectar: ​​monstruos marinos, barcos, naufragios y, justo debajo del ecuador, la advertencia “Hic Sunt Dracones” o “Here Be Dragons”. Los espectadores no pudieron ver tales detalles incluso cuando la Biblioteca Pública de Nueva York colocó el globo en exhibición. Dado el valor del globo, el acceso para los académicos también ha sido limitado.

“Fue una tormenta perfecta de circunstancias que hizo que el objeto fuera totalmente inaccesible, incluso cuando estaba justo frente a ti”, dice Chet Van Duzer, un historiador cartográfico.

Pero aún así su importancia es mucha, ya que indica, de alguna manera, que ahí fuera hay cosas desconocidas y peligrosas y eso despertó la imaginación de cientos de personas a lo largo de la historia.

Lo que originó multitud de mitos e historias que llegan hasta el día de hoy, donde no es muy difícil encontrar alguna novela sobre viajes o cartografía que no haga referencia a esta frase.

Como anécdota final decir que en la época romana los cartógrafos también se usaba una frase parecida: “Hic sunt leones”, Aquí hay Leones, un animal, que aunque conocido por ellos, les resultaba extremadamente exótico (y peligroso).

Un primer plano del globo muestra el dibujo de un dragón. (Crédito: Proyecto Lázaro/Laboratorio de Becas Digitales)

Distintas representaciones de criaturas marinas, común en distintos mapas de la época.

Desastre aéreo de Tenerife

Desastre aéreo de Tenerife

Coordenadas: 28°28′54″N 16°20′18″O

Suceso: Accidente aéreo

Fecha: 27 de marzo de 1977

Causa: Colisión en pista por niebla intensa y errores humanos

Lugar: Aeropuerto de Los Rodeos, San Cristóbal de La Laguna, Tenerife, Canarias

Resultado: Colisión de dos Boeing 747

Fallecidos: 583

Heridos: 61

 

Primer implicado

Tipo: Boeing 747-206B

Operador: KLM

Registro: PH-BUF

Nombre: Rijn (Río Rin)

Pasajeros: 234

Tripulación: 14

Supervivientes: 0

 

Segundo implicado

Tipo: Boeing 747-121

Operador: Pan Am

Registro: N736PA

Nombre: Clipper Victor (Antes, Clipper Young-America)

Pasajeros: 380

Tripulación: 16

Supervivientes: 61

El desastre aéreo de Tenerife (también conocido como accidente de Los Rodeos) hace referencia a una colisión entre dos aviones Boeing 747 que se produjo el 27 de marzo de 1977 en el aeropuerto de Los Rodeos (actual Tenerife-Norte), en el municipio de San Cristóbal de La Laguna, al norte de la isla española de Tenerife. Un total de quinientas ochenta y tres personas perdieron la vida.1

Fue el accidente aéreo más grave de 1977, el más catastrófico en una colisión aérea en tierra y el más mortífero en España. Para la Pan Am fue el peor siniestro aéreo que involucró una aeronave estadounidense, mucho más que el Vuelo 191 de American Airlines ocurrido dos años después. Para la KLM fue el siniestro más mortífero de una aeronave neerlandesa superando el siniestro del Vuelo 138 de Martinair acaecido tres años antes. Asimismo, es el peor accidente aéreo a nivel mundial en la historia de la aviación.123

Los aviones siniestrados fueron el vuelo 4805, un vuelo chárter de la línea aérea neerlandesa KLM, que volaba desde el aeropuerto de Schiphol en Ámsterdam (Países Bajos), en dirección al aeropuerto de Gran Canaria (España), y el vuelo 1736, vuelo regular de Pan Am, que volaba desde el aeropuerto Internacional John F. Kennedy en Nueva York, procedente del aeropuerto Internacional de Los Ángeles (Estados Unidos), hacia el aeropuerto de Gran Canaria.

Un aviso de bomba en el aeropuerto de Gran Canaria, llevado a cabo por independentistas del Movimiento por la Autodeterminación e Independencia del Archipiélago Canario (MPAIAC), provocó que muchos vuelos fueran desviados a Los Rodeos, incluidos los dos aviones involucrados en el accidente. El aeropuerto rápidamente se congestionó de aviones estacionados que bloqueaban la única calle de rodaje y forzaban a los aviones que salían a rodar por la pista. Parches de niebla espesa se desplazaban por el aeródromo, de modo que no había visibilidad entre las aeronaves y la torre de control.45

La colisión ocurrió cuando el avión de KLM inició su carrera de despegue mientras el avión de Pan Am, envuelto en la niebla, todavía estaba en la pista y a punto de salir a la calle de rodaje. Al percatarse de su presencia en la pista de despegue, el avión de KLM intentó elevarse para sobrevolar al avión de Pan Am y casi lo consiguió, pero acabó embistiéndolo. Del choque resultante pereció todo el pasaje a bordo del KLM 4805 y la gran mayoría del Pan Am 1736, del que solo sobrevivirían sesenta y un personas que iban sentadas en la parte delantera de la aeronave.

La investigación realizada posteriormente por las autoridades españolas concluyó que la causa principal del accidente fue la decisión del capitán de KLM de despegar, creyendo, erróneamente, que se había emitido una autorización de despegue del control de tráfico aéreo (ATC).6​ Los investigadores neerlandeses pusieron mayor énfasis en el malentendido mutuo en las comunicaciones de radio entre el equipo de KLM y el ATC, pero en última instancia KLM admitió que su equipo fue responsable del accidente y la aerolínea finalmente acordó compensar económicamente a los familiares de todas las víctimas.7

El siniestro tuvo una repercusión duradera en la industria aeronáutica, en la que se destacó sobre todo la importancia vital del uso de la fraseología estandarizada en las comunicaciones de radio. Los procedimientos de cabina también se revisaron, lo que contribuyó al establecimiento de la gestión de los recursos de la tripulación como parte fundamental de la capacitación de los pilotos de las aerolíneas.

Antecedentes

El Boeing 747-121 de Pan Am, llamado Clipper Victor, fotografiado en el aeropuerto de Londres-Heathrow en abril de 1972. Curiosamente, esta unidad había sido el primer 747 en realizar un vuelo comercial y también fue el primer 747 en sufrir un secuestro, ambos eventos ocurridos en 1970.

El avión Boeing 747-206B PH-BUF de KLM involucrado en el accidente, fotografiado meses antes de su pérdida.

Mientras los aviones se dirigían a Gran Canaria, una bomba en la terminal de pasajeros del aeropuerto de Gran Canaria hizo explosión a las 13:15 hora local (14:15 en Madrid) el mismo día del accidente. Más tarde hubo una segunda amenaza de bomba, por lo que las autoridades locales cerraron cautelarmente el aeropuerto por unas horas. El explosivo había sido supuestamente colocado por militantes del Movimiento por la Autodeterminación e Independencia del Archipiélago Canario (MPAIAC), si bien el responsable de dicha organización clandestina lo niega, acusando en cambio a la Guardia Civil de haber fraguado el atentado para desacreditarlos.8

Los vuelos KLM 4805 y PAA 1736, al igual que muchos otros, fueron desviados al aeropuerto de Los Rodeos en la vecina isla de Tenerife. En aquel entonces, Los Rodeos era aún demasiado pequeño para absorber con desahogo una congestión semejante. Sus instalaciones eran muy limitadas, una sola pista de despegue y sus controladores no estaban acostumbrados a tantos aviones, mucho menos Jumbos, y encima era domingo, por lo que solo había dos de turno. No poseían radar de tierra y las luces de la pista se encontraban fuera de servicio. Además, el aeropuerto de Tenerife Sur, que se había previsto para descongestionar el vetusto aeropuerto tinerfeño, estaba aún en fase de construcción y no abriría hasta noviembre de 1978.

Cuando el aeropuerto de Gran Canaria fue reabierto, el personal de vuelo del Pan Am 1736 procedió a pedir permiso para el despegue y volar hacia allí, pero se vio forzado a esperar debido a que el KLM 4805 había pedido permiso para repostar y bloqueaba la salida a la pista de aterrizaje. Justo al finalizar la carga, se recibió notificación de que la policía había vuelto a cerrar el aeropuerto de Gran Canaria. Los dos aviones 747 fueron obligados a esperar otras dos horas. El avión neerlandés había llenado sus tanques con 55 000 litros de combustible, una cantidad excesiva para la situación, pero que le permitiría no tener que repostar nuevamente en Gran Canaria, ya que su destino final era Ámsterdam.

A las 16:56, el piloto neerlandés del vuelo de KLM, Jacob Veldhuyzen van Zanten, recibió permiso para iniciar sus motores y desplazarse por la pista principal, salir por la tercera salida (C1 y C2 tenían aviones en ellas) y alcanzar el final. Más tarde el controlador, para dar más agilidad a la maniobra y tras repetir la orden al KLM, optó por corregir y ordenar que continuase por la pista principal sin desviarse, y que al final de ella hiciera un giro de 180° (backtrack) y esperara a la confirmación del despegue de la ruta. Tres minutos después, el PAA 1736 recibió instrucciones para desplazarse por la pista de despegue, abandonarla al llegar a la tercera salida a su izquierda y confirmar su salida una vez completada la maniobra. Pero el PAA 1736 se pasó de la tercera salida (se supone que no la vio debido a la densa niebla o que la maniobra necesaria era en sí muy compleja para un Jumbo, sumado a la ausencia de luces en la citada pista) y continuó hacia la cuarta. Además, su velocidad era anormalmente reducida a causa de la niebla reinante.

Ya completado el giro de su aeronave, van Zanten subió motores (se registra un aumento de gases en la caja negra) y su copiloto le advirtió que aún no tenían autorización para despegar. Van Zanten, en los últimos tiempos instructor y acostumbrado a enseñar a nuevos pilotos a darse sus propias autorizaciones por cuanto no hay torre de control, le pide que hable con la torre de Los Rodeos y en la comunicación se indica que están en la cabecera de la pista 30 esperando para despegar. Los Rodeos les da la ruta a seguir, un Air Traffic Control Clearance (ATCC), y el copiloto lo repite terminando con un poco ortodoxo «estamos en (posición de) despegue». Literalmente: «Roger sir, we are cleared to the Papa beacon flight level nine zero, right turn out zero four zero until intercepting the three two five» (De acuerdo, señor, estamos autorizados al nivel de vuelo de la baliza Papa nueve cero, desvío a la derecha cero cuatro cero hasta interceptar el tres dos cinco),(VOR de Gran Canaria). «We are now at take-off.» (Ahora estamos en el despegue), sobre todo esta última frase no tiene ningún sentido sin la autorización de torre. Cuando los equipos investigadores de España, Estados Unidos y Países Bajos escucharon conjuntamente y por primera vez la grabación de la torre de control, nadie o casi nadie entendió que con esta transmisión quisiera decir que estaba despegando.

En ese momento, y mientras su copiloto completaba la colación, es decir, la repetición de las instrucciones recibidas por la torre de control con el controlador de la misma, Van Zanten, sin un permiso de despegue o take off clearance, inició el rodaje soltando frenos, según registró la caja negra. Cuando su copiloto terminó la colación, y ya con el avión en marcha, matizó: «We’re going». El controlador contestó el recibido de la repetición de su mensaje de autorización de ATC en la siguiente forma: «Okay». Y 1,89 segundos más tarde añadió: «Espere para despegar, le llamaré».

La torre de control pidió entonces a PAA 1736 que le comunicase tan pronto como hubiera despejado la pista: «Papa Alfa uno siete tres seis reporte pista libre». Esto se oyó en la cabina del KLM. Un segundo después, PAA contestó: «Okay, notificaremos cuando la dejemos libre», contestación que se oyó en la cabina de KLM. La torre de control contestó: «Gracias». Justo después de esto, al ingeniero de vuelo y al copiloto neerlandeses les asaltó la duda de que la pista estuviese realmente despejada, a lo que el capitán Jacob Veldhuyzen van Zanten respondió con un enfático: «Oh, ya», y quizás, creyendo difícil que un piloto experto como él cometiese un error de semejante magnitud, ni el copiloto ni el ingeniero de vuelo pusieron más objeciones. Trece segundos más tarde, ocurrió la nefasta colisión.

La torre de control atendió las llamadas de los IB-185 y BX-387 y esperó la comunicación del PANAM 1736 informando de «pista libre», recibió información procedente de dos aviones situados en el aparcamiento de que había fuego en un lugar no determinado del campo, hizo sonar la alarma, informó a los servicios contra incendios y sanidad, y difundió la noticia de situación de emergencia; a continuación llamó a los dos aviones que tenía en pista, de los que no recibió contestación alguna.

El accidente

Esquema del recorrido de los dos aviones, que muestra la colisión cuando el vuelo de PanAm ha pasado la salida 3.

Maniobra que tomarían los aviones poco antes de colisionar.

El impacto se produjo unos trece segundos después, exactamente a las 17:06:50 UTC, tras lo cual los controladores aéreos no pudieron volver a comunicarse con ninguno de los dos aviones. Debido a la intensa niebla, los pilotos del avión de KLM no pudieron ver el avión de Pan Am que rodaba hacia ellos. El vuelo KLM 4805 fue visible desde PAA 1736 aproximadamente 8 s y medio antes de la colisión, y su piloto intentó acelerar para salir de la pista, pero a esa altura el choque era ya inevitable.

El KLM ya estaba completamente en el aire cuando ocurrió el impacto, a unos 320 km/h, pero obviamente no llegó a alcanzar suficiente altitud como para evitar el desastre- los expertos estiman que 25 pies más (7,62 metros) hubieran sido suficientes. Su parte frontal golpeó la parte superior del otro Boeing, arrancando el techo de la cabina y la cubierta superior de pasajeros, tras lo cual los dos motores golpearon al avión de Pan Am, matando en el acto a la mayoría del pasaje sentado en la parte trasera.

El avión neerlandés continuó en vuelo tras la colisión, estrellándose contra el suelo a unos 150 m del lugar del choque, y deslizándose por la pista unos 300 m adicionales. De inmediato se desató un violento incendio (recordemos que el KLM había repostado minutos antes) y a pesar de que los impactos contra el Pan Am y el suelo no fueron extremadamente violentos, las 248 personas a bordo del KLM murieron en el incendio, así como 335 de las 396 personas a bordo del Pan Am, incluyendo a nueve que fallecieron más tarde por causa de las heridas. La holandesa Robina van Lanschot, pasajera del avión neerlandés KLM, se salvó debido a que residía en Tenerife: cuando todos los pasajeros descendieron del avión para tomar aire antes de proseguir para Gran Canaria, ella se negó a continuar viaje, pese a que iba contra las normas.9

Las condiciones atmosféricas hicieron imposible que el accidente fuera visto desde la torre de control, desde donde solamente se oyó una explosión seguida de otra, sin quedar claras su situación o causas.

Traducción de la transcripción de las comunicaciones y de los comentarios de los tripulantes en las cabinas de ambos aviones

 Representación del momento en el que el avión de KLM intenta elevarse para evitar chocar contra el avión de Pan Am.

Momentos después de la colisión, un avión situado en la plataforma de estacionamiento avisó a la torre de control de que había visto fuego. La torre hizo sonar la alarma de incendios inmediatamente y, aún sin saber la situación del fuego informaron a los bomberos. Estos se dirigieron a la zona a la mayor velocidad posible, lo que debido a la intensa niebla seguía siendo demasiado lenta, aún sin poder ver el fuego, hasta que pudieron ver la luz de las llamas y sentir la fuerte radiación de calor. Al despejarse un poco la niebla, pudieron ver por primera vez que había un avión completamente envuelto en llamas. Tras comenzar a extinguir el fuego, la niebla siguió despejándose y pudieron ver otra luz, que pensaron sería parte del mismo avión en llamas que se había desprendido. Dividieron los camiones y al acercarse a lo que pensaban era un segundo foco del mismo fuego, descubrieron un segundo avión en llamas. Inmediatamente concentraron sus esfuerzos en este segundo avión, ya que en el primero era completamente imposible hacer algo.

Como resultado, y a pesar del gran alcance de las llamas en el segundo avión, pudieron salvar la parte izquierda, de donde más tarde se extrajeron entre quince y veinte mil kilos de combustible. Mientras tanto, la torre de control, aún cubierta por una densa niebla, seguía sin poder averiguar la situación exacta del fuego y si se trataba de uno o dos aviones los implicados en el accidente.

Según los supervivientes del vuelo de Pan Am, entre ellos su capitán Victor Grubbs, el impacto no fue terriblemente violento, lo que hizo creer a algunos pasajeros que se había tratado de una explosión. Unos pocos situados en la parte frontal saltaron a la pista por aberturas en el costado izquierdo mientras se producían diversas explosiones. La evacuación, sin embargo, se produjo con rapidez y los heridos fueron trasladados. Muchos tuvieron que saltar directamente a ciegas y gran parte de los supervivientes tuvieron fracturas y torceduras por la altura del Jumbo.

Restos en la pista tras el accidente.

Se tuvo que hacer uso de camiones de bomberos de las ciudades vecinas de La Laguna y Santa Cruz y el fuego no fue completamente extinguido hasta las 03:30 del 28 de marzo. En el accidente, murieron el exadministrador de la ciudad californiana de San José, A. P. Hamann, junto a su esposa Frances Hamann y la exesposa de Russ Meyer, Eve Meyer.

Cuenta Robert Bragg, copiloto del Pan Am 1736, que «taxis y vehículos particulares evacuaron a la mayoría de los lesionados por quemaduras, trasladándolos a centros hospitalarios cercanos». También emisoras de radio y televisión, así como estaciones de radioaficionados alertaron al personal sanitario para que acudiese a prestar ayuda al lugar del accidente. El Cabildo de Tenerife y el Ayuntamiento de La Laguna facilitaron en aquellos tristes momentos todos los medios disponibles para afrontar las situaciones personales de los familiares de los fallecidos, así como la atención a los supervivientes. Estas dos corporaciones han colaborado estrechamente treinta años después con la Fundación Holandesa de Familiares de las Víctimas para materializar un proyecto de escultura en memoria de quienes aquel fatídico día perdieron la vida.

Explicaciones

Una serie de factores contribuyeron al accidente. El principal fue la amenaza de bomba que provocó la sobrecarga del aeropuerto. El cansancio tras largas horas de espera y la tensión creciente de la situación agregaron factores de riesgo – el capitán del KLM, debido a la rigidez de las reglas neerlandesas sobre las limitaciones de tiempo de servicio, solo disponía de tres horas para despegar desde el aeropuerto de Gran Canaria de vuelta al aeropuerto de Ámsterdam o tendría que suspender el vuelo, con la consecuente cadena de retrasos que eso conllevaría. Además, las condiciones atmosféricas del aeropuerto estaban empeorando rápidamente, lo que podría provocar que el vuelo fuese retrasado aún más. El llamado «síndrome de la prisa» pudo afectar al piloto neerlandés, que inició su recorrido por la pista sin tener autorización para el despegue: tan solo tenía confirmación de la ruta a seguir una vez que despegara. Esta es la causa directa del accidente y, a pesar de las reticencias neerlandesas, es la versión aceptada y corroborada por las cajas negras de ambos aparatos.

Otro factor contribuyente fueron las transmisiones de la torre indicando al KLM que aguardase y la del Pan Am informando que aún se encontraba rodando por la pista de despegue, que no fueron recibidas en la cabina del KLM con claridad; ambas comunicaciones se realizaron a la vez, por azar, por lo que se produjo una interferencia. El lenguaje técnico empleado en la comunicación entre las tres partes tampoco fue adecuado. Por ejemplo, el copiloto neerlandés no utilizó el lenguaje adecuado para indicar que se disponían a despegar y el controlador aéreo añadió un OK justo antes de pedir al vuelo de KLM que aguardase la autorización para el despegue.

El Pan Am tampoco abandonó la pista en la tercera intersección, como se le había indicado. De hecho, viendo como era la entrada a la tercera intersección era fácil abandonar la pista para un Fokker F-27, con los que operaban habitualmente Iberia y Aviaco el tráfico interinsular en aquel entonces, pero no para un Jumbo. Los pilotos de Pan Am pensaron que las grandes dimensiones hacían imposible la maniobra de entrada a la tercera intersección. El avión habría debido, de hecho, consultar con la torre, pero esto no pudo haber sido una causa directa del accidente, ya que nunca notificó que la pista estuviese despejada e informó dos veces que se encontraba rodando por ella. La excesiva congestión del tráfico aéreo también influyó, obligando a la torre a tomar medidas que, aunque reglamentarias, en otras ocasiones pueden ser consideradas como potencialmente peligrosas, tal como tener aviones rodando por la pista de despegue uno detrás de otro sin suficiente distancia de seguridad.

Pista del aeropuerto en 2005.

También hay que tener en cuenta que el vuelo de Tenerife a Gran Canaria es solamente de 25 minutos de duración, por lo que el repostar 55 500 litros de combustible hizo que el fuego producido más tarde fuese aún mayor, y hace suponer que el capitán del vuelo KLM 4805 se proponía ahorrarse más demoras en Gran Canaria por los problemas de tráfico aéreo. Al ser un vuelo chárter debería despegar desde el aeropuerto de Gran Canaria con destino a Ámsterdam y con esta cantidad de combustible tendría suficiente. El avión de KLM estuvo repostando aproximadamente 35 minutos, tiempo durante el cual el vuelo de la Pan Am podría haber dado la vuelta y despegar, pero el avión neerlandés le bloqueaba el acceso a la pista. Si el avión de KLM hubiera cargado solo el combustible necesario para ir a Las Palmas (no en exceso), en el momento en que tenía que levantar vuelo para esquivar al avión de Pan Am, quizá, habría logrado evitar el siniestro al tener menor peso en despegue. El avión de Pan Am, gracias a que el copiloto vio que el KLM se dirigía directo a ellos, colaboró intentando sacar el avión de la pista segundos antes del choque, aunque debido a la espesa niebla, el copiloto de Pan Am advirtió la situación aproximadamente entre 8 y 9 segundos antes del impacto, justo el momento en que también el KLM avista al avión de Pan Am. El capitán del KLM también hizo lo que había que hacer: motores a plena potencia con el fin de conseguir un despegue rápido, hasta el punto en que la cola del avión llega a raspar sobre la pista. El esfuerzo por despegar fue en vano. Los motores del KLM impactaron en el techo del Pan Am, causando la caída del mismo a varios metros de distancia.

En la investigación llevada a cabo por inspectores de los tres países principalmente implicados (España, Países Bajos y Estados Unidos) hubo unanimidad en las siguientes conclusiones principales:

  • El capitán de KLM despegó sin tener la imprescindible autorización desde la torre de control.
  • El capitán de KLM no interrumpió la maniobra de despegue, aunque desde el avión de Pan Am se informó que seguían en la pista.
  • El capitán de KLM contestó con un rotundo «sí» a su ingeniero cuando este le preguntaba (casi afirmando) si el avión de Pan Am había dejado ya la pista.
  • El capitán de KLM parecía no tener clara la situación. Una vez terminada la maniobra de backtracking (giro de 180°) para situarse en posición de despegue, metió gases sin tener la autorización de ATC. El copiloto le dijo: «Espera, aún no tenemos la autorización ATC». Seguidamente, el comandante paró el avión y le dijo: «Sí, ya lo sé; pídela».
  • El avión de Pan Am siguió rodando hasta la salida C4 en lugar de tomar la C3, como se le había indicado desde la torre de control.

Consecuencias

Debido al accidente, y tras la apertura del aeropuerto de Tenerife Sur en 1978 (que ya se encontraba en construcción en el momento del accidente), se prohibió inmediatamente a todos los vuelos internacionales desde o hacia la isla de Tenerife seguir operando en Los Rodeos. El peligroso aeropuerto fue siendo clausurado progresivamente para los vuelos domésticos interregionales. Así, a partir del 7 de noviembre de 1980, solo se permitieron en Los Rodeos vuelos con origen o destino en algún punto del archipiélago canario. El número de pasajeros en Tenerife Norte decayó claramente en los años siguientes hasta la entrada en servicio de Binter Canarias y otras compañías regionales (Islas Airways) que la siguieron. Tras numerosas y costosas ampliaciones y mejoras, el aeropuerto fue reabierto para vuelos domésticos interregionales e internacionales el 14 de febrero de 2003. Sin embargo, Los Rodeos nunca recuperará el número de vuelos y pasajeros anterior a 1978 por motivos de seguridad aérea, y ha quedado relegado como segundo aeropuerto de la isla, ya que actualmente la inmensa mayoría de conexiones aéreas con la isla se realiza a través de Tenerife Sur.

Como consecuencia del accidente, se produjo una serie de cambios en cuanto a las regulaciones internacionales. Desde entonces, todas las torres de control y pilotos deben usar frases comunes en inglés y se comenzaron a instalar en los aviones sistemas de navegación automáticos para niebla. También se cambiaron los procedimientos de cabina, haciendo hincapié en a la toma de decisiones conjuntas entre los miembros de la tripulación. En concreto, está terminantemente prohibido decir «despegue» («take-off») en frases que no sean precisamente las del despegue. En su lugar se deberá hablar de «salida» («departure»).

Los radares de tierra, inexistentes en pistas que no fueran de grandes ciudades como Londres, Nueva York o París, también empezaron a ser incluidos en la mayoría de aeropuertos, aunque hasta la primera mitad de la década de los 80 no serían mayoritarios; su ausencia algunos años después en otros aeródromos sería factor contribuyente en otros desastres aéreos.

Fueron creadas varias organizaciones, tales como la Stichting Nabestaanden Slachtoffers Tenerife (Fundación de familiares de las víctimas del accidente de Tenerife), que fue creada a principios de 2002. Esta organización sin ánimo de lucro se dedica plenamente a su objetivo central: contribuir de forma substancial al recuerdo y superación del accidente aéreo del 27 de marzo de 1977 en Tenerife; expresamente, no se ocupa de las cuestiones de culpabilidad fácticas y jurídicas, por lo que no concentra su atención en la imputabilidad y la responsabilidad.

Filmografía

Se han hecho programas especiales sobre el accidente:

  • La edición del programa de televisión español Informe Semanal de La 1 de TVE cuando se cumplieron 20 años del accidente.
  • Se le dedicó el episodio 12 de la primera temporada en la serie estadounidense-británica Segundos catastróficos de National Geographic Channel, titulado “Collision on the Runway” (en español “Colisión en la pista” o “Tragedia en el aeropuerto de Tenerife”).14
  • El episodio 3 de la temporada 16 de la serie canadiense Mayday: catástrofes aéreas de National Geographic Channel, titulado “Desastre en Tenerife” (Hispanoamérica) o “Accidente en Los Rodeos” (España) retrata el accidente y todo el proceso de investigación.
    • Este accidente también se representa en un especial de 90 minutos que no se considera como parte de la serie, titulado “Crash of the Century”, estrenado en 2005. Escenas del especial se usaron en algunos episodios posteriores cada vez que se menciona el accidente. Cabe mencionar que no está disponible en países hispanohablantes.
  • Breve mención del accidente en el capítulo 1 de la tercera temporada de la serie estadounidense Breaking Bad.
  • Breve mención del accidente en el episodio 6 de la primera temporada de la serie estadounidense Justified.
  • Breve mención del accidente en el episodio 2269 (Temporada 10) de la serie española Amar es para siempre en Antena 3 TV.

Literatura

Existen diversos libros que mencionan o se centran en este accidente aéreo:

  • Los Rodeos 1977, de Rolan Galeas;
  • Catástrofe 77, el viaje interrumpido, de Juanca Romero Hasmen;
  • GCXO. 27 de marzo de 1977. Los hechos, de Moisés Sánchez Arrocha;
  • Terror At Tenerife (Terror en Tenerife), publicado por Omega Publications en 1977 y escrito por dos supervivientes, Norman Williams y George Otis;
  • Tragedia en Tenerife, de Ene Reijnoudt y Niek Fuerte;
  • Algo espantoso está a punto de ocurrir, de Pedro Carvalho;
  • Aviation English, a lingua franca for pilots and air traffic controllers, de Dominique Estival, Candace Farris y Brett Molesworth.

Monumentos conmemorativos

Memorial por las víctimas en el cementerio de Westgaarde (Ámsterdam).

Monumento Conmemorativo Internacional 27 de marzo de 1977 en Tenerife.

Tras la catástrofe se erigieron diferentes monumentos conmemorativos en memoria de las víctimas.

En 2002 se creó la Fundación de Parientes de las Víctimas del Accidente Aéreo de Los Rodeos. El 27 de marzo de 2007, treinta años después del accidente, se organizó por iniciativa de la fundación un acto de conmemoración en el Auditorio de Tenerife de Santa Cruz de Tenerife. El mismo día se inauguró en la Mesa Mota el Monumento Conmemorativo Internacional 27 de marzo de 1977. Se trata de una estructura de 18 metros de altura que tiene forma de una escalera caracol que asciende hacia el cielo. Fue diseñado por el artista holandés Rudi van de Wint.

Otros accidentes en Los Rodeos

A pesar de que el accidente del 27 de marzo de 1977 es el más conocido, en el aeropuerto de Los Rodeos se han registrado otros dos accidentes aéreos en los que perdieron la vida un considerable número de personas: