Tecnología
DART La primera prueba de defensa planetaria de la historia
Artículo extraído de varios archivos de la revista de Astronáutica Eureka
Nave
Partes de DART (NASA).
DART fue lanzada el 24 de noviembre de 2021 mediante un Falcon 9 que despegó desde la base de Vandenberg (California). La sonda, construida y gestionada por el APL (Applied Physics Laboratory) de la Universidad Johns Hopkins, tenía inicialmente una masa de 610 kg, pero ha gastado cerca de 60 kg de propelente en su camino al sistema Dídimo. En concreto, la nave ha consumido 10 kg de xenón como propelente de su motor iónico NEXT-C y unos 50 kg de hidrazina que alimentan doce propulsores monopropelentes MR-103G de Aerojet Rockedtyne para el control de posición que son capaces de generar 1 newton de empuje cada uno (estos son los motores empleados en la fase final del choque). El NEXT-C (NASA Evolutionary Xenon Thruster–Commercial) ha sido desarrollado por el centro Glenn de la NASA y esta es la primera misión que se usa este motor de propulsión solar eléctrica avanzado, con un empuje variable de entre 25 y 235 milinewton. Sin embargo, el equipo de DART solo usó el NEXT-C durante unas dos horas debido a varios problemas que surgieron con el voltaje del sistema. En caso de que DART hubiese fallado su objetivo, el motor NEXT-C podría haber sido empleado para regresar al asteroide Dídimo dentro de dos años. DART tenía un cuerpo central cúbico con unas dimensiones de 1,2 x 1,3 x 1,3 metros y una envergadura de 18 metros gracias a sus paneles solares flexibles de tipo ROSA (Roll-Out Solar Arrays), con una superficie de 22 metros cuadrados y capaces de generar hasta 7,4 kilovatios de potencia. Cada panel ROSA tiene una longitud de 8,5 metros. DART es la primera sonda planetaria que emplea este tipo de paneles solares flexibles.
Elementos de DART (NASA).
La cámara DRACO (Reconnaissance and Asteroid Camera for Optical navigation) de DART está basada en la cámara LORRI de la sonda New Horizons. La cámara usa un telescopio de 20,8 centímetros de apertura y tiene un ángulo de visión de 0,29º. La cubierta protectora de DRACO fue eyectada el pasado 7 de diciembre de 2021 y su primera imagen fue un campo estelar de las constelaciones de Perseo, Tauro y Aries. En total, DRACO ha obtenido unas 150 000 imágenes para poder ser calibrada adecuadamente. Por ejemplo, el 10 de diciembre tomó una imagen del cúmulo M38 y el 27 de mayo una de la estrella Vega. El 27 de julio la cámara DRACO pudo captar el sistema Dídimo por primera vez cuando estaba a 32 millones de kilómetros del objetivo. DRACO volvió a fotografiar el asteroide binario los días 12, 13 y 22 de agosto. El 1 de julio y el 2 de agosto la cámara se empleó para probar el sistema de navegación autónoma SMART Nav con imágenes de Júpiter. Los encargados de la misión se aprovecharon de la aparición de Europa después de permanecer oculta por el disco de Júpiter para simular la detección de Dimorfo por DRACO al ser visible a medida que DART se acerque al sistema Dídimo. DRACO lleva el detector de tipo sCMOS CIS2521 de BAE, con 5 terapíxels en una matriz de 2560×2160. El ordenador de DART, denominado SBC (Single Board Computer) se encarga de procesar y enviar las imágenes. El ordenador emplea un procesador UT700 LEON3 e incluye 32 MB de memoria SRAM y 16 GB de almacenamiento flash. En las últimas tres semanas antes del choque, DART ha realizado tres maniobras para corregir su trayectoria utilizando imágenes de la cámara DRACO tomadas cada cinco horas. La última maniobra tuvo lugar apenas un día antes del choque, el 25 de septiembre.
Características de la cámara DRACO (NASA).
Cámara DRACO (NASA).
Una de las primeras imágenes de DRACO del 10 de diciembre de 2021: un campo estelar con el cúmulo M38 (NASA).
Imagen de Júpiter y sus lunas tomada por DRACO en agosto para probar el sistema SMART Nav (NASA).
Primera imagen de Dídimo captada por DRACO (un mosaico de 243 imágenes), del 27 de julio (NASA).
El otro gran protagonista del evento ha sido la pequeña sonda italiana LICIACube, encargada de grabar el choque. LICIACube (Light Italian Cubesat for Imaging of Asteroids) —recuerda que ‘Licia’ se pronuncia licha en italiano—es un cubesat 6U de 14 kg construido por la empresa Argotec para la Agencia Espacial Italiana (ASI). Sus dimensiones, una vez desplegados los paneles solares, son de 91,2 x 36,6 x 23,9 centímetros. LICIACube es la primera sonda de espacio profundo italiana. Lleva dos instrumentos, las cámaras LEIA y LUKE (se ve que a alguien de la misión le gusta Star Wars…). LEIA (LICIACube Explorer Imaging for Asteroid), es una cámara en blanco y negro con una resolución máxima de 1,38 metros por píxel a 55 kilómetros de distancia, una distancia focal de 220 milímetros y un campo de 2,06º. Por su parte, LUKE (LICIACube Unit Key Explorer), es una cámara a color con una distancia focal de 70,55 milímetros y un campo de visión de 5º, capaz de obtener imágenes de Dimorfo con una resolución máxima de 4,31 metros por píxel. Por tanto, LEIA tomará imágenes en alta resolución en blanco y negro y LUKE imágenes de mayor campo a color.
LICIACube (ASI).
Con suerte, LICIA Cube habrá obtenido un mínimo de tres imágenes del material eyectado por el impacto de DART y otras tres del hemisferio opuesto al choque. Se espera que la cámara LEIA haya captado el momento del impacto de DART contra Dimorfo y, luego, que tanto LEIA como LUKE hayan visto la evolución del material expulsado y, quizá, el nuevo cráter. Tras sobrevolar Dídimo, LICIACube habrá quedado en órbita solar, desde donde enviará las imágenes los próximos días. LICIACube tiene unas dimensiones de 36,6 x 23,9 x 11,6 centímetros plegado y 91,2 x 36,6 x 23,9 centímetros una vez desplegado. Ha sido diseñado tomando como base el cubesat Argomoon que viajará en la misión Artemisa I. LICIACube se separó de DART el pasado 11 de septiembre mediante un mecanismo de muelles. Dentro del proceso de calibración de las cámaras, el 21 de septiembre la cámara LEIA captó una imagen de la Tierra y el día 22 la cámara LUKE fotografió las Pléyades.
LICIACube (ASI).
La órbita del asteroide binario Dídimo alrededor del Sol es marcadamente elíptica, con un perihelio cercano a la órbita de la Tierra, a 150 millones de kilómetros (1 Unidad Astronómica), y un afelio a 340,5 millones de kilómetros (2,27 UA). La inclinación del plano orbital es de solo 3,4º de inclinación. Estas características permiten que Dídimo pueda ser alcanzado fácilmente —en términos de Delta-V— por una sonda lanzada desde la Tierra mientras está cerca de su perihelio.
Las Pléyades vistas por la cámara LUKE de LICIACube (ASI).
Originalmente, DART debía ser parte de la misión AIDA (Asteroid Impact and Deflection Assessment mission), realizada conjuntamente con la agencia espacial europea (ESA). La ESA se iba a encargar de suministrar la sonda AIM (Asteroid Impact Mission) para observar el impacto de DART contra Dimorfo y estudiar en detalle el cráter resultante. Lamentablemente, AIM fue cancelada por la ESA y DART se quedó sin sonda que contemplase el choque en primera fila. Posteriormente, la ESA logró sacar adelante la misión Hera, que debe despegar en 2024. Evidentemente, Hera no podrá grabar el choque de DART, pero podrá analizar en detalle el cráter y los efectos de la colisión cuando llegue a Dídimo en 2026 (la sonda, de 1050 kg, llevará además los cubesats Juventas y Milani). Ahora queda esperar a las imágenes de LICIACube y, por supuesto, de los observatorios terrestres, el Hubble y el James Webb para estudiar los efectos del choque y la naturaleza de Dimorfo y Dídimo. Sea como sea, DART ya es historia tras haber cumplido con éxito su misión.
Trayectoria de DART y órbita de Dídimo (NASA).
Misión: colisionar con un asteroide (posiblemente peligroso), y alterar su trayectoria de choque.
DART se ha volatilizado en la colisión (NASA).
Acercamiento y colisión
La primera prueba de defensa planetaria de la historia: DART choca contra el asteroide Dimorfo
Tuesday 27 September 2022 — 01:49
El asteroide Dimorfo momentos antes del choque de DART (NASA).
La NASA ha vuelto a hacer historia. El 26 de septiembre de 2022 a las 23:14 UTC la sonda DART ha chocado contra el asteroide Dimorfo, volatilizándose en el proceso y completando así la primera prueba de defensa planetaria de la Humanidad. Nuestra especie ha decidido al fin que no quiere terminar como los dinosaurios y otras tantos seres vivos extinguidos por culpa del choque caprichoso de cuerpos menores del sistema solar contra la Tierra. La sonda DART (Double Asteroid Redirection Test), de 550 kg de masa en el momento del choque, ha impactado a 21 960 km/h (6,1 km/s) contra el asteroide Dimorfo, de 163 metros de diámetro. Dimorfo (Dimorphos en inglés) es en realidad un satélite del asteroide Dídimo (Didymos), de 780 metros, de ahí que ambos objetos también reciban la denominación Dídimo A y Dídimo B, respectivamente. Esto no es una casualidad, pues la idea es que el choque de DART contra Dimorfo cambie su órbita alrededor de Dídimo, permitiendo medir con precisión la energía depositada en el proceso. Es decir, la órbita del asteroide binario 65803 Dídimo alrededor del Sol no ha cambiado tras la colisión, pero sí la de Dimorfo alrededor de su hermano mayor. El sistema Dídimo (‘gemelo’ en griego) no es actualmente una amenaza para la Tierra, motivo por el cual esta misión se considera una prueba de concepto del método de interceptor cinético para un futuro sistema de defensa planetaria, un sistema que ahora mismo no existe. Por otro lado, conviene recordar que DART no es la primera misión que chocará a alta velocidad contra un cuerpo menor del sistema solar, ya que este honor le corresponde a la subsonda de la misión Deep Impact de la NASA, que se estrelló el 4 de julio de 2005 contra el cometa Tempel 1.
Dídimo (a la izquierda) y Dimorfo en la última imagen que se pudo ver de ambos objetos en el mismo campo (NASA).
Los momentos finales de la aproximación y el choque fueron captados por la cámara DRACO, que es el único instrumento de la sonda. De hecho, las imágenes de DRACO han servido para que la propia sonda pueda fijar el objetivo y maniobrar en consecuencia, ya que el error en la órbita de Dídimo y la posición de Dimorfo hacen imposible planificar la colisión con antelación desde la Tierra. DART ha usado el sistema SMART Nav (Small-body Maneuvering Autonomous Real-Time Navigation) para guiar la nave hasta el asteroide mediante las imágenes de esta cámara. Las imágenes se han enviado a la Tierra en tiempo real al ritmo de una por segundo hasta el momento del impacto usando la antena de alta ganancia del vehículo, de diseño RLSA (Radial Line Slot Array). La cámara DRACO solo fue capaz de resolver Dimorfos como un objeto independiente unas cuatro horas antes del impacto. Una hora antes ya fue capaz de resolverlo con una extensión de 1,4 píxeles. Según las previsiones, la imagen final se obtuvo a pocos metros de distancia de Dimorfo. Aunque toda la secuencia fue automática, los controladores de la misión tenían capacidad de intervenir en caso necesario hasta unos minutos antes del choque, una limitación impuesta por el retraso en las comunicaciones debido a la distancia de Dídimo con respecto a la Tierra (en estos momentos, de unos 11,4 millones de kilómetros). El equipo de DART cree que la sonda impacto a tan solo 70 metros del punto previsto.
Antepenúltima imagen de la superficie de Dímorfo (NASA).
Última imagen de DART antes de suicidarse (NASA).
Dimorfo ha resultado ser, aparentemente, un objeto de tipo ‘pila de escombros’ como los asteroides Ryugu y Bennu, visitados recientemente por las misiones Hayabusa 2 y OSIRIS-REx. A pesar de que, por motivos obvios, DART no pudo grabar su propio impacto, se espera que el pequeño satélite italiano LICIACube, que se separó de DART el pasado 11 de septiembre, sí pudiera hacerlo. Con suerte, las cámaras LEIA y LUKE de LICIACube grabaron el choque de DART contra Dimorfo y expulsión de material provocado por este (el momento del impacto solo fue grabado por la cámara LEIA). LICIACube sobrevoló Dimorfo 165 segundos después del impacto a una distancia mínima de unos 55 kilómetros para intentar fotografiar el cráter generado DART. No obstante, las imágenes de LICIACube, con una resolución máxima de entre 5 y 2 metros por píxel, tardarán varios días en llegar a la Tierra usando la Red de Espacio Profundo (DSN) de la NASA (se espera, eso sí, que la primera llegue a lo largo de hoy). Varios observatorios terrestres, los telescopios espaciales Hubble y James Webb, así como la sonda Lucy, también observaron el choque a millones de kilómetros (visto desde la Tierra, Dídimo tiene una magnitud de 14-15).
DART y Dimorfo a escala (NASA).
La NASA estima que serán necesarios unos dos meses para determinar con precisión el cambio de periodo orbital de Dimorfo debido al impacto usando observaciones de telescopios terrestres y espaciales. Dimorfo orbita Dídimo a una distancia de 1,2 kilómetros, con un periodo de 11 horas y 55 minutos, por lo que su velocidad orbital es de tan solo 17 cm/s. El periodo de rotación de Dimorfo alrededor de su eje se supone que será similar al de traslación por las fuerzas de marea —el de Dídimo es de 2,26 horas—, pero bien podría ser diferente. De ser así, los efectos del impacto de DART también serán muy distintos. La masa de Dimorfo se estima en unas 5 millones de toneladas y el impacto de DART apenas modificará su velocidad en 1 mm/s, aproximadamente. Este cambio de velocidad es minúsculo, pero cambiará el periodo orbital de Dimorfo en un 1% más o menos. Si Dimorfo orbitase directamente el Sol, los efectos del impacto apenas habrían cambiado su periodo alrededor de nuestra estrella en un 0,000006%.
Secuencia planeada de imágenes antes del choque (NASA).
Resumen de las fases de la misión (NASA).
El choque de DART debe haber cambiado el periodo orbital de Dimorfo en un 1% más o menos (NASA).
Confirmado: DART ha desviado al asteroide Dimorphos
El tiempo que Dimorphos tarda en recorrer su órbita se ha acortado 32 minutos tras el impacto
11-10-2022 | 20:42 H
La NASA ha confirmado que DART ha logrado desviar al asteroide Dimorphos con su colisión. Aunque, es posible que esta noticia te parezca desactualizada. ¿No se había confirmado ya, acaso? En cierto modo sí, teníamos indicios, pero por otro lado no, de hecho, ni siquiera se ha confirmado del todo, pero ahora tenemos un nuevo dato que parece apuntar en la dirección correcta. Hasta ahora teníamos imágenes de la colisión y del resultado del impacto, con el material eyectado en torno a Dimorphos e incluso una cola de partículas, como si fuera un cometa, pero lo que acaba de confirmarse es algo diferente. Tras medir el tiempo que tarda Dimorphos en orbitar a su asteroide Didymos, parece que su periodo se ha acortado en 32 minutos. Hasta hace poco sabíamos que su periodo de 12 horas se había recortado un poco, pero no estaba claro cuánto. Ahora, Bill Nelson, director de la NASA lo ha confirmado en rueda de prensa.
Con DART, lo que realmente queríamos era comprobar si podíamos desviar determinados asteroides para así protegernos en un futuro de los potenciales peligros astronómicos que nos acechen. Esa era la idea, así de simple y así de compleja. Aparentemente sacada de una película de ciencia ficción, pero tan seria y rigurosa como la NASA suele ser. Todavía se están estudiando los resultados de la misión, pero, mientras tanto, va llegando información sorpresa. Detalles predecibles pero que la prensa no había advertido hasta ahora y que, lógicamente, inquietan al público.
Antes de seguir, conviene recordar algunos detalles básicos sobre la misión DART. Porque desviar un asteroide impactando una sonda es como intentar mover un coche disparándole bolas de billar, hacía falta una buena estrategia. El objetivo elegido fue el asteroide Dimorphos, que da vueltas en torno a uno mayor llamado Didymos. Si el impacto conseguía ralentizar mínimamente a Dimorphos, este aproximaría su órbita a Didymos y cambiaría su trayectoria, como si fuera una reacción en cadena. La otra clave era la velocidad de la sonda, que colisionó a 22.530 kilómetros por hora mientras que Dimorphos viajaba a 0,72 kilómetros por hora. De ese modo se compensaba algo su diferencia de peso, entre los 610 kilos de la sonda y los 5.000 millones de kilos de Dimorphos. A falta de una confirmación más precisa, parece que el impacto logró su objetivo y redujo en unos minutos las 12 horas que tarda Dimorphos en rodear a Didymnos.
Los 32 minutos de DART: por primera vez la humanidad cambia la órbita de un asteroide.
Los 32 minutos de DART: por primera vez la humanidad cambia la órbita de un asteroide
12 October 2022 — 01:07
32 minutos. Esa es la diferencia en el periodo del asteroide Dimorfo provocada por el choque de la sonda DART a 6,1 km/s. Por primera vez, la humanidad ha logrado cambiar de forma apreciable la órbita de un asteroide. Bien es cierto que Dimorfo no suponía ninguna amenaza para la Tierra y que giraba alrededor del asteroide Dídimo, pero lo importante es que la órbita ha sido modificada significativamente, de tal modo que hemos sido capaces de medir los cambios desde observatorios terrestres. Dimorfo orbitaba alrededor de Dídimo con un periodo de 11 horas y 55 minutos. Tras la colisión de DART el pasado 26 de septiembre a las 23:14 UTC, ahora lo hace con un periodo de 11 horas y 23 minutos, con un error de 2 minutos. Es decir, un cambio en el periodo dl 4%. Los modelos, muy poco precisos al desconocerse la composición y estructura interna de Dimorfo, predecían un cambio de entre 73 segundos y unas pocas decenas de minutos, por lo que el choque de DART se sitúa en la parte más alta de los posibles resultados.
La nube de fragmentos generada por el choque de DART contra Dimorfo vista por el satélite italiano LICIACube. Dídimo aparece pegado a Dimorfo abajo a la derecha (ASI/NASA/APL).
Cuatro telescopios terrestres (Observatorio de Las Campanas y el telescopio danés en el observatorio de La Silla, ambos en Chile, así como la red del observatorio de Las Cumbres en Chile y Sudáfrica) se han usado para determinar el nuevo periodo de Dimorfo, empleando los eclipses mutuos entre los dos cuerpos del asteroide doble como hitos. También se ha usado los radaiotelescopios de Goldstone (California) y Green Bank (Virginia Occidental) para determinar la posición de Dimorfo mediante radar, confirmando la variación en el periodo. El día del impacto, el descubrimiento de que Dimorfo era un asteroide de tipo pila de escombros hizo pensar que los efectos del choque no serían muy marcados (los impactos en este tipo de asteroides son menos efectivos que en asteroides sólidos). Aunque todavía no se ha analizado a fondo la dinámica del choque, que depende de muchos factores (densidad, cohesión del material, etc.), es posible que los llamativos e impresionantes chorros de material eyectado hayan servido para «propulsar» al asteroide en la dirección contraria al sentido de avance orbital.
Las observaciones de telescopios terrestres han permitido medir el cambio en el periodo de Dimorfo, especialmente gracias al uso de los eclipses (NASA/Johns Hopkins APL/Astronomical Institute of the Academy of Sciences of the Czech Republic/Lowell Observatory/JPL/Las Cumbres Observatory/Las Campanas Observatory/European Southern Observatory Danish (1.54-m) telescope/University of Edinburgh/The Open University/Universidad Católica de la Santísima Concepción/Seoul National Observatory/Universidad de Antofagasta/Universität Hamburg/Northern Arizona University).
Dídimo y Dimorfo vistos mediante radar desde la Tierra. El círculo verde muestra la posición actual de Dimorfo y el azul la posición en la que debería estar de no haber chocado DART contra él ( NASA/Johns Hopkins APL/JPL/NASA JPL Goldstone Planetary Radar/National Science Foundation’s Green Bank Observatory).
La formación de estos chorros, captados por el pequeño satélite italiano LICIACube (Light Italian CubeSat for Imaging of Asteroids), es un proceso que no se entiende muy bien, pues cabría esperar que un impacto como el de DART generase una nube homogénea de fragmentos. No obstante, el proyectil lanzado por Hayabusa 2 contra Ryugu produjo unos chorros parecidos, aunque a mucha menor escala. Parece ser que estos chorros se forman no solo en los asteroides, sino también en cualquier mundo sin atmósfera, como por ejemplo la Luna o Mercurio, y podrían estar detrás de los característicos rayos que emanan de los cráteres más jóvenes.
Dídimo (izquierda) y Dimorfo con la nube de escombros del choque vistos por la cámara LUKE de LICIACube segundos antes de pasar a la mínima distancia del conjunto (LICIACube está ahora en órbita solar) (ASI/NASA).
La nube de escombros vista por LICIACube después de pasar por el punto más cercano al sistema (ASI/NASA).
Sea como sea, las imágenes de LICIACube serán determinantes para entender el impacto de DART hasta que la sonda europea Hera llegue a Dídimo para analizar en alta resolución el cráter creado por el choque. Esta nube de material ha servido para convertir al asteroide Dídimo en un pequeño cometa, con una cola de polvo que se extiende más de diez mil kilómetros por efecto de la presión de radiación de la luz solar. La dinámica de esta cola, que presenta una estructura doble, también es toda una sorpresa para los investigadores. La cola, además de por telescopios terrestres, ha sido observada por observatorios espaciales como el Hubble y el James Webb. Gracias a que la magnitud en el cambio del periodo ha sido muy alta, la NASA ha podido confirmar el éxito del choque de DART pocas semanas después del suceso, aunque antes del 26 había anunciado que podría tardar meses en determinar la nueva órbita.
Vista de la nube de fragmentos por el Hubble y el James Webb el 8 de octubre (NASA/ESA/STScI).
Por otro lado, conviene recordar que no es la primera vez que la humanidad cambia la órbita de un objeto astronómico, pues ese es un mérito que podríamos conceder a la misión Deep Impact o, ya que estamos, a cualquier sonda que haya realizado una maniobra de asistencia gravitatoria. Pero sí es la primera vez que se cambia la órbita de un objeto de forma apreciable y, además, podemos medir ese cambio con precisión. Pero, ¿serviría una misión como DART para desviar la órbita de un asteroide peligroso que amenazase la Tierra? Hay que tener en cuenta que Dimorfo es un pequeño asteroide de 163 metros de diámetro y que DART apenas tenía 550 kg en el momento del choque. El principal objetivo de DART no era tanto el cambio de órbita en sí —que depende de muchos parámetros desconocidos— como verificar el funcionamiento del sistema de guiado autónomo de una sonda mediante el uso de imágenes en tiempo real. Un cambio del 4% en el periodo de un pequeño asteroide que orbita alrededor de otro no significa que una sonda similar pueda cambiar la órbita de un asteroide peligroso alrededor del Sol en la misma magnitud, pero sin duda deja la puerta abierta al desarrollo de un sistema de defensa planetaria con interceptores cinéticos (veremos qué tal le va a la misión china de 2026). No olvidemos que los asteroides más peligrosos no son los más grandes, que están prácticamente todos catalogados, sino los que tienen un tamaño de entre 200 y 500 metros, pues existen todavía muchos de este rango de tamaños sin descubrir.
Cometas en el desierto de Sud-África
Cometas en el desierto de Sud-África
Hallan cometas del desierto de la Edad de Piedra en el sur de África
Un equipo de investigadores del Instituto de Paleo-Investigación de la Universidad de Johannesburgo ha encontrado múltiples casos de cometas del desierto en una parte de Sudáfrica. En su artículo publicado en la revista Archaeological and Anthropological Sciences, el grupo describe su estudio de antiguas “pistas” de caza construidas para acorralar animales salvajes.
Investigaciones anteriores han demostrado que los antiguos cazadores-recolectores que vivieron durante el Neolítico y la Edad del Bronce construyeron lo que se ha llegado a describir como cometas del desierto, esto es, corrales destinados a facilitar la captura de animales salvajes. Las cometas se hicieron apilando piedras para formar dos pares de muros uno frente al otro, y que se unen entre sí en un punto o vértice formando una trampa. Las paredes, pues, al converger confinan en una especie de corral a los animales que se desea capturar.
Un estudio previo de cometas en el Medio Oriente, en lugares como Israel, Jordania y Siria, ha demostrado que los muros suelen tener casi un metro de ancho y hasta un metro y medio de alto. La función de las cometas implica perseguir a los animales dentro de las mismas hasta que llegan al corral de confinamiento en el vértice. Luego, a los animales pueden se les puede dar muerte con armas básicas. Las cometas se usaban para capturar cerdos, ciervos y bueyes, etc. En este nuevo esfuerzo, los investigadores han encontrado varias de estas cometas cerca del pueblo de Keimoes, en Sudáfrica.
Estos dispositivos de caza se han encontrado en múltiples ubicaciones al estudiar el paisaje sudafricano mediante la utilización de un equipo LiDAR desde un avión durante los años 2016 a 2019. Los investigadores también encontraron que sus antiguos constructores a veces habían realizado varias cometas cerca unas de otras, cada una con el objetivo de capturar diferentes animales.
Su descubrimiento marca el uso más meridional de cometas en el África subsahariana. Una inspección minuciosa de las mismas muestra que habían sido construidas mucho más recientemente que las cometas encontradas en el Medio Oriente, quizás tan recientemente como hace 2000 años. Los investigadores también sugieren que la estructura de tales cometas y las formas en que fueron utilizadas por los pueblos antiguos demuestran una comprensión clara del comportamiento animal, incluidos los patrones migratorios. También estaban convenientemente situadas: todas las cometas se construyeron a 2 kilómetros de los recipientes de agua y permitían correr cuesta abajo dada la leve inclinación de las pendientes.
Fuente: phys.org | 25 de mayo de 2021
La gran mayoría se encuentran en el parque nacional Karoo en Sudáfrica.
Karoo
El Karoo (del khoikhoi, karusa: estéril, seco) es una meseta semidesértica situada entre el sur de Sudáfrica y el sur de Namibia. Tiene un área de más de 400 000 kilómetros cuadrados.
Fue explorada por el alemán Heinrich Lichtenstein, durante el periodo comprendido entre 1803 y 1806, llevando a cabo muchas confirmaciones astronómicas y describiendo con precisión el Karoo. Después del descubrimiento de oro en Transvaal, se dio un nuevo impulso al estudio de la geología de la zona y se amplió su geografía.
El Karoo es muy fértil en aquellas zonas en que está irrigado. Se cultivan pastos para el ganado, cítricos y cereales.
Este nombre se aplica también a la vegetación de tipo matorral que se encuentra en las regiones semiáridas.
Se divide en el Pequeño Karoo, el Gran Karoo y el Karoo del Norte.
Karoo
(Karusa)
Vista de satélite de la región (la línea verde distingue dos ecorregiones, el “Succulent Karoo” y la “Nama Karoo”
Cometa del Desierto (imagen ilustrativa). Crédito: Captura Google Earth
Las cometas del desierto eran unas estructuras o muros de piedra construidos en forma de V, que conducían a los animales a un punto donde se abría un foso o se elevaba en torno un recinto desde donde ya se podía matar a la presa sin dificultad.
La presencia de estas construcciones en la zona de Keimoes, en Sudáfrica, demuestra que «los cazadores-recolectores de las regiones áridas del sur de África modificaron intencionadamente su paisaje para optimizar la recolección de ungulados como la gacela migratoria, en este caso, la gacela saltarina de El Cabo, adaptada al desierto», sostienen los autores del estudio.
«Además, descubrimos que el de las cometas de Keimoes probablemente era un paisaje interconectado complejo, con patrones dinámicos del uso de la tierra por parte de los humanos, entrelazados con conceptos de custodia hereditaria a través de las generaciones», agregaron.
En un estudio publicado en la revista Archaeological and Anthropological Sciences, los científicos presentaron su análisis de las recién descubiertas cometas del desierto, como se conocen esas trampas de cazar encontradas previamente en zonas similares de Oriente Próximo, y señalaron que son muy similares a las del desierto de Néguev, situado al sur de Israel.
Una nueva investigación ha confirmado que las antiguas estructuras de piedra descubiertas en Arabia, Jordania, Kazajistán y Armenia, conocidas como cometas del desierto, eran enormes y sofisticadas trampas para cazar animales en masa, diseñadas por humanos del Neolítico hace unos 5.000 años.
Una exhaustiva investigación ha arrojado nueva luz sobre los orígenes y evolución de una serie de antiguas estructuras de piedra, conocidas como cometas del desierto, descubiertas hace un siglo en Arabia Saudita y Jordania. Posteriormente también se han encontrado en Kazajstán, Armenia y Sudáfrica.
Solo en Arabia Saudita, que hace 20 años había descubierto entre 700 y 800 cometas del desierto, en la actualidad se han identificado al menos 6.500, y se descubren otras nuevas cada cierto tiempo.
Las cometas del desierto de Sudáfrica, situadas en la zona de Keimoes, se dieron a conocer el año pasado en un artículo publicado en la revista Archaeological and Anthropological Sciences y se cree fueron construidas hace solo 2.000 años.
Los autores de esta investigación señalan que las de Sudáfrica son muy similares a las descubiertas en el desierto de Néguev, situado al sur de Israel, y por extensión podría decirse también que a las de Yemen o Siria, que figuran también en este inventario.
Fotografías ortográficas aéreas de los emplazamientos de cometas en Keimoes con las estructuras individuales resaltadas en negro.
Representación esquemática de un embudo de cometa y las unidades morfométricas medidas en el
estudio publicado.
Mapa Beato San Andrés del Arroyo
Mapa Beato San Andrés del Arroyo
Sus principales fuentes son las etimologías de San Isidoro de Sevilla y su visión del mundo, Ptolomeo y las Sagradas Escrituras, el Génesis, que describe una tierra plana sobre la que se eleva una bóveda celeste que aloja al sol y la luna. Beato San Andrés del Arroyo. S. XIII
- Referencia: Bibliothèque Nationale de France (Nouv. acq. lat. 2290).
- Dimensiones: 300 x 457mm.
- 167 folios de pergamino. escritos en letra carolina.
- 69 miniaturas decoradas con oro y plata.
Este Beato y el de Las Huelgas son los dos únicos que proceden de monasterios femeninos, ambos cistercienses, y se da la coincidencia de que son también considerados como los más tardíos. No incluye ninguna información sobre su scriporium de origen ni sobre sus autores, aunque por sus similitudes con el Beato de San Pedro de Cardeña, parece obra de este monasterio. Lo que resulta indudable es que se trata de una obra plenamente románica, que se puede datar hacia el año 1220 y que fue creada en el entorno castellano-leones, aunque con importantes influencias europeas, que se reflejan no sólo en el estilo de sus imágenes, sino también en su iconografía.
Se trata de uno de los últimos beatos, y uno de los más suntuosos, con gran cantidad de oro, plata y profusión del uso del lapislázuli. Debido a la importancia y riqueza de esta obra, se cree posible que fuera un encargo de Fernando III el Santo para donarlo al monasterio cisterciense femenino de San Andrés de Arroyo, fundado por rey Alfonso VIII y su esposa Leonor de Plantagenet en 1181, como monasterio dependiente de Santa María la Real de Las Huelgas de Burgos. Resulta significativa la coincidencia de los beatos de estos dos monasterios, ambos de la misma época, posiblemente creados en el mismo scriptorium, de la misma familia -la IIb- y ricamente decorados, aunque las características de sus imágenes tienen diferencias significativas, mucho más románico y europeo el de Arroyo.
El manuscrito permaneció en San Andrés de Arroyo hasta la desamortización de Mendizábal en 1836. Posteriormente, en 1882, fue adquirido por la Biblioteca Nacional de Francia, en París, donde se conserva en la actualidad.
Descripción
Este manuscrito está encuadrado dentro del último grupo de copias del Comentario al Apocalipsis de Beato de Liébana, creadas a finales del tercio del siglo XII y comienzos del XIII, fase de la que conocemos al menos diez beatos, de ellos ocho iluminados de los que tres, los de Lorvao, Arroyo y Las Huelgas, fueron encargados para monasterios cistercienses, así como los dos no ilustrados de Poblet y Alcovaça.
A pesar de que en él se respeta la estructura de los beatos mozárabes de siglos anteriores, no hay ninguna duda que en el de San Andrés del Arroyo nos encontramos ante una obra románica, posiblemente el beato más representativo de este estilo en España, hasta el punto de que algunas de sus imágenes, como las dedicadas al Juicio Final, tienen una gran semejanza con la decoración de los algunos pórticos románicos españoles del siglo XIII.
En sus 69 miniaturas, en las que domina el azul del lapislázuli y la ornamentación en oro y plata, se refleja no sólo la personalidad de un artista que, a pesar de seguir fielmente la tradición de la familia IIb, incluso con algunas imágenes que parecen indicar que también conocía la familia I, se separa definitivamente de la tradición artística mozárabe, para presentarnos una figuración totalmente enmarcada en la imaginería románica.
En ellas también destaca su gusto por el detalle presentando, a diferencia de lo habitual en los demás beatos, las figuras personalizadas con ropajes que corresponden a los representantes de los distintos estamentos sociales de su época: reyes, obispos, caballeros, monjes, artesanos y ciudadanos en general. Este interés por el detalle también se manifiesta claramente en la forma de representar las historias, que se esfuerza por describir en sus mínimos detalles. Por ejemplo, es el único beato de su familia que ilustra en «El incendio de Babilonia» la huida de sus habitantes, presentando incluso algunos que están saliendo por la puerta de la ciudad dentro de la que se ven las llamas del incendio.
En este Beato, el de datación más tardía de todos los que han llegado hasta nosotros si exceptuamos el pequeño fragmento del Beato de México, nos volvemos a encontrar 300 años después del comienzo de la saga de las copias del Comentario al Apocalipsis, los rasgos que consideramos más significativos de toda la Miniatura Altomedieval Española: por un lado un profundo respeto al contenido, la estructura y el mensaje del original del siglo VIII, y por el otro una sucesiva actualización del estilo de sus imágenes, basado en las múltiples influencias previas y las que van apareciendo a lo largo de más de tres siglos, pero siempre sobre la base de una gran libertad para el artista, que le permite expresarse de acuerdo con su personalidad, que se convierte en el gran elemento diferenciador de las diferentes copias.
En efecto, a pesar de mantener semejanzas estilísticas con otras obras del scriptorium de San Pedro de Cardeña, este beato se diferencia claramente de las dos últimas obras conocidas de este monasterio. Existe una enorme diferencia en el espíritu de su autor respecto a los anteriores, que se refleja en una modernidad que le permite trasladar todo el mensaje de Beato, utilizando ya sin limitaciones todas las novedades que aporta la expresión artística románica, incluyendo elementos iconográficos europeos no aparecen hasta este manuscrito en la miniatura española. Se podría llegar a la conclusión que el Beato de Arroyo es un cierre de oro de la tradición de los beatos españoles, basada en la fidelidad al mensaje y la libertad artística.
El Beato de San Andrés de Arroyo presenta un gran número de novedades debidas muy posiblemente a la interpretación personal que el artista debió de dar a sus modelos. Uno de los rasgos más personales de este miniaturista es la sustitución de los personajes impersonales que desfilan generalmente en los demás Beatos por personajes reales, de la época que se llevó a cabo esta copia. Es posible que con ello se pretendiese recalcar la actualidad del mensaje del Comentario al considerarlo un libro de alcance universal cuyo contenido es válido para los cristianos de todas las épocas. Su estilo está próximo al del Beato de San Pedro de Cardeña, pero ignoramos por el momento el scriptorium en el que fue miniado el manuscrito, ya que no parece probable que haya sido el de San Andrés de Arroyo.
Saber más: https://www.cafedelobos.com/simbolos-en-los-manuscritos-iluminados-de-la-edad-media/
Mapamundi de Al-Idrisi
Mapamundi de Al-Idrisi
Nacimiento::c. 1100; Ceuta durante la dominación musulmana (Sultanato benimerín) o Mazara del Vallo (Italia)
Fallecimiento: c. 1166 o c. 1175 Sicilia (Italia)
Religión: Islam
Ocupación: Cartógrafo, geógrafo, egiptólogo, historiador, botánico y escritor
Área: Cartografía
Obras notables: Kitab Ruyar
Abū Abd Allāh Muhammad al-Idrīsī (1100–1165 o 1166; en árabe: أبو عبد اللّه محمد الإدريسي), Al-Idrisi o El Edrisi (también conocido como El Árabe de Nubia),1 fue un cartógrafo, geógrafo y viajero. Nació en el Imperio almorávid del siglo XII, vivió y desarrolló la mayor parte de su obra en la corte normanda de Roger II de Sicilia, establecida en Palermo.
Biografía
Nacido en Ceuta (en árabe مضيق جبل طارق, Mḍīq Ŷabal Ṭāriq), cuando este puerto del estrecho de Gibraltar pertenecía al Imperio almorávide, de familia noble de hammudíes de Málaga y el rey Idris II. Su familia abandonó Málaga al caer esta en manos del reino de Granada en 1057. Educado en Ceuta, se trasladó después a Córdoba, ciudad que describe con minuciosidad en su obra de geografía. En fecha indeterminada fue invitado por Roger II de Sicilia, rey normando establecido en la isla de Sicilia, para el que se supone que cartografió una esfera celeste y un disco representando el mundo conocido de su tiempo, ambas en plata.
En 1154, Al-Idrisi confeccionó un gran mapamundi orientado en sentido inverso al utilizado actualmente (el norte abajo y el sur arriba), conocido como la Tabula Rogeriana, acompañado por un libro, denominado Geografía. El rey siciliano dio a estas obras el nombre conjunto de Nuzhat al-Mushtak, aunque en la obra de Al-Idrisi aparecen mencionadas como Kitab Ruyar (“El Libro de Roger”).
Se le atribuye también la elaboración de una segunda edición ampliada, realizada en 1161, con el título de Los jardines de la humanidad y el entretenimiento del alma, pero todas sus copias se perdieron. Una versión abreviada de esta edición, llamada Jardín de los Gozos, aunque más conocida como Pequeño Idrisi, se publicó en 1192. Sin embargo, no se tienen pruebas fehacientes de su autoría.
Además de estas dos obras geográficas, Al-Idrisi redactó una enciclopedia de farmacología, llamada Kitāb al-ğāmi’ li-ṣifāt aštāt an-nabāt wa-ḍurūb anwā’ al-mufradāt (“Libro compendio de la descripción de diferentes plantas y las diversas especies de simples medicinales”).
Fruto de su viaje por España fue la obra Descripcion de España de Xerif Aledris, conocido por el Nubiense, impresa en 1799.2
Libro de Roger
Mapamundi perteneciente a la Tabula Rogeriana. Nótese que el sur aparece en la parte superior del mapa.
El Libro de Roger o Kitab Ruyar, que muestra el mundo dividido en siete regiones climáticas, facilita las distancias entre las ciudades principales y describe las costumbres, las personas, productos y clima del mundo conocido. No es una fuente histórica perfecta, ya que Al-Idrisi, seguía la costumbre de aquella época y de siglos posteriores y se basó en otras fuentes. Por ejemplo, combinó la descripción de Polonia con la del territorio de la República Checa, como “un país rodeado por montañas”.
La principal inspiración de Al-Idrisi fueron dos geógrafos de la era preislámica: Paulo Orosio, un hispano cuya historia popular, escrita en el siglo V, incluía un volumen de geografía descriptiva, y Claudio Ptolomeo, el mayor de los geógrafos clásicos, cuya Geographia, escrita en el siglo II, se había perdido totalmente para Europa, pero se había conservado en el mundo musulmán en una traducción árabe. Luego se daría a conocer nuevamente tras la traducción al latín por Jacobus Angelus entre 1405 y 1410.
Su método de trabajo, aparte de la visita directa a los lugares descritos, fue tras el examen en detalle de la distribución geográfica de las obras reunidas por el Rey de Sicilia. Esta isla del mar Mediterráneo central, enclave comercial por excelencia, constituía un excelente punto de partida para la investigación. Durante años cada vez que un buque atracaba en Palermo, Mesina, Catania o Siracusa se interrogaba a su tripulación y pasajeros acerca de los lugares que habían visitado: ¿Cuál es el clima del país, sus ríos y lagos, las montañas, las configuraciones de las zonas costeras y el suelo? ¿Cuál de sus carreteras, edificios, monumentos, los cultivos, la artesanía, las importaciones, las exportaciones y las maravillas? ¿Cuáles son, finalmente, su cultura, la religión, las costumbres y el idioma? Además de ello se enviaron expediciones científicas a las zonas en que se carecía de información.3
Relevancia
Mapamundi perteneciente a la Tabula Rogeriana
Se ha considerado a Al-Idrisi como uno de los más importantes geógrafos medievales, dada la cantidad de información geográfica recopilada. Así mismo, sostuvo la teoría de la esfericidad de la Tierra y, aunque sus mapas tenían forma circular, explicaba que el disco solo simbolizaba la forma del mundo: “La tierra es redonda como una esfera, y las aguas se adhieren a ella y se mantienen en ella a través de un equilibrio natural que no sufre variación”. No fue el único sabio medieval, documentándose la tesis de la esfericidad de la Tierra ya desde el siglo V a.C. (contrariamente a la leyenda de que hasta Colón todo el mundo creía que la Tierra era plana).
Su relato de la travesía de la Maghrurin u “Hombres engañados” de Lisboa en el Atlántico (un viaje en el que probablemente visitaron Madeira y Canarias) influyó probablemente en las travesías posteriores de españoles y portugueses hacia América y alrededor de África, respectivamente.[cita requerida] No obstante, Al-Idrisi compartía el temor de sus contemporáneos hacia el océano Atlántico como oscuro, frío e interminable, idea sugerida ya por Eratóstenes, a partir de un cálculo aproximado de la distancia a Asia por el oeste.
En la España del siglo XVI, el Nuzhat al-Mushtak fue la obra preferida para aprender árabe tanto por los moriscos como por los monjes cristianos. Esto contribuyó a acrecentar su popularidad.4
Muerte de Al-Idrisi
No existe constancia acerca del lugar de su muerte. Podría ocurrir tanto en Ceuta como en algún lugar de Sicilia. En 1138, Al-Idrisi había sido invitado por Roger II a Palermo porque allí estaría a salvo de los “reyes musulmanes”, celosos de la procedencia de Al-Idrisi, perteneciente a la “casa del Califato” según una expresión atribuida al propio Roger II de Sicilia. Existe cierto consenso entre los investigadores respecto a que permaneció en Sicilia hasta el fallecimiento de Roger II en 1154 y es probable que permaneciera allí hasta su propia muerte. Otras fuentes indican que retornó a Ceuta, debido a los disturbios anti-musulmanes de Palermo de 1161.5
Iconografía de Al-Idrissi
- Lo más destacable en el estudio iconográfico sobre Muhammad Al-Idrisi, en territorio español, es una estatua ubicada en su ciudad natal de Ceuta, dicha estatua está sosteniendo su obra.
- Otras menciones destacables en su imagen iconográfica, es su papel en diferentes formas de ocio, como personaje del libro de Tariq Ali “Un sultán en Palermo” o en otras novelas como en “El mapa de sal y estrellas” de Zeyn Joukhadar, incluso la figura de este personaje ha aparecido en la ópera King Roger a manos de Karol Szymanowski.
- El popular sistema IDRISI GIS, desarrollado por la Universidad de Clark, lleva el nombre de Muhammad al-Idrisi, este software sirve para la detección remota y para el análisis y la visualización de información geoespacial digital.
- En 2010, el Gobierno de la República de Mauricio dio a conocer un planisferio de al-Idrisi en Travellers’s Lane, iniciado por el semiólogo Khal Torabully, en el Jardín de la Compagnie, Port-Louis, para rendir homenaje al trabajo de este geógrafo.
Consolidación moderna invertida de la Tabula Rogeriana trazada por Al-Idrisi en 1154.
El geógrafo hispano-árabe Al-Idrisi, al servicio del rey normando Roger II de Sicilia elaboró en 1154 la Tabula Rogeriana, uno de los mejores mapas del mundo elaborados hasta la fecha. Por su doble condición de europeo y musulmán tuvo acceso tanto a las fuentes medievales europeas como a las informaciones de los comerciantes árabes, así como a la concepción geográfica clásica, además de elaborar su propia investigación; fruto de todo ello desechó la visión ptolemaica del sudeste asiático, trazándolo con una forma redondeada mucho más similar a la forma real de la Península Indochina. Esta concepción es la que se impuso en la cartografía europea medieval.
El Kitāb Rūŷar o Libro de Rogerio fue una obra geográfica de Al-Idrisi realizada en el siglo XII.
Basada en las obras clásicas, tiene al igual que aquellas tres partes. En la primera, siguiendo a la Geographia de Ptolomeo, se describe la forma y las dimensiones de la Tierra. La segunda parte se centra en las divisiones del planeta. Para ello sigue dos modelos. En el primero divide el mundo en siete franjas paralelas al ecuador, siguiendo la tradición griega de división en grandes zonas climáticas. En el segundo modelo, en cambio, sigue la tradición islámica, dividiendo en diez secciones contando desde Occidente a Oriente. Por último en la tercera parte, se presentan diferentes territorios a través de itinerarios. En los lugares más importantes, sigue la tradición corográfica de destacar los aspectos más relevantes de su historia, lugar físico, etcétera. La cartografía asociada al libro se denomina Tabula Rogeriana.
Es interesante comprobar esta aproximación más científica desde la perspectiva islámica a la geografía física y humana del mundo conocido , en contraste con la imagen del Orbis Terrarum [”T” en “O”] del medioevo europeo representado por Isidoro de Sevilla [siglo VII dC.], cuya cartografía, cargada de simbolismos religiosos, acentúa la idea que Jerusalén es el centro de un mundo plano y tripartito [África, Europa y Asia]
El mapamundi de al-Idrisi que aquí se presenta está compuesto uniendo los más de 60 mapas regionales del Gran Atlas de al-Idrisi. Esta interpretación es obra del investigador alemán Konrad Miller, quién la realizó en 1926, a partir de la copia existente en la Bodleian Library de Oxford, fechada en El Cairo en 1456.
Península Ibérica e Islas Baleares
Península Arábiga
Europa Central
Asia
Al-Idrisi pasó a la historia como el mejor cartógrafo y geógrafo de la Edad Media. Las copias de su libro son un auténtico tesoro en las bibliotecas que los atesoran. Fue un adelantado a su época, viajero empedernido, cartógrafo con alma científica y visionario que supo intuir conceptos como la gravedad y la redondez del planeta mucho antes de que se dieran por válidas estas teorías. Su obra fue una guía ineludible durante siglos y aún hoy despierta admiración.
Se sabe que en 1161, Al-Idrisi realizó una segunda edición ampliada de El Libro de Roger, bajo el título de “Los jardines de la humanidad y el entretenimiento del alma”, pero todas sus copias se perdieron. Al-Idrisi murió en esa misma década, aunque se desconoce cuándo y dónde, aunque hay quien asegura que antes de su muerte se dirigió a Marruecos para terminar allí sus días. Su gran obra, el atlas más completo de toda la Edad Media, le sobrevivió y le dio fama.
Hoy en día solo quedan diez copias de los manuscritos originales de la Geografía de Al-Idrisi, y todas ellas son preciosas obras de arte. Mapas detallados pintados a doble página con una precisa gama de colores, donde los países se pintan en rojo y las ciudades en rosa, el mar es de un azul intenso, los lagos y ríos son verdosos, y las montañas oscilan entre el morado y el ocre. Obras que reflejan el miedo que producía en aquella época un inexpugnable océano Atlántico, que era presentado como un lugar frío, oscuro e impenetrable.
Saber más: https://blogcatedranaval.com/2017/03/14/al-idrisi-y-roger-ii-forjando-el-primer-mapa-del-mundo/
Mahmud al-Kashgari
Mahmud al-Kashgari
Estatua de cera de Mahmud al-Kashgari en exhibición en Estambul, Turquía.
Mahmud ibn Hussayn ibn Muhammed al-Kashgari (en árabe: محمود بن الحسين بن محمد الكاشغري – Maḥmūd ibnu ‘l-Ḥussayn ibn Muḥammad al-Kāšġarī; turco: Mahmûd bin Hüseyin bin Muhammed El Kaşgari, Kaşgarlı Mahmûd; uigur: مەھمۇد قەشقىرī, Mehmud Qeshqiri, Мәһмуд Қәшқири) fue un erudito qarajanida del siglo XI y lexicógrafo de las lenguas túrquicas, originario de Kasgar. En sus obras plasma la dialéctica contra la cultura de los uigures no musulmanes del reino de Qocho, con calificativos como «perros» y «tat» (infieles),123 que les cargaron de significado negativo previo a su exterminio.
Su padre, Hussayn, fue alcalde de Barsgan, una ciudad en la parte sureste del lago Issyk-Kul (actual Barskoon, en la provincia de Ysyk-Kol en el norte de Kirguistán) y estaba relacionado con la dinastía gobernante del kanato Qarajanida.
Obra
Mapa de los pueblos túrquicos de Mahmud al-Kashgari, siglo XI
Al-Kashgari estudió las lenguas túrquicas de su tiempo y en Bagdad4 compuso el primer diccionario completo de lenguas turcas, el Dīwān Lughāt al-Turk (en árabe: «Compendio de las lenguas de los turcos») entre 1072 y 1074.56 Estaba destinado a ser utilizado por el califato abasí, entonces nuevos aliados árabes de los turcos. El diccionario completo de Mahmud al-Kashgari, editado posteriormente por el historiador turco Ali Amiri,7 contiene especímenes de la antigua poesía turca en la forma típica de cuartetos (perso-árabe رباعیات rubā’iyāt, turco: dörtlük), que representan los principales géneros: épico, pastoral, didáctico, lírico y elegíaco. Su libro también incluyó el primer mapa conocido de las áreas habitadas por los pueblos turcos. Este mapa se encuentra en la Biblioteca Nacional de Estambul.8
Abogó por el monolingüismo y el purismo lingüístico de las lenguas túrquicas, y creyó en la superioridad de los pueblos nómadas (las tribus túrquicas habían sido tradicionalmente nómadas) sobre las poblaciones urbanas. La mayoría de sus contemporáneos de lengua turca eran bilingües en tayiko (una lengua persa), que era entonces el idioma urbano y literario de Asia Central.9
Tal como era una práctica común entre sus colegas contemporáneos, al-Kashgari a menudo citaba proverbios y poemas para ejemplificar el uso de las palabras. Organizadas de acuerdo a su contenido y su esquema métrico y rítmico, la mayoría de las estrofas se dividen en ciclos claramente delineables, relacionados con la guerra o la caza, la elegía de muerte, el amor, la naturaleza o la sabiduría proverbial.10
Uno de los poemas más históricamente significativos de al-Kashgari, habla de la conquista turco-islámica del último de los renombrados reinos budistas de Asia Central, el reino de Jotán de los saces iraníes:
¡Bajamos sobre ellos como una inundación!¡Salimos entre sus ciudades!Derribamos los ídolos de los templos¡Cantamos en la cabeza del Buda!1112
Los reinos túrquicos de Qarajanida y uigur de Qocho fueron ambos estados fundados por los invasores, mientras que las poblaciones nativas de la región eran los pueblos iraní y tocario junto con algunos chinos en Qocho e indios, que se casaron y se mezclaron con los invasores turcos, y prominentes miembros qarajanidas como Mahmud al-Kashghari mantuvieron una posición alta entre los uigures contemporáneos.13
Los turcos qarajanidas musulmanes emprendieron la yihad contra los turcos uigures budistas durante la islamización y la turquización de Sinkiang. La adoración turca no musulmana del dios túrquico Tengri fue burlada e insultada por Mahmud al-Kashgari, quien escribió un verso referido a ellos: – Los Infieles – ¡Que Dios los destruya!1415 Asimismo, al-Kashgari insultó a los budistas uigures como «perros uigures».10 Mientras Kashgari mostraba una actitud diferente hacia las creencias de los adivinos turcos y las «costumbres nacionales», expresó hacia el budismo un odio en su Diwan, donde escribió un ciclo de versos sobre la guerra contra los budistas uigures. Palabras de origen budista como toyin (clérigo o sacerdote) y Burxān o Furxan (es decir, Buda, que adquiere el significado genérico de «ídolo» en la lengua turca de Kashgari) tenían connotaciones negativas para los turcos musulmanes.1415
Muerte
Algunos investigadores piensan que Mahmud al-Kashgari murió en 1102 a la edad de 97 años en Upal, una pequeña ciudad al suroeste de Kashgar, y que fue enterrado allí. En la actualidad, hay un mausoleo erigido en su tumba. Pero algunos autores modernos rechazan esta afirmación, diciendo que la fecha de su muerte es simplemente desconocida.
Algunos afirman que en verdad Mahmad Kashghari era Hazrat Mullam.16
El mapa de Mahmud al-Kashgari muestra los lugares que se profetizó que aparecerían en el final de los tiempos
El mapamundi de Mahmud Al-Kashgari con la ciudad de Balasagun en el centro, una de las capitales del Kara-Khanid Khanate. Mahmud ibn Hussayn ibn Muhammed al-Kashgari fue un erudito kara-janí del siglo XI y lexicógrafo de las lenguas turcas de Kashgar. Al-Kashgari estudió las lenguas turcas de su época y en Bagdad compuso el primer diccionario exhaustivo de las lenguas turcas, el Diwan Lughat al-Turk (árabe: «Compendio de las lenguas de los turcos»). Su libro también incluyó el primer mapa conocido de las zonas habitadas por los pueblos turcos. El manuscrito está ilustrado con un mapa del mundo «turcocéntrico», centralizado alrededor de la antigua ciudad de Balasagun. Kirguistán se encuentra en el lugar hoy en día. El aspecto interesante de este mapa no es que el este esté situado en la parte superior, sino que se representan lugares específicos que se profetizó que aparecerían durante el final de los tiempos, incluyendo a Gog y Magog. Por lo demás, el mapa está lleno de símbolos convencionales, como líneas rojas para las cordilleras y líneas azules para las masas de agua.
Mapa de la Cottoniana
Biblioteca Cotton
País: Reino Unido
Tipo: colección y colección de manuscritos
Ubicación: ciudad de Westminster
Coordenadas: 51°31′46″N 0°07′37″O
Los Evangelios de Lindisfarne son tan solo uno de los tesoros coleccionados por Sir Robert Bruce Cotton.
La Biblioteca Cotton o Cottoniana (Cotton Library o Cottonian Library) fue una colección privada de Sir Robert Bruce Cotton M. P. (1571–1631), anticuario y bibliófilo, que incluía libros, manuscritos, monedas y medallas. La utilizaron los principales eruditos de la época, entre los que se encontraban Francis Bacon, Walter Raleigh y James Ussher. Richard James ejerció como su bibliotecario.1
A la biblioteca de Sir Robert se agregaron más tarde numerosos libros y artefactos procedentes de la disolución de los monasterios, colección conocida como la Biblioteca del Rey o Biblioteca Regia (King’s Library o Regius Library), y formó la base de lo que hoy es la Biblioteca Británica. El conjunto se convirtió en el mayor recurso único conocido de literatura en inglés antiguo e inglés medio. Varios trabajos muy conocidos, como Beowulf, el poema Perla y los Evangelios de Lindisfarne, sobreviven hoy solo gracias a la biblioteca de Sir Robert.
Historia
Formación de la colección
A principios del siglo XVII hasta los registros oficiales del Estado y los papeles importantes se conservaban pobremente, y a menudo eran retenidos en manos privadas, desatendidos o destruidos por los funcionarios. Sir Robert recopiló y almacenó cien volúmenes de papeles oficiales, lo que en la práctica estableció un precedente en el derecho inglés. En 1622, la casa de Sir Robert estaba con su biblioteca justo al norte del Parlamento. Strype se refiere así a la mansión Cotton: «en el pasaje que va de Westminster Hall al patio del Palacio Viejo, un poco más allá de las escaleras que suben a la capilla de San Esteban, hoy el Parlamento [es decir, en el presente la Cámara de los Comunes], está la casa de la antigua y noble familia Cotton, donde se conserva una muy estimable biblioteca de volúmenes manuscritos, tomados tanto del país como del extranjero». Sir Christopher Wren describió la casa en su época como «en una condición muy ruinosa».2 La biblioteca era un recurso valioso y el lugar de reunión tanto de anticuarios y eruditos como de políticos, incluyendo a los líderes de la oposición, como Pym, Selden, Wentworth o Sir Edward Coke.
Una prueba de tal importancia era muy valiosa en aquel tiempo, en el que la política del reino se dirimía históricamente entre el rey y el Parlamento. Sir Robert supo que su biblioteca era de vital interés público y, aunque permitió libremente su consulta, le hizo objeto de hostilidad por parte del Gobierno. El 3 de noviembre de 1629 fue arrestado por difundir un panfleto tachado de sedicioso (en realidad había sido escrito quince años antes por Robert Dudley) y la biblioteca fue clausurada con ese pretexto. Cotton fue liberado el 15 de noviembre, y se le levantaron los cargos al siguiente mayo, pero la biblioteca permaneció clausurada hasta la muerte de Sir Robert; siendo restaurada a su hijo y heredero Sir Thomas Cotton, en 1633. La narración moderna más prolija, aunque incompleta, de estos hechos es la proporcionada por D. S. Berkowitz en 1988.3
Donación de la biblioteca
El nieto de Sir Robert, Sir John Cotton, donó la biblioteca a la nación de Gran Bretaña. Su historia temprana se resume en el texto introductorio de las Actas del Parlamento 12 y 13 Gul. III c.7 de 1700/1, que establecen mediante estatutos un régimen fiduciario para la Biblioteca Cottoniana:4
Sir Robert Cotton, más tarde Barón de Connington en el Condado de Huntingdon, a su propio oneroso cargo y expensas y con la ayuda de los anticuarios más eruditos de su tiempo, coleccionó y adquirió los más útiles manuscritos, libros, pergaminos [registros] y otros escritos en muchos idiomas de gran uso y servicio para el conocimiento y preservación de nuestra identidad, tanto religiosa como civil. Estos manuscritos y otros escritos fueron recopilados tanto de ultramar como de varios coleccionistas privados de esas antigüedades en este reino, [y] son generalmente estimados hoy como la mejor colección de su clase en el mundo. Y como sea que la mencionada biblioteca ha sido conservada con el mayor cuidado y diligencia por Sir Thomas Cotton, hijo del mencionado Sir Robert y por Sir John Cotton de Westminster, nieto vivo del mencionado Sir Robert, y ha sido muy aumentada e incrementada por ellos y alojada en un lugar muy adecuado en la antigua mansión del mencionado Sir John en Westminster, muy conveniente para ese propósito. Y como sea que el mencionado Sir John Cotton, siguiendo los deseos e intenciones de sus mencionados padre y abuelo, está contento y deseoso de que las mencionadas mansión y biblioteca continúen en su familia y nombre y no sean vendidas o dispuestas de otra manera ni malversadas, y que la mencionada biblioteca deba ser mantenida y conservada con el nombre de Biblioteca Cottoniana para el público uso y beneficio […]
A partir de estos estatutos, se nombraron fiduciarios para la biblioteca, que la trasladaron desde la ruinosa Cotton House. Primero fue a Essex House, en el Strand, pero temiendo el riesgo de un incendio fue de nuevo trasladada a Ashburnham House, un poco al oeste del Palacio de Westminster.
El incendio de Ashburnham House
El Génesis Cotton resultó prácticamente destruido por el incendio de Ashburnham House.
El 23 de octubre de 1731 se produjo un incendio en Ashburnham House, en el que se perdieron numerosos manuscritos, mientras que otros papeles resultaron chamuscados o dañados por el agua. En total se perdió o dañó la cuarta parte de la colección.5 El bibliotecario, Dr. Bentley, escapó de las llamas con el valiosísimo Codex Alexandrinus bajo el brazo, una escena presenciada y más tarde descrita a Lady Charlotte Sundon por Robert Freind, director de la Westminster School.6 El portavoz Onslow, como uno de los fiduciarios estatutarios de la biblioteca, dirigió y supervisó personalmente un notable programa de restauración para los medios de su tiempo. El informe publicado de su trabajo resulta de importancia fundamental en la bibliografía sobre la biblioteca.7 Afortutadamente, se habían hecho copias de algunos de los manuscritos perdidos (aunque no de todos), y muchos de los dañados pudieron ser restaurados de forma satisfactoria en el siglo XIX.
Clasificación
Sir Robert Cotton organizó su biblioteca mediante una referencia a la estantería, estante y posición de un determinado volumen. Cada estantería de la biblioteca estaba coronada por el busto de un césar de la Antigua Roma, por lo que su notación se componía de:
- el nombre de un césar para la estantería;
- una letra mayúscula para el estante, comenzando por la A para el estante superior de cada estantería;
- un número romano para el volumen entre los contenidos en el estante.
De ese modo, los dos manuscritos más famosos de la biblioteca se denominan, por ejemplo, «Cotton Vitellius A.xv» y «Cotton Nero A.x». Para el día a día de Sir Robert eso significaba «bajo el busto de Vitelio, en el estante superior, el decimoquinto volumen», para el Liber Monstrorum del manuscrito de Beowulf; o «ve al busto de Nerón, estante superior, décimo tomo» para el manuscrito que contenía todos los trabajos del poeta Pearl. En la Biblioteca Británica aún se catalogan esos valiosos tomos por las referencias de Cotton.
De este esquema de clasificación se apartaba ligeramente la estantería dedicada al emperador Augusto, que estaba dedicada a planos y otros elementos de gran formato.
Mappa Mundi anglosajón, 1025-1050
Dibujante: Anónimo
Media: pigmentos sobre papel vitela
Fecha: 1025
El ‘mapa del mundo anglosajón’ contiene la representación más antigua conocida y relativamente realista de las Islas Británicas. Fue creado, probablemente en Canterbury, entre 1025 y 1050, pero probablemente se base en última instancia en un modelo que data de la época romana. Esto mostraba las provincias del imperio romano, de las cuales ‘Britannia’ (Inglaterra) era una. El mapa fue revisado y actualizado alrededor del año 800 y nuevamente alrededor del año 1000. Se agregó nueva información, pero en cada etapa ocurrieron errores y malentendidos en el proceso de copiado.
Como la mayoría de los primeros mapas, este tiene el Este en la parte superior. Sin embargo, las Islas Británicas (abajo a la izquierda) son inmediatamente reconocibles y se muestran las Orkneys, Scillies, Channel Islands y las islas de Man y Wight. La forma tortuosa de Escocia está particularmente bien dibujada. Londres, la capital sajona de Winchester y Dublín se indican con símbolos de ciudades de estilo romano. El tamaño de la península de Cornualles es exagerado, lo que probablemente refleja la importancia de sus minas de cobre y estaño en el mundo antiguo. Lo más tentador de todo es lo que parecen ser dos figuras luchadoras en la península. ¿Podrían referirse al conflicto entre los sajones y los nativos británicos en los siglos posteriores a la partida de los romanos a principios del siglo V, que dio origen a la leyenda del Rey Arturo?
El mapa de Cottoniana se sale de la tradición cartográfica medieval
Basado en el viaje del Arzobispo Sigeric de Canterbury desde Roma, se pensó que el Mapa de Cottoniana fue dibujado por primera vez alrededor del año 992-994. Después de un análisis más profundo del mapa del mundo, se decidió que en realidad fue ilustrado más cerca de 1025-1050. Curiosamente, este mapa se sale de las líneas de la cartografía medieval tradicional. Jerusalén no está en el centro del mundo, el Jardín del Edén no se encuentra en ninguna parte, y el este está en la cima en lugar del norte.
TÍTULO: El Mapa Cottoniana o Anglosajón
AUTOR: del Periegsis de Prisciano
DESCRIPCIÓN: La Cotton Tiberius es el ricamente iluminada del siglo XI manuscrito en el algodón colección de los británicos Biblioteca y contiene uno de la mas antigua y mas excelentes mapas del mundo. Llamado Cottoniana o Mapa anglosajón, data de 995-1050, justo antes la conquista normanda y no parece pertenecer a cualquiera de los identificables “familias” de la edad media mapas, como lo describe MC
Se dice que este mapa es el último de una larga tradición de mapamundis circulares que se trabajaron sin interrupción desde la antigüedad clásica, diseñados para mostrar todas las tierras contenidas entre las fronteras del imperio Romano. No ha quedado ningún original de estos mapas anteriores al Cottonian, pero sí conocemos la descripción precisa del “Orbis Terrarum” que dibujó Marcus Vipsanius Agrippa, con mucho más valor simbólico que geográfico, y que fue el inspirador de todos ellos. Este Mapamundi Anglosajón, aparte de ser el último mapa romano, también es el primero de la escuela anglonormanda cuyo máximo exponente serán los grandes discarios del siglo XIII.
Oriente. “Hic abundant leones”. Y en la esquina de la derecha el arca de Noé.
Los espacios en blanco de los antiguos mapas romanos estaban ocupados por dragones, serpientes o leones. Era una manera de indicar espacios desconocidos ante los que había que extremar precauciones. El mapamundi anglosajón de Cotton, también los tiene. Arriba a la izquierda, en la parte de Oriente que se acerca al norte -observemos que se trata de un mapa orientado y Oriente se ubica en la parte superior-, detrás del mar Caspio y de los montes caucásicos, avisa: “Hic abundant leones”. En África, entre Cartago y Mauritania, lo que hay son serpientes: “Zugis regio ipsa est in Affrica, est enim fertilis, sed ulterior bestiis et serpentibus plena” (También la región de Zugis está en África. Es muy fértil, pero después está llena de bestias serpientes”.
El mapa está centrado en el Mediterráneo occidental, nombra las cuatro grandes civilizaciones de la antigüedad: Babilonia, Media, Macedonia y Roma, la zona de Palestina aparece dividida entre las tribus de Israel y no se dibuja el paraíso en el extremo de Oriente.
Africa. “…bestiis et serpentibus plena””. Y en el extremo sur, la Antípoda y en ella, cinocéfalos (hombres con cabeza de perro).
Aunque los contornos de la parte occidental de Europa se comprimen para ajustarlos al espacio disponible, los perfiles están trazados con realismo y son reconocibles. No faltan detalles míticos, por ejemplo, la entrada del Mediterráneo por el estrecho de Gibraltar está flanqueada por la torres de Hércules. Las costas de Inglaterra aparecen especialmente bien trabajadas. Es el más antiguo de los mapas medievales en los que las costas de Inglaterra, lugar donde se elaboró el mapa, aparecen reconocibles y ajustadas a su forma real, aunque a medida que se va acercando al norte las formas se diluyen y acaba deshaciéndose en un rosario de islas. También queda descolgada la península escandinava. Evidentemente los pormenores del extremo norte no eran demasiado conocidos.
Extremo occidental del mundo. Inglaterra, España, las columnas de Hércules y el norte de África.
Mapamundi de Al-Masudi
Mapamundi de Al-Masudi
Nombre en árabe: المسعودي
Nacimiento: c. 896; Bagdad (califato abasí)
Fallecimiento: Septiembre de 956; El Cairo (Egipto)
Religión: Islam
Educación
Alumno de: Niftawayh
Ocupación: Geógrafo, historiador y escritor
Área: Historia
Abu ul-Hasan ‘Ali ibn al-Husayn ibn ‘Ali al-Masʿūdī (en árabe, أَبُو ٱلْحَسَن عَلِيّ ٱبْن ٱلْحُسَيْن ٱبْن عَلِيّ ٱلْمَسْعُودِيّ, Bagdad, 896 – Fustat, 956) fue un historiador y geógrafo, conocido como el «Heródoto de los árabes».1 Fue uno de los primeros en reunir las disciplinas de la historia y de la geografía científica en una obra de gran alcance, su Murūj adh-dhahab wa-maʿādin al-jauhar que en su momento era una historia del mundo conocido. Escribió Las praderas de oro y Libro de advertencia y revisión, crónicas que reflejan las inquietudes de su época.
Biografía
El atlas del mundo de Al-Mas’udi (invertido en el eje norte-sur) también incluye un continente al oeste del Viejo Mundo.
Debido a la escasez de las fuentes, es poco lo que se sabe sobre la vida de al-Masʿūdī. A pesar de la gran producción escrita, su figura fue completamente ignorada por la mayoría de los biógrafos contemporáneos a su época. Incluso en Kitāb al-Fihrist de Ibn an-Nadīm, uno de los diccionarios más completos de la cultura letrada árabe, la información sobre al-Masʿūdī se reduce a una serie de breves menciones.2 Debido a lo anterior, la única manera de arrojar la luz sobre la vida de al-Masʿūdī, es a través de sus propias obras.
La fecha exacta de nacimiento de Al-Masʿūdī se desconoce, pero la mayoría de los investigadores la sitúan entre 893 y 896 (279-283 AH). Era originario de Bagdad, la capital del Califato abbasí. Su nisba podría indicar la descendencia de ʿAbdallāh ibn Masʿūd, uno de los primeros conversos musulmanes y también uno de los compañeros más cercanos de Mahoma. La juventud del futuro viajero pasó en su ciudad natal. A pesar de no contar con evidencias directas, Charles Pellat a partir de sus obras deduce que durante la etapa formativa al-Masʿūdī tuvo la oportunidad de asistir a clases impartidas por varios maestros importantes de la época como Wakīʿ (m. 306/918), al-Faḍl b. al-Ḥubāb (m. 305/917) y Abū ʿAlī al-Djubbaʾī. Durante esta etapa también pudo haber conocido a aṭ-Ṭabarī (m. 310/923), Ibn Durayd (m. 321/934), al-Ashʿarī (d. 324/935), entre otros.2
En el período entre 912 y 915 al-Masʿūdī abandona Bagdad para emprender un largo viaje. Según so obra Murūj adh-dhahab en 915 visitó una serie de ciudades de Persia, de donde se dirigió a la India, atravesando Sind. De allí, posiblemente recorrió Ceilán y una parte de China. Esta etapa del viaje de al-Masʿūdī que corresponde a los territorios fuera del mundo islámico ha generado muchas dudas entre la comunidad académica.3 Su veracidad ha sido cuestionada, ya que no se cuenta con las evidencias contundentes de su estancia en Asia Oriental, mientras que sus descripciones de dicha región están basadas en otras fuentes. Por ejemplo, según Paul Lunde y Caroline Stone, una gran parte fue tomada de Ak̲h̲bār al-Ṣīn wa’l-Hind de Abū Zayd al-Sīrāfī, a quién al-Masʿūdī encontró durante su recorrido.4 En cualquiera de los casos, en 917 después de pasar por Yemen y Omán, regresó a Irak. Después de pasar cuatro años en su tierra natal, en 921 al-Masʿūdī emprendió un nuevo viaje a Siria. Cinco años más tarde, encontramos nuevamente al viajero visitando Jerusalén, Nazareth, entre otras ciudades de Palestina. En 927 hay un nuevo registro de su presencia en Damasco, Raqqa y Harran.
La última etapa de sus andanzas fue marcada por el paso por Armenia y la orilla del mar Caspio. Al final de su viaje al-Masʿūdī se establece en Fustat, la capital de la Dinastía ijshidí que de iure se encontraba bajo la soberanía de los Califas de Bagdad, pero de facto representaba una entidad política autónoma. Tras su llegada a Fustat, al-Masʿūdī ya no volverá a Bagdad, sumergida en los disturbios relacionados con el debilitamiento del poder central abbasí y el ascenso de los Búyidas. Precisamente en Fustat al-Masʿūdī completó una gran parte de sus trabajos, incluyendo las únicas dos obras que llegaron hasta nosotros y continuó trabajando hasta su muerte en 956.
Obra
al-Masʿūdī fue reconocido por su contribución al género de la geografía histórica. De los 36 tratados conocidos hasta nuestros días llegaron solo dos: Kitāb at-Tanbīh wa-’l-ishrāf (Libro de advertencia y revisión) y Murūj adh-dhahab wa-maʿādin al-jauhar (Los prados de oro y las minas de gemas). Su opus magna de treinta volúmenes intitulada Aḵbār az-zamān (Noticias/historia del tiempo) se ha perdido, igual que su apéndice al-Kitāb al-awsaṭ (El libro medio). El resumen abreviado de Aḵbār az-zamān con el que contamos en la actualidad se ha conservado bajo el título Murūj adh-dhahab wa-maʿādin al-ǧauhar (Los prados de oro y las minas de gemas). La segunda obra que llegó hasta la actualidad, Kitāb at-Tanbīh wa-’l-ishrāf,5 fue escrita poco tiempo antes de la muerte de al-Masʿūdī y contiene correcciones y aclaraciones de sus libros previos.6
Los prados de oro y las minas de gemas (Murūj adh-dhahab wa-maʿādin al-jauhar)
El estudio sistemático de Murūj adh-dhahab fue inaugurado en el siglo XIX por Silvestre de Sacy y retomado por especialistas como Ernest Renan. Entre 1861 y 1877 Barbier de Meynard y Pavet de Courteille elaboraron la primera traducción del texto completo al francés, lo que dio un impulso a su estudio. Murūǧ aḏ-ḏahab obtuvo una alta valoración entre la comunidad académica. Uno de los mayores expertos del siglo XX en literatura árabe, H.A.R Gibb: “no hay trabajo más maravilloso escrito en árabe.”6
El libro consta de dos partes. La primera reúne la descripción de las partes conocidas del mundo con la clásica división en siente climas con constantes digresiones de carácter proto-antropológico, propios para la literatura geográfica descriptiva árabe. La segunda parte ocupa aproximadamente dos tercios de la totalidad de la obra y está dedicada específicamente a la historia árabe-musulmana desde Mahoma hasta el reinado del Califa abbasí Abū ʾl-Qāsim al-Faḍl ibn al-Muqtadir (m. 974).7 En este sentido, Murūǧ aḏ-ḏahab es uno de los trabajos más ilustrativos de la vida cultural y política del Califato abbasí.
Contribución
En las descripciones geográficas, la metodología de al-Masʿūdī no se compara con la rigurosidad “científica” de autores como al-Bīrūnī. Sobre todo era un literato, un adīb, lo que lo acerca a autores como al-Jāḥiẓ o ibn al-Faqih, pero con un sesgo más serio y el estilo narrativo más disciplinado.
El legado de al-Masʿūdī enriqueció el género de la literatura geográfica descriptiva. Su imparcialidad en cuestiones étnicas y religiosas, su erudición y el alcance de sus intereses lo convierten en un autor de suma importancia tanto para el estudio de los asuntos internos del Califato, como para el análisis de la visión que tenía un representante de esta cultura del mundo circundante.
Nacimiento, viajes y producción literaria
Más información: Los prados de oro
Poco se sabe de sus medios y financiación de sus extensos viajes dentro y más allá de las tierras del Islam, y se ha especulado que, como muchos viajeros, pudo haber estado involucrado en el comercio.[6]
Hacia el final de Los prados de oro, al-Mas’udi escribió:
La información que hemos recopilado aquí es el fruto de largos años de investigación y dolorosos esfuerzos de nuestros viajes y jornadas por Oriente y Occidente, y de las diversas naciones que se encuentran más allá de las regiones del Islam. El autor de esta obra se compara a un hombre que, habiendo encontrado perlas de todo tipo y color, las junta en un collar y las convierte en un adorno que su poseedor guarda con gran esmero. Mi objetivo ha sido rastrear las tierras y las historias de muchos pueblos, y no tengo otro.[7]
Entorno intelectual de al-Mas’udi
Al-Mas’udi vivió en una época en que los libros estaban disponibles y eran baratos. Ciudades importantes como Bagdad tenían grandes bibliotecas públicas y muchas personas, como as-Suli, un amigo de Mas’udi, tenían bibliotecas privadas, que a menudo contenían miles de volúmenes. A principios de la era abasí, los prisioneros chinos llevaron el arte de la fabricación de papel al mundo islámico después de la batalla de Talas y la mayoría de los pueblos y ciudades grandes tenían fábricas de papel. El material de escritura barato disponible contribuyó a la animada vida intelectual.[9] Al-Mas’udi a menudo remite a los lectores a sus otros libros, suponiendo que estén disponibles. La alta alfabetización y el vigor del mundo islámico con su rica herencia cultural de filosofía griega, literatura persa, matemáticas indias, contrastaba con la de Europa, cuando el autor de la Crónica anglosajona estaba escribiendo. Estaba familiarizado con la obra médica de Galeno, con la astronomía ptolemaica, con la obra geográfica de Marino y con los estudios de los geógrafos y astrónomos islámicos.
En Los prados de oro, al-Mas’udi escribió su famosa condena de la revelación sobre la razón:
Las ciencias fueron apoyadas financieramente, honradas en todas partes, universalmente perseguidas; eran como edificios altos sostenidos por fuertes cimientos. Entonces apareció la religión cristiana en Bizancio y los centros de aprendizaje fueron eliminados, sus vestigios borrados y el edificio del saber griego fue destruido. Todo lo que los antiguos griegos habían sacado a la luz se desvaneció, y los descubrimientos de los antiguos se alteraron hasta quedar irreconocibles.
Al-Mas’udi incluyó la historia de las antiguas civilizaciones que habían ocupado la tierra sobre la que más tarde se extendió el Islam. Menciona a los asirios, babilonios, egipcios y persas entre otros. También es el único historiador árabe que se refiere (aunque indirectamente) al reino de Urartu, cuando habla de las guerras entre los asirios (dirigidos por la legendaria reina Semíramis) y los armenios (dirigidos por Ara la Hermosa).[12]
Al-Mas’udi estaba al tanto de la influencia de la antigua Babilonia en Persia. Tuvo acceso a una gran cantidad de traducciones de eruditos como ibn al-Muqaffa del persa medio al árabe. En sus viajes, también consultó personalmente a eruditos persas y sacerdotes zoroastrianos . Así tuvo acceso a mucho material, fáctico y mítico. Al igual que otros historiadores árabes, no tenía claro la dinastía aqueménida, aunque sabía de Kurush (Ciro el Grande). Fue mucho más claro sobre las dinastías más recientes y su estimación del tiempo entre Alejandro Magno y Ardashir se describe con mucha más precisión que en al-Tabari.
Sus amplios intereses incluían a los griegos y los romanos. Una vez más, al igual que otros historiadores árabes, no tenía claro la Grecia anterior a la dinastía macedonia que produjo a Alejandro Magno. Él es consciente de que hubo reyes antes de esto, pero no tiene claro sus nombres y reinados. Tampoco parece estar familiarizado con aspectos adicionales de la vida política griega como las instituciones democráticas atenienses. Lo mismo vale para la Roma anterior a César . Sin embargo, es el primer autor árabe existente que menciona el mito fundador romano de Rómulo y Remo.
En opinión de al-Mas’udi, la mayor contribución de los griegos fue la filosofía. Era consciente de la progresión de la filosofía griega desde los presocráticos en adelante.
También estaba muy interesado en los acontecimientos anteriores de la península arábiga. Reconoció que Arabia tenía una larga y rica historia. También era muy consciente de la mezcla de hechos interesantes en tiempos preislámicos, en mitos y detalles controvertidos de tribus competidoras e incluso se refirió a la similitud entre parte de este material y las contribuciones legendarias y narrativas de algunos persas medios e indios, libros a las Mil y Una Noches.[cita requerida]
Viajes en tierras más allá del Islam
En el año 933 Al-Masudi menciona a los marineros musulmanes, que llaman a las islas Comores: “Las Islas del Perfume” y cantan las olas que rompen rítmicamente a lo largo de amplias playas de arena perlada, las brisas ligeras perfumadas con vainilla e ylang-ylang, un componente en muchos perfumes.[13]
Ahmad Shboul señala que al-Mas’udi se distingue de sus contemporáneos por el alcance de su interés y la cobertura de las tierras y pueblos no islámicos de su época. Otros autores, incluso los cristianos que escribieron en árabe en el califato, tenían menos que decir sobre el Imperio bizantino que al-Mas’udi. También describió la geografía de muchas tierras más allá del califato abasí, así como las costumbres y creencias religiosas de muchos pueblos.[cita requerida]
Sus habituales consultas a los viajeros y la extensa lectura de escritores anteriores se complementaron en el caso de la India con sus experiencias personales en la parte occidental del subcontinente. Demuestra una comprensión profunda del cambio histórico, rastreando las condiciones actuales hasta el desarrollo de eventos a lo largo de generaciones y siglos. Percibió la importancia de las relaciones interestatales y de la interacción de musulmanes e hindúes en los diversos estados del subcontinente.[cita requerida]
Describió a los gobernantes anteriores en China, subrayó la importancia de la revuelta de Huang Chao a finales de la dinastía Tang y mencionó, aunque menos detalladamente que para la India, las creencias chinas. Su breve retrato del sudeste asiático destaca por su grado de precisión y claridad. Inspeccionó las vastas áreas habitadas por pueblos túrquicos, comentando lo que había sido la amplia autoridad de Khaqan, aunque este ya no era el caso en la época de al-Mas’udi. Transmitió la gran diversidad de pueblos túrquicos, incluida la distinción entre turcos sedentarios y nómadas. Habló de la importancia de los jázaros y proporcionó mucho material nuevo sobre ellos.[cita necesaria]
Su relato de la Rus es una importante fuente temprana para el estudio de la historia rusa y la historia de Ucrania. Nuevamente, si bien puede haber leído a autores árabes anteriores como Ibn Khordadbeh, Ibn al-Faqih, ibn Rustah e Ibn Fadlan, al-Mas’udi presentó la mayor parte de su material basado en sus observaciones personales y contactos realizados durante el viaje. Informó al lector árabe que los rus eran más que unos pocos comerciantes. Eran una colección diversa y variada de pueblos. Señaló su actitud independiente, la ausencia de una autoridad central fuerte entre ellos y su paganismo. Estaba muy bien informado sobre el comercio de la Rus con los bizantinos y sobre la competencia de la Rus en la navegación de buques mercantes y buques de guerra. Era consciente de que el Mar Negro y el Mar Caspio son dos cuerpos de agua separados.[cita requerida]
Al-Mas’udi también estaba muy bien informado sobre los asuntos bizantinos, incluso sobre los acontecimientos políticos internos y el desarrollo de los golpes palaciegos. Él registró el efecto de la migración hacia el oeste de varias tribus sobre los bizantinos, especialmente los búlgaros invasores. Habló de las relaciones bizantinas con Europa occidental. Y, por supuesto, estaba muy interesado en las relaciones bizantino-islámicas.[cita requerida]
Un ejemplo de la influencia de Al-Mas’udi en el conocimiento musulmán del mundo bizantino es que el uso del nombre Estambul (en lugar de Constantinopla) se remonta a sus escritos durante el año 947, siglos antes del eventual uso otomano de este término. Escribe que los griegos (es decir, los bizantinos del siglo X) la llaman “la Ciudad” (bulin en la escritura árabe, que carece de la letra p: en griego polin); “y cuando quieren expresar que es la capital del Imperio por su grandeza dicen Istan Bulin. No la llaman Constantinopla. Son sólo los árabes quienes la designan así”.[14] Una analogía actual sería el uso de las frases “Voy al centro de la ciudad” o “Voy a la ciudad” por parte de quienes viven cerca de Chicago o Londres, respectivamente.[cita requerida]
Tiene algún conocimiento de otros pueblos del este y oeste de Europa, incluso de la lejana Gran Bretaña y la Inglaterra anglosajona. Lo nombra, aunque es incompleto al respecto. Conoce París como la capital de los francos. Obtuvo una copia de una lista de gobernantes francos desde Clodoveo hasta su época.[cita requerida] Hace varias referencias a personajes interpretados como vikingos, descritos por él como majus, que llegaron a Al-Andalus desde el norte.[15]
El interés global de Al-Mas’udi incluía África. Era muy consciente de los pueblos de la parte oriental del continente (mencionando detalles interesantes de los Zanj, por ejemplo). Conoce menos África occidental, aunque nombra estados contemporáneos como Zagawa, Kawkaw y Ghana. Describió las relaciones de los estados africanos entre sí y con el Islam. Proporcionó material sobre las culturas y creencias de los africanos no islámicos.[cita requerida]
En general, sus obras sobrevivientes revelan una mente intensamente curiosa, un universalista que adquiere ansiosamente un trasfondo tan extenso del mundo entero como sea posible. La variedad geográfica de su material y el alcance de su espíritu siempre inquisitivo es verdaderamente impresionante.[cita requerida]
Recepción
Ernest Renan comparó a al-Masudi con el geógrafo griego Pausanias del siglo II d. C., mientras que otros lo compararon con el escritor romano Plinio el Viejo . Incluso antes de que el trabajo de al-Masudi estuviera disponible en idiomas europeos, los orientalistas [cita requerida] lo compararon con Heródoto, el antiguo historiador griego llamado “El padre de la historia”.
Influencias religiosas
Algunos de los primeros comentaristas de al-Masudi indican la influencia de los antagonismos religiosos. El erudito sunita Ibn Hajar escribió: “Los libros [de al-Mas’udi] son imprecisos porque era un chiíta, un muʿtazili“.[17] Adh-Dhahabi[18] y Taj al-Din al-Subki creían que él defendía la doctrina herética de Mu’tazili.[19] Las indicaciones de la teología chiita se citan a continuación:
Su descripción de Sistán (Irán)
“… es la tierra de los vientos y la arena. Allí el viento mueve los molinos y hace subir el agua de los arroyos, con lo cual se riegan los jardines. No hay en el mundo, y sólo Dios lo sabe, ningún lugar donde se haga un uso más frecuente de los vientos”. (947 dC)[21]
Telescopio espacial James Webb
Telescopio espacial James Webb
Telescopio espacial James Webb
Estado: En órbita
Coste: 10 000 000 000 dólares estadounidenses2
- SATCAT: 50463
ID NSSDCA: 2021-130A
Página web:
[CSA/ASC Canadá
NASA Estados Unidos
CNES Francia enlace]
Duración planificada: 5-10 años
Duración de la misión: 168 días y 7 horas
Propiedades de la nave
Fabricante: Northrop Grumman Ball Aerospace
Masa de lanzamiento: 6200 kg
Comienzo de la misión
Lanzamiento: 25 de diciembre de 2021 (12:20 UTC)
Vehículo: Ariane 5
Lugar: Puerto espacial de Kourou, Guayana Francesa
Contratista: Arianespace
Parámetros orbitales
Sistema de referencia: 1,5 millones de km de la Tierra (Tierra-Sol punto L2 órbita de halo)
Insignia de la misión Telescopio espacial James Webb
El telescopio espacial James Webb (en inglés, James Webb Space Telescope (JWST)) es un observatorio espacial desarrollado a través de la colaboración de veinte países,3 construido y operado conjuntamente por la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, para sustituir los telescopios Hubble y Spitzer.45 El JWST ofrecerá una resolución y sensibilidad sin precedentes, y permitirá una amplia gama de investigaciones en los campos de la astronomía y la cosmología.6 Uno de sus principales objetivos es observar algunos de los eventos y objetos más distantes del universo, como la formación de las primeras galaxias. Este tipo de objetivos están fuera del alcance de los instrumentos terrestres y espaciales actuales. Entre sus objetivos están incluidos estudiar la formación de estrellas y planetas y obtener imágenes directas de exoplanetas y novas.
Entre sus principales características técnicas hay que destacar el espejo primario de JWST, compuesto por 18 segmentos hexagonales que, combinados, crean un espejo con un diámetro de 6,5 metros (21 pies 4 pulgadas), un gran aumento con diferencia sobre el espejo utilizado por el Hubble, de 2,4 metros (7,9 pies), el parasol y cuatro instrumentos científicos. El telescopio se sitúa en el espacio cerca del punto lagrangiano Tierra-Sol L2,7 está protegido por un gran parasol, hecho de cinco hojas de Kapton revestido de aluminio y silicio, que mantendrá al espejo y sus cuatro instrumentos científicos principales a temperaturas cercanas al cero absoluto. A diferencia del Hubble, que observa en los espectros ultravioleta cercano, visible e infrarrojo cercano, el JWST observará en la luz visible de longitud de onda larga (naranja a rojo) a través del rango del infrarrojo medio (0,6 a 27 μm). Esto permitirá que el JWST realice una amplia gama de investigaciones a través de muchos subcampos de la astronomía,8 que observe y estudie las primeras estrellas, de la época de reionización, formación de las primeras galaxias, tome fotografías de nubes moleculares, grupos de formación estelar, objetos con alto desplazamiento hacia el rojo demasiado viejos y demasiado distantes para que pudieran ser observados por el Hubble y otros telescopios anteriores.9
En desarrollo desde 1996,10 lo denominaron inicialmente como Next Generation Space Telescope o NGST, en 2002 fue denominado James E. Webb, en honor al funcionario del gobierno estadounidense que fue administrador de la NASA entre 1961 y 1968 y jugó un papel integral en el programa Apolo.1112 El proyecto ha tenido numerosas demoras y gastos excesivos, siendo sometido a importante rediseño durante 2005. En 2011, parte del Congreso de los Estados Unidos optó por su cancelación, después de haber empleado en su desarrollo aproximadamente 3000 millones de dólares13 estando en producción o en fase de pruebas más del 75% de su hardware.14 En noviembre de 2011, el Congreso revocó los planes para cancelar el proyecto y en su lugar puso un tope de financiación adicional para completar el proyecto en 8000 millones de dólares.15 En diciembre de 2016, la NASA anunció que la construcción del JWST había finalizado y comenzaría su fase de pruebas.16 17 En marzo de 2018, la NASA retrasó el lanzamiento de JWST un año más porque el parasol del telescopio se rasgó durante un despliegue de práctica y los cables del parasol no se apretaron lo suficiente.18 Estaba previsto que el JWST fuera a ser lanzado en mayo de 20201920212223 desde la Guayana Francesa.24
El 27 de junio de 2018, tras detectarse varios problemas, tanto técnicos como humanos, durante las pruebas, la NASA decide posponer el lanzamiento del telescopio al 30 de marzo de 2021, después de que la junta de revisión que evalúa el proyecto emitiera un informe contrario a las expectativas respecto al cronograma previsto por el contratista y el proceso de la misión en general incluyendo los errores.2526272829303132
El 10 de junio de 2020, Thomas Zurbuchen, Administrador Asociado de la Dirección de Misiones Científicas de la NASA, anunció que el lanzamiento del telescopio James Webb se retrasaría, y no podría salir el 10 de marzo de 2021, como estaba estipulado. Este retraso fue inevitable debido a la pandemia de COVID-19, la cual hizo que el trabajo en la nave se viera disminuido.33
Tras superar la prueba final de vacío térmico, el JWST demuestra que funcionará en el espacio. 3435
- El telescopio James Webb fue lanzado con éxito, el 25 de diciembre de 2021, a bordo de un cohete
Descripción
El JWST es un proyecto conjunto de la NASA, la Agencia Espacial Europea y la Agencia Espacial Canadiense, donde colaboran aproximadamente 17 países más.
Las contribuciones de Europa se formalizaron en 2007 con un Memorando de Entendimiento ESA-NASA, que incluye el lanzador Ariane-5 ECA, el instrumento NIRSpec, el montaje del banco óptico MIRI, y soporte de personal para las operaciones.39
El telescopio se espera que tenga una masa de aproximadamente la mitad del telescopio espacial Hubble, aunque su espejo primario (un reflector de berilio recubierto de oro de 6,5 metros de diámetro) tendrá un área de recolección aproximadamente cinco veces mayor (25 m² o 270 pies cuadrados vs. 4,5 m² o 48 pies cuadrados). El JWST está orientado hacia la astronomía cercana al infrarrojo, pero también puede ver la luz visible naranja y roja, así como también la región del infrarrojo medio, dependiendo del instrumento. El diseño enfatiza el infrarrojo cercano al medio por tres motivos principales: los objetos con alto desplazamiento hacia el rojo tienen sus emisiones visibles desplazadas al infrarrojo, los objetos fríos como los discos de escombros y los planetas emiten más fuertemente en el infrarrojo, y esta banda es difícil de estudiar desde el suelo o por los telescopios espaciales actuales como el Hubble. Los telescopios terrestres tienen que observar atravesando la atmósfera, que es opaca en muchas bandas infrarrojas. Incluso donde la atmósfera es transparente, muchos de los compuestos químicos que son objetivo, como el agua, el dióxido de carbono y el metano, también existen en la atmósfera terrestre, lo que complica enormemente el análisis. Los telescopios espaciales actuales como el Hubble no pueden estudiar estas bandas ya que sus espejos no son lo suficientemente fríos (el espejo del Hubble se mantiene a unos 15 °C) y, por lo tanto, el telescopio irradia con fuerza en las bandas IR.
El JWST operará cerca del punto de Lagrange Tierra-Sol L2, aproximadamente a 1500 000 km (930 000 millas) más allá de la órbita de la Tierra. A modo de comparación, el Hubble orbita a 340 millas (550 km) sobre la superficie de la Tierra, y la Luna está aproximadamente a 400 000 km (250 000 millas) de la Tierra. Esta distancia hace que la reparación o actualización posterior al lanzamiento del hardware del JWST sea prácticamente imposible. Los objetos cercanos a este punto pueden orbitar el Sol en sincronía con la Tierra, lo que permite que el telescopio permanezca a una distancia aproximadamente constante40 y tiene obligado utilizar una barrera solar para bloquear el calor y la luz del Sol y la Tierra. Esto mantendrá la temperatura de la nave espacial por debajo de 50 K (-220 °C; -370 °F), necesaria para las observaciones de infrarrojos.4142
Vista de tres cuartos de la parte superior
Parte inferior (lado orientado al sol)
Barrera solar
Probando el despliegue del parasol en el hangar de pruebas en la instalación Northrop Grumman en California, año 2014
Para realizar observaciones en el espectro infrarrojo, el JWST debe mantenerse a una temperatura muy baja, aproximadamente por debajo de 50 K (-220 °C; -370 °F), de lo contrario, la radiación infrarroja del propio telescopio podría bloquear o sobrecargar sus instrumentos. Para evitarlo utiliza un gran parasol que bloquea la luz y el calor del Sol, la Tierra y la Luna, además, su posición cercana al punto de Lagrange Tierra-Sol L2 mantiene los tres cuerpos en el mismo lado de la nave espacial en todo momento.43 Su órbita halo alrededor del punto L2 evita la sombra de la Tierra y la Luna, manteniendo una posición constante y aceptable para la barrera solar y los paneles solares.40 El parasol está hecho de película de poliimida y tiene membranas recubiertas con aluminio en un lado y silicio en el otro.
El parasol está diseñado para doblarse doce veces, por lo que cabe dentro de la cubierta del cohete Ariane 5 de 4,57 m (5 yardas) × 16,19 m (17,7 yardas). Una vez ubicado el telescopio en el punto L2, el parasol se desplegará a 21,197 m (23,18 yardas) × 14,162 m (15,55 yardas). El parasol fue ensamblado a mano en Man Tech (NeXolve) en Huntsville, Alabama, antes de ser entregado a Northrop Grumman en Redondo Beach, California, Estados Unidos, para su prueba.44
Óptica
Ensamblado del espejo principal en el Centro de vuelo espacial Goddard, mayo de 2016
El espejo primario de JWST es un reflector de berilio de 6,5 metros de diámetro, recubierto de oro, con un área de recolección de 25 m². Estas dimensiones son demasiado grandes para los vehículos de lanzamiento actuales, por lo que al espejo lo componen 18 segmentos hexagonales, que se desplegarán después una vez que se haya abierto el telescopio. La detección del frente de onda plano de la imagen a través de la recuperación de fase se usará para colocar los segmentos del espejo en la ubicación correcta usando micromotores muy precisos. Con posterioridad a esta configuración inicial, solo necesitarán breves encendidos cada pocos días para mantener un enfoque óptimo,45 siendo distinto a los telescopios terrestres como el Observatorio W. M. Keck, que continuamente ajustan los segmentos de su espejo utilizando ópticas activas para superar los efectos de la carga gravitacional y del viento, y es posible debido a la falta de perturbaciones ambientales por estar ubicado en el espacio.
El diseño óptico de JWST es un telescopio de tres espejos anastigmático,46 que hace uso de espejos curvos secundarios y terciarios para obtener imágenes libres de aberraciones ópticas en un amplio campo. Además, hay un espejo de dirección rápido, que puede ajustar su posición muchas veces por segundo para proporcionar estabilización de imagen.
Ball Aerospace & Technologies es el principal subcontratista para el proyecto JWST, dirigido por el contratista principal Northrop Grumman Aerospace Systems, siendo dirigidos todos por el Centro Goddard de Vuelos Espaciales de la NASA, en Greenbelt, Maryland.4748 Dieciocho segmentos de espejos primarios, espejos de dirección secundarios, terciarios y sensibles, más repuestos de vuelo han sido fabricados y pulidos por Ball Aerospace en segmentos de berilio fabricados por varias empresas, entre ellas Axsys, Brush Wellman y Tinsley Laboratories.
Modelo NIRSpec
El último segmento del espejo primario fue instalado el 3 de febrero de 2016,49 y el espejo secundario fue instalado el 3 de marzo de 2016.50
Instrumentos científicos
El Integrated Science Instrument Module (ISIM) es un módulo que proporciona energía eléctrica, recursos informáticos, refrigeración y estabilidad estructural para el telescopio. Está fabricado con un compuesto de grafito-epoxi y va unido a la parte inferior de la estructura del telescopio. En el ISIM se integran cuatro instrumentos51 científicos que se describen a continuación y una cámara guía.52
Modelo MIRI a escala 1:3
- Near InfraRed Camera (NIRCam), cámara infrarroja con cobertura espectral que irá desde el borde de lo visible (0,6 micrómetros) hasta el infrarrojo cercano (5 micrómetros).5354 También servirá como sensor de frente de onda del observatorio, necesario para actividades de detección y control de frente de onda. Construida por un equipo dirigido por la Universidad de Arizona, siendo Investigadora Principal Marcia Rieke. El socio principal es Lockheed Martin Advanced Technology Center, ubicado en Palo Alto, California.55
- Near InfraRed Spectrograph (NIRSpec), espectroscopio que realizará sus funciones en el mismo rango de longitud de onda. Construido por la Agencia Espacial Europea en el Centro Europeo de Investigación y Tecnología Espacial (ESTEC) en Noordwijk, Holanda. El equipo fue desarrollado entre varios centros y organizaciones espaciales como Airbus Defence and Space, Ottobrunn and Friedrichshafen, Alemania, y el Centro de vuelo espacial Goddard; siendo Pierre Ferruit (Escuela Normal Superior de Lyon) el científico supervisor encargado del proyecto. El diseño de NIRSpec tiene tres modos de observación: un modo de baja resolución que utiliza un prisma, un modo multiobjeto R~1000 y una unidad de campo integral R~2700 o modo de espectroscopia de ranura larga.56 La conmutación entre los modos se realiza mediante un mecanismo de preselección de longitud de onda conocido como Filter Wheel Assembly, y seleccionando el elemento dispersivo correspondiente (prisma o rejilla) utilizando el mecanismo de Grating Wheel Assembly.56 Ambos instrumentos se desarrollaron basándose en el instrumento ISOPHOT instalado también en el Observatorio Espacial Infrarrojo. El modo multiobjeto se basa en un complejo mecanismo de microobturador que permitirá observar simultáneamente cientos de objetos individuales en cualquier parte del campo de visión de NIRSpec. Los mecanismos y sus elementos ópticos fueron diseñados, integrados y probados por la empresa alemana Carl Zeiss.56
- Mid-InfraRed Instrument (MIRI), instrumento que medirá el rango de longitud de onda del infrarrojo medio de 5 a 27 micrómetros.5758 Compuesto por cámara de infrarrojo medio y un espectrómetro de imágenes.47 Fue desarrollado en colaboración entre la NASA y un consorcio de países europeos, está dirigido por George H. Rieke (Universidad de Arizona) y Gillian Wright (UK Astronomy Technology Centre, Edimburgo, miembro del Science and Technology Facilities Council (STFC)).55 MIRI presenta mecanismos de rueda similares a NIRSpec, que también han sido desarrollados y construidos por Carl Zeiss Optronics GmbH (subcontratada a su vez por Max Planck Institute for Astronomy. El instrumento una vez construido se entregó al Centro de vuelo espacial Goddard a mediados de 2012 para su eventual integración en el ISIM. La temperatura del MIRI no debe superar los 6 Kelvin (K): un enfriador mecánico de gas de helio ubicado en el lado cálido del escudo ambiental conseguirá reducirlo a tan baja temperatura.59
- Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph (FGS/NIRISS), estabilizador fabricado por la Agencia Espacial Canadiense bajo la supervisión del científico John Hutchings (Herzberg Institute of Astrophysics, National Research Council (Canadá)), estabilizará la línea de visión del observatorio durante las observaciones científicas. Las mediciones del FGS se usan tanto para controlar la orientación general de la nave espacial como para conducir el espejo de dirección para estabilizar la imagen. La Agencia Espacial Canadiense también proporcionará un instrumento que observará el infrarrojo cercano y espectrógrafo Slitless (NIRISS) para imágenes astronómicas y espectroscopía en el rango de longitud de onda de 0,8 a 5 micrómetros, cuya dirección la supervisa el investigador principal René Doyon de la Universidad de Montreal.55 Debido a que el NIRISS está físicamente montado junto con el FGS, a menudo se les reconoce como una sola unidad, pero sus análisis son completamente distintos, uno es un instrumento científico y el otro forma parte de la infraestructura de soporte del observatorio.
NIRCam y MIRI tienen coronógrafos bloqueadores de luz estelar para poder observar objetivos débiles como planetas extrasolares y discos circunestelares cercanos a estrellas brillantes.58
Los detectores infrarrojos de los módulos NIRCam, NIRSpec, FGS y NIRISS son suministrados por Teledyne Imaging Sensors (anteriormente Rockwell Scientific Company). Los sistemas instalados en el JWST, así como de los instrumentos ISIM y del ICDH utilizan el protocolo SpaceWire para transmitir datos entre los instrumentos científicos y el equipo donde se analizan.60
Bus
Diagrama del Spacecraft Bus. El panel solar es de color verde y las alas de color púrpura claro son tonos de radiadores.
El bus o plataforma es el principal componente del telescopio espacial James Webb y alberga gran cantidad de piezas de computación, comunicación, propulsión y estructurales, uniendo las diferentes partes del telescopio.61 Junto con la barrera solar, forma el elemento de “nave espacial” del telescopio espacial.62 Los otros dos elementos principales del JWST son el Integrated Science Instrument Module (ISIM) y el Optical Telescope Element (OTE).63 En el espacio conocido como “Región 3” de ISIM también está dentro del bus; este espacio incluye también el ISIM Command and Data Handling (ICDH) y el refrigerador criogénico MIRI.63
El bus está conectado al Optical Telescope Element por medio del Deployable Tower Assembly, que a su vez está conectado con la barrera solar.61
Con un peso de 350 kg (aproximadamente 772 lb),6 tiene que estar preparado para soportar el JWST, que tiene un peso aproximado de 6,5 toneladas. Fabricado principalmente de material compuesto de grafito.6 Su montaje se realizó en California en 2015, luego se tuvo que integrar con el resto del telescopio espacial previamente a su lanzamiento.64 El bus puede proporcionar el apuntamiento de un segundo de arco y aísla la vibración hasta dos (2) miliarcosegundos.65
Está ubicado con orientación al Sol, en el lado “cálido” del telescopio, operará a una temperatura de aproximadamente 300 K.62 Todo instrumento posicionado con orientación al Sol debe poder soportar condiciones térmicas de la órbita del halo del telescopio, que a un lado le da constantemente la luz solar y al otro la sombra por la barrera de la nave espacial.62
Otro aspecto importante del bus es su equipo central de computación, almacenamiento de memoria y comunicaciones.61 El procesador y el software dirigen los datos hacia y desde los instrumentos, al núcleo de memoria de estado sólido y al sistema de radio que puede enviar datos a la Tierra así como recibir órdenes.61 La computadora también controla el posicionamiento de la nave espacial, tomando los datos del sensor de los giroscopios y el rastreador de estrellas, y enviando las órdenes necesarias a los instrumentos de posicionamiento o propulsores.61
Comparativas
Comparación con el espejo primario del Hubble
Espejos del James Webb
La arquitectura Calisto para SAFIR sería una sucesora de Spitzer, que requeriría un enfriamiento pasivo aún más frío que JWST (5 kelvin).66
Vistas atmosféricas en el infrarrojo: gran parte de este tipo de luz está bloqueada cuando se observa desde la superficie de la Tierra. Sería como mirar un arcoíris pero solo ver un color.
El deseo de tener un gran telescopio espacial infrarrojo se remonta a varias décadas; en los Estados Unidos, se estudió la posibilidad de crear un telescopio en la lanzadera Shuttle Infrared Telescope Facility mientras desarrollaba el Space Shuttle reconociéndose el potencial existente de la astronomía infrarroja en ese instante.67 En comparación con los telescopios de tierra, se sabía que los observatorios espaciales estaban libres de la absorción atmosférica de luz infrarroja; sería como un “cielo nuevo” para los astrónomos.67
La atmósfera tenue por encima de los 400 km de altura no tiene absorción medible, por lo que los detectores que operan en todas las longitudes de onda de 5 µm a 1000 µm alcanzan una alta sensibilidad radiométrica.
– S. G. McCarthy y G. W. Autio, 1978ref name=”proceedings.spiedigitallibrary.org”/>
Sin embargo, los telescopios infrarrojos tienen un inconveniente: necesitan conservarse extremadamente fríos y cuanto más larga es la longitud de onda de los infrarrojos, más fríos deben estar.68 De lo contrario, el calor de fondo del dispositivo bloquea a los instrumentos, dejándolo completamente ciego.68 Este inconveniente puede superarse mediante un cuidadoso diseño de la nave espacial, particularmente colocando el telescopio en un depósito con una sustancia extremadamente fría, como el helio líquido.68 Esto significa que la mayoría de los telescopios infrarrojos tienen una vida útil limitada por su refrigerante, tan breve como cuestión de meses, tal vez pocos años como máximo.68 Hasta ahora ha sido posible mantener la temperatura lo suficientemente baja mediante el diseño de la nave espacial para permitir observaciones de infrarrojo cercano sin un suministro de refrigerante, como por ejemplo las misiones extendidas de Spitzer y NEOWISE. Otro ejemplo es el instrumento NICMOS del Hubble, que comenzó utilizando un bloque de hielo de nitrógeno que se agotó tras un par de años, pero que luego se convirtió en un refrigerador criogénico que funcionaba continuamente. El JWST está diseñado para enfriarse sin depósito, simplemente usando una combinación de barrera contra el sol y radiadores con el instrumento de infrarrojo medio utilizando un refrigerador criogénico adicional.69
Las demoras y los aumentos de presupuestos del telescopio se pueden comparar con el telescopio espacial Hubble.70 Cuando se empezó a hacer realidad el proyecto Hubble en 1972, tenía un presupuesto inicial estimado de 300 millones de dólares (o aproximadamente 1000 millones de dólares de 2006),70 pero cuando fue enviado a órbita en 1990, el presupuesto ascendía aproximadamente a cuatro veces el inicial.70 Además, los nuevos instrumentos instalados y las misiones de servicio asignadas han elevado el presupuesto a por lo menos 9000 millones de dólares en 2006.70
En 2006 se publicó un artículo en la revista Nature donde se reflejaban los resultados de un estudio realizado en 1984 por el consejo de Ciencias del Espacio, donde se estimaba que un observatorio infrarrojo de próxima generación costaría 4000 millones de dólares (cerca de 7000 millones de dólares de 2006).70
A diferencia de otros observatorios propuestos, la mayoría de los cuales ya han sido cancelados o suspendidos, incluidos el Terrestrial Planet Finder (2011), Space Interferometry Mission (2010), International X-ray Observatory (2011), MAXIM (Microarcsecond X-ray Imaging) Misión), SAFIR (Observatorio de Infrarrojo Lejano de Apertura Simple), SUVO (Observatorio Ultravioleta-Visible del Espacio) y el SPECS (Sonda Submilimétrica de la Evolución de la Estructura Cósmica), el JWST es la última gran misión astrofísica de la NASA de su generación construido,
Historia
Participación
NASA, ESA y CSA colaboran en el telescopio desde 1996. ESA participa en la construcción y en el lanzamiento desde el año 2003, tras la aprobación de su colaboración, en 2007 firmó un acuerdo con la NASA. A cambio de una participación plena, representación y acceso al observatorio para sus astrónomos, ESA proporciona el instrumento NIRSpec, el Optical Bench Assembly del instrumento MIRI, un cohete Ariane 5 ECA y mano de obra para apoyar durante las operaciones.88130 El CSA proporcionará el Fine Guidance Sensor and the Near-Infrared Imager Slitless Spectrograph más mano de obra para apoyar las operaciones.131
Misión
La misión científica de JWST tiene principalmente cuatro objetivos: encontrar luz de las primeras estrellas y galaxias que se formaron en el universo después del Big Bang; estudiar la formación y evolución de las galaxias; comprender la formación de estrellas y sistemas solares; y estudiar los sistemas planetarios y los orígenes de la vida.135 Estos objetivos se pueden lograr de manera más efectiva mediante la observación en longitudes de onda infrarroja cercana que en la luz en la parte visible del espectro. Por esta razón, los instrumentos de JWST no medirán la luz visible o ultravioleta como el telescopio Hubble, porque tiene una capacidad mucho mayor para realizar astronomía infrarroja. El JWST será sensible en un rango de longitudes de onda de 0,6 (luz naranja) a 28 micrómetros (radiación infrarroja profunda a aproximadamente 100 K (−170 °C; −280 °F)).
El telescopio también se utilizará para recopilar información sobre la luz de atenuación de la estrella KIC 8462852, descubierta en el año 2015, que tiene algunas propiedades anormales de la curva de luz.136
Lanzamiento y duración de la misión
El telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36 En principio estaba previsto que el telescopio estuviera listo para ser lanzado en 2018.137 Tras distintos aplazamientos de fecha de lanzamiento por diversos contratiempos,138 en junio de 2018, se estableció como nueva fecha de lanzamiento el 30 de marzo de 202131 con un cohete Ariane 5. En junio de 2021 la fecha de lanzamiento vuelve a retrasarse a noviembre. 139 Finalmente el telescopio James Webb fue lanzado el 25 de diciembre de 2021 desde la Guayana Francesa a bordo de un cohete Ariane 5.36
El observatorio está provisto de un “anillo-interfaz de vehículo de lanzamiento” que podría ser utilizado para que un futuro lanzamiento de aprovisionamiento del observatorio por medio de astronautas o robots, pudiera solucionar problemas de despliegue general. Sin embargo, el telescopio en sí no es útil, y los astronautas no podrían realizar tareas como intercambiar instrumentos, como con el telescopio Hubble.47 El tiempo nominal de la misión es de cinco años, con un límite en principio de diez años.140 JWST necesita usar propelente para mantener su órbita de halo alrededor del punto de Lagrange L2, lo que proporciona un límite superior a su vida útil esperada, y está siendo diseñado para transportar suficiente propelente para diez años.141 La misión científica programada de cinco años comienza después de una fase de prueba y puesta en marcha de 6 meses.141 La órbita L2 es solo metaestable, por lo que requiere un mantenimiento de estación orbital o el objeto se alejará de esta configuración orbital.142
JWST configurado para el lanzamiento
JWST no estará ubicado exactamente en el punto L2, pero hará un círculo alrededor de él en una órbita de halo.
Dos vistas alternativas desde el Telescopio espacial Hubble de la Nebulosa de la Quilla, comparando astronomía ultravioleta y visible (arriba) e infrarroja (abajo). Muchas más estrellas son visibles en este último.
Las observaciones infrarrojas pueden ver objetos ocultos en luz visible, como muestra HUDF-JD2.
Órbita
El JWST estará ubicado cerca del segundo punto de Lagrange (L2) del sistema Tierra-Sol, que se encuentra a 1 500 000 kilómetros (930 000 mi) de la Tierra, justo enfrente del Sol. Normalmente, un objeto que rodea el Sol más allá de la Tierra tardaría más de un año en completar su órbita, pero cerca del punto L2 la atracción gravitacional combinada de la Tierra y el Sol permite a la nave orbitar alrededor del Sol a la misma velocidad que la Tierra. El telescopio girará alrededor del punto L2 en una órbita de halo, que estará inclinada con respecto a la eclíptica, tendrá un radio de aproximadamente de 800 000 kilómetros (500 000 millas) y tardará aproximadamente medio año en completarse.40 Dado que el punto L2 es solo un punto de equilibrio sin atracción gravitatoria, una órbita de halo no es una órbita en el sentido habitual: el módulo espacial está realmente en órbita alrededor del Sol, y la órbita de halo puede considerarse deriva controlada para permanecer en las proximidades del punto L2.143 Esto requiere cierto mantenimiento de corrección de la estación: entre 2-4 m/s por año144 de un total de 150 m/s estimado para toda la misión, incluyendo correcciones de trayectoria para llegar a la órbita alrededor del punto L2.145 El sistema de propulsión del observatorio lo forman dos conjuntos de propulsores.146
Astronomía infrarroja
JWST es el sucesor del telescopio espacial Hubble (HST), y dado que su característica principal reside en la observación infrarroja, también es el sucesor del telescopio espacial Spitzer (SST). JWST superará con creces a ambos telescopios, pudiendo observar muchas más estrellas y galaxias, recientes y más antiguas.147 Observar en el infrarrojo es una técnica clave para lograrlo debido al desplazamiento al rojo cosmológico y porque penetra mejor en el oscurecimiento producido por las nubes de polvo interestelar y gas. También permite poder observar objetos más fríos y débiles. Debido a que el vapor de agua y el dióxido de carbono en la atmósfera de la Tierra absorben fuertemente la mayoría de los infrarrojos, la astronomía infrarroja terrestre se limita a rangos de longitud de onda cercanos donde la atmósfera absorbe con menor fuerza. Además, la atmósfera misma irradia en la luz infrarroja, bloqueando a menudo el objeto que se observa. Esto hace que un telescopio espacial sea preferible para la observación infrarroja.148
Soporte en tierra y operaciones
El Space Telescope Science Institute (STScI), ubicado en Baltimore, Maryland, en el campus de Homewood de la Universidad Johns Hopkins, fue seleccionado como el Science and Operations Center (S&OC) para el JWST con un presupuesto inicial de 162 200 000 de dólares destinado a apoyar operaciones durante el primer año de funcionamiento tras el lanzamiento.152 Con esta funcionalidad, el STScI será responsable de la operación científica del telescopio y la entrega de productos de datos a la comunidad astronómica. Los datos se transmitirán desde JWST hasta la Tierra a través de la Red del Espacio Profundo de la NASA, se procesarán y calibrarán en el STScI, para ser distribuido posteriormente en línea a los astrónomos de todo el mundo. De forma similar a cómo opera el Hubble, cualquier persona, en cualquier parte del mundo, podrá presentar proyectos para realizar observaciones. Cada año, varios comités de astrónomos examinarán por pares las propuestas presentadas para seleccionar los proyectos a observar en el próximo año. Los autores de las propuestas elegidas generalmente tendrán un año de acceso privado a las nuevas observaciones, después de lo cual los datos estarán disponibles públicamente para su descarga por parte del archivo en línea de STScI.
La mayor parte del procesamiento de datos del telescopio se realiza mediante ordenadores convencionales de una sola placa.153 La conversión de los datos científicos analógicos a formato digital se lleva a cabo mediante el SIDECAR ASIC (System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit). La NASA declaró que el SIDECAR ASIC incluirá todas las funciones de una caja de herramientas de 9 kg (20 lb) en un paquete de 3 cm y consumirá solo 11 milivatios de potencia.154 Como esta conversión debe realizarse cerca de los detectores, en el lado más frío del telescopio, usar baja potencia de este circuito integrado será crucial para mantener la baja temperatura necesaria para el buen funcionamiento del JWST.154
Despliegue después del lanzamiento
Casi un mes después del lanzamiento, se iniciará una corrección de trayectoria para colocar el JWST en una órbita de halo en el punto lagrangiano L2.155
Linea temporal después del despliegue del JWST47
Programa científico y observaciones
El tiempo de observación de JWST se asignará por medio de un programa conocido como Director’s Discretionary Early Release Science (DD-ERS), el programa Guaranteed Time Observations (GTO) y el programa General Observers (GO).156 El programa GTO proporciona el tiempo de observación garantizado para los científicos que desarrollaron componentes de hardware y software para el observatorio. El programa GO proporciona a todos los astrónomos la oportunidad de solicitar tiempo de observación. Los programas GO se seleccionarán a través de una revisión por parte de un Comité de Asignación de Tiempo (TAC), similar al proceso de revisión de propuestas utilizado para el telescopio espacial Hubble. Se espera que el tiempo de observación de JWST sea muy alto, lo que significaría que el número de propuestas de GO enviadas será mucho mayor que el número que se puede aprobar en cualquier ciclo de observación.
Longitudes de onda que serán observadas por el JWST y el área de los telescopios espaciales (NASA).
El JWST en la Guayana Francesa (ESA).
Rueda de filtros del instrumento MIRI (NASA/ESA).
Comienza la era del James Webb
12 July 2022
El telescopio espacial James Webb ya está funcionando a pleno rendimiento a 1,5 millones de kilómetros de la Tierra (en el punto de Lagrange L2 del sistema Tierra-Sol). Hoy 12 de julio de 2022 el equipo del JWST ha publicado las primeras imágenes científicas —esto es, no usadas para calibración— obtenidas por los instrumentos del observatorio. El evento había sido planificado cuidadosamente entre las agencias espaciales involucradas —NASA, ESA y CSA— para presentar al mundo el enorme potencial del James Webb, pero a última hora la Casa Blanca decidió adelantarse e hizo pública un día antes una de las cinco imágenes que iban a ser distribuidas. Al fin y al cabo, la NASA, y por extensión, Estados Unidos, contribuye con la mayoría del presupuesto del JWST —Europa participa con un 15% y Canadá con menos del 5%—, así que había que dejar claro quién lidera este ambicioso proyecto. Por otro lado, cierto es que no es nada común ver a todo un presidente de los EE. UU. presentar una imagen astronómica. La imagen del cúmulo galáctico SMACS 0723 y su lente gravitatoria asociada ya es historia y será recordada como la ‘primera imagen del James Webb’.
La nebulosa de Carina vista por el instrumento NIRCam del James Webb (NASA/ESA/CSA/STScI).
No obstante, hoy se han hecho públicas las otras cuatro imágenes previstas —técnicamente, tres imágenes y un espectro— con el objetivo de poder entender mejor las asombrosas capacidades del James Webb. El pasado 8 de julio la NASA y la ESA ya habían anunciado cuáles iban a ser los objetos protagonistas de estas primeras cinco imágenes científicas: la nebulosa de Carina (NGC 3324), el cúmulo de galaxias con lente gravitacional SMACS J0723, un espectro del planeta WASP-96 b, la nebulosa del Anillo del Sur (NGC 3132) y el cúmulo de galaxias conocido como el ‘Quinteto de Stephan’. Como comentábamos, la imagen del cúmulo lejano SMACS J0723 ya había sido publicada el día anterior, pero no por ello el resto de imágenes son menos impresionantes. Pero antes de comentarlas, quizá es conveniente destacar un par de puntos.
¿En qué se diferencian estas imágenes de las obtenidas por el Hubble?
Ante la publicación de estas imágenes son muchos los que se preguntan la diferencia con las que adquiridas por el veterano telescopio espacial Hubble. Se suele explicar que la principal diferencia es que el James Webb opera en el infrarrojo, mientras que el Hubble lo hace en el visible. Pero esto es matizable. El Hubble observa principalmente en el ultravioleta y en el visible, cierto, pero también tiene —y ha tenido— instrumentos capaces de ver el infrarrojo cercano. De hecho, actualmente el Hubble puede ver longitudes de onda de hasta 1,7 micras (infrarrojo cercano). La diferencia es que el JWST prácticamente solo ve en el infrarrojo, de 0,6 a 28 micras, mientras que el Hubble puede contemplar todo el espectro visible y el ultravioleta, además del infrarrojo cercano.
De todas formas, puede haber más diferencias, por ejemplo, entre las imágenes obtenidas por los instrumentos MIRI y NIRCam del James Webb que entre las captadas por la cámara WFC3 del Hubble y la NIRCam del JWST, por lo que dependerá de qué instrumentos exactos estemos hablando. La otra diferencia es el tamaño del espejo primario. El James Webb tiene un espejo de 6 metros de diámetro, mientras que el del Hubble es de 2,4 metros. Esto implica, por un lado, que la máxima resolución que puede alcanzar el JWST es mayor que la del Hubble, y, por otro lado, que es mucho más sensible. Es decir, con el mismo tiempo de observación el James Webb puede captar objetos mucho más débiles que el Hubble.
Región del espectro que cubre cada instrumento del James Webb (NASA).
¿Qué tienen de especial estas primeras imágenes?
Las cinco imágenes publicadas han sido elegidas para demostrar el potencial del observatorio. Por tanto, se han usado todos los instrumentos científicos del JWST. Además, se han seleccionado una serie de objetos astronómicos que concuerdan con los objetivos principales del James Webb: estudio de las primeras galaxias del universo y de la materia y energía oscuras, los núcleos activos de galaxias, investigar la formación y evolución estelar, así como las atmósferas exoplanetarias a través de espectros de transmisión. Solo han quedado fuera de esta primera selección objetos de nuestro sistema solar, aunque bien es cierto que no se trata de objetivos prioritarios para el JWST (pero sin duda veremos alguna imagen del sistema solar más pronto que tarde).
Resumen de las prestaciones de los instrumentos del JWST (NASA).
La Tierra de Al-Juarismi
Al-Juarismi
Descripción de La Tierra de Al-Juarismi
Nombre completo: Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī
Nombre nativo: أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر
Otros nombres: Abu Yāffar ; Algorithmi
Nacimiento: ca. 780; Corasmia, Persia, Califato Omeya
Fallecimiento: ca. 850 (70 años); Bagdad, Califato Omeya Residencia: Bagdad
Nacionalidad: súbdito del califato omeya
Etnia: Persa
Religión: Sunismo
Ocupación: Matemático, astrónomo, geógrafo, filósofo, escritor
Empleador: Casa de la sabiduría
Lengua literaria: Árabe, persa
Obras notables: Compendio de cálculo por reintegración y comparación
Abu Abdallah Muḥammad ibn Mūsā al-Jwārizmī (Abu Yāffar) (en árabe أبو عبد الله محمد بن موسى الخوارزمي ابو جعفر; ,ca. 780-Bagdad, ca. 850), conocido generalmente como al-Juarismi, y latinizado antiguamente como Algorithmi, fue un matemático, astrónomo y geógrafo persa.12 Fue astrónomo y jefe de la Biblioteca de la Casa de la Sabiduría de Bagdad, alrededor de 820.3 Es considerado como uno de los grandes matemáticos de la historia.45
Su obra, Compendio de cálculo por reintegración y comparación, presentó la primera solución sistemática de ecuaciones lineales y cuadráticas. Uno de sus principales logros en el campo del álgebra fue su demostración de como resolver ecuaciones cuadráticas con el método de completación de cuadrados, justificándolo geométricamente.3 También trabajó en el campo de la trigonometría, produciendo tablas de seno y coseno, y la primera sobre tangentes.
Su importancia radica en que fue el primero en tratar al álgebra como una disciplina independiente e introdujo los métodos de “reducción” y “equilibrio”, siendo descrito como el padre y fundador del álgebra. De hecho su nombre latinizado dio nombre a varios términos matemáticos como algoritmo y algoritmia (la disciplina que desarrolla los algoritmos6), así como los términos guarismo78 y el portugués algarismo que significa dígito,9 al igual que guarismo.
También destacó como geógrafo y astrónomo, revisando la obra de Ptolomeo, Geografía, y logrando enumerar longitudes y latitudes de varias ciudades y localidades. También escribió varias obras sobre el astrolabio, el reloj solar, el calendario, y produjo varias tablas astronómicas.
Su legado continuó cuando en el siglo XII las traducciones latinas de su obra Algoritmi de número Indorum ayudó a popularizar los números arábigos en occidente, junto con el trabajo del matemático italiano Fibonacci, logrando que se reemplazara el sistema de numeración romano por el arábigo, que dio origen a la numeración actual.101112 Adicionalmente su obra magna se usó como principal tratado de matemáticas, traducido por Robert de Chester en 1145, en las universidades europeas hasta el siglo XVI.1314
Al-Jwarizmi. Célebre matemático árabe de la primera mitad del siglo IX. De su nombre y de sus obras proceden las palabras «álgebra», «guarismo» y «algoritmo». Gracias a él, se introdujo en Occidente el actual sistema de numeración. Biografía
Poco se conoce de su biografía, a tal punto que existen discusiones no saldadas sobre su lugar de nacimiento. Algunos sostienen que nació en Bagdad. Otros, siguiendo el artículo de Gerald Toomer15 (a su vez, basado en escritos del historiador al-Tabari) sostienen que nació en la ciudad Corasmia de Jiva (en el actual Uzbekistán). Rashed16 halla que se trata de un error de interpretación de Toomer, debido a un error de transcripción (la falta de la conectiva wa) en una copia del manuscrito de al-Tabari. No será este el último desacuerdo entre historiadores que encontraremos en las descripciones de la vida y las obras de al-Juarismi. Estudió y trabajó en Bagdad en la primera mitad del siglo IX, en la corte del califa al-Mamun. Para muchos, fue el más grande de los matemáticos de su época.
Debemos a su nombre y al de su obra principal, Hisāb al-ŷabr wa’l muqābala, (حساب الجبر و المقابلة) nuestras palabras álgebra, guarismo y algoritmo. De hecho, es considerado como el padre del álgebra y como el introductor de nuestro sistema de numeración denominado arábigo.
Hacia 815 al-Mamun, séptimo califa Abásida, hijo de Harún al-Rashid, fundó en su capital, Bagdad, la Casa de la sabiduría (Bayt al-Hikma), una institución de investigación y traducción que algunos han comparado con la Biblioteca de Alejandría. En ella se tradujeron al árabe obras científicas y filosóficas griegas e hindúes. Contaba también con observatorios astronómicos. En este ambiente científico y multicultural se educó y trabajó al-Juarismi junto con otros científicos como los hermanos Banu Musa, al-Kindi y el famoso traductor Hunayn ibn Ishaq. Dos de sus obras, sus tratados de álgebra y astronomía, están dedicadas al propio califa.
Obra
Son de destacar sus logros y obras en Álgebra, Aritmética, Astronomía, Geografía, etc…
Así en:
Astronomía
De su tratado sobre astronomía, Sindhind zij, también se han perdido las dos versiones que escribió en árabe. Esta obra31 se basa en trabajos astronómicos indios “a diferencia de manuales islámicos de astronomía posteriores, que utilizaron los modelos planetarios griegos del ‘Almagesto’ de Ptolomeo“.32 El texto indio en que se basa el tratado es uno de los obsequiados a la corte de Bagdad alrededor de 770 por una misión diplomática de la India. En el siglo X al-Maŷriti realizó una revisión crítica de la versión más corta, que fue traducida al latín por Adelardo de Bath; existe también una traducción latina de la versión más larga, y ambas traducciones han llegado hasta nuestro tiempo. Los temas principales cubiertos en la obra son los calendarios; el cálculo de las posiciones verdaderas del Sol, la Luna y los planetas; tablas de senos y tangentes; astronomía esférica; tablas astrológicas; cálculos de paralajes y eclipses; y visibilidad de la Luna. Rozenfel’d analiza un manuscrito relacionado sobre trigonometría esférica,33 atribuido a al-Juarismi.
Geografía
En el ámbito de la geografía, en una obra llamada Kitab Surat al-Ard (en árabe: كتاب صورةلأرض, Libro de la apariencia de la Tierra o de la imagen de la Tierra), escrito en el año 833, revisó y corrigió los trabajos anteriores de Ptolomeo con respecto a África y el Oriente. Lista latitudes y longitudes de 2.402 lugares, y emplazó ciudades, montañas, mares, islas, regiones geográficas y ríos, como base para un mapa del mundo conocido entonces. Incluye mapas que, en conjunto, son más precisos que los de Ptolomeo. Está claro que donde hubo mayor conocimiento local disponible para al-Khwârazm, como las regiones del Islam, África y el Lejano Oriente , el trabajo es mucho más exacto que el de Ptolomeo, pero parece haber usado los datos de este para Europa. Se dice que, en estos mapas, trabajaron a sus órdenes setenta geógrafos.
Sólo existe una única copia sobreviviente del Kitab Surat-al-Ard, guardada en la Biblioteca de la Universidad de Estrasburgo. En la Biblioteca Nacional de España de Madrid se conserva una copia traducida al latín.
Aunque ni la copia en árabe ni la traducción al latín incluyen el mapa del mundo, Hubert Daunicht pudo reconstruir un mapamundi usando su lista de coordenadas. 34
Al-Khwarizmi corrigió la sobreestimación que había hecho Ptolomeo sobre la superficie del Mar Mediterráneo 35 36 (desde las Islas Canarias a las costas del este del Mediterráneo); Ptolomeo hizo una estimación que el mar Mediterráneo tenía 63 grados de longitud , mientras que él hizo la estimación más correcta que el mar tenía unos 50 grados de longitud. 37 También contrarió a Ptolomeo diciendo que el océano Atlántico y el océano Índico eran dos cuerpos abiertos de agua, no mares. 38 Al-Khwarizmi también estableció el meridiano de Greenwich del Viejo Mundo en la orilla oriental del Mediterráneo, 10-13 grados al este de Alejandría (Ptolomeo situó el meridiano 70 grados al oeste de Bagdad). La mayoría de los geógrafos musulmanes de la edad medieval continuaron usando el meridiano de Greenwich de al-Khwarizmi.
La mayoría de los topónimos usados por al-Khwarizmi coinciden con los de Ptolomeo, los de Martellus y los de Behaim. La forma general de la costa es la misma entre Taprobane y Kattigara. La costa atlántica de la cola del Dragón, que no existe en el mapa de Ptolomeo, se traza en muy pocos detalles en el mapa de Al-Khwarizmi, pero es clara y más precisa que la del mapa de Martellus y la versión de Behaim.
Otras obras
El Kitāb al-Fihrist de Ibn al-Nadim, un índice de libros árabes, menciona el Kitāb al-Taʾrīkh de al-Khwārizmī en árabe: كتاب التأريخ), un libro de anales. No sobrevive ningún manuscrito directo; sin embargo, una copia había llegado a Nusaybin en el siglo XI, donde la encontró su obispo metropolitano, Mar Elyas bar Shinaya. La crónica de Elías lo cita desde “la muerte del Profeta” hasta el año 169 AH, momento en el que el texto de Elías se encuentra en una laguna.39
Varios manuscritos árabes en Berlín, Estambul, Tashkent, El Cairo y París contienen más material que seguramente o con cierta probabilidad proviene de al-Khwārizmī. El manuscrito de Estambul contiene un artículo sobre relojes de sol; el fihrist atribuye a al-Khwārizmī Kitāb ar-Rukhāma (t) (árabe : كتاب الرخامة). Otros trabajos, como uno sobre la determinación de la dirección de La Meca, tratan sobre la astronomía esférica
Dos textos merecen un interés especial sobre el ancho de la mañana (Ma’rifat sa’at al-mashriq fī kull balad) y la determinación del acimut desde una altura (Ma’rifat al-samt min qibal al-irtifā’).
Su obra conocida se completa con una serie de obras menores sobre temas como el astrolabio, sobre el que escribió dos textos, sobre relojes solares y sobre el calendario judío. También escribió una historia política conteniendo horóscopos de personajes prominentes.
Homenajes
En Jiva, Uzbekistán, lugar frecuentemente aceptado como de su probable nacimiento, existe una estatua en su honor. La imagen muestra a Juarismi sentado sobre un banco, en posición de razonamiento, ya que la imagen mira hacia el suelo, como si estuviese calculando o leyendo. Otra imagen del sabio, ésta vez de pie y con los brazos extendidos, fue ubicada en la ciudad uzbeka de Urgench.
El 6 de septiembre de 1983, el gobierno soviético lanzó una serie postal de un sello conmemorativo con el rostro del sabio persa, con la inscripción “1200 años” en referencia a los 1200 años de su probable nacimiento. En 2012 el gobierno uzbeko también lanzó un sello postal conmemorativo de Juarismi, inspirado en la estatua del sabio que actualmente está en Jiva.
Al-Juarismi revolucionó la cartografía de su época con los aportes que hizo en Geografía, corrigiendo errores que se venían arrastrando por más de 600 años, desde los tiempos del célebre sabio greco-egipcio Claudio Ptolomeo. Posicionó mejor las ciudades y montañas más importantes del mundo conocido y definió con más precisión sus mares, incluyendo el Mediterráneo. El paradigma de la planeza de la Tierra era Occidental, no Oriental. Al-Juarismi participó en un proyecto para medir la circunferencia de la Tierra.
La tabla de coordenadas de Al-Juarismi
Comentarios
Una de las compilaciones de coordenadas geográficas más antiguas que se conservan es la que realizó en el siglo IX el astrónomo y matemático Al-Juarismi. Las tablas de Al-Juarismi se encuentran en un librito llamado Kitab surat al-ard («Libro de la forma de la Tierra») del cual solo se conserva una copia posterior, fechada en el mes de Ramadán del año de la Hégira 428 (junio – julio de 1037 de la era cristiana), y conservada actualmente en la Biblioteca de la Universidad de Estrasburgo.
A través de Calames, que es el portal francés de manuscritos antiguos, se puede acceder a la ficha del manuscrito [1] pero no a imágenes del mismo. Tampoco parece encontrarse en internet una edición comentada que publicó Hans von Mžik en 1926 [2]. Por suerte sí se encuentra disponible en Archive.org un estudio que realizó el italiano C.A. Nallino en 1894 [3].
El título completo del manuscrito es «Libro de la figura [también puede traducirse por la forma o la representación] de la Tierra, de las ciudades, los montes, los mares, las islas y los ríos. Lo tradujo Abu Yāffar Muhammad ibn Mūsā al-Jwārizmī del libro ‘Geografía’ compuesto por Ptolomeo al-Qlaudi». Tras el título viene la frase convencional «En nombre de Dios clemente y misericordioso» y a continuación viene directamente una serie de listas de coordenadas, algunas en forma de tabla y otras en forma de texto.
La primera tabla contiene 537 ciudades (de las cuales 9 sin coordenadas y 5 o 6 repetidas), ordenadas por «clima» (bandas de latitud) y, dentro de cada clima, por longitud creciente desde Occidente (Atlántico) hasta Oriente. La segunda tabla da las coordenadas de 209 montes, algunos sin nombre propio. Sigue una descripción sucinta de las costas de cinco mares, que básicamente se limita a indicar las coordenadas de los accidentes costeros principales: cabos, golfos, desembocaduras de ríos, etc. Luego viene la lista de las islas; para las menores solo coordenadas del centro y de los extremos mientras que para las mayores también se dan las de los accidentes costeros principales. La gran mayoría de las islas no tienen nombre. A continuación figura una tabla de regiones en la que se dan las coordenadas del punto central de cada una y por fin la parte más larga del manuscrito, la descripción de los ríos, en la que se mencionan los meandros principales y las ciudades que atraviesa cada uno. La mayoría de los ríos carecen de nombre.
Del contenido del Kitab surat al-ard queda claro que no es verdaderamente un libro de geografía y mucho menos una traducción de la Geografía de Ptolomeo. Además los valores de las coordenadas geográficas anotados por Al-Juarismi raramente coinciden con los de Ptolomeo. Por otra parte, algunas indicaciones contenidas en las tablas permiten discernir que el autor del Kitab transcribió los nombres y las coordenadas geográficas copiándolos de un mapa o atlas. Esto explica la gran cantidad de montes, islas y ríos que no tienen nombre pero sí cifras de latitud y longitud. Se puede especular que el mapa que sirvió de fuente pudo ser el que mandó realizar en Bagdad el califa Al-Mamun ya que Al-Juarismi perteneció al círculo de científicos que trabajaron para este califa.
En términos actuales se diría que Al-Juarismi digitalizó el mapamundi de Al-Mamun, es decir, que a partir de una imagen creó una tabla de cifras que recogían lo esencial de la información contenida en la imagen. El manuscrito no explica el motivo de esta digitalización. El Kitab surat al-ard es el único trabajo relacionado con la cartografía que se le conoce a Al-Juarismi, cuyos campos principales de interés eran la astronomía y las matemáticas.
Tratado de astronomía y obra en geografía
Por otro lado, Al-Khwarizmi también realizó un tratado sobre Astronomía. Se conservan las dos versiones latinas solamente. En este tratado se podían visualizar estudios de calendarios y posiciones reales del Sol, la luna y los planetas. Las tablas de senos y tangentes estaban aplicadas a la astronomía esférica. También nos podemos encontrar en este tratado tablas astrológicas, cálculos de paralaje y eclipses y visibilidad de la luna.
También se dedicó en parte a la geografía, donde realizó una obra llamada Kitab Surat-al-Ard. En esta obra se puede ver cómo corrige a Ptolomeo en todo lo referente a África y Oriente. Realizó una lista con las latitudes y las longitudes de las ciudades, montañas, ríos, islas, diferentes regiones geográficas e incluso de los mares. Estos datos fueron utilizados como base para crear un mapa del mundo que entonces se conocía.
Como puede ver, Al-Khwarizmi realizó importantes aportes en el mundo de la ciencia y, a día de hoy, son muchas las aplicaciones que tenemos en las matemáticas gracias a él.
Reconstrucción de Daunicht de la sección del mapa mundial de al-Juarismi relativa al Océano Índico.
Por investigaciones y comparaciones de datos sobre otros mapas de famosos cartógrafos, se deduce por la identificación de ríos, cabos y montañas que expresa a América del Sur. Por lo tanto, Al-Juarizmi es el autor del mapa más antiguo que represente América del Sur con sus dos orillas, la del Pacífico y la del Atlántico. ¿Elucubraciones del investigador?
Mapa mundial de Albi
Mapa mundial de Albi
Mapa mundial de Albi
El mapamundi Albi es un mapa del mundo medieval (mapamundi), incluido en un manuscrito de la segunda mitad del VIII ° siglo conservado en la antigua capital de la biblioteca multimedia Pierre Amalric de Albi. Este manuscrito procede de la biblioteca del capítulo de la catedral de Sainte-Cécile d’Albi. El mapamundi Albi es el documento más antiguo conservado en una representación global y no abstracta del mundo habitado, con la excepción de dos tabletas (uno de Mesopotamia (hacia – 2600 aC), y el otro de Babilonia (V º siglo aC)1 . Fue incluido en octubre de 2015 registrar la Memoria del Mundo de la UNESCO 2 .
Descripción del manuscrito y del mapa
El manuscrito que lleva el mapa (Inv. Ms 29 (115)) incluye 77 hojas. Fue designado para la XVIII ª siglo “Miscelánea” (palabra latina “colección” significado). Esta colección contiene 22 documentos diferentes, que tenían funciones educativas. El manuscrito, un pergamino probablemente elaborado con piel de cabra o de oveja1, se encuentra en muy buen estado de conservación.
La tarjeta en sí mide 27 cm de alto por 22,5 de ancho. Representa a 23 países de 3 continentes y menciona varias ciudades, islas, ríos y mares. El mundo conocido está representado en forma de herradura, que se abre al nivel del Estrecho de Gibraltar y rodea el Mediterráneo, con el Cercano Oriente en la parte superior, Europa a la izquierda y el norte de África a la derecha.
Inscripciones
País y desierto
El mapa menciona 23 países en 3 continentes 1 :
- Europa: Ispania (España), Britania (Bretaña), Gallia (Galia), Italia (Italia), Gotia (país de los godos, que designa a Germania), Tracia (Tracia), Macedonia (Macedonia), Agaia (Achaia, que designa a Grecia), Barbari (dominio de los bárbaros).
- África (Afriga): Mauritania (Mauritania), Nomedia (Numidia), Libia (Libia), Etiopía (Etiopía), Egyptus (Egipto).
- Oriente: Armenia (Armenia), India (India), Scitia (tierra de los escitas), Media (tierra de los medos), Persida (Persia), Judea (Judea), Arabia (Arabia).
Están representadas las cinco islas más grandes del Mediterráneo: Córcega, Cerdeña, Sicilia, Creta y Chipre.
También hay un desierto ( deserto ) y el monte Sinaí ( Sina ) representado por un triángulo.
Ciudades e islas
- Ciudades: Babilonia, Atenas, Rávena, Roma, Antioquía, Jerusalén, Alejandría y Cartago.
- Islas: Chipre, Creta, Sicilia, Cerdeña y Córcega.
Ríos, mares y océanos
- Fleuves: Tigre (Tigre), Pison (Fison) Nada (Nilo), Ganges (río Gange ), Ródano (Ródano) y Rhin (Rin).
- Mers, Adriatique (Adrias), Mer Noire (Negro) mer Ionienne (Mar Jónico Mar), Cyminicum, Mer Rouge (Rojo), Caspienne (Mar Caspio).
- Océano: Oceanum océano, el en el mapa rodea toda la tierra como se imaginó en ese momento.
El mapa mundial de Albi
Mappa mundi de El Albi se conserva en un manuscrito (Ms 29 (115)) de 77 hojas, que constituye una colección de 22 piezas de textos diferentes, titulada en el siglo XVIII ” Miscellanea ” (colección). Le sigue inmediatamente un índice de vientos y mares.
Este manuscrito es uno de los que constituían la biblioteca del capítulo de la catedral de Albi: en el reverso de la página de la portada volante, al principio del libro, se encuentra el ex-libris (marca de pertenencia) dibujado en un Escritura del siglo XVIII: “Ex-libris Fri. Capituli Ecclesiae Albiensis”(“ Parte del venerable capítulo de la Iglesia de Albi ”).
Es un manuscrito en pergamino. Probablemente sea una piel de oveja o, dado el origen sureño del documento, una cabra. Esto es de u hace piel relativamente gruesa, el lado ‘hair’ muy amarillo, con perforaciones originales (la degradación de la piel debido a la lesión del animal) y una hojas de tamaño irregulares. Estos elementos son bastante característicos de los manuscritos en pergamino del siglo VIII.
El manuscrito está en excelentes condiciones.
¿Para qué era?
El manuscrito y el mapa tenían originalmente una función educativa. Como parte de una colección dedicada a la enseñanza de la gramática, la historia y la geografía, sirvió para dar una visión del mundo y constituir una herramienta para comprender mejor la geografía y por ende la historia. Quizás ella también tuvo que contribuir a la meditación contemplativa, ofreciendo la misma mirada que Dios tenía sobre el mundo: ¡una vista del cielo!
¿Cómo llegó a nosotros?
El mapa se mantuvo en la biblioteca capitular de la catedral durante la Edad Media, donde se utilizó con regularidad. Entre los siglos XII y XVIII quedan pocos elementos de la historia de este documento. Solo sabemos que la encuadernación fue restaurada en el siglo XVII y luego en el siglo XVIII. Escapado de las llamas durante la Revolución (todos los archivos de la catedral quemados), pasó a ser propiedad del Estado y fue confiado a la ciudad. En 1843, el mapa casi se vendió. En 1908, tuvo lugar en la biblioteca del Hôtel Rochegude antes de ser transferido a las reservas de la mediateca en 2001.
[Artículo publicado en Grand A – n ° 34 – Sept-oct. 2015]
El Índice (Indeculum quod maria vel venti sunt) menciona 12 nombres de vientos y 35 nombres de mares (en el mapa solo se dan 1 nombre de viento y 7 nombres de mares).
Elementos de datación y origen geográfico
La escritura en La Mappa mundi es un “uncial”, originario de Albi, Septimanie (sur de Francia) o España; esta escritura se utilizó hasta el siglo VIII. Varias manos, todas del mismo período, están en el origen de la copia de los distintos textos del manuscrito.
La presencia y mención de la ciudad de Rávena, representada a la par con Roma: Rávena fue sucesivamente la residencia oficial de los últimos emperadores de Occidente del siglo V, luego la capital del reino gótico de Italia, y finalmente la residencia de el exarca representante del poder bizantino hasta 751. En 752, la ciudad fue tomada por el rey de los lombardos, Aistolf, luego en 756 por Pépin le Bref, rey de los francos, quien se la dio al Papa. Estos hechos, cuyas repercusiones se hicieron sentir en toda Europa, y el hecho de que Rávena se mencione así en este mapa, permiten proponer una fecha de realización en la segunda mitad del siglo VIII.
Importancia global
Mappa mundi de tiene El Albi una importancia mundial considerable:
Es único e insustituible.
Tiene una antigüedad excepcional (segunda mitad del siglo VIII). Es uno de los primeros intentos conservados de representar el mundo, no de una manera puramente abstracta o simbólica, sino de situar provincias y regiones del mundo.
Solo se conoce otro mapa manuscrito del mismo período: es el de un manuscrito conservado en el Vaticano. Pero no tienen conexión ni punto en común, ni por forma ni por distribución general.
Con la excepción de dos tablillas, una mesopotámica (c. – 2600) y la otra babilónica (c. – 600), Mappa mundi de el Albi es uno de los dos documentos conservados más antiguos que presentan el mundo habitado. Hay otros mapas del mundo, copias de documentos más antiguos o representaciones del mundo (como la Mesa de Peutinger), pero se conservan en copias posteriores a la de Albi.
Es un testimonio precioso de un estado de conocimiento y de la concepción del mundo; es un testimonio extremadamente raro de las prácticas de enseñanza intelectual de este período.
La singularidad de la representación del mundo que ofrece es excepcional. Mostrado como un cabestrillo, no se parece a ninguno de los otros mappae mundi conservados. Esta forma puede provenir de la lectura de la Periegesis de Dionisio, (principios del siglo II d.C., traducida del griego al latín en el siglo VI). Es testimonio de una de esas empresas de la Antigüedad tardía, por la enseñanza y la comprensión más fácil de la geografía. Dionisio compara la forma del mundo con una honda.
Tiene una importancia mundial, tanto para los diferentes países que representa, de los que suele ser la primera representación conservada, para la memoria del mundo, como para la historia de la cartografía mundial.
Como tal, La Mappa mundi d’Albi fue advertida por los primeros historiadores de la cartografía (el vizconde de Santarem y J. Lelewel): la señalan como un “monumento” de la cartografía, ya en 1849.
El mundo científico de la cartografía y la representación del espacio muestra un interés creciente por este documento: en 2001, su inclusión en la importante exposición de Milán sobre representaciones del mundo, y el desarrollo de la bibliografía desde 2001 (12 publicaciones lo mencionan en 13 años, la mitad de los cuales proceden de investigadores no franceses), son testimonios.
Está en el cruce de dos eras. Es probable que sea la reanudación de un mapa antiguo actualizado y cristianizado:
Se mencionan las principales ciudades de la Antigüedad clásica como Atenas y Cartago; por un lado se puede ver una isla británica, y por el otro, los principales imperios antiguos (Babilonia, Persia, Macedonia, Roma); el norte, sede tradicional de amenazas contra la civilización según la etnografía romana, está ocupado por los Barbari, elemento que recuerda la caída del Imperio Romano de Occidente; los nombres dados para el norte de Europa son menos numerosos (Gotia, Barbari, Britania).
Numerosos elementos cristianos están presentes: se representan los ríos del paraíso terrenal mencionado en el Génesis: el Tigre y el Phison (Indo); Se menciona a Jerusalén, pero no está en el centro del orbis terrarum, como en otros mapas del mundo cristiano; El monte Sinaí está representado por un triángulo en el desierto de Arabia.
Debe estar conectado para enviar un comentario.