Este Mundo, a veces insólito

Calendario
noviembre 2024
L M X J V S D
 123
45678910
11121314151617
18192021222324
252627282930  

WIND

Rate this post

Otros nombres: CGS/Wind Clementine

Organización: NASA

Fecha de lanzamiento: 1 de noviembre de 1994

Vehículo de lanzamiento: Deltawind1

Sitio de lanzamiento: Cabo Cañaveral

Aplicación: Observación terrestre

Masa: 1195 kg

NSSDC ID: 1994-071A

Tipo de órbita: Polar

Tasa de datos: 5,5 o 11,1 kbps

Wind es un satélite artificial de la NASA lanzado el 1 de noviembre de 1994 desde Cabo Cañaveral mediante un cohete Delta a una órbita polar.

Wind es el satélite gemelo del satélite Polar y está dedicado a medir el viento solar y el campo magnético. Los objetivos concretos de Wind son:

  • estudiar el plasma, las partículas energéticas y el campo magnético.
  • determinar el flujo magnético de salida de la magnetosfera en la zona de la cola magnética.
  • estudiar los procesos con plasma implicado en el viento solar en la zona cercana a la Tierra.
  • realizar observaciones en el plano de la eclíptica para ser utilizadas en estudios heliosféricos.

El satélite llevó el primer instrumento ruso en volar en una nave estadounidense desde 1987. La alimentación eléctrica era producida por las células solares que recubrían el cuerpo del satélite, del que salían varias antenas y mástiles que soportaban instrumentos. Estaba estabilizado por rotación (20 revoluciones por minuto). Los datos eran guardados por grabadoras de cinta hasta ser transmitidos a la Red del Espacio Profundo a velocidades de 5,5 o 11,1 kbps.wind2

Llevaba los siguientes instrumentos:

  • EPACT (Energetic Particle Acceleration, Composition and Transport): mide la aceleración de las partículas energéticas y los procesos de transporte en las erupciones solares, el medio interplanetario, la magnetosfera y los rayos cósmicos.
  • Magnetic Field Investigation (MFI): magnetómetros utilizados para estudiar estructuras a gran escala y la fluctuación de los campos magnéticos interplanetarios en función del tiempo. Disponen de siete rangos de medida: 6, 64, 256, 1024, 4096, 16.384 y 65.536 nT con una resolución de hasta 2,5-4 para 1 nT.
  • Radio and Plasma Wave Experiment (WAVES): experimento francés de ondas de radio y plasma para medir la intensidad y dirección de llegada de ondas de radio y plasma con origen en el viento solar cercano a la Tierra.
  • Solar Wind Ion Composition Spectrometer (SWICS) / Suprathermal Ion Composition Spectrometer (STICS): para medir la composición ionica y la carga del viento solar, la velocidad, densidad y temperatura de los iones de He4++, medir la velocidad media de los protones del viento solar y medir la distribución de energía de algunas especies iónicas.
  • Solar Wind Experiment (SWE): espectrómetro de seis ejes que proporciona funciones tridimensionales de la distribución de velocidad para iones y electrones con una alta resolución temporal.
  • Transient Gamma Ray and EUV Spectrometer (TGRS): para hacer observaciones de alta resolución de eventos de rayos gamma transitorios en el rango de energía entre 20 keV y 10 MeV.
  • 3-D plasma and energetic particle analyzer (3DP): mide la distribución tridimensional del plasma y los electrones e iones energéticos con alta resolución temporal, angular y de energía en un rango de entre 10 eV y 5 MeV.
  • KONUS: detector de rayos gamma.

El Global Geoespacio Ciencia (SGG) del viento por satélite es una nave espacial NASA lanzada en 04:31:00 EST el 1 de noviembre de 1994, 17B plataforma de lanzamiento en la estación de Cabo Cañaveral de la Fuerza Aérea (CCAFS) en Merritt Island, Florida a bordo de un Douglas McDonnell Delta II 7925-10 cohete. El viento fue diseñado y fabricado por Martin Marietta División Espacial Astro en East Windsor, Nueva Jersey. El satélite tiene un giro estabilizado cilíndrica satélite con un diámetro de 2,4 m y una altura de 1,8 m.[1]wind3

Fue desplegado para estudiar radio y plasma que se producen en el viento solar y de la magnetosfera de la Tierra antes de que el viento solar llega a la Tierra. La misión original de la nave estaba en órbita alrededor del Sol en el L 1 punto de Lagrange, pero esto se retrasó cuando el SOHO y ACE, naves espaciales fueron enviados a la misma ubicación. El viento ha estado en L 1 de forma continua desde 2004, y todavía está en funcionamiento a partir de marzo 22, 2016.[10] El viento actualmente tiene suficiente combustible para durar más o menos 53 años en L1. El viento sigue produciendo investigaciones pertinentes, con sus datos de haber contribuido a más de 1600 publicaciones desde 2009 y más de 2200 publicaciones anteriores a 2009, al 22 de marzo, 2016 (sin incluir publicaciones de 2016), el número total de publicaciones, ya sea directa o indirectamente, a partir de datos del viento es de ~ 3903.[10] Tenga en cuenta que muchas de estas publicaciones utilizadas datos de viento indirectamente por citar el conjunto de datos OMNI en CDAWeb , que se basa en gran medida en mediciones de viento.

Las operaciones de la misión se llevan a cabo desde el Centro de Operaciones Multi-Misión (MMOC) en el edificio 14 en el Goddard Space Flight Center en Greenbelt, Maryland.

Los datos de viento se puede acceder mediante la SPEDAS software.

El viento es el satélite gemelo del SGG polar .

Los objetivos científicos de la misión del viento

  • Proporcionar el estudio del plasma completo, partículas energéticas, y la entrada del campo magnético para los estudios de la ionosfera y la magnetosfera.
  • Determinar la salida magnetosférica al espacio interplanetario en la región aguas arriba.
  • Investigar los procesos de plasma básicos que se producen en el viento solar cercano a la Tierra.
  • Proporcionar observaciones plano de la eclíptica línea de base que se utilizará en las latitudes heliosféricos de ULISES.

Los instrumentos científicos de la nave espacial del viento

El objetivo de ISTP es entender el comportamiento del Sol y la Tierra de plasma medio ambiente con el fin de predecir la forma en la Tierra ‘atmósfera de s responderá a los cambios en el viento solar condiciones. Viento “objetiva s es medir las propiedades del viento solar antes de que se llega a la Tierra. La nave espacial del viento tiene una gran variedad de instrumentos, incluyendo: Konus, [4] La investigación de campo magnético del viento (IMF),[3] el viento solar y supratérmica Ion Composición Experimento (SMS),[5] Las Partículas Energéticas: Aceleración, Composición, y Transportes (EPACT) investigación,[2] el Experimento de viento solar (SWE),[6] una imagen tridimensional de plasma e investigación partículas Energéticas (3DP),[7] el transitorio de rayos Gamma (Espectrómetro TGRS),[8] y la Radio y plasma Wave Investigación (ondas).[9] los instrumentos Konus y TGRS son principalmente para-rayos gamma de alta energía y de fotones observaciones de las erupciones solares o las explosiones de rayos gamma . El experimento SMS mide las proporciones de masa y masa-carga de iones pesados. Los experimentos SWE y 3DP tienen el propósito de medir / analizar la energía más baja (por debajo de 10 MeV) del viento solar protones y electrones . Las olas y experimentos IMF fueron diseñados para medir las eléctricas y campos magnéticos observados en el viento solar. En conjunto, la suite de la nave espacial de los instrumentos de viento permite obtener una descripción completa de los fenómenos de plasma en el plano viento solar de la eclíptica.

Viento / ONDASwind4

Tiempo de dominio muestreador

Los campos eléctricos detectores de las olas Instrumento de viento[9] se componen de tres campos eléctricos ortogonales antenas dipolo, dos en el plano de giro (más o menos al plano de la eclíptica) de la nave espacial y uno a lo largo del eje de rotación. La suite ONDAS completas de instrumentos incluye cinco receptores totales incluyendo: receptor de baja frecuencia FFT llamado FFT (0,3 Hz a 11 kHz), Receptor de ruido térmico llama TNR (4-256 kHz), Radio de recepción de radio llamado RAD1 1 (20-1040 kHz), radio de banda del receptor 2 llamado RAD2 (1,075 a 13,825 MHz), y el dominio Sampler tiempo llamado TDS (diseñado y construido por la Universidad de Minnesota). Cuanto más largo del plano de giro de dos antenas, que se define como Ex, es 100 m de punta a punta, mientras que el más corto, que se define como Ey, es de 15 metros de punta a punta. El dipolo eje de giro, que se define como Ez, es más o menos 12 metros de punta a punta. Al contabilizar los potenciales nave espacial, estas longitudes de antena se ajustan a ~ 41,1 m, 3,79 m ~, y ~ 2,17 m [Nota: éstos están sujetos a cambios y sólo estimaciones y no necesariamente exacta con dos decimales]. Las ondas Instrumento de viento también detecta los campos magnéticos utilizando tres ortogonales magnetómetros de bobina de búsqueda (diseñado y construido por la Universidad de Iowa). Las bobinas de búsqueda XY están orientados a ser paralela a la antena dipolo XY. Las bobinas de búsqueda permiten mediciones del campo magnético de alta frecuencia (definidos como B x, B y y B z). Las ONDAS Z-Axis es paralela anti-to-Z GSE (geocéntrica solar eclíptica dirección). Por lo tanto cualquier rotación se puede hacer sobre el eje Z en el sentido euleriano normal, seguida por un cambio de signo en el Z-componente de cualquier GSE vector giran en coordenadas olas.

Capturas Electric (y magnético) de forma de onda de campo se pueden obtener del receptor de dominio de tiempo Sampler (TDS).[9] muestras TDS son una captura de forma de onda de 2048 puntos (16384 puntos en la STEREO nave espacial) por componente de campo. Las formas de onda son medidas de campo eléctrico en función del tiempo. En las frecuencias de muestreo más altas, el ayuno (TDSF) muestreador se ejecuta en ~ 120.000 muestras por segundo (sps) y el lento (STT) muestreador funciona a ~ 7.500 sps. TDSF muestras se componen de dos componentes de campo eléctrico (normalmente E x y E y) mientras que las muestras TDSS se componen de cuatro vectores, ya sea de tres eléctrica y un campo magnético o tres magnético y un campo eléctrico. El receptor TDSF tiene poca o ninguna ganancia por debajo de aproximadamente ~ 120 Hz y los magnetómetros de bobina de búsqueda rodar fuera del orden de ~ 3,3 Hz.[11]

Receptor de ruido térmicowind5

Las medidas de TNR ~ campos eléctricos 4-256 kHz en un máximo de 5 bandas de frecuencia logarítmica espaciados, aunque normalmente sólo se fija en 3 bandas, a partir de 32 o 16 canales por banda, con un 7 nV / (Hz)1/2 sensibilidad, 400 Hz a 6,4 de ancho de banda kHz, y el rango dinámico total de más de 100 dB.[9] Los datos han sido tomados por dos receptores multicanal, que nominalmente muestra para 20 ms a una frecuencia de muestreo de 1 MHz (ver[9] para más información). El TNR se utiliza a menudo para determinar la densidad local del plasma mediante la observación de la línea de plasma, una emisión a la frecuencia local del plasma debido a una respuesta de ruido térmico de la antena dipolo de alambre. Hay que señalar que la observación de la línea de plasma requiere la antena dipolo para ser más largo que el local de la longitud de Debye , λDe. [2] Para las condiciones típicas en el viento solar lambda De ~ 7-20 m, mucho más corto que el cable de antena dipolo el viento. La mayor parte de esta sección fue tomada de.[11]

Viento / 3DP

El Instrumento de viento / 3DP (diseñado y construido en el Berkeley Laboratorio de Ciencias Espaciales) fue diseñado para realizar mediciones tridimensionales completos de las distribuciones de supratérmica electrones e iones en el viento solar. El instrumento incluye tres matrices, cada uno compuesto de un par de de doble extremo semi-conductores telescopios cada uno con dos o tres estrechamente intercaladas pasivados de iones implantados silicio detectores, que miden los electrones y los iones por encima de ~ 20 keV. El instrumento también tiene chistera simétrica sección esférica electrostática (ES) analizadores con placa microcanal detectores (MCP) se utilizan para medir los iones y electrones a partir de ~ 3 eV a 30 keV. [7] Los dos tipos de detectores tienen reions energía que van desde ? e / e ≈ 0.3 para los telescopios de estado sólido (SST) y? e / e ≈ 0.2 para la chistera analizadores ES. Las resoluciones angulares son 22,5 ° x 36 ° para el SST y 5,6 ° (cerca de la eclíptica) a 22,5 ° para la chistera analizadores ES. Los detectores de partículas pueden obtener una cobertura completa estereorradián 4π en una (la mitad) de giro completo (~ 3 s) de la SST (chistera analizadores ES). La mayor parte de esta sección fue tomada de. [11]

Analizadores electrostáticos

Los conjuntos de detectores están montados en dos brazos opuestos, cada uno de 0,5 m de longitud. La parte superior del sombrero analizador ES se componen de cuatro detectores separados, cada uno con diferentes factores de geometría para cubrir diferentes rangos de energías. Los detectores de electrones, Jes s, y detectores de iones, PESA, se separan en cada uno bajo (L) y detectores (H) de alta energía. Los analizadores de H y L contienen 24 y 16 ánodos discretos, respectivamente. El ánodo de diseño proporciona una resolución angular de 5,6 ° dentro de ± 22,5 ° del plano de la eclíptica (aumenta a 22,5 ° en incidencia normal al plano de la eclíptica). Los analizadores son barridas de manera logarítmica de la energía y de la muestra contadores a 1024 muestras / centrifugado (~ 3 ms período de la muestra). Así, los analizadores se pueden fijar a la muestra 64 muestras por barrido de energía a los 16 barridos por tirada o 32 muestras por barrido de energía en 32 barridos por tirada, etc. Los detectores se definen como sigue:

  • EESA baja (EL): cubre los electrones de ~ 3 eV a ~ 1 keV (Estos valores varían de una estructura momento a la estructura momento dependiendo de la duración del muestreo de datos, el potencial de la nave espacial, y si en ráfaga o modo de encuesta El alcance típico es de ~ 5. eV a ~ 1,11 keV. [11] ) con una resolución de fase de 11,25 ° giro. EL tiene un factor geométrico total de 1,3 x 10 -2 E cm 2 -SR (donde E es la energía en eV) con un casi idéntico 180 ° campo de visión (FOV), radial a la nave espacial, a la de PESA-L.
  • EESA alta (EH): cubre electrones de ~ 200 eV a ~ 30 keV (aunque valores típicos varían de un mínimo de ~ 137 eV a un máximo de ~ 28 keV) en un barrido de energía 32 muestra cada 11,25 ° de giro nave espacial. EH tiene un factor geométrico total de 2,0 x 10 cm -1 E 2 -SR, eficiencia MCP de alrededor de 70% y la transmisión de la red de aproximadamente 73%. EH tiene un FOV tangente 360 ° planar a la superficie de la nave espacial que puede ser electro estáticamente desviado en un cono de hasta ± 45 ° fuera de su plano normal.
  • PESA baja (PL): cubre iones con un barrido de energía 14 muestra (Tenga en cuenta que en el modo de encuesta las estructuras de datos suelen tener 25 puntos de datos a las 14 energías diferentes, mientras que en el modo de ráfaga se toman 64 puntos de datos a las 14 energías diferentes.) A partir de ~ 100 eV a ~ 10 keV (a menudo energías van desde ~ 700 eV a ~ 6 keV) cada 5,6 ° de giro nave espacial. PL tiene un factor geométrico total de sólo 1,6 x 10 -4 cm E 2 -SR pero una respuesta de ángulo energía idéntica a la de PESA-H. Mientras que en el viento solar, PL se reorienta a lo largo de la dirección de flujo mayor para capturar el flujo de viento solar que da lugar a una estrecha gama de cobertura pitch-ángulo.
  • PESA alta (PH): cubre iones con un barrido de energía 15 de la muestra a partir de tan ~ 80 eV hasta un máximo de ~ 30 keV (rango de energía típica es ~ 500 eV a ~ 28 keV [11] ) cada 11,25 ° de la nave espacial ( tenga en cuenta que PH tiene varios modos de datos donde el número de puntos de datos por bin de energía puede ser cualquiera de los siguientes: 121, 97, 88, 65, o 56.). PH tiene un factor geométrico total de 1,5 x 10 -2 E cm 2 -SR con una eficiencia de MCP de alrededor de 50% y la transmisión posterior entrada rejilla de aproximadamente 75%.

Telescopios de estado sólido

Los detectores de SST constan de tres matrices de telescopios de dos extremos, cada uno de los cuales está compuesto de cualquiera de un par o triplete de cerca intercalados semi-conductores detectores. El detector de centro (grueso o T) del triplete es 1,5 cm 2 de superficie, 500 m de espesor, mientras que los otros detectores, lámina (F) y abierto (O), son la misma zona pero sólo 300 m de espesor. Una dirección de los telescopios está cubierto de una delgada lexan papel de aluminio, ~ 1.500 Å de aluminio evaporó a cada lado para eliminar por completo la luz solar, (SST-Foil) donde fue elegido el espesor de detener protones hasta la energía de los electrones (~ 400 keV ). Los electrones son esencialmente afectadas por la lámina. En el lado opuesto (SST-abierto), un común imán escoba se utiliza para rechazar los electrones por debajo de ~ 400 keV de entrar, pero deja los iones esencialmente afectadas. Por lo tanto, si no hay partículas de mayor energía penetran en las paredes del detector, el SST-Foil debe medir solamente los electrones y los iones sólo SST-abiertos. Cada telescopio de doble extremo tiene dos 36 ° x 20 ° FWHM FOV, por tanto, cada extremo de los cinco telescopios puede cubrir un pedazo de espacio 180 ° x 20 °. Telescopio 6 ve el mismo ángulo para hacer girar el eje como telescopio 2, pero ambos extremos del telescopio 2 tener una cubierta de tántalo perforado para reducir el factor geométrico por un factor de 10 para medir los flujos más intensos. Las estructuras de datos SST-Foil típicamente tienen 7 contenedores de energía, cada uno con 48 puntos de datos, mientras que el SST-abierto tiene 9 contenedores de energía cada uno con 48 puntos de datos. Ambos detectores tienen resoluciones de energía de? E / E ≈ 30%. La mayor parte de esta sección fue tomada de.[11]

Viento / IMF

El instrumento de campo magnético (IMF) a bordo del viento[3] se compone de dos triaxiales magnetómetros de saturación. La IMF tiene un rango dinámico de ± 4 nT a ± 65.536 nT, resolución digital que van desde ± 0,001 nT a ± 16 nT, el nivel de ruido del sensor de <0,006 nT (RMS) de las señales de 0-10 Hz y frecuencias de muestreo varía de 44 muestras por segundo (sps) en la memoria instantánea a 10,87 sps en modo estándar. también están disponibles en las medias a los 3 segundos, 1 minuto y 1 hora de los datos. Los datos muestreados a tasas más altas (es decir,> 10 sps) se conoce como Tiempo de alta resolución (HTR) de datos en algunos estudios.[13] [14]

Viento / SWE

La nave espacial del viento tiene instrumentos de iones dos tazas de Faraday (FC).[6] Los bloques FC SWE puede producir reducción de las funciones de distribución de iones con hasta un 20 angular y 30 de energía por contenedores de carga cada 92 segundos.[15] Cada sensor tiene un ~ 15 ° incline por encima o por debajo del plano de giro y un rango de energía de ~ 150 eV a ~ 8 keV. Una abertura circular limita los efectos de la aberración cerca de la rejilla de modulador y define el área de recogida de las placas colectoras en cada FC. La muestra de FCS a una energía de juego para cada rotación de la nave espacial, a continuación, intensificar la energía para la siguiente rotación. Puesto que hay un máximo de 30 contenedores de energía para estos detectores, una función completa de distribución reducida requiere 30 rotaciones o un poco más de 90 segundos.

Algunos descubrimientos y / o contribuciones a la ciencia por la nave espacial del viento

  1. La observación de la relación entre las interacciones a gran escala del viento solar-magnetosfera y la reconexión magnética en la magnetopausa terrestre.[16]
  2. Primer estudio estadístico de alta frecuencia (≥1 kHz) las fluctuaciones del campo eléctrico en la rampa de interplanetarias choques (IP).[17] El estudio encontró que la amplitud de las ondas acústicas de iones (IAWS) aumentó con el aumento de modo rápido del número de Mach y de choque de compresión proporción. También encontraron que el IAWS tenía la más alta probabilidad de ocurrencia en la región de rampa.
  3. La observación de la ola más grande Whistler usando un magnetómetro bobina de búsqueda en los cinturones de radiación.[18] [19]
  4. Primera observación de shocklets aguas arriba de un choque IP cuasi-perpendiculares.[13]
  5. Las primeras observaciones simultáneas de Whistler olas modo con distribuciones de electrones inestables a la marmota del flujo de calor inestabilidad.[13]
  6. Primera observación de una onda solitaria electrostática en un choque IP con una amplitud superior a 100 mV / m.[14]
  7. Primera observación de electrones Berstein -como las olas en una descarga de IP [14]
  8. Primera observación de la región de origen de un Tipo II IP de radio de ráfaga.[20]
  9. Primera evidencia de Langmuir de onda de acoplamiento a las ondas en modo Z.[21]
  10. Primera evidencia para sugerir que las estructuras embrionarias bipolares observados en la región de transición de choque son consistentes con BGK modos o electrones espacio de fases agujeros.[22]
  11. Primera evidencia de una correlación entre la amplitud de agujeros espacio de fase de electrones y el cambio en la temperatura de los electrones. [23]
  12. Primera evidencia de interacciones de tres ondas en la parte terrestre foreshock utilizando bi-coherencia. [24] [25]
  13. Primera evidencia de protones de temperatura de anisotropía limitaciones debidas a espejo, manguera de bomberos, y el ciclotrón de iones inestabilidades.[26]
  14. Primera prueba de disipación de Alfvén-ciclotrón.[27]
  15. En primer lugar (compartido con STEREO nave espacial) la observación de captura de electrones por una gran amplitud de la onda de la marmota en los cinturones de radiación[28] (también visto en las observaciones STEREO[29] ).
  16. Primera observación de Langmuir y las olas en la marmota lunar estela.[30]
  17. Primera evidencia de una prueba directa de resonancia de ciclotrón de electrones con las ondas modo marmota impulsados por un flujo de calor inestabilidad en el viento solar.[31]
  18. Primera evidencia de la generación del haz de iones alineados campo local foreshock ondas electromagnéticas llama estructuras cortas de gran amplitud magnéticos o SLAMS, que son solitones olas -como en el magnetosonic modo.[32]

Science destaca en las noticias

Premioswind6

  • El equipo de operaciones de viento, NASA Goddard Space Flight Center, Greenbelt, Maryland, recibió el premio AIAA Espacio Operaciones y Mantenimiento , el 2 de septiembre de 2015. El premio honra del equipo “ingenio excepcional y sacrificio personal en la recuperación de la nave espacial del viento de la NASA.” Jacqueline Snell – gerente de ingeniería de viento, Geotail, y las misiones de la ECA – aceptó el premio en nombre del equipo. Premio detalles
  • El equipo de operaciones de viento, NASA Goddard Space Flight Center, Greenbelt, Maryland, recibió el premio al éxito de la NASA Grupo para la recuperación del procesador de comandos y la actitud de la nave espacial del viento. Premio detalles

Deja una respuesta

Este sitio usa Akismet para reducir el spam. Aprende cómo se procesan los datos de tus comentarios.