Este Mundo, a veces insólito

Calendario
octubre 2024
L M X J V S D
 123456
78910111213
14151617181920
21222324252627
28293031  

Euclid

Rate this post

Euclid

Telescopio espacial europeo para estudiar la energía y materia oscuras

¿De qué está hecho el Universo? ¿Cuál será su futuro? Pocas preguntas hay más trascendentales que estas, pero tenemos la inmensa suerte de vivir en una época de la historia de la humanidad en la que podemos dar respuesta a las mismas. Sin embargo, todavía hay muchas cosas acerca de la estructura y evolución del Universo a gran escala que desconocemos, especialmente con respecto a la materia y energía oscuras. Y para ayudarnos a resolver estos misterios ha sido lanzado el telescopio espacial Euclid de la Agencia Espacial Europea (ESA), una de las misiones más fascinantes de los últimos años. El 1 de julio de 2023 a las 15:12 UTC despegó un Falcon 9 Block 5 desde la rampa SLC-40 de la base de la Fuerza Espacial en Cabo Cañaveral de Florida (CCSFS) con el telescopio espacial Euclid. Tras un lanzamiento impecable, Euclid fue colocado en una trayectoria directa hacia el punto de Lagrange L2 del sistema Tierra-Sol.

Datos

Tipo de misión: Observatorio espacial

Operador: ESA

Coste: 1 400 000 000

ID COSPAR: 2023-092A

Nº. SATCAT: 57209

ID NSSDCA: 2023-092A

Página web: enlace

Duración planificada: 6 años (nominal)

Duración de la misión: 10 meses, 3 semanas y 1 día (327 días)

Propiedades de la nave

Fabricante: Thales Alenia Space (principal) Airbus Defence and Space (módulo de carga)1

Masa de lanzamiento: 1960 kg2

Dimensiones: 4,7×3,7 m2

Comienzo de la misión

Lanzamiento: 1 de julio de 2023, 15:12 UTC

Vehículo: Falcon 9

Lugar: Cabo Cañaveral, SLC-40

Contratista: SpaceX

Parámetros orbitales

Sistema de referencia: Sol-Tierra L23

Altitud del periastro: 1 000 000 km

Altitud del apoastro: 1 500 000 km

Carga

Masa: 800 kg2

Tipo: telescopio Korsch

Diámetro: 1.2 m

Longitud focal: 24.5 m

Resolución: 0,1 arcsec (visible) 0,3 arcsec (infrarrojo cercano)

Transpondedores

Banda: banda X (soporte TT&C) banda K (adquisición de datos)

Frecuencia: 8,0–8,4 GHz (banda X) 25,5–27 GHz (banda K)

Ancho de banda: pocos kbit/s descendente & ascendente (banda S) 55 Mbit/s (banda K)

Telescopio espacial Euclid (ESA).

Euclid —Euclides en español— es un telescopio espacial con un espejo primario de 1,2 metros de diámetro que observará el Universo para estudiar la materia y energía oscuras. Su objetivo es levantar un mapa tridimensional de la posición y masa de las galaxias para así determinar la composición precisa del cosmos, es decir, cuál es la proporción de energía oscura y materia oscuras. A partir de estos datos podremos conocer con mayor precisión el destino del Universo y entender mejor su origen. Pero investigar dos elementos del Universo que, por definición, son invisbles no será fácil. Euclid no es un telescopio espacial destinado a observar objetos concretos, sino que su misión es levantar un mapa de casi un tercio de todo el cielo (36% de la bóveda celeste, unos 15000 grados cuadrados) para cartografiar la posición de 35 millones de galaxias (!) midiendo su corrimiento al rojo. Asimismo, Euclid analizará las imágenes de cúmulos de galaxias en busca de la distorsión de sus formas por efecto de lentes gravitacionales débiles, un efecto causado por la curvatura del espacio-tiempo debida a la presencia otros objetos masivos más cercanos en la línea de visión.

Épocas del Universo que estudiará Euclid midiendo corrimientos al rojo con el instrumento NISP (en azul) y estudiando la deformación de la forma de las galaxias con el instrumento VIS (verde) (ESA).

Este efecto de lentes gravitacionales débiles, una consecuencia de la Relatividad General de Einstein, depende de la masa de objetos y galaxias más cercanos, por lo que Euclid será capaz de hacer un mapa tridimensional no solo de la posición de las galaxias, sino de la distribución de la masa a gran escala. Este mapa servirá a su vez para calcular la proporción de materia oscura y materia bariónica (materia «normal») presente en estas galaxias. Con respecto a la energía oscura, Euclid intentará medir los efectos de las oscilaciones acústicas bariónicas (BAO) en la distribución de galaxias lejanas con el fin de compararlos con los observados en el fondo cósmico de microondas por misiones anteriores como Planck. De esta forma se podrán medir con precisión los efectos de la energía oscura en la aceleración del Universo y determinar si su valor ha sido constante desde el Big Bang —o sea, si es la constante cosmológica con valor w = -1— o ha variado con el tiempo.

Euclid antes del lanzamiento (ESA).

El módulo PLM de Euclid (ESA).

Distintos elementos de Euclid (ESA).

Euclid es una nave de unos 2200 kg (1921 kg en seco) construida por Thales Alenia Space como contratista principal para la ESA. Tiene unas dimensiones de 4,5 x 3,74 metros y está dividida en dos módulos, el módulo de servicio SVM (Service Module) —con los sistemas de comunicaciones, aviónica, propulsores, etc.— y el módulo PLM (Payload Module) con la óptica del telescopio y los dos instrumentos científicos. Para controlar su posición, Euclid incluye diez pares de propulsores a base de hidrazina de 20 newton de empuje y seis pares de micropropulsores de nitrógeno gaseoso con un empuje de 1 a 1000 micronewton que garantizan una estabilidad en el apuntado de 75 milisegundos de arco durante 700 segundos (estos propulsores están basados en los empleados en la misión Gaia). Para conocer su posición, Euclid lleva una unidad de medida inercial (IMU) con giróscopos y 4 acelerómetros, así como 4 sensores solares y 3 sensores estelares. Cuatro volantes de reacción moverán la nave siempre que sea posible para llevar a cabo las sesiones de observación. Los propulsores de hidrazina se usarán para las maniobras de corrección de trayectoria.

Partes de Euclid (ESA).

Partes del módulo SVM y los paneles solares (ESA).

 

 

 

Módulo PLM con el telescopio y los instrumentos (ESA).

 

 

 

 

Posición de los propulsores y otros elementos de Euclid (ESA).

Los paneles solares están unidos al módulo SVM y forman el elemento PVA (PhotoVoltaic Assembly), que también sirve como parasol para mantener las bajas temperaturas necesarias para el buen funcionamiento de los instrumentos. Los paneles solares de arseniuro de galio cubren una superficie de 11 metros cuadrados y generarán entre 1800 y 2500 vatios. Puesto que Euclid solo puede alcanzar un ángulo de 121º con el Sol con respecto al eje del telescopio, el ángulo de los paneles con el Sol estará entre 0º y 33º. Los paneles alimentan una batería de celdas VES16 de ion litio desarrollada por la empresa francesa Saft.

Instalación del módulo PVA con paneles solares (ESA).

Paneles solares de Euclid y antena de alta ganancia (ESA).

Euclid estudiará el cosmos desde una órbita de halo de 90 000 x 100 000 kilómetros alrededor del punto de Lagrange L2 del sistema Tierra-Sol (ESL-2), a 1,5 millones de kilómetros de nuestro planeta, una zona en la que se encuentran otros observatorios astronómicos como el James Webb de la NASA. El punto L2 es ideal para mantener un entorno térmico estable y garantizar largas sesiones de comunicaciones. La misión primaria debe durar seis años. Euclid tardará un mes aproximadamente en llegar a L2 y para ello necesitará efectuar una maniobra de corrección de la trayectoria y dos para colocarse en la órbita de halo. Luego realizará una maniobra de corrección de la órbita una vez al mes, aproximadamente (las órbitas de halo alrededor de los puntos L1 y L2 son intrínsecamente inestables). Dos semanas después del lanzamiento, Euclid se habrá enfriado a la temperatura adecuada para que puedan funcionar sus instrumentos. Euclid tardará un mes en llegar a L2, pero necesitará unos dos meses adicionales de calibrado de instrumentos y puesta a punto antes de empezar con las operaciones científicas.

La óptica de Euclid consiste en un telescopio de tipo Korsch de tres espejos con un primario de 1,2 metros de diámetro. Airbus Defence and Space ha estado a cargo de la construcción del telescopio, que estará enfriado a 125 kelvin de forma pasiva. El diseño Korsch permite que la óptica sea compacta y estable desde el punto de vista térmico al mismo tiempo que se minimiza la dispersión de luz dentro del tubo.

Telescopio de Euclid (Airbus DS).

Partes del telescopio (Airbus DS).

Espejo primario y secundario de Euclid (ESA).

El telescopio con el tubo (Airbus DS).

Euclid cuenta con dos instrumentos principales, la cámara VIS (Visible Imager) y el espectrómetro NISP (Near Infrared Spectrum Photometer). VIS opera en el visible y NISP en el infrarrojo cercano. Inicialmente ambos instrumentos se propusieron para dos misiones diferentes, pero se unieron tras incluir una placa dicroica a la óptica capaz de dejar pasar la luz infrarroja y reflejar la visible, permitiendo su uso con un único telescopio. VIS tiene un campo de visión de 0,557º cuadrados, lo que significa que en apenas dos días de observaciones habrá cubierto más porcentaje de la bóveda celeste que el Hubble desde que se lanzó. VIS opera en el rango de 550 a 920 nanómetros y tiene una resolución de 0,1-0,2 segundos de arco. Dispone de 36 sensores CCD de 600 megapíxeles con un área de 877 centímetros cuadrados. Generará unos 520 Gbits de datos al día. VIS es una cámara pancromática, esto es, sus imágenes serán en ‘blanco y negro’.

Localización de los instrumentos VIS y NISP en el módulo PLM (ESA).

 

 

 

 

 

Instrumento NISP (ESA).

Rueda de filtros del instrumento NISP, construida en España (ICECSIC/IEEC/IFAE).

Por su parte, NISP es un instrumento de 158 kg capaz de realizar fotometría y espectroscopía en el infrarrojo cercano (920 a 2000 nanómetros), por lo que podrá observar galaxias más lejanas. Su resolución es de 0,3 segundos de arco y su campo de visión es de 0,55º cuadrados. Dispone de tres filtros para fotometría y de dos ‘grismas’ para espectroscopía de baja resolución (R = 380). NISP tiene 16 sensores de telururo de mercurio y cadmio (HgCdTe) de 65 megapíxel. Los filtros de NISP están situados en la rueda FWA (Filter Wheel Assembly), un elemento construido por el Instituto de Ciencias del Espacio del CSIC en España (ICE-CSIC) en colaboración con el IEEC (Institut d’Estudis Espacials de Catalunya) y el IFAE (Institut de Física d’Altes Energies). Por otro lado, La Universidad Politécnica de Cartagena (UPCT) y el Instituto de Astrofísica de Canarias (IAC) han sido responsables del diseño, construcción y validación de la electrónica de control del Instrumento NISP. VIS y NISP están refrigerados de forma pasiva hasta los 150 y 95 kelvin, respectivamente (la menor temperatura de NISP es necesaria para observar en el infrarrojo).

Instrumentos de Euclid (ESA).

Ambos instrumentos observarán doce mil millones de galaxias (!!) en el estudio WES (Wide Extragalactic Survey) que cubrirá un tercio del cielo. De todas estas, se obtendrá información detallada de la forma de 1500 millones de galaxias, y también se calculará su distancia de forma no muy precisa mediante la medición de corrimiento al rojo por fotometría en visible e infrarrojo cercano. De este subconjunto, Euclid podrá medir el corrimiento al rojo con precisión mediante espectroscopia de unos 35 millones de galaxias, lo que permitirá determinar su posición con exactitud. Además de realizar un mapa del 36% del cielo, la misión observará en profundidad dos zonas de 10º a 20º cuadrados situadas cerca de cada polo galáctico con el objetivo de llevar a cabo observaciones de precisión de las formas de 1,5 millones de galaxias y el corrimiento al rojo de 150 000. Estas observaciones de campo profundo se denominan, lógicamente, DS (Deep Surveys). Euclid evitará el ecuador galáctico y las nubes de Magallanes porque se trata de zonas con demasiadas estrellas, polvo y gas de nuestra galaxia que interferirían con las observaciones. Tampoco podrá observar el plano de la eclíptica por culpa de la presencia de la luz zodiacal.

Método de observación de Euclid (ESA).

Euclid analizará la energía oscura mediante el estudio de la historia de la expansión del Universo desde que tenía unos 3000 millones de años hasta que tenía una edad de diez mil millones —actualmente tiene 13800 millones de años— (o sea, usando galaxias con corrimientos al rojo, z, de entre 0,7 y 2). Con estos datos se intentará determinar si la energía oscura es constante (w = -1) o dinámica, un resultado que tendría importantes implicaciones para el futuro del Universo y nos ayudaría a determinar la naturaleza de la energía oscura. Con respecto a la materia oscura, Euclid podrá detectar su presencia en los halos galácticos de más de cien millones de masas solares y será capaz de estudiar cómo se distribuye esta misteriosa sustancia en los halos. Estos datos servirán de paso para medir la suma de las masas de los tipos de neutrinos y determinar cuántas familias de neutrinos existen.

Se espera que al final de sus seis años de vida útil Euclid haya generado unos 100 petabytes de datos (!!!). Las comunicaciones con Euclid se realizarán en sesiones de 4 horas al día a través de la las antenas de espacio profundo de la ESA en España y Australia, que enviarán unos 850 Gbit de datos al día al centro de operaciones de la misión, el ESOC de Darmstadt (Alemania), y de ahí al centro de operaciones científicas, el ESAC de España. Euclid fue seleccionada en 2012 como la segunda misión de tipo medio (M2) de la ESA (Solar Orbiter fue la M1 y PLATO será la M3). Se decidió bautizarla con el nombre de Euclides, el famoso matemático griego padre de la geometría, porque la misión nos aclarará cuál es la geometría del Universo a gran escala (sería gracioso que al final la geometría del Universo fuese no euclidea). Un total de 80 empresas europeas participan en Euclid, 9 de ellas españolas: Airbus España, Crisa, Alter Technology, Deimos Space, Naviar, Sener, GTD y Thales Alenia Space España. Euclid ha costado unos 1400 millones de euros.

Emblema de Euclid (ESA).

Euclid complementará a telescopios terrestres de campo amplio como el Vera Rubin (LSST) y al futuro telescopio espacial Nancy Grace Roman (WFIRST) de la NASA. El telescopio Roman usará un espejo principal de 2,4 metros, similar al del Hubble y más grande que el de Euclid, pero solo observará una zona del cielo de 2000 grados cuadrados. A cambio, Roman también usará observaciones de supernovas de Tipo Ia para medir la expansión del Universo y la energía oscura. Con respecto a los telescopios terrestes, los investigadores de Euclid deberán combinar las imágenes a color de estos observatorios con las imágenes en blanco y negro obtenidas por Euclid para medir la distorsión de las galaxias debido al efecto de lente débil. Los primeros resultados de Euclid se publicarán en 2025, aunque habrá que esperar a 2030 para disponer de los resultados tras cumplir la misión primaria de seis años.

Traslado en barco (ESA).

Originalmente estaba previsto lazar Euclid en mayo de 2021 mediante un cohete ruso Soyuz desde la Guayana Francesa, pero la fecha se retrasó a 2022. Por desgracia, la invasión de Ucrania por parte de Rusia y la posterior suspensión de relaciones a todos los niveles entre la ESA y este país obligaron a retrasar una vez más el lanzamiento y buscar un vehículo alternativo. El Ariane 5 no era una opción debido a que sus últimas misiones ya estaban reservadas y el Ariane 6 no estará listo, con suerte, hasta mediados de 2024. Como resultado, la ESA se vio obligada a recurrir a un proveedor no europeo y se eligió el Falcon 9 de SpaceX por su precio y disponibilidad de fechas. Ahora, Euclid ya está rumbo a L2. ¿Qué sorpresas nos descubrirá este maravilloso instrumento?

La nave espacial y las comunicaciones estarán bajo el control del ESOC (Centro Europeo de Operaciones Espaciales). Para hacer frente a la inmensa cantidad de datos que obtendrá Euclid se ha mejorado la red Estrack de antenas del espacio profundo de la ESA. Estos datos serán analizados por el consorcio Euclid, un grupo de más de 2000 científicos provenientes de más de 300 institutos de Europa, EE. UU., Canadá y Japón.

Traslado para integración con el lanzador (ESA).

A medida que avance la misión, el tesoro oculto de datos de Euclid se transmitirá con una cadencia anual y estará disponible para la comunidad científica global a través del archivo científico alojado en el Centro Europeo de Astronomía Espacial (ESAC) de la ESA que se encuentra en España.

«Este es un gran momento para la ciencia que hemos estado esperando con gran interés durante mucho tiempo: el lanzamiento de Euclid, en una misión para descifrar el enigma de la materia oscura y la energía oscura», afirma René Laureijs, científico del proyecto Euclid de la ESA. «El gran misterio de los constituyentes fundamentales del universo se encuentra ante nuestros ojos y nos ofrece un desafío formidable. Gracias a su avanzado telescopio y a sus potentes instrumentos científicos, Euclid está preparado para ayudarnos a desvelar este misterio».

Lanzamiento de Euclid (SpaceX).

Viaje al punto de Lagrange 2

Euclid’s journey to L2

Basándose en las estimaciones realizadas hasta ahora, los cosmólogos creen que el universo está compuesto por un 5% de materia visible u ordinaria (como la materia de la que estamos hechos), mientras que la materia oscura ocuparía el 25% y la energía oscura, un 70%. Esta materia y energía oscuras afectan al movimiento y la distribución de las fuentes visibles, como las galaxias, pero no emiten o absorben luz. Por ello, los científicos no han podido determinar qué son. Comprender su naturaleza es por tanto uno de los mayores desafíos de la cosmología.

Desde España participan el Instituto de Ciencias del Espacio en Barcelona (ICE-CSIC), el Instituto de Estudios Espaciales de Cataluña (IEEC), el Instituto de Física de Altas Energías (IFAE), la Universidad Politécnica de Cartagena (UPCT) y el Instituto de Astrofísica de Canarias (IAC).

“La transferencia del gran volumen de datos que Euclid va a recabar durante los seis años que dure la misión se va a hacer a través de un sistema de comunicación muy sofisticado, desarrollado por Thales Alenia, en el que se descargarán unas 150.000 imágenes de alta resolución a lo largo de seis años“, señala Susana Infante, Jefa de proyecto del Subsistema de comunicación de Euclid en Thales Alenia Space España. Thales Alenia Space italia es el contratista principal de ese consorcio industrial que ha fabricado Euclid, con Airbus como segundo contratista, y al que contribuyen otras 80 empresas, entre ellas la españolas Alter Technology, Crisa, Deimos Space, GTD, Navair, Sener y Thales Alenia Space España. “Las empresas de nuestro país se han llevado el 10% del valor del contrato y es algo de lo que tenemos que sentirnos orgullosos”, dice Infante.

Además de la transferencia del gran volumen de datos, esta misión presenta varios retos tecnológicos: “Va a observar el 35% de la esfera celeste, algo nunca visto hasta ahora, y para ello es necesario un telescopio de altísima calidad óptica y un amplio campo de visión. Además, la plataforma tiene que ser estable durante todo el tiempo de la captura de datos. Eso unido a que tenga un apuntamiento ágil para optimizar el tiempo de observación va a ser uno de los retos principales”, resume esta ingeniera.

Euclid es una misión de tipo “M”, y parte del programa científico Cosmic Vision de la ESA (2015–2025). Este tipo de misiones están limitadas a un presupuesto de 500 millones de euros. La misión Euclid fue elegida en octubre de 2011, junto al Solar Orbiter, de entre varias misiones candidatas.4​ Su lanzamiento tuvo lugar el 1 de julio de 2023 a las 15:12 UTC.5

Con su gran cobertura del cielo, y su catálogo de miles de millones de estrellas y galaxias, el valor científico de los datos obtenidos por la misión sobrepasan el ámbito de la cosmología. Esta base de datos proveerá a la comunidad astronómica con abundante información para las futuras misiones como JWST, E-ELT, TMT, ALMA, SKA o LSST.

Las primeras fotos del telescopio europeo Euclid no solo son hermosas: contienen detalles nunca vistos del universo

23 Mayo 2024

Matías S. Zavia

El telescopio espacial Euclid de la ESA ya está haciendo ciencia desde el punto L2 de Lagrange, a un millón y medio de kilómetros de la Tierra.

La Agencia Espacial Europea ha publicado hoy las cinco primeras fotos tomadas por Euclid como parte de su misión científica, que se suman a las imágenes que usó el equipo de misión para calibrar el telescopio.

Estas cinco fotos no solo son hermosas, sino también un vistazo sin precedentes del universo que ha servido como materia prima para 10 artículos científicos de próxima publicación. ¡Euclid fue lanzado el 1 de julio de 2023 y ya ha ayudado a producir 10 artículos científicos!

Pero quizá lo más sorprendente sea que las cinco imágenes que vamos a ver representan apenas 24 horas de observaciones con el telescopio.

En solo un día, Euclid retrató más de 11 millones de objetos en luz visible y cinco millones más en luz infrarroja. Un aperitivo de todo el conocimiento que habilitará el nuevo telescopio espacial europeo sobre el cosmos.

El cúmulo de galaxias Abell 2390

Abell 2390 es un enorme conglomerado de galaxias similares a la Vía Láctea. En la imagen de campo completo se ven más de 50.000 galaxias con una masa combinada de 10 billones de veces la del Sol, buena parte de ella en forma de materia oscura.

Los cúmulos de galaxias como Abell 2390 son grandes depósitos de materia oscura, lo que los convierte en laboratorios astrofísicos ideales para estudiar las propiedades de esta materia invisible que, junto con la energía oscura, se cree que constituye la mayor parte del contenido del Universo. Ese es uno de los objetivos principales del telescopio Euclid.

En este recorte de la imagen original se pueden ver de cerca las lentes gravitacionales de Abell 2390, con arcos gigantes curvados que, en algunos casos, son múltiples vistas del mismo objeto distante.

La nebulosa Messier 78

La nebulosa Messier 78 (la región central y más brillante de la imagen) es una “guardería estelar”, una gigantesca nube de polvo de la que nacen estrellas. El telescopio Euclid ha logrado la imagen más amplia y profunda de esta joven región de formación estelar gracias a su cámara infrarroja.

El espectrómetro de infrarrojo cercano (NISP) de Euclid tiene un radio de visión muy grande que ha dejado al descubierto más de 300.000 nuevos objetos, así como filamentos de gas y polvo con un detalle nunca visto.

Es la primera vez que vemos objetos de tamaño subestelar en Messier 78. Normalmente quedan ocultos por las nubes oscuras de gas y polvo que Euclid es capaz de atravesar con sus instrumentos más sensibles.

El grupo de galaxias Dorado

Dorado es uno de los grupos de galaxias más nutridos del hemisferio sur. La cámara de luz visible (VIS) de Euclid ha capturado galaxias en plena fusión formando colas de marea como resultado de sus interacciones.

El grupo Dorado es mucho más joven que otros cúmulos (como Fornax), así que varias de sus galaxias aún están formando estrellas y siguen interactuando entre sí, mientras que otras muestran signos de haberse fusionado hace relativamente poco tiempo.

Este conjunto de datos permite a los científicos estudiar cómo evolucionan y colisionan las galaxias a lo largo del tiempo, lo que mejora nuestros modelos cósmicos y nuestro entendimiento de cómo se forman las galaxias dentro de halos de materia oscura.

La galaxia NGC 6744

NGC 6744 es una de las galaxias espirales más grandes fuera de nuestro entorno local. Es un ejemplo típico del tipo de galaxia que está formando la mayoría de las estrellas en el universo cercano, lo que la convierte en un arquetipo perfecto para los estudios del telescopio Euclid.

El campo de visión de Euclid es capaz de cubrir toda la galaxia, capturando no solo la estructura espiral a gran escala, sino también detalles en escalas pequeñas y en distintas longitudes de onda, como los carriles de polvo que emergen de sus brazos espirales.

Los científicos de Euclid están utilizando este conjunto de datos para desentrañar la física detrás de la estructura de las galaxias espirales, mapear cómo se distribuyen las diferentes poblaciones estelares en las galaxias y dónde y cómo se están formando estrellas actualmente.

El cúmulo de galaxias Abell 2764

El cúmulo de galaxias Abell 2764 (arriba a la derecha) es una región muy densa del espacio que contiene cientos de galaxias orbitando dentro de un halo de materia oscura.

En su foto, Euclid captura una variedad de objetos que incluyen muchas galaxias de fondo, cúmulos de galaxias más distantes, galaxias en interacción que arrojan corrientes de material y una bonita espiral de canto que nos permite ver la delgadez de su disco.

Esta vista completa de Abell 2764 permite a los científicos determinar el radio del cúmulo y estudiar sus bordes con galaxias lejanas.

Imágenes | ESA/Euclid/Euclid Consortium/NASA

En Xataka | El flamante telescopio espacial europeo Euclid está listo para buscar la materia oscura

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.