Trelleborg (Slagelse)
Subcategoría: Hill Fort.
El Trelleborg (o Trælleborg) al oeste de Slagelse en la danesa isla de Zelanda, es uno de los siete castillos anillo vikingo descubierto a partir de 2014. En su día, la fortaleza estaba situada en una península que se adentraba en la zona pantanosa entre dos ríos. El pantano estaba conectado a la Gran Belt por un lago que en su momento podría ser navegado por barcos vikingos. Se cree Trelleborg haber sido ordenada por el rey Harald Bluetooth en el año 980 dC y que podría haber mandado el Gran Belt y su tráfico marítimo, entre las islas de Zelanda y Fionia.
Trelleborg es el mejor conservado de las fortalezas del anillo Viking y hay un museo aquí desde 1995 – Trelleborg Museo -, la presentación de la historia de esta fortaleza particular y la zona. Algunos de los artefactos encontrados en relación con las excavaciones arqueológicas están en exhibición en el museo, mientras que otros están en exhibición en el Nationalmuseet en Copenhague. Museo con la tecnología digital y virtual, en un proyecto conocido como Ny Trelleborg. En colaboración con los otros castillos anillo vikingos, el proyecto también está solicitando la admisión a la UNESCO como Patrimonio de la Humanidad. [1]
Al igual que en los otros castillos anillo vikingos encontrado hasta ahora, el Trelleborg en Slagelse fue diseñado como un círculo exacto con dos caminos que cruzan en ángulo recto en el centro geométrico, lo que lleva a cuatro puertas con dos puertas siempre uno frente al otro. En cada uno de los cuatro cuadrantes había cuatro casi idénticas casas alargadas dispuestas en un cuadrado. A diferencia de otros castillos de anillo, Trelleborg se amplió con una especie de patio. Toda la fortaleza puede tener espacio suministrado para unas 1.300 personas.
Castillo principal
El castillo principal circular estaba rodeado por una muralla, de 4,5 m de alto, 17,5 m de ancho en la base y con un diámetro de 137 m. La albañilería exterior estaba hecha de madera de roble. Dos filas de postes fueron apoyados por vigas inclinadas desde el exterior y el espacio entre los polos se llenó de limo y piedras. La albañilería interior también fue revestido con madera y las dos fachadas se ve reforzada por vigas que conectan los dos. En el este, había un amplio 5 m berma protegida por un foso con un perfil en punta, 17 m de ancho y 4 m de profundidad. La zanja no estaba lleno de agua y tenía una empalizada en su base. Las dos carreteras estaban cubiertas de madera, y las cuatro puertas revestidas con piedras en el interior. Al igual que en Fyrkat, puede haber habido un camino círculo a lo largo del lado interior de las murallas.
Las fortificaciones rodeaban un total de 16 casas alargadas dispuestas en cuatro cuadrados 29.42 m de largo cada uno. Las casas tenían una forma algo de nave, similar a como las largas paredes estaban desorbitados hacia el exterior. Cada casa tenía cuatro entradas, dos en los extremos cortos y dos en las paredes largas, y se dividió en tres habitaciones con una gran sala central (18 x 8 m) y dos salas más pequeñas en los extremos. Las puertas estaban protegidas por pórticos. Además de las grandes casas comunales, también hubo casas más pequeñas al norte del barrio del este del norte, dos pequeñas casas en el patio interior del barrio noreste y el suroeste y una pequeña cabaña cuadrado, cada uno cerca de las puertas norte y oeste. [2]
Bailey
Esta parte de la fortaleza parece único, como otros castillos anillo parecen carecer de esta función (hasta ahora sólo Aggersborg, Fyrkat y Trelleborg ha sido totalmente excavada a partir de 2006, aunque). El patio estaba protegido por una muralla de su propia hacia el este. Las 14 casas comunales de la muralla, cada uno de 26.33 metros de largo, se colocaron con su eje a través de la longitud de los edificios que apuntan hacia el centro del castillo principal.
En una extensión de este patio hay un cementerio de 135 tumbas. La mayoría de los enterrados resultaron ser hombres jóvenes, pero algunos eran mujeres o niños. Tres tumbas contienen entierros masivos, uno de cinco y el otro para once personas. Más de dos tercios de las tumbas no tenían ofrendas graves, los otros sólo tenía algunas piezas, las armas es más bien raro. Sólo dos tumbas eran ricas en elementos. Uno de ellos era la tumba de una mujer con perlas, un cubo de bronce, un ataúd de madera y piedras de juego. La otra era la tumba de un hombre con un cuenco de bronce y un hacha de plata adornada. La gran cantidad de tumbas simples puede indicar una influencia cristiana. Graves de jinetes fueron encontrados en los alrededores terrenos más elevados. [2]
Excavación y se encuentra…
El sitio fue excavado entre 1934 y 1942. La mayor parte de los hallazgos en Trelleborg, refleja una vida diaria relativamente tranquilo aquí, e incluye todos los días utensilios tales como cerámica, cerraduras, llaves, accesorios, cuchillos, piedras de afilar, peines, tejiendo pesos, tijeras y agujas . A pocos artesanos que aquí se dedicaban a la plata, el oro y el bronce de trabajo de naturaleza más delicada. [3]
También se encontraron armas como hachas de hierro, puntas de flecha y partes de escudos y hay fuertes indicios de un ataque batalla y el castillo que tiene lugar en algún momento durante la corta vida de los castillos. Se encontraron 19 puntas de flecha enterrada profundamente en las murallas y puertas. En combinación con las tres fosas comunes, esto se toma como evidencia sólida. Los soldados muertos fueron enterrados rápidamente en masa, muchos de ellos mostrando cortes profundos y heridas letales de armas de combate. El análisis de estroncio de los restos óseos se ha puesto de manifiesto que una mayor parte de los muertos, se originó a partir de lo que hoy conocemos como Noruega y Polonia Por lo tanto, y se cree que han sido los mercenarios extranjeros, estacionados aquí como guardias del castillo. Este descubrimiento está en consonancia con Harald Bluetooths fuerte alianza con los Obotrite eslavos a través de su matrimonio con Tove, hija del príncipe Mstivoj. Harald tarde huyó a la ciudad de Wolin (entonces conocido como Jumne), donde murió de sus heridas después de combatir a sus perseguidores en 986-87 AD. [2] [4] [5]
Citas
Dataciones por dendrocronología, han encontrado la madera utilizada para las construcciones que han sido talados en el otoño del 980 dC y posteriormente utilizado para la construcción, probablemente en la primavera del 981 dC. El tiempo de construcción más bien corto y la falta completa de cualquier signo de mantenimiento, indican un único uso por debajo de los edificios de no más de 10 a 15 años tal vez. Las partes de la fortaleza, como la muralla oriental exterior fue probablemente nunca completaron antes de que se abandonó el sitio. Los hallazgos arqueológicos muestra que Trelleborg estaba bajo ataque en algún momento, lo que resulta en varios soldados muertos y signos de fuego, sugiere el castillo podría haber sido destruido por el fuego. Las regiones alrededor de las puertas muestran signos de uso más largo sin embargo. [2]
Mayores, dataciones anteriores pusieron el castillo cerca del año 1000 DC.
El paisaje que rodea el Trelleborg, ha cambiado considerablemente desde la época de los vikingos, debido a un aumento de la tierra conocido como rebote post-glacial, que afecta a esta parte del mundo, y el pantano anterior se ha reducido a un pequeño pantano, mientras que los dos ríos de Vårby Å y Tude Å, ha reducido a las corrientes estrechas. [6]
En 1948, una de las casas comunales fue reconstruida en el sitio, pero las investigaciones más recientes, ha llevado ya a otras opiniones sobre su verdadero diseño original. Hoy en día el sitio del Trelleborg es un museo al aire libre con algunos edificios para exposiciones. El museo fue creado en 1995, y desde 1999 hasta 2.004 danés historiador Kåre Johannessen fue el curador del museo. [7] Hay planes de expansión y actualización de las exposiciones y del municipio de Slagelse también ha iniciado una gran restauración de la naturaleza del proyecto de todo el valle del río de Tude Å, incluyendo el trelleborg. [2] [6]
Vista desde las murallas del castillo principal, mirando al este a través del patio. Dos de las 14 casas comunales se puede ver aquí recogidos. La plaza cercada es el sitio de un cementerio pagano asociado. [2]
La casa comunal reconstruida por el trelleborg.
Vista desde las murallas mirando hacia adentro. Las fortificaciones encerrados un total de 16 casas comunales. [2]
RXTE
Rossi X-ray Timing Explorer
Nombres: RXTE; XTE; Explorador 69
Operador: NASA: ID COSPAR: 1995-074ª: SatCat № 23757
Sitio web: Página de inicio RXTE
Duración de la misión: 16 años, 6 días
Fabricante: GSFC: MIT (All-Sky Monitor)
Masa de lanzamiento: 3.200 kg (7.100 lb)
Potencia: 800 W
Fecha de lanzamiento: 13:48 30 de diciembre de 1995 [1]
Cohete: Delta II 7920
Sitio de lanzamiento: Cabo Cañaveral SLC-17A
Fin de la misión: 5 de enero de, 2012
Parámetros orbitales
Sistema de referencia: Geocéntrico
Régimen: bajo Tierra
Semieje mayor: 6.753 km (4.196 millas)
Excentricidad: 0.0002672
Perigeo: 380,9 km (236,7 mi)
Apogeo: 384,5 km (238,9 mi)
Inclinación: 22.9842 grados
Período: 92.1 minutos
RAAN: 221.8627 grados
Argumento del perigeo: 256.7652 grados
La media de anomalía: 103.2545 grados
La media de movimiento: 14.04728277 rev / día
Época: 27 de de abril de 2016, 10:21:58 UTC [2]
Número de revoluciones: 13218
Telescopio principal
Tipo: contador proporcional: Centelleador (HEXTE)
Las longitudes de onda: 2-250 keV ( X-ray )
Instrumentos: ASM; Todo Sky Monitor (2-12 keV) [3]
PCA: Matriz contador proporcional (2-60 keV)
HEXTE: Experimento de alta energía de rayos X Timing (15-250 keV)
El Explorador Sincrónico de rayos X Rossi (RXTE) es un satélite que observa la estructura temporal de las fuentes de rayos X astronómicos, el nombre de Bruno Rossi. El RXTE tiene tres instrumentos: la matriz proporcional Contador, el Experimento de alta energía de rayos X Timing (HEXTE), y el All Sky Monitor. El RXTE observó rayos X de los agujeros negros, estrellas de neutrones, púlsares de rayos X y los estallidos de rayos X. Fue financiado como parte del programa de explorador, y es a veces también llamado Explorador 69.
RXTE fue lanzado desde Cabo Cañaveral el 30 de diciembre de 1995, sobre un delta cohete, tiene una designación internacional de 1995-074A y una masa de 3200 kg.
Observaciones del Explorador Sincrónico de rayos X Rossi se han utilizado como evidencia de la existencia de la torsión por arrastre efecto predicho por la teoría de la relatividad general. Los resultados han RXTE, a partir de finales de 2007, han utilizado en más de 1400 artículos científicos.
En enero de 2006, se anunció que Rossi había sido utilizado para localizar un candidato agujero negro de masa intermedia denominada M82 X-1.[4] En febrero de 2006, los datos de RXTE se utilizó para probar que el fondo difuso resplandor de rayos X en nuestra galaxia proviene de innumerables, no detectada previamente enanas blancas y de otras estrellas ‘ coronas.[5] En abril de 2008, los datos RXTE se utilizó para inferir el tamaño del agujero negro más pequeño conocido.[6]
Impresión artística del telescopio RXTE
RXTE cesó operaciones científicas, el 3 de enero de 2012.[7]
Científicos de la NASA dijeron que el RXTE fuera de servicio podría volver a entrar en la atmósfera de la Tierra “entre 2014 y 2023”.[8]
Instrumentos
All-Sky Monitor (ASM)
La ASM se compone de tres cámaras de sombra de grandes angulares equipadas con contadores proporcionales con una superficie total de recogida de 90 cm cuadrados. Las propiedades instrumentales fueron: [9]
- rango de energía: 2-12 keV
- Resolución de tiempo: 80% del cielo cada 90 minutos
- Resolución espacial: 3 ‘× 15’
- Número de cámaras sombra: 3, ambos de 6 × 90 grados de campo de visión
- Área de recolección: 90 cm2
- Detector: Xenón contador proporcional, sensible a la posición
- Sensibilidad: 30 mCrab
Fue construido por la RSE en el MIT. El investigador principal fue el Dr. Hale Bradt.
Contador proporcional de Array (PCA)
El PCA es una serie de cinco contadores proporcionales con una superficie total de recogida de 6500 cm cuadrados. El instrumento fue construido por la DUE (anteriormente ‘LHEA’) en el GSFC. El PCA investigador principal fue el Dr. Jean H. Swank.
Las propiedades instrumentales fueron los siguientes:[10]
- rango de energía: 2-60 keV
- resolución de energía: <18% a los 6 keV
- Resolución de tiempo: 1 microsegundo
- Resolución espacial: colimador con 1 grado FWHM (anchura a media altura)
- Detectores: 5 contadores proporcionales
- Área de recepción: 6500 cm2
- Capas: 1 de veto propano; 3 xenón, cada una dividida en dos; 1 capa de veto de xenón
- Sensibilidad: 0,1 mCrab
- Antecedentes: 2 mCrab
El experimento de rayos X de alta energía Timing (HEXTE)
El HEXTE consiste en dos grupos cada uno conteniendo cuatro detectores de centelleo phoswich. Cada agrupación podría “roca” (beamswitch) a lo largo de direcciones ortogonales entre sí para proporcionar mediciones de fondo de 1,5 o 3,0 grados de distancia de la fuente de cada 16 a 128 s. Control automático de ganancia se proporciona mediante el uso de un 241 Am fuente radiactiva montado en el campo de vista de cada detector. Propiedades básicas de la HEXTE fueron los siguientes:[11]
- rango de energía: 15-250 keV
- resolución de energía: 15% a 60 keV
- Tiempo de muestreo: 8 microsegundos
- Campo de visión: 1 grado FWHM
- Detectores: 2 grupos de 4 contadores de centelleo de NaI / CSI
- Área de recepción: 2 x 800 cm2
- Sensibilidad: 1 cangrejo = 360 count / s por clúster HEXTE
- Antecedentes: 50 count / s por clúster HEXTE
El HEXTE fue diseñado y construido por el Centro de Astrofísica y Ciencias del Espacio (CASS) en la Universidad de California , San Diego. El HEXTE investigador principal fue el Dr. Richard E. Rothschild.
Después de la retirada de RXTE, la NASA lanzará NuStar
por Octavio Ortega
16/01/2012
Después de la retirada del satélite RXTE, en órbita desde 1995, la NASA lanzará NuStar, otro satélite que también operará en el ámbito de los rayos X. Consta de dos telescopios ópticos y detectores de nueva generación, observará los rayos más energéticos (6-79 keV), incluyendo los famosos Hard X-ray (de menor longitud de onda y por lo tanto asociados con fotones de energía más alta) que los que actualmente están estudiado XMM-Newton y Chandra.
Para ello, utilizará un lente focal de diez metros de largo. En efecto, para enfocar los rayos X, hay una gran distancia entre los espejos y el detector y el golpeo de los espejos sobre un ángulo de incidencia débil. Es por eso que los telescopios de rayos X utilizan una serie de espejos que concentran a través de sucesivas reflexiones bajo ángulo de incidencia, los rayos X en un punto focal.
En el caso de NuStar y como es difícil lanzar un satélite de más de 10 metros, la distancia entre la óptica y el plano focal se obtiene por medio de un mástil que será desplegado en órbita. La NASA ha utilizado un sistema similar con los paneles solares de la Estación Espacial Internacional.
Después de dieciséis años de servicio, el satélite RXTE será sustituido por NuStar. © NASA
Identificado el momento en que explosiona material en un agujero negro
Posted on 17 enero, 2012 por Felipe Campos
Un equipo internacional de astrónomos ha conseguido identificar el momento en el que se emitieron grandes masas de material a velocidades próximas a la de la luz desde la región que rodea a un agujero negro.
Representación artística del fenómeno. Los proyectiles de plasma proceden de una región próxima al horizonte de sucesos del agujero negro. Crédito: NRAO, Centro Goddard para Vuelos Espaciales.
Un grupo internacional de astrónomos ha podido determinar el momento en el que se emitieron grandes cantidades de material a velocidades cercanas a la de la luz desde la región que rodea a un agujero negro. Dicho descubrimiento, en el que ha participado el investigador Simone Migliari, del Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB) y del Departamento de Astronomía y Meteorología, es el resultado del seguimiento de este fenómeno, que tuvo lugar en un sistema binario formado por un agujero negro y su estrella compañera.
Estas observaciones se realizaron durante 2009 mediante el Very Long Baseline Array (VLBA) y el observatorio espacial Rossi X-Ray Timing Explorer (RXTE) de la NASA. Los resultados están pendientes de su publicación en la revista Monthly Notices of the Royal Astronomical Society.
Se cree que esos proyectiles de plasma proceden de una región próxima al horizonte de sucesos del agujero negro, es decir, el punto a partir del cual nada puede escapar. Según Simone Migliari, “El estudio de la variabilidad rápida de rayos X es como abrir una ventana a los fenómenos más cercanos a los agujeros negros. Las observaciones simultáneas con RXTE y VLBA permiten asociar variaciones específicas de rayos X con la proyección de materia a gran velocidad observada en la banda de radio”.
En este trabajo, liderado por el investigador James Miller-Jones, de la Universidad de Curtin (Australia), y que se presentó el 10 de enero durante el encuentro anual de la Sociedad Astronómica Americana celebrado en Texas, los astrónomos han estudiado un sistema de agujero negro llamado H1743-322, situado a 28.000 años-luz de la Tierra, en la constelación de Escorpio. Desde su descubrimiento, en 1977, ha estallado varias veces. En este trabajo se presenta concretamente el estallido que se produjo entre mayo y agosto de 2009.
Los agujeros negros en sistemas binarios atrapan material de sus compañeros formando así un disco de material que rota alrededor del agujero negro a una gran velocidad. Como consecuencia, la materia se comprime y se calienta lo suficiente como para emitir rayos X.
A su vez, también emiten chorros de flujo constante de materia que son arrojados en dirección perpendicular al disco. En ocasiones desaparecen y se producen eyecciones energéticas en las que se expulsa material a velocidades cercanas a la de la luz, como las que se han estudiado en este trabajo. Este tipo de fenómenos pueden producir tanta energía en una hora como la que emite el Sol en cinco años. Además, tal y como se ha podido comprobar en el estudio, van acompañados de cambios en la emisión de rayos X y en el espectro de radio de manera correlacionada.
RXTE Revela los Núcleos Nublados de Galaxias Activas
19.02.14.- Imagínese una sola nube lo suficientemente grande como para abarcar el Sistema Solar desde el Sol hasta más allá de la órbita de Plutón. Ahora imagine muchas de esas nubes orbitando un vasto anillo en el centro de una galaxia distante, de vez en cuando reduciendo la intensidad de la luz de rayos X producido por el enorme agujero negro de la galaxia.
Utilizando datos del satélite RXTE de la NASA, un equipo internacional ha descubierto una docena de casos en los que las señales de rayos X de galaxias activas reducían su intensidad como consecuencia de una nube de gas que se mueve a través de nuestra línea de visión. El nuevo estudio triplica el número de casos de nubes previamente identificadas en un archivo durante 16 años.
Recreación artística del núcleo nuboso de una galaxia activa. Image Credit: NASA/GSFC
En el corazón de la mayoría de las grandes galaxias, incluyendo nuestra propia Vía Láctea, se esconde un agujero negro supermasivo que pesa de millones a miles de millones de veces la masa del Sol. Cuando el gas cae hacia un agujero negro, éste se recoge en un disco de acreción y se comprime y se calienta, emitiendo finalmente Rayos X. Los centros de algunas galaxias producen inusualmente poderosas emisiones que exceden la producción de energía del Sol en miles de millones de veces. Estos son los núcleos activos de galaxias o AGN.
“Una de las grandes preguntas sin respuesta sobre los AGN es como gases a miles de años luz de distancia son canalizados hacia el disco de acreción caliente que alimenta el agujero negro supermasivo”, dijo Alex Markowitz, astrofísico de la Universidad de California, San Diego y del Observatorio Karl Remeis en Bamberg, Alemania. “Entender el tamaño, la forma y el número de nubes lejos del agujero negro nos dará una mayor idea de cómo funciona este mecanismo de transporte.”
El estudio es el primer estudio estadístico de los entornos alrededor de agujeros negros supermasivos y es el de más larga duración de un estudio de seguimiento de AGN llevado a cabo en rayos X. En el documento los científicos describen varias propiedades de las nubes que ocultan, que varían en tamaño y forma, pero con un promedio de 6.500 millones de kilómetros de un extremo a otro – mayor que la distancia que separa a Plutón del Sol – y dos veces la masa de la Tierra.
IRTS
El telescopio infrarrojo espacial (IRTS) es lanzado por Japón en marzo de 1995. Durante su misión de 28 días, el IRTS hace un estudio de 7% del cielo con sus cuatro instrumentos: un doble espectrómetro en el infrarrojo cercano y mediano a longitudes de onda de 1,4 a 4 micrones y de 4,5 a 11 micrones, respectivamente; un rastreador de líneas espectrales en el infrarrojo lejano, que estudia las líneas de oxígeno a 63 micrones y del carbono a 158 micrones; y un fotómetro en el infrarrojo lejano que estudia el cielo en cuatro bandas centradas en 150, 250, 400, y 700 micrones. Estos datos mejoran nuestro conocimiento de la cosmología, la materia interestelar, las estrellas tardías y el polvo interplanetario.
El telescopio infrarrojo espacial (IRTS)* [página en inglés], lanzado en marzo de 1995, es el primer satélite infrarrojo astronómico del Japón. Durante su misión de 28 días, el IRTS estudió 7% del cielo utilizando cuatro instrumentos: un doble espectrómetro en el infrarrojo cercano y mediano, a longitudes de onda de 1,4 a 4 micrones y de 4,5 a 11 micrones, respectivamente; un rastreador de líneas espectrales en el infrarrojo lejano, que estudió las líneas del oxígeno y del carbono a 63 y 158 micrones; y un fotómetro en el infrarrojo lejano, que analizó el cielo en cuatro bandas centradas en 150, 250, 400 y 700 micrones. Estos datos han aumentado nuestro conocimiento de la cosmología, la materia interestelar, las estrellas tardías y el polvo interplanetario.
Operator: NASDA; ISAS; NEDO; USEF
COSPAR ID: 1995-011A
SATCAT №: 23521
Website: www.isas.jaxa.jp/e/enterp/missions/sfu.shtml
Duración de la misión: 10 meses
Spacecraft properties Manufacturer: Mitsubishi Electric
Launch mass: 3,846 kilograms (8,479 lb)
Landing mass: 3,492 kilograms (7,699 lb)
Lanzamiento: 18 March 1995, 08:01 UTC
Rocket: H-II 3F
Lugar: Tanegashima Yoshinobu 1
Recogido por: Space Shuttle Endeavour STS-72
Recogido el día: 13 January 1996
Fecha de aterrizaje: 20 January 1996, 07:41:41 UTC
Lugar: Kennedy SLF Runway 15
Orbital parameters
Reference system: Geocentric
Regime: Low Earth
Perigee: 470 kilometres (290 mi)
Apogee: 492 kilometres (306 mi)
Inclination: 28.4 degrees
Period: 94.22 minutes
El satélite Unidad espacial fue lanzado desde el Centro Espacial de Tanegashima desde un vehículo H-II. [2] Transportaba materiales de prueba y los datos de la investigación que realizó el valor de la NASA. Se recuperan los datos de la unidad volante espacial por el transbordador espacial Endeavour el 20 de de enero, 1996 (el cual fue de 10 meses después del lanzamiento del satélite Unidad Espacial. [2]
La idea detrás de la aplicación de la SFU fue un esfuerzo conjunto de múltiples importante corporaciones. Los que estaban involucrados con el lanzamiento eran Instituto de Ciencia espacial y Astronáutica, la Agencia Nacional de Desarrollo espacial, y el Ministerio de Comercio Internacional e Industria. [3]
Después que la lanzadera devuelve la SFU desde el espacio, la SFU es transportado a Japón y renovados para el siguiente vuelo. [4]
Con la finalidad original detrás de la SFU fueron a [5] permitirá a los investigadores un mejor acceso a las condiciones de investigación espacial. Dar a los investigadores una instalación experimental de grupo. Ser capaz de volver a utilizar la SFU para ahorrar dinero recuperar datos
Una variedad de sistemas que estaban en funcionamiento dentro de la SFU nunca se había aplicado antes. Equipo a bordo apoyó un telescopio infrarrojo, matriz bidimensional solar, alta tensión del campo solar, el diagnóstico del plasma espacial, la propulsión eléctrica, la experimentación de materiales, dinámica de gases, productos químicos de calentamiento de gradiente, calefacción isotérmica horno y mucho más. [6]
El núcleo del sistema que fue construido en el SFU contenía un armazón de aluminio octogonal. Dentro de ese eran ocho cajas de forma trapezoidal. [6] El SFU se conecta directamente al Centro Espacial Kagoshima. [7]
Había un gran número de diversos tipos de experimentos que se realizaron a bordo de la SFU durante su ciclo de vida del lanzamiento. Esos experimentos, y los datos de luz relacionados con ellos se enumeran a continuación.
Telescopio de infrarrojos en el espacio (IRTS) – El experimento se llevó a cabo IRTS por el telescopio infrarrojo que estaba a bordo del SFU. La intención era producir información importante en la historia del universo y la estructura de la Vía Láctea. El telescopio tenía un ventilador de refrigeración de helio súper fluido construido en él para evitar que se sobrecaliente [8]
Array 2D -. El sistema de matriz 2d se lanzó como un pequeño módulo dentro de la SFU. Este experimento se despliega para mostrar que las estructuras grandes podrían (de hecho) se construirán en el espacio [9]
HVSA -. La matriz solar era una fuente de energía puesto en este sistema para dirigir múltiples experimentos. Se utiliza para probar la creación de “electricidad” en la densidad del espacio de la utilización de la tecnología única [10]
SPDP -. Esto fue utilizado en la SFU para probar cosas van muy rápido en el espacio. SPDP significa (Paquete de diagnóstico de plasma espacial) y se implementa con diferentes sensores para comprobar los efectos de la velocidad en la espesura de la gravedad. [11]
EPEX – Este hardware que fue construido en el SFU estaba destinado a hacer experimentos relacionados con la creación de combustible y la gestión en el espacio [12]
MEX -. Este software estaba destinado a revisar e investigar los efectos de diversos tipos de líquido dentro de un entorno espacial [13]
BIO – Esta prueba requiere tomar especies vivas en el espacio. Se trataba de la observación de una eclosión de los huevos en el espacio profundo. [14]
El IRTS es un telescopio infrarrojo enfriado criogénicamente que elevado a bordo de una plataforma espacial de usos múltiples SFU (folleto Unidad Espacial). Fue lanzado por un nuevo cohete HII japonesa el 18 de marzo de 1995. Se encuestó a aproximadamente el 7% del cielo con un relativamente amplio haz durante su misión de 28 días. Cuatro instrumentos de plano focal hechas observaciones simultáneas del cielo en longitudes de onda de 1 a 1000 micron. El IRTS agregará información significativa sobre la cosmología, la materia interestelar, las estrellas tardías y archivo de datos dust. IRTS interplanetarias están abiertos para el público el archivo de datos del espacio de la ICEA sistema, los dardos. Actualmente se incluyen los catálogos de fuentes puntuales y NIRS MIRS y los mapas de imágenes de infrarrojo lejano de la película y FIRP.
El telescopio IRTS tenía una abertura de 15 cm, y se enfrió criogénicamente con helio líquido.
Instrumentos focales plano de la IRTSNIRS (Espectrómetro Infrarrojo Cercano) El NIRS es un espectrómetro de rejilla con dos elementos 12 InSb matrices lineales. La cobertura de longitud de onda rangos from1.4 micras a 4,0 micras, con una resolución espectral de 0,12 micras. El campo de visión es de 8 minutos de arco X 8 arcmin. MIRS (Espectrómetro Infrarrojo Medio) El MIRS es también un espectrómetro de rejilla con 32 Si: fotoconductores Bi. La cobertura de longitud de onda varía de 4,5 micras a 11,7 micras, con una resolución espectral de 0,23 hasta 0,36 micras. El campo de visión es de 8 minutos de arco X 8 arcmin. FILM (infrarrojo lejano Línea Mapper) (en japonés) La película es un espectrómetro de rejilla diseñado para medir de forma simultánea [CII] 158 micras línea y [OI] intensidades de línea de 63 micras y emisión cotinuum cerca de la línea [CII] con una resolución espacial de 13 minutos de arco X 8 minutos de arco. Los detectores están sin tensión y destacaron Ge: fotoconductores Ga.
FIRP (fotómetro de infrarrojo lejano) El FIRP ofrece la fotometría absoluta en cuatro bandas centradas a 150, 250, 400 y 700 micras con una resolución espectral y espacial de 3 grados Resolución 0.5. La alta sensibilidad se consigue mediante el uso de detectores bolométricos operados a 300 mK en un circuito de puente de corriente alterna. El ciclo cerrado 3He refrigerador se recicló tres veces en órbita. La RIET fue diseñado para la radiación IR difusa.
La RIET a bordo de una plataforma espacial experment múltiples pupose llamada SFU (unidad volante espacial). Hay varios tipos de experimentos se realizaron en SFU.
SFU junto con el IRTS fue recuperado por el transbordador espacial STS-72 el 13 de enero de 1996. El astronauta japonés Wakata operó el brazo robótico a bordo de la lanzadera para recuperar SFU.
STS-72 fue una misión del transbordador espacial Endeavour para capturar y volver a la Tierra una nave espacial investigación de la microgravedad japonés conocido como unidad volante espacial (SFU). La misión lanzado desde el Centro Espacial Kennedy, Florida el 11 de enero de 1996.
SOHO
El Solar and Heliospheric Observatory (SOHO) es una sonda espacial lanzada el 2 de diciembre de 1995 para estudiar el sol, comenzando sus operaciones científicas en mayo de 1996. Es un proyecto conjunto entre la ESA y la NASA. Aunque originalmente se planeó como una misión de sólo dos años, SOHO continúa en funcionamiento tras más de diez años en el espacio. Además actualmente es la fuente principal de datos del sol en tiempo real tan necesarios para la predicción del tiempo espacial. Hoy por hoy es una de las dos sondas (junto con el Advanced Composition Explorer) que se encuentran en la vecindad del punto L1, uno de los Puntos de Lagrange.
Dicho punto se define como aquel en que la gravedad de la tierra contrarresta la del sol, por lo que una sonda en dicho lugar quedaría en equilibrio dinámico, por tanto la órbita será mucho más estable.
Dicha estabilidad se consigue exactamente en el punto L1, pero en realidad SOHO orbita alrededor del punto L1 cada once meses, para favorecer las comunicaciones.
En condiciones normales la sonda transmite continuamente a 200 Kbps de fotografías y otras medidas solares a través de la Red del Espacio Profundo (Deep Space Network). Los datos de actividad solar del SOHO se usan para predecir las llamaradas solares, que tan perjudiciales pueden resultar para los satélites.
En 2003 la ESA comunicó el fallo de uno de los motores necesarios para reorientar la antena hacia la tierra para transmitir los datos, lo que causa entre dos y tres semanas de bloqueo de datos cada tres meses. De todos modos, los científicos de la ESA y de la Red de espacio profundo (DSN) usan la antena de baja ganancia junto con las antenas más grandes de las estaciones terrestres del DSN para evitar la pérdida de ningún dato, solamente una ligera reducción del flujo de datos una vez cada tres meses.
Instrumentos
SOHO contiene doce instrumentos principales, cada uno capaz de observar de manera independiente el Sol o alguna de sus partes. Estos son:
- Global Oscillations at Low Frecuence (GOLF): mide variaciones de la velocidad en todo el disco solar para explorar el núcleo del sol.
- Variability of Solar Irradance (VIRGO): mide oscilaciones y constantes en todo el disco solar, también para estudiar su núcleo.
- Michelson Doppler Imager (MDI): mide el campo de velocidad y el magnético en la fotosfera, para estudiar la zona de convección, la cual forma la capa exterior del interior del Sol, y los campos magnéticos que controlan la estructura de la corona. Véase también Heliosismología
- Solar UV Measurement of Emitted radiation (SUMER): mide los flujos de plasma, temperatura y densidad de la corona.
- Coronial Diagnostic Spectrometer (CDS): mide densidad, temperatura y flujos coronales.
- Extreme UV Imaging Telescope (EIT): mide la estructura y actividad de la zona baja de la corona.
- UV Coronagraph and Spectrometer (UVCS): mide densidades y temperaturas de la corona.
- Solar Wind Anisotropies (SWAN): Usa un telescopio sensible a la longitud de onda característica del hidrógeno para medir el flujo másico del viento solar, mapear la densidad de la heliosfera y observar las estructura de las corrientes de viento solar a gran escala.
- Charge, Element, Isotope Analysis (CELIAS): estudia la composición iónica del viento solar
- Suprathermal & Energetic Particle Analyser (COSTEP): Estudia la composición iónica y electrónica del viento solar.
- Energetic Particle Analyser (ERNE): Estudia la composición iónica y electrónica del viento solar.
- Large Angle and Spectrometric Coronagraph (LASCO): Estudia la estructura y evolución de la corona solar mediante la creación de un falso eclipse solar.
Las observaciones de algunos de estos instrumentos pueden tener formato de imagen, la mayoría de las cuales esta disponible en internet para uso público o de investigación (ver página oficial). Otras series de datos, como espectros y medidas de partículas en el viento solar, no se prestan a este tipo de difusión. Las imágenes publicadas suelen estar en el rango de longitudes de onda o frecuencias de visible hasta ultravioleta. Las imágenes tomadas parcial o exclusivamente en longitudes de onda no visibles, se muestran (no sólo en SOHO, sino cualquier imagen de este estilo) en falso color.
Como consecuencia de su observación del Sol, SOHO ha descubierto cometas que bloqueaban la luz del Sol por un instante. Aproximadamente, la mitad de los cometas conocidos han sido descubiertos por el SOHO, de los cuales un 85% son los llamados Rasantes del sol Kreutz o Sungrazers. Hasta agosto de 2011 ha descubierto ya más de 2.200 cometas.
Los objetivos científicos primarios del Observatorio Solar y Heilosférico son investigar (1) los procesos físicos que forman y calientan la corona del Sol, la mantienen y dan lugar a los vientos solares, y (2) la estructura interior del Sol. La nave spacial fue lanzada a bordo del cohete Atlas 2-AS el 12 de Diciembre de 1995 desde Cabo Cañaveral, Florida.
Las imágenes y los diagnósticos espectroscópicos del plasma del cromosfera solar, la región de transición y la corona, así como las medidas in-situ de los vientos solares se emplean para estudiar la corona y los vientos solares. La estructura interior del Sol se investiga usando medios heliosismológicos y mediante la observación de las variaciones en la radiación solar. SOHO es parte del Programa Internacional de Física Solar-Terrestre (ISTP).
La nave espacial SOHO está estabilizada en tres ejes y apunta hacia el Sol con una precisión de +/- 10 segundos de arco cada 15 min. Consta de un módulo de carga donde se acomodan los instrumentos y un módulo de servicio que alberga los subsistemas de la nave y los paneles solares. SOHO ocupa una órbita en el punto Lagrangiano L1 Tierra-Sol desde donde puede observar ininterrumpidamente al Sol. La vida de la nave se estima en dos años, pero los consumibles a bordo son suficientes para una período extra de cuatro años de operación. El módulo de carga comprende doce instrumentos, produciendo una corriente continua de 40 kbs, excepto cuando el observatorio de oscilaciones solares Michelson Doppler (MDI) es operado en modo de alta densidad, lo que produce 160 kbs. El modo de alta resolución se emplea durante períodos diarios de ochos horas o durante campañas específicas. Cintas magnéticas almacenan los datos entre los contactos telemétricos con el Servicio de Operaciones Experimentales, situado en el Centro de Vuelos Espaciales Goddard de la NASA.
La nave espacial SoHO (Solar & Heliospheric Observatory), lanzada al espacio por la Agencia Espacial Europea (ESA) y la NASA cumple dos décadas ya. Su despegue se dio a mediados de la década de 1990 y hasta la fecha sigue proporcionando valiosa información astronómica.
El vehículo cuenta con herramientas para llevar a cabo doce experimentos diferentes todos ellos relacionados con el Sol. Algunos de ellos se enfocan al núcleo, unos más a la corona exterior y otros más al viento solar. Dos de esos experimentos, denominados Virgo y Golf, cuentan con una significativa participación de científicos españoles.
Por lo pronto, SoHO se ubica a millón y medio de kilómetros de nuestro planeta. Se trata de un satélite especial para desplazamiento estabilizado con una extensión de 10 metros, al tener desplegados los paneles solares. Estos últimos pueden ser dirigidos a cualquier parte del Sol de acuerdo a las necesidades de la nave. La misión estaba prevista para completarse en dos años, con dos más de prórroga, de manera que tenía que haber concluido a finales de 1999. Afortunadamente tuvo un éxito inusitado y actualmente se mantiene en órbita.
La más reciente extensión de tiempo le fue otorgada a la misión el 20 de noviembre del 2014 y comprende 4 años más. Tal decisión fue tomada por los astrónomos responsables del proyecto, considerando la valía de los datos que nos sigue haciendo llegar esta nave espacial.
Durante los veinte años que ha estado activa la misión SoHO, han sido enviados al espacio otros artefactos diseñados para monitorear el Sol. Específicamente han sido la NASA y la agencia espacial japonesa los responsables de estos lanzamientos. De cualquier manera los científicos dedicados al estudio de nuestro astro coinciden en que mucha de la información que proporciona SoHO, continúa siendo única y extremadamente valiosa.
Hay que considerar que este satélite solar ha experimentado uno de los eventos más dramáticos de los anales de la astronáutica. En 1998, el centro de control de la misión SoHO perdió contacto con la nave y la operación quedó suspendida. Los conocedores piensan que tal vez la nave estuvo extraviada en el espacio, orientada hacia cualquier zona, acaso dando giros sin control y con los paneles solares sin desplegar. Pronto la NASA y la ESA se coordinaron para la recuperación de la nave. El procedimiento que se siguió para ello, está considerado como una de las más grandes hazañas en la historia de la exploración espacial.
El distante observatorio orbita el Sol a 1,5 millones de kilómetros, o 932.000 millas de distancia de la Tierra, y acaba de descubrir su cometa número 3000 (más que cualquier otra nave espacial o que cualquier otro astrónomo). Y casi todos los cometas que descubrió SOHO han sido destruidos.
“Simplemente se desintegran cada vez que observamos uno”, dijo Karl Battams, un científico solar del Laboratorio de Investigaciones Navales (Naval Research Labs, en idioma inglés), en Washington, D.C. Desde el año 2003, Battams ha estado a cargo del funcionamiento del sitio del SOHO en Internet a través del cual se puede ver cometas. “SOHO ve cometas que pasan muy cerca del Sol; y estos simplemente no pueden soportar la intense luz solar”.
La abrumadora mayoría de los descubrimientos de cometas que realiza el SOHO corresponde a la familia Kreutz. Los cometas Kreutz que rozan el Sol son fragmentos que provienen de la ruptura de un solo cometa gigante, que se produjo hace miles de años. Se denominan de este modo en honor al astrónomo alemán del siglo XIX Heinrich Kreutz, quien los estudió en detalle. En promedio, se descubre un nuevo miembro de la familia de cometas Kreutz cada tres días. Lamentablemente para estos pequeños cometas, sus órbitas se precipitan peligrosamente cerca del Sol.
“Hay un solo cometa Kreutz que rodeó el Sol; se trata del cometa Lovejoy. Y estamos seguros de que se desintegró un par de semanas después de eso”, dice Battams.
A pesar de que los cometas que descubre el SOHO se destruyen rápidamente, poseen un gran valor científico. Por ejemplo, las colas de los cometas son azotadas y guiadas por los campos magnéticos del Sol. La observación de cómo se doblan y se balancean las colas puede proporcionar mucha información a los investigadores sobre el campo magnético del Sol.
Antes del lanzamiento del SOHO, en el año 1995, solamente se había descubierto aproximadamente una docena de cometas desde el espacio, y alrededor de 900 habían sido descubiertos desde nuestro planeta, a partir del año 1761. El SOHO ha dado vuelta el marcador respecto de estas cifras y se ha convertido en el mayor cazador de cometas de todos los tiempos.
Pero el SOHO no ha logrado estar en este pedestal solo. La nave espacial depende de personas que examinan cuidadosamente estos datos. Todos pueden ayudar porque las imágenes que proporciona el SOHO se encuentran disponibles gratuitamente en Internet, en tiempo real. Muchos astrónomos voluntarios aficionados escudriñan los datos diariamente en busca de signos de la existencia de un nuevo cometa. El resultado: el 95% de los cometas que descubre el SOHO han sido hallados por científicos aficionados.
Siempre que alguien divisa un cometa, ellos lo informan a Battams. Él analiza la imagen para confirmar lo que se vio y luego la envía a la Oficina Central para Telegramas Astronómicos (Central Bureau for Astronomical Telegrams, en idioma inglés), la cual le confiere un nombre oficial.
Y el nombre es… ¡sí, lo adivinó!: “SOHO”.
Mientras que los cometas que se ven desde la Tierra llevan el nombre de la persona que los descubrió, los cometas que se observan por primera vez desde el espacio a través de un telescopio llevan el nombre de la nave espacial. El cometa número 3000 se llama “SOHO-3000”.
Naturalmente, ya resultó destruido. Pero al SOHO no le importa. El cazador de cometas más grandioso de todos los tiempos ya continuó avanzando para descubrir el próximo cometa rasante del Sol.
Langis de Tongatupu
Subcategoría: Tumbas y megalítos.
Tongatupu es la principal isla de Tonga, donde está la capital Nuku‘alofa, y la residencia del rey de Tonga, Siaosi Tupou V. Sus coordenadas son: 21°10′S 175°10′O.
En esta isla existen diversos tipos de megalitismo, de orígenes dudosos. Un trilito, y una serie de tumbas-plataformas escalonadas, también de uso incierto.
Los Langi son grandes colinas artificiales rodeadas de grandes bloques de roca de coral, por lo general en tres o más capas escalonadas. Estas placas fueron sacadas de varios lugares a lo largo de la costa de Tongatapu y las islas vecinas de menor importancia. Las olas del mar les hizo largo de los siglos, mediante la compactación de arena de coral en capas de 10-20 cm de espesor. Eran sólo para ser desenterrado y luego transportado en barco a la obra. Sin embargo, la precisión de que las losas fueron cortadas para que se ajusten a lo largo de unos a otros sin apenas espacio de sobra es notable.
Uno de los mejor conservados es el Langi un paepae-o-Tele, que es aún más notable en las losas a lo largo de la esquina realmente tiene una forma de ‘L’.
¡Lapaha sitio arqueológico – este es un manojo de tumbas de piedra de pirámide que son la concentración richest de remanentes arqueológicos en Tonga.
Mapa de Lapaha con lugares pertinentes a la dinastía Tu i Tonga. Todos los diamantes (excepto el árbol de la FA onelua y el árbol de Futu-ko-Vuna y piedra) indican la ubicación de un Langi. Diferentes autoridades no están de acuerdo acerca de la identificación exacta
Langi (ancient burial tombs), Tongatapu, Tonga
ISO
Observatorio Espacial Infrarrojo
El Observatorio Espacial Infrarrojo (en inglés: Infrared Space Observatory, ISO) es un telescopio espacial diseñado para observar en el infrarrojo y operado por la Agencia Espacial Europea (ESA) en colaboración con las agencias espaciales ISAS (integrada actualmente en la JAXA de Japón) y la estadounidense NASA. Su construcción fue inicialmente propuesta en 1979 y fue puesto en órbita el 17 de noviembre de 1995 por un Ariane 44P desde Kourou, funcionando hasta el 16 de mayo de 1998, cuando fue incinerado en la atmósfera. En su tiempo fue el satélite de estudios en infrarrojo más sensible lanzado nunca.
El telescopio contaba con un espejo principal de 0.6 m y refrigeración por medio de helio líquido. El espejo principal era capaz de enviar la luz a cuatro instrumentos diferentes a través de un espejo piramidal. Los cuatro instrumentos eran:
- ISOCAM, una cámara en infrarrojo operativa de 2.5 a 18 micras.
- ISOPHOT un fotopolarímetro operativo entre 2.5 y 240 micras capaz de observar objetos a muy pocos grados por encima del cero absoluto.
- SWS (Short-Wave Spectrometer) capaz de observar de 2.4 a 45 micras, capaz de analizar la composición química de objetos muy fríos.
- LWS (Long-Wave Spectrometer) operativo entre las 45 y 197 micras enfocado al estudio espectroscópico de objetos muy fríos como nubes de polvo en el espacio interestelar.
La vida efectiva del satélite ISO estaba limitada por su depósito de helio líquido como refrigerante. Inicialmente contaba con un depósito de 2286 litros de helio líquido que fue agotándose conforme proseguía la misión. Inicialmente se le preveía una duración de 18 meses, durando finalmente 28.
La Agencia Espacial Europea (ESA) lanzó el Observatorio Espacial Infrarrojo (ISO)* [página en inglés] en noviembre de 1995. Este satélite observó longitudes de onda entre 2,5 y 240 micrones. No solamente abarcó un ancho de banda mucho más amplio que el IRAS, sino que también era miles de veces más sensible que éste y posee una mejor resolución espacial. ISO recopiló datos por cerca de 2 años y medio —tres veces más tiempo que IRAS—, hasta que consumió todo el helio refrigerante a principios de 1998. Su instrumental midió detalles de las regiones extremas del espectro infrarrojo —las ondas más cortas y las más largas—, e incluía una cámara infrarroja con dos matrices de detectores y un fotómetro. A diferencia de IRAS, que realizó un estudio infrarrojo del espacio, ISO funcionó de manera similar a los telescopios terrestres, en los cuales los astrónomos proponen distintas observaciones para estudiar en detalle objetos o fenómenos específicos. Centenares de astrónomos de distintos países aún continúan analizando los datos recopilados por ISO, de los que se espera obtener nuevos descubrimientos* [página en inglés] sobre el universo. ISO ya ha detectado hielo seco en el polvo interestelar, así como hidrocarburos en algunas nebulosas.
La ESA y Europa tienen una larga tradición en astronomía infrarroja, que se mantiene ahora con la participación del Reino Unido, Holanda y la ESA en Akari. La ESA está proporcionando soporte a Akari a través de su estación de tierra en Kiruna (Suecia), en una colaboración parecida a la otorgada por los japoneses en ISO. Además, un equipo en el Centro de Astronomia Espacial de la ESA (ESAC) en Villafranca, Madrid, colabora en el barrido del cielo infrarrojo, en concreto en la mejora de la resolución del apuntado, que implica medir con precisión la posición de los objetos observados. Esto es esencial para acelerar la producción de catálogos celestes y, en última instancia, proporcionar un censo del Universo infrarrojo. Los científicos e ingenieros de ESAC han desarrollado el software que ha ya sido utilizado con éxito en la primera fase operacional de la misión. A cambio de su colaboración, la ESA ha obtenido el diez por ciento del tiempo de observación en la segunda y tercera fases operacionales de Akari.
ESAC también funciona como centro de soporte a usuarios europeos de Akari. Desde ESAC el mismo equipo (que también sigue trabajando como el Centro de Datos de ISO) ha gestionado la convocatoria de peticiones de tiempo de observación realizada por la ESA para adjudicar el tiempo de Akari a los astrónomos europeos. La respuesta de la comunidad astronómica europea a la convocatoria ha sido muy elevada. Cuarenta y dos Investigadores Principales de nueve países europeos han enviado cincuenta peticiones, una cuantidad ligeramente superior a la obtenida en la convocatoria paralela para las comunidades japonesas y coreanas, que tienen a disposición el doble del tiempo de observación. El grado de “sobresuscripción” (tiempo de observación solicitado frente a tiempo disponible) de la convocatoria europea es comparable a la de otras misiones como de la ESA, como el XMM-Newton. El programa de observaciones de Akari se selecciona también a través de un proceso de revisión por parte de comités paralelos, de las propuestas que son enviadas por los astrónomos en la convocatoria abierta.
La cooperación ofrecida a la ESA por parte de Japón contribuirá a mantener en la vanguardia de la investigación a los astrónomos europeos, mientras trabajan con los datos de ISO y esperan el lanzamiento de la próxima misión infrarroja de la ESA, Herschel, a principios de 2008. Herschel será el mayor y más sensible telescopio espacial, con un diámetro de 3,5 metros. Sus datos se sumarán a los del censo del Universo infrarrojo de Akari, y a los de otras misiones como ISO, de la ESA, y Spitzer, de la NASA. Herschel desvelará cómo se formaron y evolucionaron las primeras estrellas y galaxias, y estudiará la química del cosmos más frío y oculto.
Satélite espacial europeo ISO supera al Hubble
Por: DAVID JIMENEZ De El Mundo para EL TIEMPO 19 de febrero de 1996
Después de cuatro meses de rondar el universo, ha conseguido acercarse más que nadie a galaxias, estrellas y planetas. También al origen de la Tierra y el Sol.
El proyecto forma parte de Programa de la Agencia Espacial Europea (ESA) y su control se lleva desde la base instalada junto a la pequeña localidad de Villafranca del Castillo (Madrid, España).
Allí se reunieron la semana pasada los responsables e investigadores encargados de los resultados para anunciar que el ISO está dándonos nuevas y valiosas informaciones sobre el Sol y la Tierra.
Las razones de este optimismo no son casualidad. El satélite europeo, lanzado el pasado 17 de noviembre, consigue ver a través de las densas nubes que se forman en el espacio y sacar imágenes desconocidas hasta ahora.
El ISO ha logrado ver incluso allá donde ni siquiera el prestigioso telescopio Hubble de la NASA lo había conseguido.
Pronto habrá nuevas revelaciones que pueden ser prometedoras, vaticinó hoy el director general de la Agencia Espacial Europea, J.M. Luton.
Por primera vez, las imágenes exhibidas dejaban ver las consecuencias que produce una colisión de galaxias, mostrando los millones de estrellas que quedan esparcidas.
El telescopio infrarrojo europeo puede realizar desde la Tierra el seguimiento de un hombre en la luna simplemente por el calor que éste desprende.
Este es un avance científico que permite detectar los objetos más fríos del Universo a través de las nubes de polvo cósmico. Tan pronto puede penetrar en el interior y origen de las galaxias como detectar el calor emitido por un cubito de hielo a un kilómetro de distancia.
El Sol también está más cerca, afirmó la Agencia Espacial Europea. Porque los expertos reunidos hoy coincidieron en que son las estrellas las que tienen la respuesta de nuestra existencia, el gran secreto.
La profesora Catherine Cesarsky, investigadora principal del Isocam, uno de los instrumentos que transporta el telescopio, explicó que el ISO puede observar el interior de galaxias muy jóvenes y trazar su historia, lo que nos permitirá entender mejor nuestra galaxia, la Vía Láctea, y cómo se crearon las condiciones para la vida.
Para García Castañer, director de ESOC (Centro de Operaciones de la ESA), Europa ha dejado de estar a la zaga de Estados Unidos en esta ciencia, y por supuesto, en lo que se refiere a la observación astronómica.
Se calcula que hacia el mes de noviembre de 1997 el ISO morirá y quedará totalmente inoperante. A partir de entonces, no será más que un objeto en el espacio, ya que su retirada de la órbita es demasiado costosa.
Será el final de un proceso normal debido a la evaporación del helio superfluido, que transporta para mantener bajo cero la temperatura de los instrumentos de observación (dos espectrómetros de onda larga y corta, una cámara -Isocam- y un fotómetro de imagen). Sin embargo, la vida del ISO va a ser más larga de lo esperado, al menos seis meses, debido a que esa evaporación está siendo más lenta de lo previsto.
Antes de que eso ocurra, el satélite habrá mandado información y estudios de cerca de 30.000 objetos del universo (planetas, estrellas, galaxias…).
Una vez inoperante, tendremos datos y acontecimientos para estudiar los resultados durante años, aseguró el científico italiano Alberto Salama, uno de los 50 investigadores que se encargan de vigilar el ISO las 24 horas del día.
Será la continuidad de lo que para muchos es una carrera imparable hacia el conocimiento de nuestro origen, el de la Tierra y el del Sol.
El telescopio espacial ‘ISO’ descubre procesos de formación de estrellas en galaxias primitivas
Madrid 13 NOV 1996
Las regiones del cielo donde nacen estrellas emiten mucha radiación en infrarrojo. En regiones cercanas, sobre todo en nuestra galaxia, la Vía Láctea, el proceso se ha llegado a conocer bien. Ahora, un grupo de astrónomos ha logrado identificar esos procesos en unas galaxias lejanísimas, a unos 10.000 millones de años luz de distancia, y la sorpresa, además, ha sido comprobar que la velocidad a que se crean estrellas allí es entre diez y mil masas solares por año, mucho más alta que la de nuestro entorno galáctico, donde la tasa de producción de astros es de una masa solar anual.Para hacer esta investigación, anunciada la semana pasada en Londres, en una reunión de la Royal Astronomical Society, Michael Rowan-Robinson (Imperial College) y sus colegas han utilizado el telescopio infrarrojo en órbita ISO, un satélite científico de la Agencia Europea del Espacio (ESA) en funcionamiento desde hace casi un año. Y lo han apuntado hacia una región minúscula del cielo que está siendo escudriñada intensamente por los astrónomos: el denominado Deep Field, que se realizó hace casi un año con el telescopio espacial Hubble.
Esta región cubre un área del cielo de tan sólo cinco minutos de arco cuadrados (el tamaño aparente de Venus). En la imagen del Deep Field, que plasma en dos dimensiones las miles de galaxias que hay en el fino cono de observación desde aquí hasta los límites del un¡ verso visible, aparecen algunas galaxias tan lejanas que su luz ha debido tardar unos 10.000 millones de años en llegar a la Tierra, por lo que se ven aquí ahora tal y como eran hace 10.000 millones de años, es decir, poco después de que se formasen en el universo muy joven (un 10% de su edad actual).
En el proceso de nacimiento de estrellas, las nubes de gas y polvo van condensándose por efecto de la gravedad hasta formar bolas de materia que se enciende en las reacciones de fusión nuclear que hacen brillar a los astros. El polvo presente en estas regiones absorbe la radiación más energétrica de las estrellas recién formadas, impidiendo su observación en el visible; esto provoca un calentamiento del polvo a temperaturas de decenas o pocos centenares de grados y, como consecuencia, la radiación se reemite en el infrarrojo.
Por eso los astrónomos han necesitado el avanzado telescopio infrarrojo ISO para detectar el proceso en galaxias lejanas. Rowan-Robinson y sus colegas han identificado varias fuentes de radiación infrarroja que pueden asociarse a galaxias primitivas detectadas en el Deep Field en la longitud de onda visible. De los siete mejores casos identificados, dos probablemente son estrellas gigantes rojas en esas galaxias, pero los otras cinco son interpretadas como emisiones de regiones de polvo en las que se están produciendo tremendas erupciones de formación estelar según por Rowan-Robinson y sus colegas, incluidos los españoles Pérez Fournon (Instituto de Astrofísica de Canarias) y González-Serrano (Instituto de Física de Cantabria).
“Creemos que estamos viendo el principal episodio de formación estelar en algunas de esas galaxias, proceso durante el cual se están fabricando la mayoría de los elementos pesados en una galaxia, la materia de la que estamos hechos nosotros (carbono, nitrógeno, oxígeno, hierro, etcétera)”, ha dicho Rowan-Robinson.
Termina la vida útil del telescopio espacial ISO
Madrid 17 MAY 1998
El equipo de científicos del satélite astronómico ISO celebró ayer con champán la desconexión de este telescopio espacial europeo, que durante sus dos años y medio de vida ha sido controlado desde la Estación de Seguimiento de Villafranca del Castillo (Madrid).El ISO, de la Agencia Europea del Espacio (ESA), ha durado dos años y medio, y durante este tiempo ha sido el mejor telescopio espacial para detectar la luz infrarroja que emiten los objetos astronómicos. La luz infrarroja no puede ser observada en su totalidad desde la Tierra porque la atmósfera lo impide y, sin embargo, los astrónomos necesitan estudiarla para desentrañar, por ejemplo, cómo nacen y mueren las estrellas o qué moléculas hay en el espacio interestelar.
La desconexión del satélite, a las 14:00 de la tarde de ayer, pone fin a la misión. El ISO no podía realizar más observaciones porque se había agotado su provisión de helio líquido, necesario para enfriar sus instrumentos. Los científicos consideran un éxito la misión.
Ahora el ISO apagado irá modificando su órbita cada vez más por efecto de la gravedad terrestre. Es imposible calcular exactamente cuándo, pero se estima que hacia el 2020 el ISO estará rozando las capas superiores de la atmósfera y la fricción acabará desintegrándolo.
El ISO de la ESA proporciona las primeras imágenes del nacimiento de estrellas monstruosas
20 de julio de 2006 | 12:00 am
El descubrimiento permite a los astrónomos comenzar a investigar por qué sólo se da el crecimiento de estas estrellas masivas en algunas regiones del espacio.
El espacio está lleno de nubes gigantes de gas desperdigadas.
Ocasionalmente, regiones de estas nubes se colapsan, formando estrellas. ‘Una de las principales cuestiones en el campo de estudio es por qué algunas nubes producen tanto estrellas de gran masa como estrellas de pequeña masa, mientras que otras producen sólo estrellas de pequeña masa’, pregunta Oliver Krause del Instituto Max Planck de astronomía, Heidelberg y el Observatorio Steward, Arizona.
Es difícil deducir cuáles son las condiciones necesarias para la formación de estrellas de gran masa porque estos monstruos estelares se forman muy lejos y están oscurecidas tras cortinas de polvo. Sólo las largas longitudes de onda de la radiación infrarroja pueden escapar de estos envoltorios opacos y revelar los núcleos de polvo a baja temperatura que marcan los lugares de formación estelar. Esta radiación es exactamente la que ha recogido la cámara de infrarrojo lejano ISOPHOT del ISO.
Stephan Birkmann, Oliver Krause y Dietrich Lemke, todos ellos del Instituto Max Planck de Astronomía, Heidelberg, utilizaron los datos de la ISOPHOT para localizar dos núcleos intensamente fríos y muy densos, cada uno de los cuales contenía suficiente materia para formar al menos una estrella masiva. ‘Esto abre una nueva era de observación de los detalles tempranos de la formación de estrellas de gran masa’, dice Krause.
Los datos fueron recopilados por la Inspección Serendipia de la ISOPHOT (ISOPHOT Serendipity Survey, ISOSS), un inteligente estudio liderado por Lemke. Este se dio cuenta de que mientras el ISO giraba de un objeto celeste a otro se estaba perdiendo precioso tiempo de observación. Organizó que la cámara de infrarrojo lejano ISOPHOT grabase continuamente durante estas recolocaciones y enviara los datos a la Tierra.
#2#Durante la misión del ISO, que duró dos años y medio entre 1995 y 1998, la nave realizó 10 000 de estos giros, proporcionando una red de datos por todo el cielo de la ventana infrarroja de 170 micrómetros, anteriormente inexplorada. Esta longitud de onda es 310 veces más larga que la radiación óptica y revela polvo frío hasta temperaturas tan bajas como 10K (-263º Celsius). En el estudio se creó un catálogo de los puntos fríos.
Birkmann y sus colegas investigaron este catálogo y encontraron cincuenta lugares potenciales de nacimiento de estrellas de gran masa. Una campaña de observaciones de seguimiento utilizando telescopios terrestres reveló que el objeto ISOSS J18364-0221 estaba compuesto en realidad por dos núcleos densos fríos sospechosamente parecidos a los asociados con el nacimiento de las estrellas de pequeña masa, pero que contenían mucha más materia.
El primer núcleo está a 16,5 Kelvin (-265,5º Celsius). Contiene setenta y cinco veces la masa del Sol y muestra signos de colapso gravitatorio. El segundo está a unos 12K (-261º Celsius) y contiene 280 masas solares. El equipo estudia ahora otros lugares potenciales.
Aunque el ISO ya no está operativo, la ESA participa actualmente en la misión de infrarrojos de la Agencia de Exploración Aeroespacial Japonesa, Akari (anteriormente ASTRO-F). Esta misión rellenará los huecos en los datos de la ISOSS examinando todo el cielo en seis bandas de longitud de onda infrarroja. Después de Akari, la ESA continuará avanzando en la astronomía en infrarrojos con su telescopio espacial, Herschel, cuyo lanzamiento está previsto para 2008. Birkmann dice: ‘Con su espejo de 3,5 metros y sus detectores de infrarrojo lejano, Herschel desvelará las fases más tempranas del nacimiento de estrellas masivas con detalle sin precedentes’.
Este trabajo también podría ayudar a detectar los objetos más distantes del Universo. ‘Cuando los astrónomos miran a miles de millones de años luz en el espacio, todo lo que pueden ver son las estrellas brillantes de gran masa en galaxias muy distantes. Si podemos entender cómo se forman estas estrellas quizá podríamos ser capaces de aplicar ese conocimiento para comprender cómo evolucionan las galaxias’, dice Krause.
Los descubrimientos aparecen en el ejemplar de 20 de enero de 2006 de la Revista de Astrofísica (Astrophysical Journal 637:380-383). El artículo original, titulado ‘Very cold and massive cores near ISOSS J18364_0221: implications for the initial conditions of high-mass star formation’ (Núcleos masivos muy fríos próximos a ISOSS J18364_0221: implicaciones en las condiciones iniciales de formación de estrellas de gran masa), es de S. M. Birkmann and D. Lemke (Instituto Max Planck de Astronomía, Heidelberg, Alemania), y O. Krause (Instituto Max Planck de Astronomía, Heidelberg, Alemania, y el Observatorio Steward, Universidad de Arizona, Tucson, Arizona, EEUU) .
Se sabe que la atmósfera de Saturno contiene restos de agua en estado gaseoso en sus capas más profundas. La presencia de agua en las capas superiores de la atmósfera ha constituido un enigma hasta ahora.
El telescopio predecesor de Herschel, el Observatorio Espacial Infrarrojo ISO, también de la ESA, detectó el agua en las capas superiores de Saturno en 1997. Pero se desconocía su origen. Los modelos computacionales desarrollados a partir de los últimos datos de Herschel revelan que entre el 3% y el 5% del agua que expele Encélado acaba cayendo en Saturno.
The Avenue
Avenida
Stonehenge Avenue es una antigua avenida en la llanura de Salisbury, Wiltshire, Reino Unido. Es parte de la Stonehenge, Avebury y sitios asociados de la UNESCO patrimonio de la humanidad. Descubierto en el siglo 18, que mide casi 3 km,[2] que conectan Stonehenge con el río Avon.[3] Fue construido durante el período de Stonehenge 3 de 2600 a 1700 antes de Cristo.
A lo largo de parte de su longitud La avenida está alineado con la salida del sol del solsticio de verano,[3] que sugiere un tiempo de uso más frecuente.[2] En 2013 un tramo de carretera A344 estaba cerrado, que había cortado a través de la avenida cerca de Stonehenge. Después se retiró la superficie de la carretera, se demostró que aunque los bancos de la avenida habían sido cortados, el llenado de zanjas estaba todavía en pruebas, lo que demuestra que la avenida de hecho había conectado a la derecha a través del círculo de piedra. [4]
Al final de la avenida, un anillo similar de piedras azules, Bluestonehenge, fue descubierto en 2009.[5]
Mike Parker Pearson del Proyecto Stonehenge Riverside cree que la avenida fue inspirado por, y construido sobre la parte superior de una formación glacial natural con una alineación astronómica existente.[6]
La avenida, junto con el propio Stonehenge, es un monumento programado, designado por primera vez en el 1882 acto que fue la primera legislación para proteger los sitios arqueológicos británicos.[7]
Razones para la designación
Un pequeño número de áreas en el sur de Inglaterra parece haber actuado como focos para la actividad ceremonial y ritual durante los períodos Neolítico y la Edad del Bronce. Dos de los más conocidos y los más tempranos son áreas reconocidas alrededor de Avebury y Stonehenge, ahora designado de forma conjunta como un patrimonio de la humanidad. El área de downland tiza que rodea Stonehenge contiene uno de los grupos más densos y más variados de monumentos neolíticos de campo y de la edad del bronce en Gran Bretaña. Se incluyen dentro de la zona son en sí Stonehenge, el cursus de Stonehenge, las paredes Henge Durrington, y una variedad de monumentos funerarios, muchos agrupados en cementerios. La zona ha sido objeto de investigación arqueológica desde el siglo 18, cuando Stukeley grabó muchos de los monumentos y parcialmente excavado una serie de los túmulos. Más recientemente, la colección de objetos procedentes de las superficies de los campos arados ha complementado la evidencia para el ritual de enterramiento y revelando la intensidad del asentamiento contemporánea y el uso del suelo. En vista de la importancia de la zona, todos los monumentos ceremoniales y sepulcrales de este período, que conservan importantes restos arqueológicos son identificados como de importancia nacional.
Stonehenge y la Avenida constituyen un monumento ceremonial de gran fama y rareza. Stonehenge en sí se ha demostrado por la excavación parcial y registro detallado de contener evidencia única de la actividad ceremonial y destreza arquitectónica sin igual en los monumentos contemporáneos en el resto de Inglaterra. Las excavaciones arqueológicas han jugado un papel significativo en desentrañar la compleja historia del monumento, y la reciente estudio geofísico ha indicado que la Avenida contiene restos enterrados, que contribuyan a una comprensión más completa del monumento.
La concordancia de las distintas características del complejo, supuestamente relacionada con las observaciones astronómicas, sigue provocando un intenso debate sobre el papel del monumento y la naturaleza de las ceremonias con las que se asocia. A pesar de nivelación por el cultivo de los tres túmulos cuenco sobre condesa Granja contendrán restos arqueológicos y la evidencia del medio ambiente relacionados con el monumento y el paisaje en el que fue construido. Desde el cementerio de la que forman parte es atravesada por la Avenida, la fecha de este último puede ser aclarada por pruebas contenidas dentro de los montículos Barrow y zanjas.
El monumento, que se divide en tres áreas, incluye Stonehenge, la Avenida, y tres machos castrados cuenco que forman parte de un cementerio carretilla redonda lineal que está atravesada por la Avenida de 1.500 metros al este de Stonehenge en condesa Granja. Stonehenge está situado hacia el extremo occidental de un anfiteatro natural a unos 2km de diámetro. Esta zona está limitada al oeste por la formación de Stonehenge hacia abajo altiplano, en el norte por una cresta de este a oeste en la que se encuentra el sector occidental de la Cursus y su asociada cementerio carretilla redonda, en el este por una cresta norte-sur en el que están situados los cementerios de Nueva carretilla rey Barrows y viejo rey Barrows y el monumento Henge Coneybury, y en el sur por una cresta este-oeste en la que se encuentra el cementerio de Down Normanton carretilla redonda.
Integral con Stonehenge es la avenida, un elemento lineal que proporciona un enfoque formal para Stonehenge y su vinculación con el río Avon en West Amesbury. La avenida se compone de bancos paralelos c.6m de ancho y 0,2 m de alto que encierra un c.12 m amplio pasillo. Los bancos están flanqueados por una c.3 m trinchera avanzada de ancho y 0,2 m de profundidad. La Avenida varía ligeramente en anchura total, con un promedio de c.30 m, al igual que las anchuras del banco y zanja. De su unión con la entrada del este al norte de Stonehenge, la avenida se construyó para mantener el eje del monumento por una distancia de 560 m en dirección noreste. En el lado oeste de Stonehenge inferior se vuelve a ejecutar OSO-ENE a una distancia de 760 m hacia el rey Barrow Ridge, a partir de cuyo momento se curva gradualmente hacia el sur al este por una distancia de 500 metros, corriendo en línea recta de nuevo por el 900 m definitivo a la orilla del río Avon. El monumento es visible como un ligero movimiento de tierra por primera 1000 m del centro de Stonehenge inferior, y desde ese punto es difícil de identificar en el suelo, pero es visible en las fotografías aéreas.
Excavaciones parciales en 1973 establecieron su posición inmediatamente al norte de West Amesbury House, y una encuesta medido al sur de la casa en 1987 encuentran los bancos de la avenida conservan dentro de un área de movimientos de tierra de jardín después de la Edad Media, y en funcionamiento dentro de 20m de la el río Avon. La anchura total de la Avenida en este punto es c.42m. Excavaciones parciales cerca de Stonehenge en el lado norte de la A344 producido a partir de las zanjas astillas de piedra azul y un punzón de asta que arrojó una fecha de radiocarbono de c.1730 AC. Sílex trabajado y piezas de asta fueron encontrados en la excavación en West Amesbury. Dentro de la avenida a una distancia de 24 m de la entrada a Stonehenge es el talón de piedra, un bloque de 4,9 m de pie sarsen alto e inclinado claramente hacia el centro de Stonehenge. La piedra está rodeada por una zanja de 12 metros de diámetro y 2 m de ancho, en parte visible como un ligero movimiento de tierras. Excavación parcial en 1979 reveló la presencia de una piedra 2m-agujero para el noroeste del talón de piedra, y la prospección geofísica a lo largo de una longitud de 240 m de la avenida al norte de la A344 en 1979-80 sugiere posibles posiciones de piedra más agujeros.
Algunos 1.500 metros al este de Stonehenge en condesa Granja, la avenida pasa a través de un hueco en una línea este-oeste de seis túmulos circulares que forman un cementerio carretilla redonda. Los tres machos castrados al este de la avenida están demasiado distantes para ser incluidos en este monumento y son objeto de una programación separada. Este monumento incluye los tres túmulos que forman la mitad occidental del cementerio. Las tres carretillas han sido niveladas por el cultivo y son difíciles de identificar en el suelo. Las zanjas que los rodean, de la que se extraía material durante su construcción, son visibles en las fotografías aéreas, de las que se conocen sus diámetros totales al rango de 30 m a 45 m. El túmulo central de los tres fue excavado parcialmente en 1924, cuando se encontró un pozo central de vacío. La Avenida exhibe un estrechamiento y un cambio notable en la alineación en el punto en el que pasa por el cementerio, lo que indica que el cementerio es anterior a la avenida.
Todos los postes de la valla están excluidos de la programación, pero se incluye la tierra debajo de estas características. La superficie asfaltada de la pista de visitantes, que cruza la parte occidental de Stonehenge está excluida de la programación, pero la tierra debajo está incluida. Las superficies de la A344 y el camino Wilsford en West Amesbury están excluidos de la programación, pero la tierra debajo está incluido. La pista que forma el límite norte de West Amesbury está incluida en la programación. La parcela de tierra hacia el oeste al norte de West Amesbury Casa, a través del cual pasa parte de la avenida, fue objeto de la excavación integral en 1973 y, por tanto, se excluye de la programación.
La evidencia de la existencia de dos túmulos cuenco este inmediatamente al este y al norte de Stonehenge ha sido examinado pero rechazada.
Escrito por Austin Kinsley EN 22/08/15. Stonehenge Avenida Publicada en Stonehenge
Por encima es una fotografía de la aproximación final Stonehenge Avenue hasta el monumento desde el noreste. Las excavaciones recientes estados Inglés Heritage ‘han demostrado que la línea de la Avenida sigue la línea de las características geológicas naturales – barrancos y bancos en la superficie de la tiza, formados al final de la última edad de hielo, pero que podría haber sido visible como poco profunda cantos a los constructores de Stonehenge. La avenida fue construida probablemente en el 2300 antes de Cristo, más de un siglo después de las grandes estructuras de piedra centrales se habían construido. Se interpreta como un enfoque ceremonial a Stonehenge. Después de la alineación del solsticio en su primer tramo recto, las zanjas y bancos luego curva hacia el este antes de barrer fuera hasta el río Avon.
El informe más reciente proyecto del paisaje Patrimonio Mundial de Stonehenge en la avenida y Stonehenge fondo está aquí. A lo largo de la longitud por encima de fotografiado de la avenida norte del monumento, que está alineado con la salida del sol en el solsticio de verano. William Stukeley observa en Stonehenge, un Restor’d templo a los druidas británicos en 1740 aquí que “Plutarco en la Vida de Numa dice que los antiguos observaron la regla de establecer sus sienes con la parte delantera para cumplir con el sol naciente’. También observó de la sección de la avenida que se extiende inmediatamente al norte del monumento ‘Esta avenida se extiende algo más de 1700 pies, en una línea recta, hacia el fondo del valle, con un descenso delicada. Observo la tierra de las zanjas se lanza hacia el interior, y al parecer algunos de césped en ambos lados, arrojada sobre la avenida’.
La imagen de abajo, tomada en agosto de 2013 y por cortesía de Pete Glastonbury, muestra claramente el tramo de la Avenida norte del monumento alineado con el amanecer del solsticio de verano. También es visible en esta imagen es la vuelta hacia el este de la avenida.
Stonehenge Avenida mira noreste
William Stukeley concluye su capítulo sobre la avenida de Stonehenge en Stonehenge, un Restor’d templo a los druidas británicos con ‘Esta avenida es prueba suficiente (si no se necesita ninguna) que nuestro trabajo es un templo ni un monumento, ya que algunos escritores tendrían que… Pero no requiere la refutación’.
Stonehenge avenida sur corriente a West Amesbury Henge y el río Avon
La fotografía de arriba fue tomada por Pete Glastonbury en agosto de 2013, y revela una parte poco vista de la avenida de Stonehenge. Se manifiesta en este campo de lino como dos líneas paralelas que van hacia la carretera A303. No hay ninguna señal de la avenida más al sur en el campo de trigo ya que se ejecuta a través del campo hacia el oeste de Amesbury House, que termina en el oeste de Amesbury Henge por el río Avon.
La fotografía de abajo es un mapa de 1915 de la sección de la avenida que parte del noreste de Stonehenge alineado con el amanecer del solsticio de verano.
1915 Mapa de Stonehenge y la Avenida
Stonehenge Avenue desde NE de Stonehenge.
Astro-2
Tras el éxito científico de la misión Astro-1, Astro-2 fue aprobado como un vuelo de seguimiento. Astro-2 consistió en sólo tres instrumentos, la UIT, HUT y la WUPPE. El HUT se mejoró significativamente para este segundo vuelo, con una nueva capa óptica, que mejora el rendimiento en más de un factor de dos. La misión se inició el 2 de marzo de 1995, y se mantuvo en el aire durante 16 días durante la misión STS-67.
La galaxia espiral, Júpiter, y las cuatro lunas (un total de seis objetos espaciales), así como las siete estrellas de la insignia simbolizan la designación numérica de su vuelo en la secuencia de la misión del Sistema de Transporte Espacial. Endeavour, con ASTRO-2, se está acelerando por.
Una vez más los telescopios se montaron sobre una paleta Spacelab en la bodega de carga del transbordador. Los Spacelab Herramienta para señalar Sistema, palets, y la aviónica se utilizaron para la unión al traslado y para el control y manejo de datos. Astro-2 también requiere los especialistas de la misión y los especialistas de carga útil para el control de sus operaciones. Un programa de observadores de visitantes también se incluyó como parte de Astro-2.
La misión fue un gran éxito con los telescopios de observación de más de 250 objetos astronómicos y exploró 23 programas diferentes ciencias.
STS-67
Tipo de misión: Astronomía
Operador: NASA
ID COSPAR: 1995-007A
SatCat №: 23500
Duración de la misión: 16 días, 15 horas, 8 minutos, 48 segundos
Distancia recorrida: 11.100.000 6.900.000 kilómetros (millas)
Órbitas completado: 262 [1]
Astronave: El transbordador espacial Endeavour
Masa de carga útil: 13.116 kilogramos (28.916 lb)
Tripulación: 7 miembros.
Inicio de la misión
Fecha de lanzamiento: 2 de marzo de 1995 06:38:13 UTC
Sitio de lanzamiento: Kennedy LC-39A
Fin de la misión
Fecha de aterrizaje: 18 de marzo de 1995, 21:47:01 UTC
Punto de aterrizaje: Edwards pista 22
Sistema de referencia: Geocéntrico
Perigeo: 305 kilómetros (190 millas)
Apogeo: 305 kilómetros (190 millas)
Inclinación: 28.45 grados [2]
Período: 91,5 min
De izquierda a derecha – Primera fila: Oswald, Jernigan, Gregory; Fila de atrás: Parise, Lawrence, Grunsfeld, Durrance-
STS-67 fue un vuelo espacial tripulado misión usando transbordador espacial Endeavour que puso en marcha desde el Centro Espacial Kennedy , Florida el 2 de marzo de 1995.
Resumen de la misión
Esfuerzo del transbordador espacial lanza desde el Centro Espacial Kennedy 2 de marzo de 1995
Astro-2 fue la segunda misión Spacelab dedicada a realizar observaciones astronómicas en las regiones espectrales ultravioletas. Se compone de tres instrumentos únicos – el telescopio ultravioleta Hopkins (HUT), el Telescopio de Imagen Ultravioleta (UIT) y el Experimento de Wisconsin ultravioleta Photo-polarímetro (WUPPE). Estos experimentos seleccionar objetivos de una lista de más de 600 y observar objetos que van desde algunos dentro del sistema solar de estrellas individuales, nebulosas, restos de supernovas, galaxias y objetos extragalácticos activos. Estos datos complementado datos recogidos en la misión Astro-1 volado en la misión STS-35 en diciembre de 1990 a bordo del Columbia .
Debido a que la mayor parte de radiación UV es absorbida por la atmósfera de la Tierra, no puede ser estudiada desde el suelo. La región ultravioleta lejano y extremo del espectro era en gran parte sin explorar antes de Astro-1, pero el conocimiento de todas las longitudes de onda es esencial para obtener una imagen precisa del universo. Astro-2 tenía casi el doble de la duración de su predecesor, y el lanzamiento en un momento diferente del año permitió a los telescopios para ver distintas partes del cielo. La misión fue diseñada para llenar grandes lagunas en la comprensión de los astrónomos del universo y sentar las bases para mayor descubrimiento en el futuro.
Por Middeck, experimentos científicos incluyen la proteína cristalina de la dilatación térmica del recinto Sistema de difusión de vapor Aparato-03 experimento (PCG-TES-03), el Protein Crystal Growth individual térmica caja del sistema-02 (PCG-STES-02), el traslado de Radioaficionados experimento-II (SAREX-II), el experimento de control activo Middeck (MACE), los materiales comerciales dispersión Aparato Instrumentation Technology Associates experimentos-03 (CMIX-03) y el experimento espacial de mediano plazo (MSX).
El experimento de control activo Middeck (MACE) es una carga útil de investigación de ingeniería espacial. Se compone de un giroscopio, ruedas de reacción, una carga útil de precisión apuntando, y una exploración y la carga útil señalar que produce trastornos de movimiento. El objetivo del experimento era probar un sistema de control de bucle cerrado que compensar perturbaciones de movimiento. En órbita, el comandante Stephen S. Oswald y el piloto William G. Gregory utilizan MACE para probar unos 200 situaciones de perturbación de movimiento diferentes a lo largo de 45 horas de pruebas durante la misión. Información MACE será utilizada para diseñar mejores sistemas de control que compensan el movimiento en las futuras naves espaciales.
Dos Get Away especiales (GAS) cargas útiles también estaban a bordo. Eran los botes G-387 y G-388. Este experimento fue patrocinado por la Oficina Espacial de Australia y AUSPACE ltd. Los objetivos fueron hacer observaciones ultravioletas del espacio profundo o galaxias cercanas. Se hicieron estas observaciones para estudiar la estructura de los remanentes de supernova galácticos, la distribución de gas caliente en las nubes de Magallanes, la emisión de halo galáctico caliente, y de emisión asociado a los flujos de refrigeración galácticos y aviones. Los dos botes de gas estaban interconectados con un cable. 1 bote tenía un conjunto de puerta motorizada que expone un telescopio ultravioleta al espacio cuando se abre. UV filtros reflectantes en la óptica de los telescopios determinan su paso de banda UV. Bote 2 contenía dos grabadoras de vídeo para el almacenamiento y baterías de datos para proporcionar energía experimento. Fue esfuerzo del transbordador espacial vuelo más largo ‘s.
La Astro-2 en órbita
Créditos: STS-67 Crew,NASA
Hace seis años, un grupo de tres telescopios ultravioleta fue puesto en órbita mediante la misión Astro-2 a bordo de la lanzadera espacial Endeavour. Mostrados aquí en su ubicación sobre el muelle de carga de la Endeavour a 350 kilómetros sobre el desierto Australiano, podemos ver el Hopkins Ultraviolet Telescope(HUT), el Ultraviolet Imaging Telescope(UIT) y el Ultraviolet Photo-Polarimeter Experiment (WUPPE). HUT está en frente de los otros instrumentos, junto con un rastreador de estrellas plateado de forma cónica, a la izquierda del grupo de telescopios. La región ultravioleta del espectro electromagnético está situada en longitudes de onda más cortas que la luz azul y no puede ser vista por el ojo humano. Casi toda la luz ultravioleta procedente del cosmos es imposible de detectar en la superficie de la Tierra debido a que es absorbida por el ozono atmosférico. Pero atravesando muy por encima de las nubes y la atmósfera protectora, estos instrumentos pudieron explorar el universo en longitudes de onda más allá del azul.
IEH-1
Las operaciones autónomas de la plataforma SPARTAN se repiten de nuevo en septiembre de 1995 a bordo de la STS 69. Instrumentalmente hablando son equivalentes a las realizadas durante las misiones STS 56 y STS 64, pero en ese momento las observaciones de la corona solar se hacen coincidir con el paso sobre el polo norte solar de la sonda Ulysses, lo que proporciona una visión simultánea de los fenómenos solares desde distintos ángulos. En la bodega de carga se instaló además un paquete de instrumentos denominado IEH-1 (International Extreme-ultraviolet Hitchhicker 1) para complementar y ampliar las observaciones ultravioletas solares y de otros fenómenos cósmicos de altas energías.
STS-69
STS-69 lanzamientos desde el centro espacial Kennedy, 7 de Septiembre de 1995
Tipo de misión: Investigación
Operador: NASA
ID COSPAR: 1995-048A
SatCat №: 23667
Duración de la misión: 10 días, 20 horas, 29 minutos, 56 segundos
Distancia recorrida: 7.200.000 4.500.000 kilómetros (millas)
Órbitas completado:171
El transbordador espacial Endeavour
Masa de carga útil: 11.499 kg (25.351 lb)
Tripulación: tamaño de la tripulación 5 miembros
David M. Walker
Kenneth Cockrell
James S. Voss
James H. Newman
Michael L. Gernhardt
Fecha de lanzamiento: 7 de septiembre de 1995 15:09:00 UTC
De izquierda a derecha – Sentados: Cockrell, Walker; De pie: Gernhardt Newman, Voss
Sitio de lanzamiento. Kennedy LC-39A
Fin de la misión: fecha de aterrizaje: 18 de septiembre de 1995, 11:38:56 UTC
Punto de aterrizaje: Kennedy SLF pista 33
Sistema de referencia: Geocéntrico
Perigeo:ñ 321 kilómetros (199 millas)
Apogeo: 321 kilómetros (199 millas)
Inclinación: 28,4 grados
Período: 91,4 min
STS-69 era un transbordador espacial Endeavour misión, y el segundo tramo de la Instalación Wake Shield (FSM). La misión lanzado desde el Centro Espacial Kennedy, Florida, el 7 de septiembre de 1995. Fue el éxito de los vuelos espaciales tripulados de la NASA número 100, sin incluir los X-15 vuelos.
Caminatas espaciales
- Voss y Gernhardt – EVA 1
- EVA 1 Inicio: 16 Septiembre 1995 – 08:20 GMT
- EVA 1 Fin: 16 Septiembre 1995 – 15:06 GMT
- Duración: 6 horas y 46 minutos
Resumen de la misión
La tierra azul pálido sirve como telón de fondo para el astronauta Michael Gernhardt, que se adjunta al brazo robótico del transbordador Endeavour ‘s durante una caminata espacial en la misión STS-69 misión en 1995. A diferencia de la caminata espacial los astronautas anteriores, Gernhardt fue capaz de utilizar una lista de verificación brazalete electrónico, un prototipo desarrollado para el montaje de la estación Espacial Internacional.
La misión de 11 días fue el segundo vuelo de la Instalación Wake Shield (FSM), un satélite en forma de platillo que era libre de volar del traslado durante varios días. El propósito de la FSM fue para crecer películas delgadas en un vacío casi perfecto creado por la estela del satélite mientras se movía a través del espacio. La tripulación también desplegó y recuperó el Spartan 201 satélite astronómico, realizó un paseo espacial de seis horas para poner a prueba las técnicas de montaje de la Estación Espacial Internacional y mejoras térmicas probadas realizados en los trajes espaciales utilizados durante los paseos espaciales.
El Spartan 201 sin volante hizo su tercer viaje a bordo de la lanzadera. La misión Spartan 201 era un esfuerzo de investigación científica dirigida a la investigación de la interacción entre el Sol y su viento de partículas cargadas que fluye hacia fuera. El objetivo de Spartan fue estudiar la atmósfera exterior del Sol y su transición hacia el viento solar que constantemente fluye más allá de la Tierra.
STS-69 vio el primer vuelo de la Internacional ultravioleta extremo autoestopista (IEH-1), el primero de los cinco vuelos previstos para medir y controlar las variaciones a largo plazo en la magnitud de la radiación ultravioleta extrema absoluta (EUV) El flujo procedente del Sol, y para estudiar las emisiones de EUV el sistema toro de plasma alrededor de Júpiter originario de su luna Io.
También a bordo del Endeavour fuera el capilar combinado Loop-2/Gas Asamblea Puente (CAPL-2 / GBA) de carga útil bombeado. Este experimento consistió en la CAPL-2 autoestopista carga útil diseñada como una demostración en órbita de microgravedad de un sistema de refrigeración previsto para el Programa del Sistema de Observación de la Tierra y el almacenamiento de energía térmica-2 de carga útil, que forma parte de un esfuerzo para desarrollar técnicas avanzadas de generación de energía.
Otra carga útil volado con una conexión con el desarrollo de la estación espacial fue la electrólisis Performance Improvement Concepto Estudio (EPICS). Suministro de oxígeno y de hidrógeno por electrólisis del agua en el espacio juega un papel importante en la satisfacción de las necesidades y objetivos de la NASA para futuras misiones espaciales.
Otras cargas útiles a bordo eran los Institutos Nacionales de Salud- células-4 (NIH-C4) experimento que investiga la pérdida de hueso durante los vuelos espaciales; la Investigación Biológica en frasco-6 (BRIC-6) que estudia el mecanismo de la gravedad de detección dentro de las células de mamíferos. También voladores eran dos experimentos comerciales. (CMIX-4), cuyos objetivos incluían análisis del cambio celular en condiciones de microgravedad, junto con los estudios de trastornos del desarrollo neuro-muscular y la Comercial Bioprocesamiento Genérico Aparato-7 (GCBA-7). GCBA era una carga útil secundaria que sirvió como punto de incubadora y la recopilación de datos para los experimentos en las pruebas de productos farmacéuticos y de la biomedicina, el procesamiento biológico y la biotecnología, la agricultura y el medio ambiente.
El almacenamiento de energía térmica (TES-2) experimento fue también parte de la CAPL-2 / GBA-6. La carga útil de TES-2 fue diseñado para proporcionar datos para comprender el comportamiento de larga duración de sales de fluoruro de almacenamiento de energía térmica que se someten a repiten fusión y la congelación en condiciones de microgravedad. La carga útil de TES-2 se diseñó para estudiar el comportamiento de microgravedad de huecos en fluoruro de litio – fluoruro de calcio eutéctica.
Caral
Caral
Ciudad Sagrada de Caral-Supe, Lima
Coordenadas: 10°53′37″S 77°31′13″O
País: Perú
Extensión: 66 hectáreas
Caral fue la capital de la civilización Caral; se encuentra situada en el valle de Supe, a 182 kilómetros al norte de Lima (Perú) y 23 km del litoral y a 350 msnm.1 Se le atribuye una antigüedad de 5000 años y es considerada la civilización más antigua de América.2 3 4 Está listada por la UNESCO como Patrimonio Cultural de la Humanidad.5
Caral-Supe se desarrolló entre 3.000 y 1.800 a.C. (Arcaico Tardío y Formativo Inferior) y fue contemporánea de otras civilizaciones primigenias como las de Egipto, India y Mesopotamia.6
Ubicación
Caral se halla situado en el distrito de Supe de la provincia de Barranca del departamento de Lima, a 184 km al norte de Lima Metropolitana, y a 23 km de la costa del Océano Pacífico, en un espacio geográfico conocido como el Norte Chico. Para llegar al sitio arqueológico se debe tomar un desvío a la altura del km 184 de la Panamericana Norte, vía que se despliega por la margen derecha del río Supe; al llegar al centro poblado de Caral se debe seguir el desvío hacia el parador turístico, hasta el puente peatonal. Desde ahí se debe caminar aproximadamente 20 minutos hasta el Centro de Recepción.7
Medio geográfico
Caral es el más imponente de todos asentamientos urbanos del Formativo Inferior situados en el valle medio inferior de Supe. Dichos asentamientos son ocho en total: Pueblo Nuevo, Cerro Colorado, Allpacoto y Llapta (en la margen derecha) y Lurihuasi, Miraya, Chupacigarro y la misma Caral (en la margen izquierda). La zona se encuentra encerrada por la configuración de la cordillera: hacia el oeste los cerros de ambos lados del valle se cierran formando una garganta; lo mismo ocurre hacia el este. En total son 10 km de largo que conforman una sección de valle fértil, bien definido y de fácil control.8
Bienvenidos a Caral, Perú
Si hablamos de todo el espacio geográfico del valle de Supe (zona del litoral y valle medio y bajo), existen en total 20 asentamientos, pero los que muestran mayor extensión, complejidad y monumentalidad arquitectónica son los 8 mencionados anteriormente, entre los que destaca nítidamente Caral, que indudablemente habría tenido un rango preeminente entre todas.9
Etimología
En los años iniciales del siglo XXI, el lingüista huachano Alfredo Torero publicó que el idioma quechua habría tenido su origen en los valles de Supe, Fortaleza y Pativilca. Esta afirmación la hizo después de estudiar la toponimia (nombres de los lugares) de los tres valles. Caral, nombre del centro poblado cercano al sitio arqueológico, aparece mencionado en los procesos de idolatrías del siglo XVII en Cajatambo. Es posible que Caral sea un nombre quechua. Sobre su significado no hay acuerdo, aunque algunos lingüistas han propuesto que significa “fibra” o “junco”. O en todo caso habría sido una voz protoquechua.10
Descubrimiento arqueológico
Restos de Caral.
En 1905, Max Uhle investigó Áspero, un asentamiento precerámico situado en el litoral del valle de Supe, a 23 km de Caral.11 Julio C. Tello exploró el mismo lugar en 1937. No hay evidencias que ellos se adentraran en el valle de Supe y, por lo tanto, que llegaran a conocer Caral.[cita requerida]
El primero que llamó la atención sobre Caral fue el viajero estadounidense, Paul Kosok. Éste visitó el lugar juntamente con su compatriota, el arqueólogo Richard Schaedel, en 1949. En su informe, publicado en el libro “Life, Land and Water in Ancient Peru”, en 1965, mencionó que Chupacigarro (como se le conocía a Caral entonces) debía ser muy antiguo, aunque no pudo precisar su antigüedad. También contiene una impresionante fotografía aérea de un sector de la ahora llamada Ciudad Sagrada de Caral.12
En 1975, el arquitecto peruano Carlos Williams hizo un detallado registro de la mayoría de los sitios arqueológicos del valle de Supe, entre los cuales registró a Chupacigarro Grande (denominación con la que entonces se conocía al actual sitio arqueológico de Caral), a partir del cual hizo algunas observaciones sobre el desarrollo de la arquitectura en los Andes. Lo presentó primeramente en el artículo Arquitectura y Urbanismo en el Antiguo Perú, publicado en 1983 en el tomo VIII de la serie “Historia del Perú” de la editorial Juan Mejía Baca.13 Y, después, en el artículo “A Scheme for the Early Monumental Architecture of the Central Coast of Peru”, escrito en 1985 en el libro Early Ceremonial Architecture in the Andes.14
En 1979, el arqueólogo suizo Frederic Engel visitó el lugar, y excavó y levantó un plano del mismo. En su libro De las begonias al maíz, publicado en 1987, afirmó que Chupacigarro Grande (Caral) pudo haber sido construido antes de la aparición de la cerámica en los Andes (1800 a.C.).15 Sin embargo, los arqueólogos andinos asumieron que el asentamiento era “acerámico”, es decir, que había sido construido por una población que no utilizaba la cerámica, aunque ya se conocía en otros lugares de los Andes.
En 1994, Ruth Shady recorrió nuevamente el valle de Supe y reidentificó 18 sitios con las mismas características arquitectónicas, entre los cuales se encontraban los cuatro conocidos como Chupacigarro Grande, Chupacigarro Chico, Chupacigarro Centro y Chupacigarro Oeste. Para diferenciarlos Shady los denominó, Caral, Chupacigarro, Miraya y Lurihuasi. Caral, Miraya y Lurihuasi son los nombres quechua de los poblados más cercanos a los sitios. Chupacigarro es el nombre español de un ave del lugar.
El equipo dirigido por Shady excavó en Caral, a partir de 1996. Ella presentó sus datos, por primera vez, en 1997, en el libro La Ciudad Sagrada de Caral-Supe en los albores de la civilización en el Perú. En ese tratado sustentó abiertamente la antigüedad precerámica de Caral, afirmación que consolidó de manera irrefutable en los años siguientes, a través de excavaciones intensivas en el lugar.16
El Proyecto Especial Arqueológico Caral-Supe está a cargo de los trabajos de investigación y restauración en Caral, así como de los asentamientos coetáneos del valle de Supe (Áspero, Chupacigarro, Miraya, Lurihuasi y Allpacoto) y del valle de Huaura (Vichama)17
Antigüedad
Se ha confirmado la antigüedad de la civilización caralina a través de 146 fechados radio carbónicos realizados en los Estados Unidos. Según éstos, Caral tiene una antigüedad de 5.000 años aproximadamente, cuando en el resto de América el desarrollo urbano comienza 1500 años después (como Monte Albán, en Mesoamérica).6 El hallazgo de Caral cambió así los esquemas que hasta entonces se tenían sobre el surgimiento de las antiguas civilizaciones en el Perú. Anteriormente se consideraba a Chavín de Huántar como el foco cultural de más vieja data en el Perú, con un máximo de 1500 años a.C.
Periodos
La construcción de Caral se desarrolló a través de un largo periodo de casi mil años, en las que se sucedieron una serie de remodelaciones y superposiciones. Los arqueólogos han detectado seis fases en dicho proceso:18
- Inicio (hacia el 5.000 a.C.)
- Primeras construcciones de mayor tamaño (3.000-2.600 a.C.).
- Una remodelación general y anexión de las plazas circulares (2.600-2.300 a.C.).
- Periodo tardío en el que se ampliaron los edificios públicos (2300-2.200 a.C.).
- Pérdida de su importancia (2.200-2100 a.C.), al mismo tiempo que crece otro asentamiento en el valle bajo, llamado Era de Pando, de mayor tamaño que Caral.
- Se abandona paulatinamente Caral y se procede a enterrar sus edificios (2.100-1.800 a.C.).
Se desconocen las causas del fin de Caral. Posiblemente el sitio sufrió los estragos de eventos naturales, como terremotos y el fenómeno de El Niño, todo los cuales crearon las condiciones para su abandono.19
Ciudad sagrada
El Altar del Fuego Sagrado en Caral.
Los estudiosos lo han calificado como ciudad debido a su organización, extensión y diversidad de edificios. Efectivamente, consta de un conjunto de edificios monumentales diversos, con distintas funciones ceremoniales y administrativas, y en donde se desarrollaron innovaciones arquitectónicas y tecnológicas importantes. Cronológicamente, es el más antiguo asentamiento de América que presenta dichas características, y por ello se le considera como la primera ciudad de América.20
Se le ha llamado también ciudad sagrada ya que todo lo que se ha excavado en la ciudad está impregnado de religiosidad. Hay muchos fogones para ofrendas, así como señales de posibles rituales en cada lugar, no solamente en las áreas de espacio público o en los templos sino incluso en las viviendas. En los fogones se quemarían alimentos u otros objetos como ofrendas.21 Todo lo cual nos indica que fue en esa época en que por primera vez las sociedades peruanas tuvieron un gobierno central, en donde se establece el estado y se utiliza la religión como medio de afirmación.
Descripción
Una de las pirámides de Caral
Caral ocupa una extensión de 66 hectáreas, divididas en dos zonas, una central y la otra periférica.22
- La zona central o nuclear, es el sector se extienden 32 estructuras públicas y varios conjuntos residenciales, que se distribuyen en dos mitades:
- La mitad alta (Caral Alto), al norte, que tiene construcciones públicas y residenciales más grandes de la ciudad: siete edificios monumentales (pirámides), dos plazas circulares hundidas (frente a sendas pirámides), dos espacios de congregación colectiva (Plaza Central y Plazuela de la Huanca), unidades residenciales de los funcionarios, así como un extenso conjunto residencial de especialistas y servidores.
- La mitad baja (Caral Bajo), al sur, que tiene edificios de menores dimensiones, como el complejo arquitectónico del Anfiteatro, el edificio del Altar Circular y un conjunto residencial, también de menor extensión.
- La zona periférica o marginal, contiene conjuntos de viviendas distribuidos a modo de islotes, colindando con el valle.
Cabe señalar que las construcciones residenciales no eran solo viviendas domésticas sino también talleres de trabajo.
Edificios públicos piramidales
Una pirámide de Caral, con su plazuela circular.
Las pirámides son de diverso tamaño. Las paredes de la estructura piramidal estaban enlucidas con barro y pintadas de blanco o amarillo claro, y, ocasionalmente, de rojo. Una escalera central conducía hacia la parte superior, donde se hallaban varios cuartos. En el cuarto principal había plataformas bajas ubicadas en dos o tres de sus lados, y en el centro, un fogón compuesto por un hoyo en el suelo, recubierto con barro.23
Caral Alto
- Edificio Piramidal Mayor o Pirámide Mayor (Sector E), es el de mayor volumen y extensión. Mide 150 metros de largo, 110 metros de ancho y 28 metros de alto. Domina la plaza central urbana, un extenso espacio donde se cree se realizaban las ferias. Por su ubicación y tamaño se supone que debió ser el principal edificio de Caral. Forma parte de un conjunto que se complementa con una plaza circular hundida y una imponente estructura de plataformas escalonadas. Es la estructura emblemática de la ciudad de Caral y la que suele mostrarse mayormente en las representaciones fotográficas.
- Edificio Piramidal La Cantera (Sector B), llamado así por estar construido en un promontorio rocoso usado anteriormente como cantera. En su cima tiene un altar circular, con un enorme fogón y con conductos subterráneos.
- Edificio Piramidal Menor (Sector G), cuya escalera principal estaba situada originalmente en el lado norte; luego fue cambiada hacia el lado oeste.
- Edificio Piramidal Central (Sector C), el segundo en dimensión, con una altura de 18 metros. Está situado al oeste de la plaza central. Anexa a ella se ha desenterrado una plaza ritual.
- Edificio Piramidal La Galería (Sector H), el tercero en dimensión, situada en el extremo este de la ciudad. En su cima hay una galería subterránea.
- Edificio de la Banqueta (Sector N), es un templo de menores dimensiones, con evidencia de varios periodos de cambio.
- Edificios Especiales (Subsector E2-E3), conformado por dos edificios piramidales, originalmente diferenciados, pero que posteriormente fueron convertidos en uno solo.
- Edificio Piramidal La Huanca (Sector I), al frente de cuya fachada está un monolito hincado en el suelo, al que se denomina La Huanca, el cual tiene 2.15 m de alto.
Caral Bajo
- Templo del Anfiteatro (Sector L), es un complejo amurallado, con una plaza circular hundida en forma de anfiteatro, que es la de mayor tamaño de la ciudad, con 29 m de diámetro. Es la estructura más imponente de la mitad baja de Caral y la más conocida de todo el asentamiento después de la Pirámide Mayor.
- Edificio del Altar Circular (Sector P), donde destaca un altar circular con fogón y sus conductos subterráneos.
Viviendas
La ciudad consta de varios sectores residenciales, que se dividen en conjuntos residenciales multifuncionales y en las residencias de los funcionarios anexas a los edificios públicos. 24
Conjuntos residenciales multifuncionales
Conformada por numerosas viviendas agrupadas en subconjuntos y separadas entre sí.
- Conjunto Residencial Mayor (Sector A), en Caral Alto.
- Conjunto Residencial Menor (Sector NN2), en Caral Bajo.
- Sector Residencial de la Periferia (Sector X), en la periferia.
- Subconjunto Residencial D1 (Sector D), en la periferia.
Residencias de los funcionarios de los edificios públicos
Se hallan anexas a los edificios públicos. Se cree que fueron ocupados por los funcionarios que administraban dichos edificios.
- Unidad Residencial B1 (Caral Alto), anexo a la Pirámide de la Cantera.
- Conjunto Residencial de Élite I2 (Caral Alto), anexo a la Pirámide de la Huanca.
- Unidad Residencial B2 (Caral Alto), anexo a la Pirámide de la Cantera.
- Sector Residencial H2 (Caral Alto), anexo a la Pirámide de la Galería.
- Unidad Residencial B5 (Caral Alto), anexo a la Pirámide de la Cantera.
- Unidad Residencial Q1 (Caral Bajo), anexo a la Pirámide del Altar Circular.
Población
Los cálculos más conservadores estiman que la ciudad sagrada de Caral albergó de 1000 a 3000 habitantes. Se ha determinado de que existía una gran diferenciación social, es decir, la población se dividía en clases sociales, cada una de las cuales cumplían determinadas funciones y estaban organizadas de manera jerárquica. Unos grupos se encargaban de la planificación y la toma de decisiones (gobernantes y sacerdotes), y otros de las tareas manuales, como la pesca, la construcción, la agricultura, etc.25
En Caral «la obra arquitectónica en la ciudad y en el campo y los materiales asociados evidencian una organización social compleja en tres estratos jerarquizados, la población mayoritaria,…los especialistas,…y las autoridades conductoras de lo terrenal y lo espiritual en el centro urbano.»26
Otras manifestaciones culturales
Estatuillas de arcilla
En general se considera a Caral como una cultura precerámica, es decir, que no desarrolló la técnica alfarera (esto es, piezas modeladas en arcilla y cocidas al fuego). Para Ruth Shady, los caralinos no necesitaban de cerámica pues contaban con mates de calabaza, cucharas de madera y platos tallados en piedra,27 por lo que, según ella, debería ser calificada más bien como cultura acerámica. Aunque si modelaban pequeños ídolos antropomorfos en arcilla, dejándolos secar al sol. Estas estatuillas, que representan figuras masculinas y femeninas, se han encontrado fragmentadas y formarían parte de rituales relacionados con la renovación de los edificios y el culto de la fertilidad. A base de estas representaciones se puede inferir la vestimenta, el tocado y el peinado de los habitantes de Caral.28
Quipus
En la pirámide La Galería se ha halló un resto textil que ha sido interpretado como un quipu, el conjunto de hilos con nudos que los incas utilizaban como instrumento mnemotécnico (es decir, como medio de conservación de información estadística o mensajes para comunicarse). Sería pues, el más antiguo quipu hallado en el Perú y evidenciaría la antigüedad milenaria de su uso. Como para corroborar el uso del quipu en Caral, se descubrieron representaciones pictóricas de dichos objetos sobre tres bloques líticos de las plataformas de la pirámide Menor de Caral.29
Shicras
Los constructores de Caral usaban la técnica de shicras, bolsas hechas con fibras vegetales y llenas de bloques de piedra, con las que rellenaban las plataformas de los templos, colocándolos ligeramente separadas. De esa manera lograban estabilidad en las estructuras. Al ocurrir un fuerte sismo o terremoto, ese núcleo de shicras que hacía de base del edificio se movía con la vibración, pero de manera limitada, pues las piedras eran contenidas en las bolsas. Luego, las shicras se reacomodaban encontrando un nuevo punto de estabilidad. La shicras tenía pues, una función antisísmica.30 31
Música
Se descubrieron tres conjuntos musicales conformados por instrumentos de viento:32
- Un conjunto de 38 cornetas, hecho de huesos de huanaco y venado.
- Un conjunto de 32 flautas traversas, de huesos de cóndor y pelícano, con diseños zoomorfos.
- Un conjunto de 4 antaras (flauta de pan), de carrizo e hilos de algodón.
Tejidos de algodón
La importancia que alcanzó la textilería se evidencia por el hallazgo de cantidad de semillas y motas de algodón. Este era de diversas tonalidades naturales: pardo, marrón, crema y beige. Con las fibras de este producto se tejían los vestidos, que eran piezas llanas, sin decoración. Se empleaba la técnica del entrelazado y el torzal. También elaboraron calzado, bolsas, sogas, redes de pescar, cordeles, etc. Conjuntamente con la fibra de algodón se usaron las de otros vegetales, como totora, junco, cabuya, etc.33 34
Astronomía
Se han encontrado evidencias de que los hombres de Caral contaban con conocimientos de astronomía, que aplicaban en la elaboración del calendario, relacionado con la celebración de festividades y otras actividades económicas, religiosas y cívicas. Dichos conocimientos lo aplicaron también en la orientación de los edificios públicos. Se han hallado, por ejemplo, geoglifos y líneas esparcidos en las planicies desérticas, al lado de piedras talladas dispersas; así como un recinto subterráneo originalmente techado, que parece ser un observatorio. Es de destacar también un monolito o huanca hincado en el suelo de una plaza pública, que habría sido un instrumento de observación astronómica.35
Cuna de la civilización andina
Los restos arqueológicos desenterrados en Caral, así como en otros asentamientos contemporáneos situados en el valle de Supe (como Áspero, Miraya, Lurihuasi y Chupacigarro) y en el valle de Huaura (como Vichama y Bandurria), demuestran que hace 5000 años nació en esa zona una civilización comparable en antigüedad a las del “Viejo Mundo”, constituyéndose a la vez en la más antigua del continente americano.36
Se ha planteado que Caral fue sede de una comunidad formada por varios ayllus o grupos de familias y dirigida por los líderes de dichos ayllus, uno de los cuales sería el “principal” (Curaca) y los otros sus contrapartes. Los jefes principales o curacas serían los encargados de dirigir a los habitantes. Este sistema de gobierno se habría dado también en los otros asentamientos situados en el valle de Supe, y en otros centros situados en regiones más alejadas, como Las Haldas y Sechín Bajo (valle de Casma), Kotosh (cuenca del Huallaga), Huaricoto y La Galgada (sierra de Áncash). Todos ellos compartían una misma tradición y formarían una amplia y bien organizada red de reciprocidad e intercambio. Toda esa área, situada en la parte norcentral del actual Perú, sería pues el sitio donde se forjó la civilización andina.37 Aunque es necesario destacar que, de toda esa extensa zona, es el valle de Supe el que alcanzó mayor desarrollo, pues allí se han detectado unos 20 asentamientos urbanos con edificios públicos monumentales, constituyendo así en el foco de mayor densidad poblacional si se le compara con lo que registran los otros valles. Por su extensión y complejidad monumental, Caral debió ser indudablemente la cabeza de toda la red de poblaciones del valle de Supe.38
Lo que mantuvo unido a la población de Caral fue presumiblemente la religión, que sería el medio de cohesión y coerción social. La religión sería el conducto a través del cual el Estado controlaba a la población, la producción de bienes y su circulación. Ello se infiere de la presencia de los grandes monumentos de carácter religioso (pirámides o templos) con sus plazas, atrios y altares del fuego sagrado o fogones, en donde se realizaban las diversas festividades del calendario ceremonial, símbolo de su identidad cultural. Las periódicas reuniones y actividades conjuntas como la renovación de las pirámides permitían el reconocimiento del poder y fortalecían la identidad cultural.39
En definitiva, Caral sería la cuna de la civilización andina, pues en ella se han detectado los exponentes más antiguos de las principales instituciones de la época prehispánica, como la reciprocidad (sistema de intercambio y circulación de bienes y servicios), el calendario ceremonial (relacionado con la celebración de festividades y otras actividades económicas) o la construcción y renovación de los templos, entre las más relevantes.6
Peculiaridad de la cultura de Caral
A raíz de las investigaciones de los restos arqueológicos se llegó a la conclusión de que Caral ejercía como capital económica de una amplia región gracias a su trabajo de agricultura, cuyos productos intercambiaba con los pescadores de la costa u otras poblaciones. Esto se entiende al comprobar la abundancia de restos de productos marinos en Caral, estando ésta a unos 20 km de distancia de la costa más cercana.40
La dominación regional por parte de Caral, a la vista de los estudios, fue ejercida de una forma completamente pacífica durante un periodo que podría ser de 500 a 1000 años, durante los cuales Caral no dejó restos de fabricación de armas, testimonios o evidencias de haber organizado un ejército o liderado una guerra sobre la que dejar constancia. Esta posibilidad ha sorprendido a investigadores de varios ámbitos que se interesaron por Caral.41
Patrimonio de la Humanidad
El perímetro de Caral fue declarada Patrimonio de la Humanidad por el Comité del Patrimonio Mundial de la Unesco el 28 de junio de 2009 en Sevilla, con ocasión de su trigésima tercera sesión ordinaria. Se reconoció así que Caral es distinguido por su antigüedad, complejidad arquitectónica con edificios piramidales, plazas, su diseño y la extensión urbana.5
De esta manera, Caral se añade a los otros 10 sitios turísticos ya reconocidos como Patrimonio de la Humanidad en el Perú como el centro histórico de la ciudad Lima, el centro arqueológico de Machu Picchu, etc.42
La Ciudad Sagrada de Caral-Supe refleja el surgimiento de la civilización en las Américas. Como estado socio-político plenamente desarrollado, es notable por su complejidad y su impacto sobre los asentamientos en desarrollo a lo largo del valle de Supe y más allá. Su uso temprano del quipu como un dispositivo de grabación se considera de gran importancia. La concepción de los componentes arquitectónicos y espaciales de la ciudad es magistral, y los montículos de plataformas monumentales y los patios circulares empotradas son expresiones poderosas e influyentes de un estado consolidado.
Caral es sorprendentemente intacta, en gran parte debido a su abandono temprano y tardío descubrimiento. Una vez abandonada, parece haber sido ocupado sólo dos veces y luego no de forma sistemática: una vez en el llamado Formativo Medio o Horizonte Temprano, alrededor de 1000 aC; y una vez en el período Unidos y señoríos, entre 900 y 1440 dC Dado que ambos asentamientos se encontraban en las afueras de la ciudad, que no alteran las estructuras arquitectónicas antiguas. Además, puesto que el sitio carecía de oro y plata encuentra, había poco saqueo. El sitio no tiene construcciones permanentes modernas en su entorno inmediato (excepto para las instalaciones turísticas construidas con materiales locales). Es parte de un paisaje cultural y natural de gran belleza, relativamente al margen del desarrollo. La mayoría del desarrollo se ha producido en los valles bajos cerca de Lima (al sur del sitio). El Valle de Supe medio, donde se encuentra el sitio, es una zona dedicada a la agricultura no industrializado. Hay poca discusión sobre la autenticidad del sitio.
El sistema de gestión en su lugar es adecuado, y un plan de gestión modificado recientemente (a partir de finales de 2008) se ha aplicado. El plan modificado incluye regulaciones para garantizar la preservación y conservación de la propiedad.
Photo Credit: Foto Ministerio de Cultura
- Escalera principal
- Antesala, antes de ingresar al salón ceremonial
- Plataformas escalonadas
- Salón Ceremonial, se encuentra presidido por un fogón central rodeado por una serie de plataformas escalonadas. Ambiente restringido.
- Recinto posterior al salón ceremonial.
- Recinto especial simboliza la autoridad principal del edificio.
- Otros salones de la cima, construidos en la parte posterior más alta del lugar, sobre plataformas elevadas.
- Altar de conductos subterráneos de forma cuadrada. Tiene un fogón y conductos de ventilación.
- Plaza circular hundida, ubicados hacia el eje central del edificio.
- Galería subterránea.
- Residencia
¿Cuáles fueron sus técnicas de construcción?
Las plataformas tuvieron murallas de piedra, arcilla y otros materiales. Hasta el período Medio, algunos edificios públicos mantuvieron recintos de palos, cañas y barro. En el período Medio Tardío se generalizó el uso de bloques de piedra cortados. Las paredes llevaron enlucidos de arcilla y pintura de colores blanco, amarillo claro, amarillo ocre, rojo y negro, según los períodos constructivos de la ciudad.
Nota: La Información e explicaciones de la imagen, pertenece al Ministerio Nacional de Cultura.
Debe estar conectado para enviar un comentario.